
Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Solving by searching
Artificial intelligence (CK0031)

Francesco Corona

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem solving

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem solving

The simplest agents we discussed were the reflex agents, which
base their actions on a direct mapping from states to actions

• They cannot operate well in environments for which this
mapping would be too large to store and too long to learn

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem solving (cont.)

Goal-based agents use future actions and desirability of outcomes

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem solving (cont.)

We study one kind of goal-based agent: Problem-solving agent

• Problem-solving agents use atomic representations (states
as wholes, no internal structure visible to the algorithms)

Goal-based agents that use factored or structured representations

• Planning agents

We begin with some definitions of problems and their solutions

• Several examples to illustrate these definitions

We then describe several general-purpose search algorithms

• They can be used to solve these problems

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem solving (cont.)

Several uninformed search algorithms, algorithms that are given
no information about the problem other than its definition

• Although some of these algorithms can solve any solvable
problem, none of them can do so efficiently

Informed search algorithms, on the other hand, can do quite well,
given some guidance on where to look for solutions

Only the simplest kind of task environment, for which the
solution to a problem is always a fixed sequence of actions

• The more general case (where the agent’s future actions may
vary depending on future percepts) is handled separately

We shall use the concepts of asymptotic complexity

• O notation) and NP-completeness

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents

Agents are expected to maximize their performance measure

• Achieving this is sometimes simplified if the agent
can adopt a goal and aim at satisfying it

Let us look at why and how an agent might want to do this

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

Example

Imagine an agent in Arad (city of Romania), enjoying a touring trip

The agent’s performance measure contains many factors

• It wants to improve suntan, improve Romanian, take in the
sights, enjoy nightlife (such as it is), avoid hangovers, etc.

The decision problem is a complex one involving many trade-offs

Suppose the agent has a nonrefundable ticket
to fly out of Bucharest the following day

It makes sense for the agent to adopt the goal: Get to Bucharest

Courses of action that do not reach Bucharest on time
can be rejected, and need no further consideration

• The agent’s decision problem is greatly simplified

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

Goals help organise behaviour by limiting the objectives the agent
is trying to achieve and hence the actions it needs to consider

• Goal formulation, based on current situation and agent’s
performance measure, is the first step in problem solving

Definition

We will consider a goal to be a set of world states

• exactly those states in which the goal is satisfied

The agent’s task is to find out how to act, now
and in the future, so that it reaches a goal state

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

Before it can do this, it needs to decide (or we need to decide on
its behalf) what sorts of actions and states it should consider

• If it were to consider actions at the level of ‘move left foot
forward an inch’ or ‘turn steering wheel one degree left,’ the
agent would prolly never find its way out of the parking lot

• At that level of detail there is too much uncertainty in the
world and there would be too many steps in a solution

Definition

Problem formulation is the process of deciding
what actions and states to consider, given a goal

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

Example

• Let us assume that the agent will consider actions at
the level of driving from one major town to another

• Each state thus corresponds to being in a some town

Our agent has now adopted the goal of driving to Bucharest

• It is considering where to go from Arad

Three roads lead out of Arad, to Sibiu, Timisoar and Zerind

None of these achieves the goal, so unless the agent is familiar with
the geography of Romania, it will not know which road to follow

• The agent does not know which of its possible actions is best

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

It does not know about the state that results from taking actions

• With no additional information (environment is unknown)
then it is has no choice but to try one action at random

Example

Suppose the agent has a map of Romania

• The point of a map is to provide the agent with information
about states it might get itself into and actions it can take

The agent can use this information to consider subsequent
stages of a hypothetical journey via each of the three towns

• Find a journey that eventually gets to Bucharest

Once it has found a path on the map from Arad to Bucharest

• Achieve goal by carrying out the actions (drive)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

In general, an agent with several immediate options of unknown
value can decide what to do by first examining future actions
that eventually lead to states of known value

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

Assumption

Environment is observable: Agent always knows current state

• For the agent driving in Romania, it is reasonable to suppose
that each city on the map has a sign indicating its presence

Environment is discrete: At any given state there
are only finitely many actions to choose from

• This is true for navigating in Romania because each
city is connected to a small number of other cities

Environment is known: Agent knows which states
are reached by each action

• An accurate map suffices to meet this condition for navigation

Environment is deterministic: Each action has one outcome

• Ideally, this is true for the agent in Romania as it means that
if it chooses to drive from Arad to Sibiu, it ends up in Sibiu

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

Under these assumptions, the solution to
any problem is a fixed sequence of actions

• In general it could be a branching strategy that recommends
different future actions depending on what percepts arrive

Example

Under sub-ideal conditions, the agent may plan to drive from Arad
to Sibiu and to Rimnicu Vilcea but may need a contingency plan
in case it gets by accident to Zerind instead of Sibiu

If the agent knows the initial state and the environment is known
and deterministic, it knows exactly where it will be after the first
action and what it will perceive

• Since only one percept is possible after the first action, the
solution can specify only one possible second action, ...

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

Definition

Search: The process of looking for a
sequence of actions that reaches goal

• The search algorithm takes a problem as input and
returns a solution in the form of an action sequence

Execution phase: Once a solution is found,
the actions it recommends can be carried out

Simple design for the agent: Formulate ⇒ search ⇒ execute

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

persistent: seq , an action sequence, initially empty
state, some description of the current world state

goal , a goal, initially null

problem , a problem formulation

state←UPDATE-STATE(state,percept)

if seq is empty then

goal← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state, goal)
seq← SEARCH(problem)
if seq = failure then return a null action

action← FIRST(seq)

seq←REST(seq)
return action

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

While the agent is executing the solution sequence it ignores its
percepts when choosing an action because it knows in advance

• An agent that carries out its plans with its eyes closed,
so to speak, must be quite certain of what is going on

Control theorists call this an open-loop system, because ignoring
the percepts breaks the loop between agent and environment

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem-solving agents (cont.)

• After formulating a goal and a problem to solve,
the agent calls a search procedure to solve it

• It then uses the solution to guide its actions,
doing whatever the solution recommends as
the next thing to do (typically, the first action
of the sequence) and then removing that step
from the sequence

• Once the solution has been executed,
the agent will formulate a new goal

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Well-definedtness
Problem solving agents

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Well-definedtness

A problem can be defined formally by five components:

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

The initial state is the initial state that the agent starts in

Example

Initial state for agent in Romania can be described as In(Arad)

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

The actions are the possible actions available to the agent
Given a particular state s, function ACTIONS(s) returns
the set of actions that can be executed in s

Example

From state In(Arad): {Go(Sibiu), Go(Timisoara), Go(Zerind)}

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A transition model is formal description of what each action does
Function RESULT(s, a) returns the state
that results from doing action a in state s

Example

RESULT(In(Arad), Go(Zerind)) = In(Zerind)

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Well-definedtness (cont.)

Definition

Together, initial state, actions, and transition model
implicitly define the state space of the problem

The set of all states reachable from the
initial state by any sequence of actions

The state space forms a directed network or graph in which
the nodes are states and the links between nodes are actions

• The map of Romania can be interpreted as a state-space
graph if we view each road as standing for two driving
actions, one in each direction

Definition

A path in the state space is a sequence of
states connected by a sequence of actions

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

The goal test determines whether a given state is a goal state
Sometimes there is an explicit set of possible goal states, and
the test simply checks whether the given state is one of them

Example

The agent’s goal in Romania is the singleton set {In(Bucharest)}

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Well-definedtness (cont.)

Sometimes the goal is specified by an abstract property
rather than an explicitly enumerated set of states

• In chess, the goal is to reach a state called ‘checkmate,
’where the opponent’s king is under attack and can’t escape

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Well-definedtness (cont.)

A path cost function assigns a numeric cost to each path

• The problem-solving agent chooses a cost function
that reflects its own performance measure

Example

For the agent trying to get to Bucharest, time essential,
so the cost of a path might be its length in kilometers

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

The path cost is the sum of costs of individual actions along path
The step cost of taking action a in state s
to reach state s’ is nonnegative c(s, a, s’)

Example

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Step costs for Romania can be defined as route distances

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Well-definedtness (cont.)

These elements define a problem and can be gathered into a single
data structure, passable as input to a problem-solving algorithm

Definition

• A solution to a problem is an action sequence
that leads from the initial state to a goal state

Solution quality is measured by the path cost function, and an
optimal solution has the lowest path cost among all solutions

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem formulation
Problem solving agents

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem formulation

Example

A formulation of the problem of getting to Bucharest in terms of
the initial state, actions, transition model, goal test, and path cost

• This formulation seems reasonable, but it is still a model (an
abstract mathematical description) and not the real thing

Compare the simple state description we have chosen, In(Arad),
to an actual trip, where the state of the world is the real state

• Traveling companions, current radio program, scenery out of
the window, proximity of law enforcement officers, distance
to the next rest stop, condition of the road, weather, ...

All these considerations are left out of state descriptions because
they are irrelevant to the problem of finding a route to Bucharest

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem formulation (cont.)

• Abstraction: Process of removing
detail from a representation

In addition to abstracting the state description,
we must abstract the actions themselves

Example

A driving action has many effects, besides changing the location
of the vehicle and its occupants, it takes up time, consumes fuel,
generates pollution, and changes the agent (travel is broadening)

• Our formulation takes into account only change in location

There are many actions that we necessarily omit altogether

• Turning on the radio, looking out of the window,
slowing down for law enforcement officers, ...

• We don’t specify actions at the level of ‘turn
steering wheel to the left by one degree’

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem formulation (cont.)

More precise about defining the appropriate level of abstraction?

• Think of the abstract states and actions we have chosen
as corresponding to large sets of detailed world states
and detailed action sequences

• Now consider a solution to the abstract problem

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem formulation (cont.)

Path from Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

This abstract solution corresponds to
a large number of more detailed paths

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem formulation (cont.)

