UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation Nelder and Mead

Line-search metho

C. 1 ...

Descent method w

Newton's directions

quasi-Newton's directions

Nonlinear least-squares

The Gauss-Newton method

Unconstrained optimisation

Numerical optimisation

Francesco Corona

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fr methods

Golden section and quadratic interpolation

The Newton metho

Line-search method

Descent directi

Step-length o

Descent method w

Descent method with

gradient descent directions

Trust-region method

Nonlinear least-square

The Gauss-Newton met

Numerical optimisation

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ with n > 1 be a cost or objective function

The unconstrained optimisation problem is

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

The **constrained optimisation** problem is

$$\min_{\mathbf{x} \in \Omega \subset \mathbb{R}^n} f(\mathbf{x}) \tag{2}$$

The closed subset Ω is determined by either equality and inequality constraints that are dictated by the nature of the problem to solve

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line coarch method

Line-search metho

Stop longth

Descent metho

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square

The Gauss-Newton me Levenberg-Marquardt

Numerical optimisation (cont.)

Example

Find the optimal allocation of i = 1, ..., n bounded resources x_i , the constraints will be expressed by inequalities of type

$$0 \le x_i \le C_i$$
, with C_i given constants

The set $\Omega = \left\{ \mathbf{x} = (x_1, \dots, x_n) : 0 \le x_i \le C_i, i = 1, \dots, n \right\}$ is a subset of \mathbb{R}^n that is determined by such constraints

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrair

Derivative-fr methods

Golden section and quadratic interpolation

The Newton metho

THE NEWLON MELHO

Line-search met

Step-length α

Descent method wi Newton's directions

Descent method with quasi-Newton's direction

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Numerical optimisation (cont.)

Examples of constrained optimisation problems are those in which Ω is characterised by conditions like:

- h(x) = 0: equality constraints
- $h(x) \le 0$: inequality constraints

By $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$ with $m \leq n$ we denote a given function such that

• by $\mathbf{h} \leq \mathbf{0}$ we mean $h_i(\mathbf{x}) \leq 0$ for $i = 1, \dots, m$

Definition

If f is continuous and Ω is connected, the constrained optimisation problem is known also as a **non-linear programming problem**

- Convex programming: If f is a convex function and h has convex components
- Linear programming: If f and h are linear
- Quadratic programming: If f is quadratic and h is linear

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fromethods

Golden section and quadratic interpolatio

The Newton metho

Line-search methods

Sten-length o

Descent method wi

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-square

The Gauss-Newton meth

Numerical optimisation (cont.)

Remark

Computing the maximum of function f is equivalent to computing the minimum of function g = -f

We only consider minimisation algorithms

Definition

More interesting of the minimum value of a given function is often the point at which such minimum is achieved

• Such point is called minimiser

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fromethods

Golden section and quadratic interpolatio

The Newton method

Line-search met

Ston longth o

Doccont mothod

Newton's directions

quasi-Newton's directions Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton met Levenberg-Marquardt

Numerical optimisation (cont.)

In view of numerical solutions of optimisation problems, the ideal situation would be a cost function with an unique global minimiser

• There are often several (local) minimiser, though

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fre methods

Golden section and quadratic interpolation

The Newton method

Line-search method

Descent direct

Step-length α

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region method:

Nonlinear least-squares

The Gauss-Newton met

Unconstrained optimisation Numerical optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fr methods

Golden section and quadratic interpolation

The Newton metho

Line-search method

Descent directi

Step-length α_k

Descent method wit Newton's directions

Descent method with quasi-Newton's direction Gradient and conjugate-

Trust-region methor

Nonlinear least-squares

Levenberg-Marquardt

Unconstrained optimisation

When minimising an objective function, we are interested in finding either a (good) local or the global minimiser

Definition

- Point \mathbf{x}^* is a global minimiser of f, if $f(\mathbf{x}^*) \leq f(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{R}^n$
- Point \mathbf{x}^* is a **local minimiser** of f, if there is a $B_r(\mathbf{x}^*) \subset \mathbb{R}^n$, a ball centred in \mathbf{x}^* and radius r > 0, such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$, $\forall \mathbf{x} \in B_r(\mathbf{x}^*)$

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton metho

THE NEWTON MELHOC

Line-search method

Care Issuel

Step-length α_k

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region methods

Nonlinear least-square

Levenberg-Marquardt

Unconstrained optimisation (cont.)