• We could drive with the radio on between Sibiu and Rimnicu
Vilcea, and then switch it off for the rest of the trip

Definition

The abstraction is valid if we can expand any abstract solution
into a solution in the more detailed world

• A sufficient condition is that for every detailed state that is
‘in Arad,’ there is a detailed path to some state that is ‘in
Sibiu,’ and so on

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Problem formulation (cont.)

The abstraction is useful if carrying out each of the actions in the
solution is easier than the original problem

• In this case, they are easy enough that they can be carried out
without further search or planning by an average driving agent

Remark

The choice of a good abstraction thus involves removing as
much detail as possible while retaining validity and ensuring
that the abstract actions are easy to carry out

Were it not for the ability to construct useful abstractions,
intelligent agents would be swamped by the real world

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples
Solving by searching

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples

Problem-solving has been applied to an array of task environments

A toy problem: To illustrate/exercise problem-solving methods

• It can be given a concise, exact description and hence
is usable to compare the performance of algorithms

A real-world problem: To solve tasks people actually care about

• Such problems tend not to have a single agreed-upon
description, just a general flavour of their formulations

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems

The vacuum cleaner world problem can be formulated as

• States: The state is determined by both
the agent location and the dirt locations

The agent is in one of two locations, each of which might or might
not contain dirt: Thus, there are 2× 22 = 8 possible world states

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

Remark

• A larger environment with n locations has n × 2n states

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

• Initial state: Any state can be designated as the initial state

• Actions: Each state has three actions: Left, Right, Suck

• Transition model: Actions have the expected effects, except
that moving Left in leftmost square, moving Right in
rightmost square, and Sucking in clean square have no effect

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

• Goal test: This checks whether all the squares are clean

• Path cost: Each step costs 1, so the path cost
is given by the number of steps in the path

Compared with real world, the toy problem has discrete locations,
discrete dirt, reliable cleaning, and it never gets any dirtier

• Some of these assumptions can be relaxed

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

The 8-puzzle consists of a 3× 3 board,
with 8 numbered tiles and a blank space

• A tile adjacent to the blank space can slide into the space

• The object is to reach a specified goal state

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

The standard formulation is as follows:

• States: A state description specifies the location of each
of the eight tiles and the blank in one of the nine squares

• Initial state: Any state can be designated as the initial state1

• Actions: The simplest formulation defines the actions as
movements of the blank space Left, Right, Up, or Down2

• Transition model: Given state and action,
it returns the resulting state3

• Goal test: This checks whether the state
matches the goal configuration

• Path cost: Each step costs 1, path cost
is the number of steps in path

1Any goal can be reached from exactly half of the possible initial states
2Different subsets of these are possible depending on where the blank is
3Apply Left to the start state in figure, 5 and blank are switched

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

What abstractions have we included here?

The actions are abstracted to their beginning and final states,
ignoring the intermediate locations where the block is sliding

• We abstracted away some actions (such as shaking the
board when pieces get stuck) and ruled out extracting
the pieces with a knife and putting them back again

Remark

We have a description of the rules of the 8-puzzle

We avoid all the details of physical manipulations

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

The 8-puzzle belongs to the family of sliding-block puzzles

• Often used as test problems for new search algorithms in AI

This family is known to be NP-complete, so we do not expect to
find methods truly better in the worst case than search algorithms

• The 8-puzzle (our 3× 3 board) has 9!/2=181,440 reachable
states and is easily solved

• The 15-puzzle (on a 4× 4 board) has around 1.3 trillion
states, and random instances can be solved optimally
in a few milliseconds by the best search algorithms

• The 24-puzzle (on a 5× 5 board) has around 1025 states,
random instances take several hours to solve optimally

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

The goal of the 8-queens problem is to place eight queens
on a chessboard such that no queen attacks any other

• A queen attacks any
piece in the same row,
column or diagonal

• Queen in the rightmost
column is attacked by
the queen at the top left

Efficient special-purpose algorithms exist for this problem and for
the whole n-queens family, it is a useful test for search algorithms

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

There are two main kinds of formulation

• An incremental formulation involves operators that
augment the state description, starting with an empty state;

• A complete-state formulation starts with all 8 queens
on the board and moves them around

In either case, the path cost is of no interest

• Only the final state matters

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

An incremental formulation one might try is the following:

• States: Any arrangement of 0 to 8 queens
on the board is a state;

• Initial state: No queens on the board;

• Actions: Add a queen to any empty square;

• Transition model: Returns the board with
a queen added to the specified square;

• Goal test: 8 queens are on the board, none attacked

Possible sequences to investigate: 64 · 63 · · · · · 57 ≈ 1.8× 1014

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Toy problems (cont.)

Prohibit placing a queen in any square that is already attacked:

• States: All possible arrangements of n queens (0 ≤ n ≤ 8),
one per column in the leftmost n columns, with no queen
attacking another

• Actions: Add a queen to any square in the leftmost empty
column such that it is not attacked by any other queen

This formulation reduces the 8-queens state space

• From 1.8× 1014 to 2057

• Solutions are easy to find

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems

We have seen how the route-finding problem is defined in terms
of specified locations and transitions along links between them

Route-finding algorithms are used in a variety of applications

• Some (websites and in-car systems that provide driving
directions) are extensions of the Romania example

• Others, (routing video streams in computer networks, military
operations planning, and airline travel-planning systems)
involve much more complex specifications

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems (cont.)

Consider the airline travel task solved by travel-planning sites

• States: Each state includes a location (e.g., an airport) and
the current time. Furthermore, because the cost of an action
(a flight segment) may depend on previous segments, their
fare bases, and their status as domestic or international, the
state must record extra info about these ‘historical’ aspects

• Initial state: This is specified by the user’s query

• Actions: Take any flight from current location, in any seat
class, leaving after the current time, leaving enough time for
within-airport transfer if needed

• Transition model: The state resulting from taking a flight
will have the flight’s destination as the current location and
the flight’s arrival time as the current time

• Goal test: Is it the final destination specified by the user?

• Path cost: This depends on monetary cost, waiting time,
flight time, customs/immigration procedures, seat quality,
time of day, type of airplane, frequent-flyer mileage awards, ...

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems (cont.)

Commercial travel advice systems use a similar formulation

A really good system should include contingency plans (such as
backup reservations on alternate flights) to the extent that these
are justified by the cost and likelihood of failure of the original plan

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems (cont.)

Touring problems are closely related to route-finding problems

Example

‘Visit every city at least once, starting and ending in Bucharest’

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems (cont.)

As with route finding, the actions correspond to trips between
adjacent cities,but the state space, however, is quite different

Each state must include not just the current location
but also the set of cities the agent has already visited

• Initial state: In(Bucharest), Visited({Bucharest})

• In(Vaslui), Visited({Bucharest, Urziceni, Vaslui})

• The goal test would check whether the agent is
in Bucharest and all 20 cities have been visited

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems (cont.)

The traveling salesperson problem (TSP) is a touring
problem in which each city must be visited exactly once

• The aim is to find the shortest tour

The problem is known to be NP-hard, but an enormous effort has
been expended to improve the capabilities of TSP algorithms

Not only planning trips for traveling salespersons, these algorithms
have been used for tasks such as planning movements of automatic
circuit-board drills and of stocking machines on shop floors

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems (cont.)

A VLSI layout problem requires positioning components and
connections on a chip to minimize area, minimize circuit delays,
minimize stray capacitances, and maximize manufacturing yield

The layout problem comes after the logical design phase and is
usually split into two parts: 1) cell layout and 2) channel routing

• In cell layout, the primitive components of the circuit are
grouped into cells, each of which performs some function

• Each cell has a fixed footprint (size and shape) and requires
a certain number of connections to each of the other cells

The aim is to place cells on chip so that they do not overlap
and so that there is room for connecting wires between cells

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems (cont.)

Robot navigation is a generalisation of the route-finding problem

• Rather than following a discrete set of routes, a robot can
move in a continuous space with (in principle) an infinite
set of possible actions and states

For a circular robot moving on a flat surface, the space is two
dimensional and when the robot has arms and legs or wheels
that must be controlled, search space is many dimensional

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Examples - Real-world problems (cont.)

An important assembly problem is protein design: The goal is to
find a sequence of amino acids that will fold into a three
dimensional protein with the right properties to cure some disease

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions
Solving by searching

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions

Having formulated some problems, we now need to solve them

A solution is an action sequence, so search algorithms
work by considering various possible action sequences

The possible action sequences starting at the initial state
form a search tree with the initial state at the root

• the branches are actions

• the nodes are states

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

Example

The root node is the initial state (In(Arad))

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

First step: Check whether this is the goal state

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

The initial state is not the goal state, so we need to take actions

Definition

We do this by expanding the current state: By applying each legal
action to the current state, thereby generating a new set of states

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Example

In this case, we add three branches from parent node In(Arad)

• Leading to three new child nodes: In(Sibiu),
In(Timisoara), and In(Zerind)

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Now we must choose which of these options to consider further

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Example

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

This is the essence of search

Remark

• Follow up one option now and putting the others aside for
later, in case the first choice does not lead to a solution

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

Suppose we choose Sibiu first

1 We check to see whether it is a goal state (clearly, it is not)

2 We expand it to get In(Arad), In(Fagaras),
In(Oradea), and In(RimnicuVilcea)

We can pick any of these or go back and pick Timisoara or Zerind

• Each of these six nodes is a leaf node

• A node with no children in the tree

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

Frontier: Set of all leaves available for expansion, at any point

• Many authors call it the open list

The frontier of each tree consists of nodes with bold outlines

The process of expanding nodes on the frontier continues until
either a solution is found or there are no more states to expand

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

The general TREE-SEARCH algorithm is shown informally

function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

Search algorithms all share this basic structure

What varies mostly is how they choose which state to expand next

• This is the so-called search strategy

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)
Search tree includes the path from Arad to Sibiu and back to Arad

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

• In(Arad) is a repeated state in the search tree

• In this case, it was generated by a loopy path

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Considering such loopy paths means that the complete search tree
is infinite, there is no limit to how often one can traverse a loop

• On the other hand, the state space has only 20 states

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

Loops can cause certain algorithms to fail

• Otherwise solvable problems can be made unsolvable

No need for loopy paths, more than obvious

• Path costs are additive and step costs nonnegative

• A loopy path to any state is never better than the
same path with the loop removed

Loops are special cases of the general concept of redundant paths
(there is more than one way to get from one state to another)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

Paths Arad-Sibiu (140km) and Arad-Zerind-Oradea-Sibiu (297km)

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Second path is redundant and a worse way to get to the same state

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

Remark

If you are concerned about reaching the goal, there’s never
any reason to keep more than one path to any given state

• Any goal state that is reachable by extending
one path is also reachable by extending the other

In some cases, it is possible to define the problem
itself so as to eliminate redundant paths

• If we formulate the 8-queens problem so that a queen
can be placed in any column, then each state with n queens
can
be reached by n! different paths

• If we reformulate the problem so that each new queen is
placed in the leftmost empty column, then each state
can be reached only through one path

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

In other cases, redundant paths are unavoidable and this
includes all problems where the actions are reversible

• Route-finding problems, sliding-block puzzles, ...

Route-finding on a rectangular grid (will discuss it soon)
is a particularly important example in computer games

• In such grid, each state has four successors, so a search tree of
depth d that includes repeated states has 4d leaves, but there
are about 2d2 distinct states within d steps of any given state

For d = 20, about a trillion nodes but about 800 distinct states

Remark

Redundant paths can cause a tractable problem to turn intractable

• This is true even for algorithms that avoid infinite loops

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

Algorithms that forget their history are doomed to repeat it

To avoid exploring redundant paths, remember where one has been

• We augment the TREE-SEARCH algorithm with a data
structure called the explored set or closed list, which
remembers every expanded node

• Newly generated nodes that match previously generated
nodes, ones in the explored set or the frontier, can be
discarded instead of being added to the frontier

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

The new algorithm is called the GRAPH-SEARCH

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

The GRAPH-SEARCH algorithm contains at most one copy of
each state, so we can grow a tree on the state-space graph

Example

A sequence of search trees by a graph search on Romania

• At each stage, we have extended each path by one step

Northernmost city (Oradea) has become a dead end (3rd stage)

• Both of its successors are already explored via other paths

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Searching for solutions (cont.)

The frontier splits the state-space graph into explored/unexplored

• Every path from the initial state to an unexplored
state has to pass through a state in the frontier

(c)(b)(a)

The frontier (white nodes) always separates explored region of the
state-space (black nodes) from unexplored region (gray nodes)

• In (a), just the root has been expanded

• In (b), one leaf node has been expanded

• In (c), remaining successors of root have been expanded (CW)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Search algorithms
Searching for solutions

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Search algorithms

Search algorithms require a data structure to keep
track of the search tree that is being constructed

For each node n of the tree, a structure with four components:

• n.STATE: the state in the state space
to which the node corresponds;

• n.PARENT: the node in the search tree
that generated this node;

• n.ACTION: the action that was applied
to the parent to generate the node;

• n.PATH-COST: the cost, g(n), of the path from the initial
state to the node, as indicated by the parent pointers

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Search algorithms (cont.)

Given the components for a parent node, compute the necessary
components for a child node using function CHILD-NODE

It takes a parent node and an action, returns the resulting child:

function CHILD-NODE(problem ,parent ,action) returns a node

return a node with

STATE = problem .RESULT(parent .STATE,action),
PARENT = parent , ACTION = action ,

PATH-COST = parent .PATH-COST + problem .STEP-COST(parent .STATE,action)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Search algorithms (cont.)

Example

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

Nodes are the data structures from which a search tree is built

• Each has a parent, a state, and various bookkeeping fields

• Arrows point from child to parent

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Search algorithms (cont.)

Remark

We were not very careful to distinguish between nodes and states

• It’s important to make that distinction

• A node is a bookkeeping data structure
(it is used to represent the search tree)

• A state corresponds to a configuration of the world

Nodes are on paths (defined by PARENT pointers), states are not

• Furthermore, two different nodes can contain the same world
state if that state is generated via two different search paths

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Search algorithms (cont.)

The frontier needs to be stored in such a way that search algos can
easily choose next node to expand according to preferred strategy

• The appropriate data structure for this is a queue

The operations on a queue are as follows:

• EMPTY?(queue) returns true only if
there are no more elements in the queue

• POP(queue) removes the first element
of the queue and returns it

• INSERT(element,queue) inserts an
element and returns the resulting queue

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Search algorithms (cont.)

Queues are characterised by the order
in which they store the inserted nodes

Three common variants are

• the first-in, first-out or FIFO queue, which pops the oldest
element of the queue;

• the last-in, first-out or LIFO queue or stack, which pops
the newest element of the queue;

• the priority queue, which pops the element of the queue
with the highest priority according to some ordering function

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Measuring performance
Searching for solutions

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Measuring performance

Before we get into the design of a specific search algorithms, we
consider the criteria that might be used to choose among them

We can evaluate an algorithm’s performance in four ways:

• Completeness: Is the algorithm guaranteed to find
a solution when there is one?

• Optimality: Does the strategy find the optimal solution?

• Time complexity: How long does it take to find a solution?

• Space complexity: How much memory is needed
to perform the search?

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Measuring performance (cont.)

Time and space complexity are always considered with
respect to some measure of the problem difficulty

Remark

In TCS, the typical measure is the size of the state space graph

|V |+ |E |

V is the set of vertices (nodes) and E is the set of edges (links)

This is appropriate when the graph is an explicit
data structure that is input to the search program

• The map of Romania is an example of this

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Measuring performance (cont.)

Remark

In AI, the graph is often represented implicitly by initial
state, actions, and transition model and is often infinite

Definition

Complexity is expressed in terms of three quantities

• b, branching factor or maximum number of successors
of any node;

• d , depth of the shallowest goal node;

• m, maximum length of any path in the state space

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Measuring performance (cont.)

Time is often measured as number of nodes generated during
search, space as maximum number of nodes stored in memory

• We describe time and space complexity for search on a tree

For a graph, it depends on how ‘redundant’ paths are

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Measuring performance (cont.)

To assess the effectiveness of a search algorithm, we can consider

• search cost, it typically depends on the time complexity
but can also include a term for memory usage

• total cost, which combines the search cost and the path
cost of the solution found

Example

For the problem of finding a route from Arad to Bucharest, the
search cost is the amount of time taken by the search and the
solution cost is the total length of the path in kilometres

• To compute the total cost, we add milliseconds and kilometres

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Measuring performance (cont.)

No direct link between them: Reasonable to convert kilometres
into milliseconds (time is important here, got a flight to take)

• by using an estimate of the car’s average speed

This enables the agent to find an optimal tradeoff point at which
further work to find a shorter path becomes counterproductive

• A more general problem, tradeoffs between different goods

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uninformed search
Solving by searching

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uninformed search

We discuss search strategies known as uninformed/blind search

• The term means that the strategies have no additional info
about states beyond that provided in the problem definition

They can generate successors and distinguish goal/non-goal states

Search strategies are distinguished by the node expansion order

Strategies that know whether a non-goal state is ‘more promising’
than another are called informed/heuristic search strategies

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search
Uninformed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search

Breadth-first search: Root node is expanded first, all successors
of root node are then expanded, then their successors, and so on

• In general, all the nodes are expanded at a given depth in the
search tree before any nodes at the next level are expanded

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

At each stage, the node to be expanded is indicated by a marker

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

Breadth-first search is an instance of the general graph-search algo
in which the shallowest unexpanded node is chosen for expansion

• This is achieved by using a FIFO queue for the frontier

• New nodes (always deeper than their parents) go to queue’s
back, old nodes (shallower than new ones) get expanded first

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

Remark

There is one slight tweak on the general graph-search algo, which
is that the goal test is applied to each node when it is generated

• rather than when it is selected for expansion

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

The algorithm, following the template for graph search, discards
any new path to a state already in the frontier or explored set

• It is easy to see that any such path must be
at least as deep as the one already found

• Breadth-first search always has the shallowest
path to every node on the frontier

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL-STATE, PATH-COST = 0
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)

frontier← a FIFO queue with node as the only element

explored← an empty set
loop do

if EMPTY?(frontier) then return failure

node← POP(frontier) /* chooses the shallowest node in frontier */
add node .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD-NODE(problem ,node ,action)

if child .STATE is not in explored or frontier then

if problem .GOAL-TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

How does it rate according to the four criteria?

• It is complete: If the shallowest goal node is at some finite
depth d , breadth-first search will find it after generating all
shallower nodes (branching factor b need be finite)

• As a goal node is generated, we know it is the shallowest goal
node (all shallower nodes must have been generated already
and failed the goal test)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

The shallowest goal node is not necessarily the optimal one

• Technically, breadth-first search is optimal if the path cost is
a nondecreasing function of the depth of the node

Most common such scenario: All actions have the same cost

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

What about time complexity?

Imagine searching a uniform tree, every state has b successors

• The root of the search tree generates b nodes at level one,
each of which generates b more nodes, for a total of b2 at
level two, each of these generates b more nodes, yielding b3

nodes at the third level, and so on ...

Now suppose that the solution is at depth d

• In the worst case, it is the last node generated at that level

The number of nodes generated is b+ b2 + b3 + · · ·+ bd = O(bd)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

Remark

If the algo were to apply the goal test to nodes when selected for
expansion, rather than when generated, the whole layer of nodes
at depth d would be expanded before the goal was detected and
the time complexity would be O(bd+1)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

What about space complexity?