Definition

Provided that f is differentiable in \mathbb{R}^n with first and second derivatives, we denote by **gradient vector** and by **Hessian matrix** of f at point $\mathbf{x} \in \mathbb{R}^n$, the following objects

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)^T \tag{3}$$

$$\mathbf{H}(\mathbf{x}) = (h_{ij})_{i,j=1}^{n}, \quad \text{with } h_{ij} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_i}$$
(4)

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Unconstrained optimisation (cont.)

In general, it will be assumed that problem functions are smooth Continuous and continuously (Frétchet) differentiable, C¹

Thus for f(x) at any point x there is a vector of first derivatives

Gradient vector

$$\begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}_{\mathbf{x}} = \nabla f(\mathbf{x})$$
 (5)

 ∇ is the gradient operator $\left(\partial/\partial x_1,\partial/\partial x_2,\cdots,\partial/\partial x_n\right)^T$

If $f(\mathbf{x})$ is twice-differentiable, \mathbb{C}^2 , there is a matrix of second partial derivatives $\nabla^2 f(\mathbf{x})$ for whose (i, j)-th element is

$$\partial^2 f/(\partial x_i \partial x_i)$$

The **Hessian matrix** can be strictly written as $\mathbf{H}(\mathbf{x}) = \nabla(\nabla f^T)$

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fi

Golden section and quadratic interpolatio

The Newton method

Line-scareir i

C. 1 ...

Descent method wi

Descent method with

Gradient and conjugate

Trust-region method

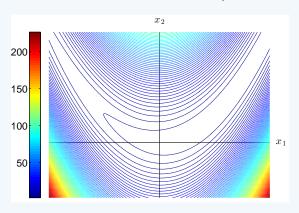
Nonlinear least-square

The Gauss-Newton metho

Unconstrained optimisation (cont.)

Example

Rosenbrock's function: A test-function for optimisation methods



$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fr methods

Golden section and quadratic interpolation

The Newton method

Line-search meth-

Descent direct

Step-length α

Newton's directions

Descent method with quasi-Newton's directi

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

The Gauss-Newton me Levenberg-Marquardt

Unconstrained optimisation (cont.)

$$\nabla f(\mathbf{x}) = \begin{pmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix}$$
 (6a)

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}$$
 (6b)

In general, ∇f and $\nabla^2 f$ will and vary from point to point

At
$$\mathbf{x}^T = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\nabla f(\mathbf{x}^T) = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$ and $\nabla^2 f(\mathbf{x}^T) = \begin{bmatrix} 2 & 0 \\ 0 & 200 \end{bmatrix}$

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fre methods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line coarch methodol

Line-search method

Cara larget

Step-length α_k

Newton's directions

Descent method with quasi-Newton's direction

gradient descent directi

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Unconstrained optimisation (cont.)

Definition

If $f \in \mathbb{C}^2(\mathbb{R}^n)$, that is all first and second derivatives of f exist and are continuous, then $\mathbf{H}(\mathbf{x})$ is symmetric for every $\mathbf{x} \in \mathbb{R}^n$

Definition

A point \mathbf{x}^* is called a **stationary** or **critical point** for f if $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and it is called a **regular point** if $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fr methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton metho

Line coarch methods

Line-Search method

Stop longth o

Descent method

Newton's directions

quasi-Newton's directio

gradient descent directi

Trust-region method

Nonlinear least-squares

The Gauss-Newton met Levenberg-Marquardt

Unconstrained optimisation (cont.)

Remark

A function f over \mathbb{R}^n does not necessarily admit a minimiser

• Also, should this point exist it is not necessarily unique

Example

- $f(\mathbf{x}) = x_1 + 3x_2$ is unbounded in \mathbb{R}^2
- $f(\mathbf{x}) = \sin(x_1)\sin(x_2)\cdots\sin(x_n)$ admits an infinite number of minimisers and maximisers in \mathbb{R}^n , either local and global

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fre methods

Golden section and quadratic interpolatio

The Newton metho

The Newton method

Line-search method

Line-search meth

Descent direc

December of the

Descent method with

quasi-Newton's direction

Nonlinear least-squares

Nonlinear least-squares

Unconstrained optimisation (cont.)