For any kind of graph search, which stores every expanded node in
the explored set, the space complexity is always within a factor of
b of the time complexity

• For breadth-first graph search in particular, every node
generated remains in memory

• There will be O(bd−1) nodes in the explored set and
O(bd) nodes in the frontier

Space complexity is O(b)d , dominated by size of the frontier

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

Remark

Switching to tree search would not save much space, and in a state
space with redundant paths, switching could cost a lot of time

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

An exponential complexity bound such as O(bd) is scary stuff

Depth Nodes Time Memory

2 110 .11 milliseconds 107 kilobytes

4 11,110 11 milliseconds 10.6 megabytes

6 106 1.1 seconds 1 gigabyte

8 108 2 minutes 103 gigabytes

10 1010 3 hours 10 terabytes

12 1012 13 days 1 petabyte

14 1014 3.5 years 99 petabytes

16 1016 350 years 10 exabytes

For various values of the solution depth d , the time and memory
required for a breadth-first search with branching factor b = 10

• The table assumes that 1 million nodes can be generated per
second, and that a node requires 1000 bytes of storage

• Many search problems fit roughly within these assumptions
(give or take a factor of 100) when run on a modern PC

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Breadth-first search (cont.)

The memory requirements are a bigger problem for breadth-first
search than is the execution time

• I could wait 13 days for a 12-deep problem to get solved,
but I don’t have a petabyte of memory

Exponential complexity search problems cannot be solved by
uninformed methods for any but the smallest instances

• I don’t have 350 years either, for a 16-deep problem

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search
Uninformed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search

When all step costs are equal, breadth-first search is optimal
because it always expands the shallowest unexpanded node

• We can find an algorithm that is optimal
with any step-cost function

Instead of expanding the shallowest node, uniform-cost search
expands the node n with the lowest path cost g(n)

• By storing the frontier as a priority queue ordered by g

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL-STATE, PATH-COST = 0
frontier← a priority queue ordered by PATH-COST, with node as the only element

explored← an empty set

loop do
if EMPTY?(frontier) then return failure

node← POP(frontier) /* chooses the lowest-cost node in frontier */

if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD-NODE(problem ,node ,action)

if child .STATE is not in explored or frontier then

frontier← INSERT(child , frontier)
else if child .STATE is in frontier with higher PATH-COST then

replace that frontier node with child

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

The algorithm is almost identical to general graph search

• Use of a priority queue and the addition of an extra check,
in case a shorter path to a frontier state is discovered

• The data structure for the frontier needs to support efficient
membership testing, so it should combine the capabilities of
a priority queue and a hash table

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

In addition to the ordering of the queue by path cost, there are
two other significant differences from breadth-first search

The first is that the goal test is applied to a node when it is
selected for expansion rather than when it is first generated

• The reason is that the first goal node that
is generated may be on a suboptimal path

The second difference is that a test is added in case a better
path is found to a node currently on the frontier

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

Example

Sibiu Fagaras

Pitesti

Rimnicu Vilcea

Bucharest

99

80

97

101

211

From Sibiu to Bucharest

The successors of Sibiu are

• Rimnicu Vilcea and Fagaras

• With costs 80 and 99

1 The least-cost node, Rimnicu Vilcea, is expanded next,
adding Pitesti with cost 80 + 97 = 177

2 The least-cost node is Fagaras, it is expanded, adding
Bucharest with cost 99 + 211 = 310

A goal node has been generated, uniform-cost search keeps going

• choosing Pitesti for expansion and adding a second
path to Bucharest with cost 80 + 97 + 101 = 278

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

Example

The algo checks to see if this new path is better than the old one

• It is (278 v 310), so the old one is discarded

Bucharest, now with a g -cost of 278, is selected for expansion

• The solution is returned

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

It is easy to see that uniform-cost search is optimal, in general

First, we observe that whenever uniform-cost search selects a node
n for expansion, the optimal path to that node has been found

• Were this not the case, there would have to be another
frontier node n′ on the optimal path from the start node
to n, and by definition, n would have lower g -cost than
n and would have been selected first

Nonnegative step costs, paths never get shorter as nodes are added

Uniform-cost search expands nodes
in order of their optimal path cost

• Hence, the first goal node selected for
expansion must be the optimal solution

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

Uniform-cost search does not care about the number
of steps a path has, but only about their total cost

It will get stuck in an infinite loop if there is a path with
an infinite sequence of zero-cost actions (like NoOp’s4)

• Completeness is guaranteed provided the cost of
every step exceeds some small constant ε

4‘No Operation’, as in an instruction that does nothing

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

Uniform-cost search is guided by path costs rather than depths,
so its complexity is not easily characterised in terms of b and d

• Assume that every action costs at least ε

• The algorithm’s worst-case time and space complexity
is O(b1+⌊C∗/ε⌋), which can be much greater than bd

This is because uniform-cost search can explore large trees of small
steps before exploring paths with large and perhaps useful steps

• When all step costs are equal, b1+⌊C∗/ε⌋ is just bd+1

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uniform-cost search (cont.)

Remark

When all step costs are the same, uniform-cost search is similar
to breadth-first search, except that the latter stops as soon as it
generates a goal, whereas uniform-cost search examines all the
nodes at the goal’s depth to see if one has a lower cost

• Thus, uniform-cost search does strictly more work
by expanding nodes at depth d unnecessarily

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search
Uninformed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search

Depth-first search always expands the deepest
node in the current frontier of the search tree

• The search proceeds immediately to the deepest level
of the search tree, where the nodes have no successors

• As those nodes are expanded, they are dropped from
the frontier, so then the search ‘backs up’ to the next
deepest node that still has unexplored successors

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

A

C

F G

M N O

A

C

F G

L M N O

A

C

F G

L M N O

C

F G

L M N O

A

B C

E F G

K L M N O

A

C

E F G

J K L M N O

A

C

E F G

J K L M N O

A

B C

D E F G

I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

Depth-first search algorithm is an instance of graph-search algos

• Breadth-first-search uses a FIFO queue

• Depth-first search uses a LIFO queue

Thus, the most recently generated node is chosen for expansion

This must be the deepest unexpanded node because it is one
deeper than its parent (which was the deepest unexpanded
node when it was selected)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

As an alternative to the GRAPH-SEARCH-style implementation,
it is common to implement depth-first search with a recursive
function that calls itself on each of its children

function DEPTH-LIMITED-SEARCH(problem , limit) returns a solution, or failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL-STATE),problem , limit)

function RECURSIVE-DLS(node,problem , limit) returns a solution, or failure/cutoff

if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)

else if limit = 0 then return cutoff
else

cutoff occurred?← false

for each action in problem .ACTIONS(node.STATE) do
child←CHILD-NODE(problem ,node ,action)

result←RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true

else if result ̸= failure then return result
if cutoff occurred? then return cutoff else return failure

A recursive depth-first algorithm incorporating a depth limit

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

The properties of depth-first search depend strongly on
whether the graph-search or tree-search version is used

• The graph-search version, which avoids repeated states and
redundant paths, is complete in finite state spaces because
it will eventually expand every node

• The tree-search version, on the other hand, is not complete

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Example

The tree-search version of algo will get stuck in Arad-Sibiu loop

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

Depth-first tree search can be modified at no extra memory cost

• Check new states against those on
path from root to current node

This avoids infinite loops in finite state spaces but
does not avoid the proliferation of redundant paths

In infinite state spaces, both versions fail
if an infinite non-goal path is encountered

For similar reasons, both versions are non-optimal

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search: Entire left subtree, even if C is a goal node

A

C

F G

M N O

A

C

F G

L M N O

A

C

F G

L M N O

C

F G

L M N O

A

B C

E F G

K L M N O

A

C

E F G

J K L M N O

A

C

E F G

J K L M N O

A

B C

D E F G

I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

If node J were also a goal node, then depth-first search would
return it as a solution instead of C (clearly, a better solution)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

The time complexity of depth-first graph search is bounded
by the size of the state space (which may be infinite)

Depth-first tree search, on the other hand, may generate all of the
O(bm) nodes in the search tree, where m is the maximum depth of
any node; this can be much greater than the size of the state space

Remark

Note that m itself can be much larger than d (the depth of the
shallowest solution) and it is infinite if the tree is unbounded

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

So far, depth-first search seems better than breadth-first search

• So why do we include it? The reason is space complexity

For a graph search, there is no advantage, but a depth-first tree
search needs to store only a single path from root to leaf node

• along with the remaining unexpanded
sibling nodes for each node on the path

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

Once a node has been expanded, it can be removed from memory,
as soon as all of its descendants have been fully explored

• For a state space with branching factor b and maximum depth
m, depth-first search requires storage of only O(bm) nodes

Example

Assuming that nodes at the same depth as the goal node have no
successors, we find that depth-first search would require 156Kbytes
instead of 10Exabytes at depth d = 16, 7 trillion times less space

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

Depth-first tree search is the basic workhorse of many areas of AI

• We focus on the tree-search version of depth-first search

Backtracking: A variant of depth-first search uses less memory

• In backtracking, only one successor is generated at a time
rather than all successors; each partially expanded node
remembers which successor to generate next

• In this way, only O(m) memory is needed rather than O(bm)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-first search (cont.)

Backtracking facilitates another memory- and time-saving trick

• The idea of generating a successor by modifying the current
state description directly, rather than copying it first

Memory requirements: One state description and O(m) actions

• For this to work, we must be able to undo each modification
when we go back to generate the next successor

Example

For problems with large state descriptions (robotic assembly)
these techniques are critical to success

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-limited search
Uninformed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-limited search

The failure of depth-first search in infinite state spaces can be
alleviated by supplying depth-first search with a depth limit

• Nodes at depth l are treated as if they have no successors

• This approach is called depth-limited search

• The depth limit solves the infinite-path problem

This also introduces an additional source of incompleteness if we
choose l < d , as the shallowest goal is beyond the depth limit

• (likely when d is unknown)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-limited search (cont.)

Depth-limited search will also be non-optimal if we choose l > d ,
as its time complexity is O(bl) and its space complexity is O(bl)

Depth-first search can be viewed as a special
case of depth-limited search with l = ∞

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Sometimes, depth limits can be based on knowledge of the problem

Example

On 20 cities, therefore we know that if there is a solution, it must
be of length 19 at the longest, so l = 19 is a possible choice

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

In fact any city can be reached from any other city in max 9 hops

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-limited search (cont.)

Definition

This number, diameter of the state space, gives us a better
depth limit, which leads to a more efficient depth-limited search

Remark

For most problems, however, we will not know a good depth limit
until we have solved the problem

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Depth-limited search (cont.)

Depth-limited search can be implemented as a modification to the
general tree or graph-search algorithm, or as a recursive algorithm

function DEPTH-LIMITED-SEARCH(problem , limit) returns a solution, or failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL-STATE),problem , limit)

function RECURSIVE-DLS(node,problem , limit) returns a solution, or failure/cutoff

if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)

else if limit = 0 then return cutoff
else

cutoff occurred?← false

for each action in problem .ACTIONS(node.STATE) do
child←CHILD-NODE(problem ,node ,action)

result←RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true

else if result ̸= failure then return result
if cutoff occurred? then return cutoff else return failure

Remark

Notice that depth-limited search can terminate with two kinds of
failure: i) the standard failure value indicates no solution, and ii)
the cutoff value indicates no solution within the depth limit

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Iterative deepening
depth-first search

Uninformed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Iterative deepening depth-first search

Iterative deepening search (or iterative deepening depth-first
search) is a general strategy, often used in combination with
depth-first tree search, that finds the best depth limit

It does this by gradually increasing the limit

• First 0, then 1, then 2, and so on until a goal is found

This occurs when depth limit reaches d ,
the depth of the shallowest goal node

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure

for depth = 0 to∞ do
result←DEPTH-LIMITED-SEARCH(problem ,depth)

if result ̸= cutoff then return result

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Iterative deepening depth-first (cont.)

Four iterations of ITERATIVE-DEEPENING-SEARCH on a
binary search tree: The solution is found on the fourth iteration

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Limit = 3

Limit = 2

Limit = 1

Limit = 0 A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Iterative deepening depth-first (cont.)

Iterative deepening combines the benefits
of depth-first and breadth-first search

• Like depth-first search, its memory requirements are modest

O(bd)

• Like breadth-first search, it is complete when the branching
factor is finite and it is optimal when the path cost is a
non-decreasing function of the depth of the node

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Iterative deepening depth-first (cont.)

Iterative deepening search may seem wasteful

• States are generated multiple times

• It turns out this is not too costly

In a search tree with the same (or nearly the same) branching
factor at each level, most of the nodes are in the bottom level

• It does not matter much that upper
levels are generated multiple times

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Iterative deepening depth-first (cont.)

In an iterative deepening search, nodes on bottom level (depth d)
are generated once, those on next-to-bottom level are generated
twice, and so on, up to the children of the root, generated d times

So the total number of nodes generated in the worst case is

N(IDS) = (d)b + (d − 1)b2 + · · ·+ (1)bd

It is a time complexity of O(bd) (breadth-first, asymptotically)

Example

Some extra cost for generating the upper levels multiple times

N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123500

N(BFS) = 10 + 100 + 1000 + 10000 + 100000 = 111110

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Iterative deepening depth-first (cont.)

Remark

If repeating the repetition is a concern: Hybrid approaches can run
breadth-first search until almost all available memory is consumed,
and then run iterative deepening from all the nodes in the frontier

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Iterative deepening depth-first (cont.)

Remark

In general, iterative deepening is the preferred uninformed search,
when search space is large and the solution depth is unknown

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Bidirectional search
Uninformed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Bidirectional search

The idea behind is to run two parallel searches

• one forward from the initial state

• the other backward from the goal

hoping that the two searches meet in the middle

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Bidirectional search (cont.)

Example

The motivation is that bd/2 + bd/2 is much less than bd

GoalStart

The area of the two small circles is less than the area of
a big circle centred on the start and reaching to the goal

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Bidirectional search (cont.)

Bidirectional search is implemented by replacing the goal test with
a check to see whether the frontiers of the two searches intersect

• if they do, a solution has been found

It is important to realise that the first such solution found may
not be optimal, even if the two searches are both breadth first

• Some additional search is required to make sure
there is not another short-cut across the gap

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Bidirectional search (cont.)

The check can be done when each node is generated or selected
for expansion and, with a hash table, will take constant time

Example

If a problem has solution depth d = 6, and each direction runs
BFS one node at a time, then in the worst case the two searches
meet when they have generated all of the nodes at depth 3

For b = 10, this means a total of 2220 node generations,
compared with 1111110 for a standard breadth-first search

Thus, the time complexity of bidirectional search using
breadth-first searches in both directions is O(bd/2)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Bidirectional search (cont.)

The space complexity is also O(bd/2)

This can be reduced by roughly half if one of the two searches
is done by iterative deepening, but at least one of the frontiers
must be kept in memory, to do intersection check

Remark

Space requirement is the weakness of bidirectional search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Bidirectional search (cont.)

The reduction in time complexity makes bidirectional
search attractive, but how do we search backward?

Let the predecessors of a state x be
all those states that have x as a successor

Bidirectional search requires a method for computing predecessors

When all the actions in the state space are reversible,
then the predecessors of x are just its successors

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Bidirectional search (cont.)

What we mean by ‘the goal’ in searching ‘backward from goal?’

Example

For the 8-puzzle and finding a route in Romania, there is
one goal state, so backward search is like forward search

• With several explicitly listed goal states (say, the two dirt-free
goal states), then we can construct a new dummy goal state
whose immediate predecessors are all the actual goal states

• But if the goal is an abstract description, such as the goal
that ‘no queen attacks another queen’ in the n-queens
problem, then bidirectional search is difficult to use

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Comparison
Uninformed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uninformed searches, comparison

We compare tree-search strategies using four evaluation criteria:

• The main differences are that depth-first search is complete
for finite state spaces and that space and time complexities
are bounded by the size of the state space

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Uninformed searches, comparison (cont.)

• b is the branching factor;

• d is the depth of the
shallowest solution;

• m is the maximum depth
of the search tree;

• l is the depth limit

Criterion
Breadth- Uniform- Depth- Depth- Iterative Bidirectional

First Cost First Limited Deepening (if applicable)

Complete? Yesa Yesa,b No No Yesa Yesa,d

Time O(bd) O(b1+⌊C∗/ϵ⌋) O(bm) O(bℓ) O(bd) O(bd/2)
Space O(bd) O(b1+⌊C∗/ϵ⌋) O(bm) O(bℓ) O(bd) O(bd/2)
Optimal? Yesc Yes No No Yesc Yesc,d

Superscript
caveats:

•
a complete if b is finite;

•
b complete if step costs ≥ ε, for ε > 0;

•
c optimal if step costs are all identical;

•
d if both directions use breadth-first

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Informed searches
Solving by searching

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Informed searches

An informed search strategy uses a problem-specific knowledge

• beyond the definition of the problem itself

It can find solutions more efficiently than an uninformed strategy

The general approach we consider is best-first search, which is
an instance of the general TREE- or GRAPH-SEARCH algo

• A node is selected for expansion based
on an evaluation function, f (n)

The evaluation function is construed as a cost estimate

• The node with the lowest evaluation is expanded first

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Informed searches (cont.)

Best-first graph search is identical to uniform-cost search

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL-STATE, PATH-COST = 0
frontier← a priority queue ordered by PATH-COST, with node as the only element

explored← an empty set

loop do
if EMPTY?(frontier) then return failure

node← POP(frontier) /* chooses the lowest-cost node in frontier */

if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD-NODE(problem ,node ,action)

if child .STATE is not in explored or frontier then

frontier← INSERT(child , frontier)
else if child .STATE is in frontier with higher PATH-COST then

replace that frontier node with child

Except for the use of f instead of g to order the priority queue

• The choice of f determines the search strategy

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Informed searches (cont.)

Best-first tree search includes depth-first search as a special case

Exercise

Prove each of the following statements, or give a counterexample:

• Breadth-first search is a special case of uniform-cost search

• Depth-first search is a special case of best-first tree search

• Uniform-cost search is a special case of A∗ search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Informed searches (cont.)

Most best-first algos use as a component of f a heuristic function

• h(n): Estimated cost of cheapest path
from state at node n to a goal state

Note that h(n) takes a node as input, but unlike
g(n), it depends only on the state at that node

Example

In Romania, one might estimate the cost of the cheapest path
from Arad to Bucharest via the straight-line distance

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Informed searches (cont.)

Heuristic functions are the most common form in which extra
knowledge of the problem is imparted to the search algorithm

• We shall study heuristics in more depth

We begin by considering them to be arbitrary, nonnegative,
problem-specific functions, with one single constraint

• If n is a goal node, then h(n) = 0

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Greedy best-first search
Informed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Greedy best-first search

Greedy best-first search tries to expand the node that is closest
to goal, because this is likely to lead to a solution quickly

• Thus, it evaluates nodes by using just the heuristic function

f (n) = h(n)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Greedy best-first search (cont.)

Example

Let us see how this works for route-finding problems in Romania

• We use the straight-line distance heuristic, hSLD

If the goal is Bucharest, we need to know the straight-line
distances to Bucharest: For example, hSLD(In(Arad)) = 366

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0

160

242

161

77

151

366

244

226

176

241

253

329

80

199

380

234

374

100

193

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Greedy best-first search (cont.)

Values of hSLD cannot be computed from the problem description

• Moreover, it takes a certain amount of experience to know
that hSLD is correlated with actual road distances

• It is, therefore, a useful heuristic

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Greedy best-first search (cont.)

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

• The first node to be expanded from Arad is Sibiu, as it is
closer to Bucharest than either Zerind or Timisoara

• Next node to be expanded is Fagaras, it is closest

• Fagaras in turn generates Bucharest, which is the goal

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Greedy best-first search (cont.)

Greedy best-first search using hSLD finds a solution without
ever expanding a node that is not on the solution path

• Hence, its search cost is minimal

It is not optimal, as path via Sibiu and Fagaras to Bucharest
is 32km longer than path through Rimnicu Vilcea and Pitesti

Remark

This shows why the algorithm is called ‘greedy’, at each
step it tries to get as close to the goal as it can

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Greedy best-first search (cont.)