Definition

Function $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ is **convex** in Ω if $\forall \alpha\in[0,1]$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \Omega$$
 (7)

Definition

f is a Lipschitz function in Ω if there is a constant L > 0

$$||f(\mathbf{x}) - f(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}||, \quad \forall \mathbf{x}, \mathbf{y} \in \Omega$$
 (8)

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fr

Golden section and quadratic interpolatio

Nelder and Mea

The Newton metho

Line-search metho

Step-length α

Descent method wit

Descent method with quasi-Newton's direction:

quasi-Newton's directions
Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton met Levenberg-Marquardt

Unconstrained optimisation (cont.)

Proposition 1.1

Optimality conditions

Let $\mathbf{x}^* \in \mathbb{R}^n$ and r > 0 exists such that $f \in \mathbb{C}^1(B_r(\mathbf{x}^*))$

- If \mathbf{x}^* is a minimiser for f (local or global), then $\nabla f(\mathbf{x}^*) = \mathbf{0}$
 - Also, if $f \in \mathbb{C}^2(B_r(\mathbf{x}^*))$, $\mathbf{H}(\mathbf{x}^*)$ is positive semidefinite

Let
$$\mathbf{x}^* \in \mathbb{R}^n$$
 and $r > 0$ exists such that $f \in \mathbb{C}^2(B_r(\mathbf{x}^*))$

- If $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\mathbf{H}(\mathbf{x}^*)$ is positive definite for all $\mathbf{x} \in B_r(\mathbf{x}^*)$, then \mathbf{x}^* is a local minimiser of f
- If $f \in \mathbb{C}^1(\mathbb{R}^n)$ is convex in \mathbb{R}^n and $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then \mathbf{x}^* is a global minimiser for f

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fromethods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line-search method

Line-scaren metric

Stop longth o

Step-length o

Newton's directions

Descent method with quasi-Newton's directio

Gradient and conjugate-

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Unconstrained optimisation (cont.)

Definition

A symmetric real matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is **positive definite** if

$$\forall \mathbf{x} \in \mathbb{R}^n \text{ with } \mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$

A symmetric real matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is **positive semidefinite** if

$$\forall \mathbf{x} \in \mathbb{R}^n \text{ with } \mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$$

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fi

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search metho

Step-length α_k

Newton's directions

Descent method with quasi-Newton's directions

Gradient and conjugate-

Trust-region method

Nonlinear least-squares
The Gauss-Newton method

Levenberg-Marquard

Unconstrained optimisation (cont.)

Most methods for numerical optimisation are of iterative type

They can be classified into two categories depending on whether they require knowledge of the derivatives of the cost function

- Derivative-free methods investigate the local behaviour of a cost function by direct comparison between the values it takes
- Methods using exact derivatives take advantage of accurate information on the local behaviour of the cost

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fr

Golden section and quadratic interpolation

The Newton metho

Line-search method

Stop longth of

Descent metho

Newton's directions

quasi-Newton's direction: Gradient and conjugate-

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Unconstrained optimisation (cont.)

In general, minimisation methods based on accurate derivatives can be expected to achieve faster convergence to the minimiser

Remark

• It can be shown that given $\overline{\mathbf{x}} \in \text{dom}(f)$, if $\nabla f(\overline{\mathbf{x}})$ exists and it is not null, then the largest increase of f from $\overline{\mathbf{x}}$ is along the gradient vector whereas the largest decrease is along the opposite direction

Among them, the two most important classes of techniques are

- Line-search methods
- Trust-region methods

UFC/DC AI (CK0031) 2016.2

Onconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton metho

l ine-search method

Sten-length o

Step-length α

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Derivative-free methods Numerical optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-free methods

Golden section and quadratic interpolatio

The Newton metho

Line-search method

Descent direction

Step-length α

Newton's directions

Descent method with quasi-Newton's direction:

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton me

Derivative-free methods

We describe two simple numerical methods for

- Minimisation of univariate real-valued functions
- Minimisation of multivariate real-valued functions, along a single direction

We then describe the **Nelder and Mead method** for the minimisation of functions of several variables

> UFC/DC AI (CK0031) 2016.2

Golden section and

quadratic interpolation

Golden section and quadratic interpolation Derivative-free methods

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

The Newton method

Line-search metho

Descent direction

Step-length α_k

Descent method wit

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region methods

Nonlinear least-square

Levenberg-Marquardt

Golden section and quadratic interpolation

Let $f:(a,b)\to\mathbb{R}$ be a continuous function with unique minimiser

$$x^* \in (a, b)$$

Set $I_0 = (a, b)$ and for $k \ge 0$ generate a sequence of intervals I_k

$$I_k=(a^{(k)},b^{(k)})$$

The intervals I_k are of decreasing length and each contains x^*

UFC/DC AI (CK0031) 2016.2

Golden section and

quadratic interpolation

Golden section and quadratic interpolation (cont.)

For any given k, the next interval I_{k+1} is determined as follows:

1) Let $c^{(k)}$. $d^{(k)} \in I_k$ with $c^{(k)} < d^{(k)}$ be two points such that

$$\frac{b^{(k)} - a^{(k)}}{d^{(k)} - a^{(k)}} = \frac{d^{(k)} - a^{(k)}}{b^{(k)} - d^{(k)}} = \varphi$$
 (9a)

$$\frac{b^{(k)} - a^{(k)}}{b^{(k)} - c^{(k)}} = \frac{b^{(k)} - c^{(k)}}{c^{(k)} - a^{(k)}} = \varphi$$
 (9b)

and let φ be the golden ratio $\varphi = \frac{1+\sqrt{5}}{2} \simeq 1.628$

UFC/DC AI (CK0031) 2016.2

optimisation

methods
Golden section and

Golden section and quadratic interpolation

The Newton method

Line-search metho

- ...

Step-length α

Descent method v

Descent method with

Gradient and conjugate-

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

2) Using Equation 9a and 9b, we find point $c^{(k)}$ and point $d^{(k)}$

$$c^{(k)} = a^{(k)} + \frac{1}{\varphi^2} (b^{(k)} - a^{(k)})$$
 (10a)

$$d^{(k)} = a^{(k)} + \frac{1}{\varphi} (b^{(k)} - a^{(k)})$$
 (10b)

which are symmetrically placed about the mid-point of I_k

$$\frac{a^{(k)} + b^{(k)}}{2} - c^{(k)} = d^{(k)} - \frac{a^{(k)} + b^{(k)}}{2}$$
 (11)

Remark

By replacing $c^{(k)}$ and $d^{(k)}$ in Equation 11 and dividing by the common factor $\frac{b^{(k)}-a^{(k)}}{\varphi^2}$ we obtain the identity $\varphi^2-\varphi-1=0$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

Nelder and Mea

The Newton metho

Descent direc

Sten-length o

Descent method wit

Descent method with

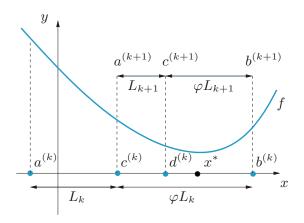
Gradient and conjugate

Trust-region method

Nonlinear least-square

The Gauss-Newton me Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)



The generic iteration of the golden-section method

• φ is the golden ratio, while $L_k = c^{(k)} - a^{(k)}$

UFC/DC AI (CK0031) 2016.2

Golden section and quadratic interpolation

Golden section and quadratic interpolation (cont.)

Set $a^{(0)} = a$ and $b^{(0)} = b$, the golden section method formulates as

For $k = 0, 1, \dots$ until convergence

Compute $c^{(k)}$ and $d^{(k)}$ through Equation 10

If
$$f(c^{(k)}) \ge f(d^{(k)})$$

set $I_{k+1} = (a^{(k+1)}, b^{(k+1)}) = (c^{(k)}, b^{(k)})$

else

set
$$I_{k+1} = (a^{(k+1)}, b^{(k+1)}) = (a^{(k)}, d^{(k)})$$

endif

It follows that:

- If $I_{k+1} = (c^{(k)}, b^{(k)})$, then $c^{(k+1)} = d^{(k)}$
- if $I_{k+1} = (a^{(k)}, d^{(k)})$, then $d^{(k+1)} = c^{(k)}$

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

methods Golden section and

quadratic interpolation

The Newton metho

Line-search meth

Descent direct

Step-length α,

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-squares
The Gauss-Newton method

Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

A stopping criterion can be set when the normalised size of the k-th interval is smaller than a given tolerance ε

$$\frac{b^{(k+1)} - a^{(k+1)}}{|c^{(k+1)}| + |d^{(k+1)}|} < \varepsilon \tag{12}$$

The mid-point of the last interval I_{k+1} can be taken as an approximation of the minimiser \mathbf{x}^*