Greedy best-first tree search is incomplete, even in finite state
space, while graph search version is complete in finite spaces,
but not in infinite ones

Example

Consider the problem of getting from Iasi to Fagaras

• The heuristic suggests that Neamt be expanded first,
because it is closest to Fagaras, but it is a dead end.

• The solution is to go first to Vaslui, a step that is
farther from the goal according to the heuristic, and
then to continue to Urziceni, Bucharest, and Fagaras

The algorithm will never find this solution, as expanding Neamt
puts Iasi back into the frontier, Iasi is closer to Fagaras than Vaslui
is, and so Iasi will be expanded again, leading to an infinite loop

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Greedy best-first search (cont.)

The worst-case time and space complexity for the tree version
is O(bm), where m is the maximum depth of the search space

With a good heuristic function, complexity can be reduced

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗ search
Informed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗ search

The most widely known form of best-first search is A∗ search

• It evaluates nodes by combining g(n), the cost to reach the
node, and h(n), the cost to get from the node to the goal

f (n) = g(n) + h(n)

Since g(n) gives the path cost from start node to node n, and
h(n) is the estimated cost of the cheapest path from n to goal,

f (n) = estimated cost of the cheapest solution thru n

Thus, if we are trying to find the cheapest solution, a reasonable
thing to try first is the node with the lowest value of g(n) + h(n)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗ search (cont.)

It turns out that this strategy is more than just reasonable

• Provided that the heuristic function h(n) satisfies certain
conditions, A∗ search is both complete and optimal

The algorithm is identical to UNIFORM-COST-SEARCH

• except that A∗ uses (g + h) instead of g

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Conditions for optimality

The first condition we require for optimality is about h(n)

• h(n) must be an admissible heuristic

Admissible heuristics never overestimate the cost to reach goal

Because g(n) is the actual cost to reach n along the current path,
and f (n) = g(n) + h(n), we have as an immediate consequence

• f (n) never overestimates the true cost of a
solution along the current path through n

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Conditions for optimality (cont.)

Remark

Admissible heuristics are by nature optimistic, as they think
that the cost of solving the problem is less than it actually is

• An obvious example of an admissible heuristic is the
straight-line distance hSLD for getting to Bucharest

• Straight-line distance is admissible because the shortest
path between any two points is a straight line

• The straight line cannot be an overestimate

We show the progress of an A∗ tree search for Bucharest

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Example

Values of g are computed from step costs

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

The values of hSLD are calculated as

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0

160

242

161

77

151

366

244

226

176

241

253

329

80

199

380

234

374

100

193

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

(a
)

T
h

e
in

it
ia

l
st

a
te

(b
)

A
ft

er
 e

x
p

a
n

d
in

g
 A

ra
d

(c
)

A
ft

er
 e

x
p

a
n

d
in

g
 S

ib
iu

A
ra

d

S
ib

iu
T

im
is

o
ar

a

4
4
7
=

1
1
8
+

3
2
9

Z
er

in
d

4
4
9
=

7
5
+

3
7
4

3
9
3
=

1
4
0
+

2
5
3

A
ra

d

3
6
6
=

0
+

3
6
6

(d
)

A
ft

er
 e

x
p

a
n

d
in

g
 R

im
n

ic
u

 V
il

ce
a

(e
)

A
ft

er
 e

x
p

a
n

d
in

g
 F

a
g
a
ra

s

(f
)

A
ft

er
 e

x
p

a
n

d
in

g
 P

it
es

ti

Z
er

in
d

A
ra

d

S
ib

iu

A
ra

d

T
im

is
o
ar

a

R
im

ni
cu

 V
ilc

ea
F

ag
ar

as
O

ra
d
ea

4
4
7
=

1
1
8
+

3
2
9

4
4
9
=

7
5
+

3
7
4

6
4
6
=

2
8
0
+

3
6
6

4
1
3
=

2
2
0
+

1
9
3

4
1
5
=

2
3
9
+

1
7
6

6
7
1
=

2
9
1
+

3
8
0

Z
er

in
d

A
ra

d

S
ib

iu
T

im
is

o
ar

a

4
4
7
=

1
1
8
+

3
2
9

4
4
9
=

7
5
+

3
7
4

R
im

ni
cu

 V
ilc

ea

C
ra

io
v
a

P
it

es
ti

S
ib

iu

5
2
6
=

3
6
6
+

1
6
0

5
5
3
=

3
0
0
+

2
5
3

4
1
7
=

3
1
7
+

1
0
0

Z
er

in
d

A
ra

d

S
ib

iu

A
ra

d

T
im

is
o
ar

a

S
ib

iu
B

u
ch

ar
es

t

F
ag

ar
as

O
ra

d
ea

C
ra

io
v
a

P
it

es
ti

S
ib

iu

4
4
7
=

1
1
8
+

3
2
9

4
4
9
=

7
5
+

3
7
4

6
4
6
=

2
8
0
+

3
6
6

5
9
1
=

3
3
8
+

2
5
3

4
5
0
=

4
5
0
+

0
5
2
6
=

3
6
6
+

1
6
0

5
5
3
=

3
0
0
+

2
5
3

4
1
7
=

3
1
7
+

1
0
0

6
7
1
=

2
9
1
+

3
8
0

Z
er

in
d

A
ra

d

S
ib

iu

A
ra

d

T
im

is
o
ar

a

S
ib

iu
B

u
ch

ar
es

tO
ra

d
ea

C
ra

io
v
a

P
it

es
ti

S
ib

iu

B
u
ch

ar
es

t
C

ra
io

v
a

R
im

ni
cu

 V
ilc

ea

4
1
8
=

4
1
8
+

0

4
4
7
=

1
1
8
+

3
2
9

4
4
9
=

7
5
+

3
7
4

6
4
6
=

2
8
0
+

3
6
6

5
9
1
=

3
3
8
+

2
5
3

4
5
0
=

4
5
0
+

0
5
2
6
=

3
6
6
+

1
6
0

5
5
3
=

3
0
0
+

2
5
3

6
1
5
=

4
5
5
+

1
6
0

6
0
7
=

4
1
4
+

1
9
3

6
7
1
=

2
9
1
+

3
8
0

R
im

ni
cu

 V
ilc

ea

F
ag

ar
as

R
im

ni
cu

 V
ilc

ea

A
ra

d
F

ag
ar

as
O

ra
d
ea

6
4
6
=

2
8
0
+

3
6
6

4
1
5
=

2
3
9
+

1
7
6

6
7
1
=

2
9
1
+

3
8
0

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Conditions for optimality (cont.)

Bucharest first appears on the frontier at step (e), but it is not
selected for expansion, f -cost (450) is higher than Pitesti’s (417)

• There might be a solution through Pitesti whose cost is as low
as 417, so the algo won’t settle for a solution that costs 450

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Conditions for optimality (cont.)

A second, bit stronger condition is consistency/monotonicity,
which is required only for applications of A∗ to graph search

Definition

Heuristic h(n) is consistent if, for every node n and every successor
n′ of n generated by any action a, the estimated cost of reaching
goal from n is no greater than the step cost of getting to n′, plus
the estimated cost of reaching goal from n′

h(n) ≥ c(n, a, n′) + h(n′)

This is a form of the general triangle inequality: Each side of a
triangle cannot be longer than the sum of the other two sides

• Here, the triangle is formed by n, n′ and goal Gn closet to n

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Conditions for optimality (cont.)

For an admissible heuristic, the inequality makes perfect sense

• if there were a route from n to Gn via n that was cheaper
than h(n), that would violate the property that h(n) is a
lower bound on the cost to reach Gn

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality

A∗ has the following properties:

• The tree-search version is optimal if h(n) is admissible

• The graph-search version is optimal if h(n) is consistent

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

The argument to show that ‘the graph-search version is optimal if
h(n) is consistent’ mirrors the argument for optimality of
uniform-cost search, with g replaced by f , as in the A∗ algo itself

The first step is to establish the following:

• If h(n) is consistent, then values of f (n)
along any path are non-decreasing

The proof follows directly from the definition of consistency

Proof

Suppose n′ is a successor of n then g(n′) = g(n) + c(n, a, n′)
for some action a, and we have

f (n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′) ≥ g(n) + h(h)

= f (n)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

The next step is to prove that whenever A∗ selects a node n
for expansion, the optimal path to that node has been found

• Were this not the case, there would have to be another
frontier node n′ on the optimal path from start node
to n, by the graph separation property

(c)(b)(a)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

It follows that the sequence of nodes expanded by A∗ using
GRAPH-SEARCH is in non-decreasing order of f (n)

• The first goal node selected for expansion must be an optimal
solution because f is the true cost for goal nodes (with h = 0)

• All later goal nodes will be at least as expensive

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

Because f -costs are non-decreasing along any path, we can
draw contours in the state space, like in a topographic map

Example

O

Z

A

T

L

M

D

C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Inside the contour labeled 400, all nodes have f (n) ≤ 400

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

With uniform-cost search (A∗ search using h(n) = 0),
the bands will be ‘circular’ around the start state

With accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path

If C∗ is the cost of the optimal solution path, then we can say:

• A∗ expands all nodes with f (n) < C∗

• A∗ might then expand some of the nodes right on the ‘goal
contour’ where f (n) = C∗ before selecting a goal node

Completeness requires that there be only finitely many nodes with
cost less than or equal to C∗, a condition that is true if all step
costs exceed some finite ε and if b is finite

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

Notice that A∗ expands no nodes with f (n) > C∗

Example

Timisoara is not expanded even though it is a child of the root

The subtree below Timisoara is pruned

Because hSLD is admissible, the algorithm can safely ignore this
subtree while still guaranteeing optimality

Pruning, or eliminating possibilities from consideration without
having to examine them, is an important concept for AI