By using Equation 9a and 9b, we obtain the expression

$$|b^{(k+1)} - a^{(k+1)}| = \frac{1}{\varphi} |b^{(k)} - a^{(k)}| = \dots = \frac{1}{\varphi^{k+1}} |b^{(0)} - a^{(0)}| \quad (13)$$

The golden-section method converges linearly with rate

$$\varphi^{-1} \simeq 0.618$$

```
Unconstrained optimisation
```

UFC/DC AI (CK0031) 2016.2

optimisation

methods

Golden section and quadratic interpolation

Nelder and Mea

THE HEREON MEE

Line-search meth

Stop longth or

Descent method w Newton's direction

Descent method with quasi-Newton's direction

gradient descent directions

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

function [xmin,fmin,iter]=gSection(fun,a,b,tol,kmax,varargin) 2 %GSECTION finds the minimum of a function % XMIN=GSECTION (FUN, A, B, TOL, KMAX) approximates a min point of % function FUN in [A,B] by using the golden section method If the search fails, an error message is returned FUN can be i) an inline function, ii) an anonymous function or iii) a function defined in a M-file XMIN=GSECTION(FUN, A, B, TOL, KMAX, P1, P2, ...) passes parameters P1, P2,... to function FUN(X,P1,P2,...)[XMIN,FMIN,ITER] = GSECTION(FUN,...) returns the value of FUN % at XMIN and number of iterations ITER done to find XMIN phi = (1+sqrt(5))/2: iphi(1) = inv(phi); iphi(2) = inv(1+phi);c = iphi(2)*(b-a) + a; d = iphi(1)*(b-a) + a;err = 1+tol; k = 0;while err > tol & k < kmax if(fun(c) >= fun(d))a = c; c = d; d = iphi(1)*(b-a) + a; else b = d; d = c; c = iphi(2)*(b-a) + a; end k = 1 + k; err = abs(b-a)/(abs(c)+abs(d)): end 26 xmin = 0.5*(a+b); fmin = fun(xmin); iter = k;if (iter == kmax & err > tol) fprintf ('The method stopped after reaching the maximum number of iterations, and without meeting the tolerance'); 30 end

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrain

methods

Golden section and quadratic interpolation

The Newton method

Line-search metho

Descent direct

Step-length α_i

Newton's directions

Descent method with quasi-Newton's direction

Trust-region methor

Nonlinear least-squares

Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

- fun is either an anonymous or an inline function for function f
- a and b are endpoints of the search interval
- tol is the tolerance ε
- kmax is the maximum allowed number of iterations

- xmin contains the value of the minimiser
- fmin is the minimum value of f in (a, b)
- iter is the number of iterations carried out by the algorithm

UFC/DC AI (CK0031) 2016.2

Optimisation optimisation

methods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

The second second

Line-search meth

Descent directi

Step-length o

Descent method wi

Descent method with

Gradient and conjugate-

Trust-region method

Nonlinear least-square

The Gauss-Newton method

Golden section and quadratic interpolation (cont.)

Example

Evolution of an isolated culture of 250 bacteria (Verhulst model)

$$f(t) = \frac{2500}{1 + 9 \exp(-t/3)}, \quad \text{for } t > 0$$

where *t* denotes time (expressed in days)

Find after how many days population growth rate is maximum

• That is, when function g(t) = -f'(t) has its minimum

$$g(t) = -7500 \frac{\exp\left(\frac{t}{3}\right)}{\left(\exp\left(\frac{t}{3}\right) + 9\right)^{2}}$$

UFC/DC AI (CK0031) 2016.2

optimisation

methods
Golden section and

Golden section and quadratic interpolation

The Newton method

Line-search methods

Descent direction

Descent method with

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-squares

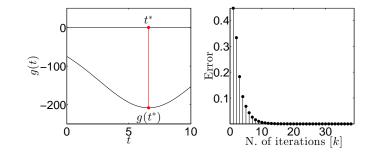
The Gauss-Newton meth

Golden section and quadratic interpolation (cont.)