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

Among optimal algorithms of this type (algorithms that extend
search paths from root and use the same heuristic information)
A∗ is optimally efficient for any given consistent heuristic

• No other optimal algorithm is guaranteed to expand fewer
nodes than A∗

• Except possibly through tie-breaking among nodes with
f (n) = C∗

This is because any algorithm that does not expand all nodes
with f (n) < C∗ runs the risk of missing the optimal solution

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

A∗ search is complete, optimal, and optimally efficient

• Unfortunately, it does not mean that A∗

is the answer to all our searching needs

For most problems, the number of states within the goal contour
search space is still exponential in the length of the solution

• For problems with constant step costs, the growth in runtime
as a function of the optimal solution depth d is analysed in
terms of absolute error or relative error of the heuristic

Definition

The absolute error is defined as ∆ ≡ (h∗ − h), where h∗ is the
actual cost of getting from root to goal, and the relative error is

ε ≡
(h∗ − h)

h∗

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

The complexity results depend on assumptions about state space

The simplest model studied is a state space with a single goal
and is essentially a tree with reversible actions

Example

The 8-puzzle satisfies the first and third of these assumptions

In this case, the time complexity of A∗ is exponential
in maximum absolute error, that is O(b∆)

For constant step costs, this is O(bεd) with d the solution depth

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

For almost all heuristics in practical use, the absolute error is at
least proportional to path cost h∗, so ε is constant or growing

• Time complexity is exponential in d

The effect of a more accurate heuristic: O(bεd) = O(bε)d),
so the effective branching factor (defined soon) is b

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

When the state space has many goal states (near-optimal ones,
particularly) the search can be led astray from optimal path

• There is an extra cost proportional to the number of goals
whose cost is within a factor ε of the optimal cost

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

The general case of a graph, the situation is even worse

There can be exponentially many states with f (n) < C∗,
even if the absolute error is bounded by a constant

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

Example

Consider a version of the vacuum world where agent can clean up
any square for unit cost, without even having to visit it

• in that case, squares can be cleaned in any order

With N initially dirty squares, there are 2N states with some subset
has been cleaned and all of them are on an optimal solution path

• Satisfy f (n) < C∗, even if the heuristic has an error of 1

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

The complexity of A∗ often makes it impractical

Some variants can find suboptimal solutions and it is possible to
design heuristics that are more accurate but not strictly admissible

• The use of a good heuristic still provides big savings
compared to the use of an uninformed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

A∗: Optimality (cont.)

Computation time is not, however, A∗’s main drawback

• All generated nodes are kept in memory (as do all
GRAPH-SEARCH algorithms), so A∗ usually runs
out of space long before it runs out of time

• A∗ is not practical for many large-scale problems

There are algorithms that overcome the space problem without
sacrificing optimality or completeness, at cost in execution time

We discuss these next

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search
Informed search

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search

The simplest way to reduce memory requirements for A∗ is to
adapt the idea of iterative deepening to the heuristic search
context, resulting in the iterative-deepening A∗ (IDA∗) algo

The big difference between IDA∗ and standard iterative deepening
is that the cutoff used is the f -cost (g + h) rather than the depth

• At each iteration, the cutoff value is the smallest f -cost of
any node that exceeded the cutoff on the previous iteration

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

IDA∗ is practical for problems with unit step costs and avoids
the overhead associated with keeping a sorted queue of nodes

Unfortunately, IDA∗ suffers from the same difficulties with real
valued costs as does the iterative version of uniform-cost search

• We briefly examine two other memory-bounded algorithms

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

Recursive best-first search (RBFS) is a recursive algorithm that
attempts to mimic standard best-first search, but using linear space

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure

return RBFS(problem , MAKE-NODE(problem .INITIAL-STATE),∞)

function RBFS(problem ,node , f limit) returns a solution, or failure and a new f -cost limit

if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)

successors← []
for each action in problem .ACTIONS(node.STATE) do

add CHILD-NODE(problem ,node ,action) into successors
if successors is empty then return failure ,∞
for each s in successors do /* update f with value from previous search, if any */

s .f ←max(s .g + s .h, node .f))
loop do

best← the lowest f -value node in successors
if best .f > f limit then return failure , best .f
alternative← the second-lowest f -value among successors
result , best .f←RBFS(problem , best , min(f limit , alternative))
if result ̸= failure then return result

By structure, the algo is similar to recursive depth-first search,
but rather than continuing indefinitely down the current path

• it uses the f limit variable to keep track of the f -value of best
alternative path available from any ancestor of current node

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

If current node exceeds f limit then the recursion
unwinds back to the alternative path

As recursion unwinds, the f -value of each node along the path is
replaced with a backed-up value (the best f -value of its children)

RBFS remembers the f -value of best leaf in the forgotten subtree

• It can decide whether it is worth re-expanding
the subtree at some later time

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind

Arad

Sibiu

Arad

Timisoara

Timisoara

Timisoara

Fagaras Oradea Rimnicu Vilcea

Craiova Pitesti Sibiu

646 415 671

526 553

646 671

450591

646 671

526 553

418 615 607

447 449

447

447 449

449

366

393

366

393

413

413 417415

366

393

415 450
417

Rimnicu Vilcea

Fagaras

447

415

447

447

417

(a) After expanding Arad, Sibiu,
 and Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
 and expanding Pitesti

(b) After unwinding back to Sibiu
 and expanding Fagaras

447

447

∞

∞

∞

417

417

Pitesti

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

f limit value for each recursive call on top of each current node

• every node is labeled with its f-cost

Example

(a) Path via Rimnicu Vilcea is followed until current best leaf
(Pitesti) is worse than best alternative path (Fagaras)

(b) The recursion unwinds and the best leaf value of the
forgotten subtree (417) is backed up to Rimnicu Vilcea

Then Fagaras is expanded, revealing a best leaf value of 450

(c) The recursion unwinds and the best leaf value of the
forgotten subtree (450) is backed up to Fagaras
Then Rimnicu Vilcea is expanded

Because the best alternative path (through Timisoara)
costs at least 447, the expansion continues to Bucharest

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

RBFS is more efficient than IDA∗, still excessive node regeneration

Example

RBFS follows the path via Rimnicu Vilcea, then it ‘changes its
mind’ and tries Fagaras, and then changes its mind back again

These mind changes occur because every time the current
best path is extended, its f -value is likely to increase

• h is usually less optimistic for nodes closer to the goal

When this happens, the second-best path might become
the best path, the search has to backtrack to follow it

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

Remark

Each mind change corresponds to an iteration of IDA∗ and could
require many re-expansions of forgotten nodes to recreate the
best path and extend it one more node

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

Like A∗ tree search, RBFS is an optimal algorithm

• If the heuristic function h(n) is admissible

Its space complexity is linear in the depth of the deepest optimal
solution, but its time complexity is rather difficult to characterise

• It depends both on the accuracy of the heuristic function and
on how often the best path changes as nodes are expanded

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

IDA∗ and RBFS suffer from using too little memory

Between iterations, IDA∗ retains only a single number:

• the current f -cost limit

RBFS retains more information, but uses linear space:

• even if more memory were available,
RBFS has no way to make use of it

Remark

Because they forget most of what they have done, both IDA∗ and
RBFS may end up re-expanding the same states many times over

Also, they suffer the potentially exponential increase
in complexity associated with redundant paths in graphs

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

It seems sensible to use all available memory

Two algorithms
that do this are

• MA∗ (memory-bounded A∗)

• SMA∗ (simplified MA∗)

SMA∗ proceeds like A∗, best leaf is expanded until memory is full

• At this point, it cannot add a new node to
the search tree without dropping an old one

• SMA∗ always drops the worst leaf node,
the one with the highest f -value

• Like RBFS, SMA∗ backs up the value
of the forgotten node to its parent

In this way, the ancestor of a forgotten subtree
knows the quality of best path in that subtree

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

With this info, SMA∗ regenerates the subtree only when all other
paths have been shown to look worse than the forgotten path

• So, if all descendants of a node n are forgotten, then we will
not know which way to go from n, but we will still have an
idea of how worthwhile it is to go anywhere from n

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

SMA∗ expands the best leaf and deletes the worst leaf

• What if all the leaf nodes have the same f -value?

To avoid selecting the same node for deletion and expansion

• SMA∗ expands newest best leaf and deletes oldest worst leaf

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Memory-bounded search (cont.)

SMA∗ is complete, if there is any reachable solution (if the depth d
of the shallowest goal node is less than the memory size in nodes)

SMA∗ is optimal, if any optimal solution is reachable

• Otherwise, it returns the best reachable solution

Remark

In practical terms, SMA∗ is a robust choice for finding optimal
solutions, particularly when the state space is a graph

• step costs are not uniform, and node generation is expensive
compared to the overhead of keeping frontier and explored set

On very hard problems, it can be the case that SMA∗ is forced to
switch back and forth continually among many candidate solution
paths, only a small subset of which can fit in memory

• That is to say, memory limitations can make a problem
intractable from the point of view of computation time

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Heuristic functions
Solving by searching

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Heuristic function

Heuristics, by looking at heuristics for the 8-puzzle

Example

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

It was one of the earliest heuristic search problems

• Slide tiles horizontally or vertically into the empty space

• Until the configuration matches the goal configuration

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Heuristic function (cont.)

The average solution cost for a randomly
generated 8-puzzle is about 22 steps

The branching factor is about 3:

• When the empty tile is in the middle, four moves are possible

• When the empty tile is in a corner, two moves are available

• When the empty tile is along an edge, three available moves

An exhaustive tree search to depth 22 would look at about

322 ≈ 3.1× 1010 states

• A graph search would cut this down by a factor of ∼ 170K ,
as only 9!/2 = 181440 distinct states are reachable

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Heuristic function (cont.)

This is a manageable number, but the
number for the 15-puzzle is roughly 1013

• Need to find a good heuristic function

If we want to find the shortest solutions by using A∗, we need a
heuristic function that never overestimates the number of steps

• There is a long history of such heuristics for the 15-puzzle

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Heuristic function (cont.)

Example

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

h1 equals the number of misplaced tiles

• All of the eight tiles are out of position

• The start state would have h1 = 8

• h1 is an admissible heuristic as it is clear
that any tile that is out of place must
be moved at least once

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Heuristic function (cont.)

Example

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

h2 is the sum of the distances of the tiles from their goal positions

• The distance is the sum of horizontal and vertical distances

• This is called the city block or Manhattan distance

• h2 is also admissible because all any move can
do is move one tile one step closer to the goal

• Tiles 1 to 8 in start state give a distance of
h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Heuristic function (cont.)

Neither of these overestimates the true solution cost, which is 26

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Accuracy and
performance
Heuristic function

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Accuracy and performance

To characterise heuristic’s quality: effective branching factor b∗

• If the total number of nodes generated by A∗ is N and the
solution depth is d , then b∗ is the branching factor that a
uniform tree of depth d would have to have to contain N + 1
nodes

N + 1 = 1 + b∗ + (b∗)2 + · · ·+ (b∗)d

Example

If A∗ finds a solution at depth d = 5 using N + 1 = 52 nodes,
then

• The effective branching factor is b∗ = 1.92

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Accuracy and performance

The effective branching factor can vary across problem instances,
but usually it is fairly constant for sufficiently hard problems

• The existence of an effective branching factor follows from
the result, mentioned earlier, that the number of nodes
expanded by A∗ grows exponentially with solution depth

Thus, experimental measurements of b∗ on a small set of problems
can provide a good guide to the heuristic’s overall usefulness

Remark

A well-designed heuristic would have a value of b∗ close to 1,
allowing fairly large problems to be solved at reasonable cost

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Accuracy and performance (cont.)

To test heuristic functions h1 and h2, consider 1.2K random probs
with solution lengths from 2 to 24 (100 for each even number)
and solve them with iterative deepening search and A∗ tree search

Search Cost (nodes generated) Effective Branching Factor

d IDS A∗(h1) A∗(h2) IDS A∗(h1) A∗(h2)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22

12 3644035 227 73 2.78 1.42 1.24

14 – 539 113 – 1.44 1.23

16 – 1301 211 – 1.45 1.25

18 – 3056 363 – 1.46 1.26

20 – 7276 676 – 1.47 1.27

22 – 18094 1219 – 1.48 1.28

24 – 39135 1641 – 1.48 1.26

Average number of nodes generated and effective branching factor

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Accuracy and performance (cont.)

Results say that h2 is better than h1, and much better than IDS

• Even for small problems with d = 12, A∗ with h2 is 50K times
more efficient than uninformed iterative deepening search

One might ask whether h2 is always better than h1

• The answer is ‘essentially, yes’

From the definitions of h1 and h2, for any node n

• h2 dominates h1, or h2(n) ≥ h1(n)

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Accuracy and performance (cont.)

Domination translates directly into efficiency

• A∗ using h2 will never expand more nodes than A∗ using
h1 (except possibly for some nodes with f (n) = C∗)

The argument is simple, recall the observation that
every node with f (n) < C∗ will surely be expanded

• Every node with h(n) < C∗ − g(n) will surely be expanded

But because h2 is at least as big as h1 for all nodes, every node
that is surely expanded by A∗ search with h2 will also surely be
expanded with h1, and h1 may cause other nodes to be expanded

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Accuracy and performance (cont.)

Remark

It is generally better to use a heuristic function with higher values

• Provided it is consistent and that computation
time for the heuristic is passable

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics
from relaxed problems

Heuristic function

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from relaxed
problems

Both h1 (misplaced tiles) and h2 (Manhattan distance) are fairly
good heuristics for the 8-puzzle and we saw that h2 is better

• How might one have come up with h2?

• Is it possible for a computer to invent
such a heuristic mechanically?

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from relaxed
problems

For the 8-puzzle, h1 and h2 are estimates of the remaining path
length, but they are also perfectly accurate path lengths for
simplified versions of the puzzle

Example

If the rules were changed so that a tile could move anywhere
instead of just to the adjacent empty square, then

• h1 would give the exact number of steps
in the shortest solution

If a tile could move one square in any direction, even onto an
occupied square, then

• h2 would give the exact number of steps
in the shortest solution

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from relaxed
problems (cont.)

Definition

Problems with fewer restrictions on actions: Relaxed problems

• The state-space graph of a relaxed problem
is a super-graph of the original state space

• The removal of restrictions creates added edges in the graph

As the relaxed problem adds edges, any optimal solution in the
original problem is, by definition, a solution in the relaxed problem

• Though the relaxed problem may have better solutions,
if the added edges provide short cuts

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from relaxed
problems (cont.)

The cost of an optimal solution to a relaxed problem
is an admissible heuristic for the original problem

Because the derived heuristic is an exact cost for the relaxed
problem, it obeys the triangle inequality and is thus consistent

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics
from subproblems

Heuristic function

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from subproblems

Admissible heuristics can also be derived from the
solution cost of a subproblem of a given problem

Example

The figure shows a subproblem of the 8-puzzle instance

Start State Goal State

1

2

3

4

6

8

5

21

3 6

7 8

54

The subproblem is getting tiles 1, 2, 3, 4 into position,
without worrying about what happens to the other ones

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from subproblems
(cont.)

The cost of the optimal solution of this subproblem is
a lower bound on the cost of the complete problem

• It can be more accurate than Manhattan distance

1) The idea behind pattern databases is to store exact
solution costs for every possible subproblem instance

Example

Every possible configuration of the four tiles and the blank

• Location of other tiles is irrelevant for solving subproblem,
but moves of those tiles do count toward the cost

2) Then compute an admissible heuristic hDB for each complete
state encountered during a search simply by looking up the
corresponding subproblem configuration in the database

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from subproblems
(cont.)

The database itself is constructed by searching back from the
goal and recording the cost of each new pattern encountered

• the expense of this search is amortised
over many subsequent problem instances

Example

Start State Goal State

1

2

3

4

6

8

5

21

3 6

7 8

54

The choice of 1− 2− 3− 4 is fairly arbitrary, as we can
construct databases for 5− 6− 7− 8, 2− 4− 6− 8, etc.

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from subproblems
(cont.)

Each database yields an admissible heuristic, and these
heuristics can be combined, by taking the maximum value

• A combined heuristic of this kind is more
accurate than the Manhattan distance

Remark

The number of nodes generated when solving random
15-puzzles can be reduced by a factor of 1K

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from subproblems
(cont.)

Example

Would it be possible to heuristics obtained from the 1− 2− 3− 4
database and the 5− 6− 7− 8? The two seem not to overlap ...

• Would this still give an admissible heuristic?

Answer is no, because solutions to 1− 2− 3− 4 and 5− 6− 7− 8
subproblem for a given state will almost certainly share moves

• Unlikely that 1− 2− 3− 4 can be moved into place
without touching 5− 6− 7− 8, and vice versa

• But what if we do not count those moves? Like, we record
not the total cost of solving the 1− 2− 3− 4 subproblem,
but just the number of moves involving 1− 2− 3− 4

Then it is easy to see that the sum of the two costs is still
a lower bound on the cost of solving the entire problem

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Admissible heuristics from subproblems
(cont.)

This is the idea behind disjoint pattern databases

Example

With such databases, it is possible to solve random 15-puzzles in a
few milliseconds (the number of nodes generated is reduced by a
factor of 10K compared with the use of Manhattan distance)

For 24-puzzles, a speedup of a factor of 1M can be obtained

Disjoint pattern databases work for sliding-tile puzzles because the
problem can be divided up in such a way that each move affects
only one subproblem, because only one tile is moved at a time

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Learning heuristics
Heuristic function

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Learning heuristics

A heuristic function h(n) is supposed to estimate the
cost of a solution beginning from the state at node n

How could an agent build such a function?

• Devise relaxed problems for which an
optimal solution can be found easily

Another solution is to learn from experience

Example

• Experience means solving lots of 8-puzzles, for instance

• Each optimal solution to an 8-puzzle problem provides
examples from which h(n) can be learned

• Each example consists of a state from the solution path
and the actual cost of the solution from that point

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Learning heuristics (cont.)

A learning algorithm can be used to build a function h(n) that can
predict solution costs for other states that arise during search

• Applicable techniques are neural nets, decision trees, ...

• The reinforcement learning methods are also applicable

Inductive learning methods work best when supplied with features
of a state that are relevant to predicting the state’s value

• rather than with just the raw state description

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Learning heuristics (cont.)

Example

The feature ‘number of misplaced tiles’ might be helpful
in predicting the actual distance of a state from the goal

• Let’s call this feature x1(n)

We could take 100 randomly generated 8-puzzle configurations
and gather statistics on their actual solution costs

• We might find that when x1(n) is 5, the average
solution cost is around 14, and so on

Given these data, the value of x1 can be used to predict h(n)

Of course, we can use several features

Example

For example, a second feature x2(n) might be ‘number of
pairs of adjacent tiles that are not adjacent in the goal state’

Solving by searching

UFC/DC
AI (CK0031)

2016.2

Problem solving

Problem-solving agents

Well-definedtness

Problem formulation

Examples

Searching for solutions

Search algorithms

Measuring performance

Uninformed search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening
depth-first search

Bidirectional search

Informed searches

Greedy best-first search

A∗ search

Memory-bounded search

Heuristic functions

Accuracy and performance

Admissible heuristics from
relaxed problems

Admissible heuristics from
subproblems

Learning heuristics

Learning heuristics (cont.)

How should x1(n) and x2(n) be combined to predict h(n)?

A common approach is to use a linear combination

h(n) = c1x1(n) + c2x2(n)

Constants c1 and c2 are adjusted to give the
best fit to the actual data on solution costs

Example

One expects both c1 and c2 to be positive because misplaced tiles
and incorrect adjacent pairs make the problem harder to solve

Notice that this heuristic does satisfy the condition that h(n) = 0
for goal states, but it is not necessarily admissible or consistent