Function g(t) admits a global minimiser in [6,7], see its plot

```
1 g = @(t) [-(7500*exp(t/3)) / (exp(t/3)+9)^2];
2
3 a = 0; b = 10;
4 tol = 1.0e-8; kmax = 100;
6 [tmin gmin,iter] = gSection(g,a,b,tol,kmax);
```

Golden section: 38 iterations, $t^* \approx 6.59$ and $g(t^*) \approx -208$



UFC/DC AI (CK0031) 2016.2

optimisation

methods Golden section and

Golden section and quadratic interpolation

THE NEWTON MELINO

Line-search metho

Descent direction

Step-length o

Newton's direction

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent directio

Trust-region method

Nonlinear least-squares

Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

The quadratic interpolation method is often used as alternative

- Let f be a continuous and convex function
- Let $x^{(0)}$, $x^{(1)}$ and $x^{(2)}$ be three distinct points

We build a sequence of points $x^{(k)}$ with $k \geq 3$ such that $x^{(k+1)}$ is the vertex (and thus the minimiser) of the parabola $p_2^{(k)}$ that interpolates f at (node points) $x^{(k)}$, $x^{(k-1)}$ and $x^{(k-2)}$

Definition

For $k \ge 2$, the order-2 **Lagrange polynomial** at such nodes is

$$p_2^{(k)}(x) = f(x^{(k-2)}) + f[x^{(k-2)}, x^{(k-1)}](x - x^{(k-2)}) + f[x^{(k-2)}, x^{(k-1)}, x^{(k)}](x - x^{(k-2)})(x - x^{(k-1)}))$$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

The Newton metho

....

Line-search metho

Descent direct

Step-length α

Newton's directions

Descent method with quasi-Newton's directio

Gradient and conjugate-

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

$$p_2^{(k)}(x) = f(x^{(k-2)}) + f[x^{(k-2)}, x^{(k-1)}](x - x^{(k-2)}) + f[x^{(k-2)}, x^{(k-1)}, x^{(k)}](x - x^{(k-2)})(x - x^{(k-1)}))$$

The **Newton divided differences** are the quantities

$$f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i}$$

$$f[x_i, x_j, x_k] = \frac{f[x_j, x_l] - f[x_i, x_j]}{x_l - x_i}$$
(14)

in the 2nd order Lagrange polynomial $p_2^{(k)}$ for $k \ge 2$

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line-search metho

Descent direc

Step-length o

Descent met

Descent method with quasi-Newton's directio

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

Nonlinear least-squares

Levenberg-Marquardt

Γheorem

For n+1 distinct points $\{(x_i, y_i(x_i))\}_{n=0}^{n+1}$, there exists only one polynomial $\Pi_n \in \mathbb{P}_n$ of order n or smaller that interpolates them

$$\Pi_n(x_i) = y_i, \quad \forall i = 0, \dots, n$$

If $y_i = f(x_i)$ for some continuous function f, Π_n is said to be the **interpolating polynomial** of f and it is denoted as $\Pi_n f$

Definition

Components of the Lagrangian basis associated to nodes $\{x_i\}_{i=0}^n$

$$\varphi_i(x) = \prod_{i=0, i\neq j}^n \frac{x-x_j}{x_i-x_j}, \quad i=0,\ldots,n$$

are polynomials such that $\{\varphi_i\}$ is the only basis of \mathbb{P}_n satisfying

$$\varphi_i(x) \in \mathbb{P}_n, \varphi_i(x_j) = \delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

UFC/DC AI (CK0031) 2016.2

optimisation

Golden section and

quadratic interpolation

The Newton metho

Line-search metho

- ...

Stop longth o

Descent method w

Descent method with

quasi-Newton's direction

Trust region method

Nonlinear least-squares

The Gauss-Newton me Levenberg-Marquardt

Definition

The **Lagrange polynomial** is the interpolating polynomial $\Pi_n(x)$

$$\Pi_n(x) = \sum_{i=0}^n y_i \varphi_i(x)$$

expressed in Lagrange form, or with respect to the Lagrange basis

$$\Pi_n(x_i) = \sum_{j=0}^n y_j \varphi_j(x_i) = \sum_{j=0}^n y_j \delta_{ij} = y_i, \quad i = 0, \dots, n$$

UFC/DC AI (CK0031) 2016.2

optimisation

methods

Golden section and quadratic interpolation

The Newton metho

Line coarch metho

Line-search met

Step-length

Descent method with

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

By solving the first-order equation $p_2^{\prime(k)}(x^{(k+1)}) = 0$, we get

$$x^{(k+1)} = \frac{1}{2} \left(x^{(k-2)} + x^{(k-1)} - \frac{f[x^{(k-2)}, x^{(k-1)}]}{f[x^{(k-2)}, x^{(k-1)}, x^{(k)}]} \right)$$
(15)

The next point in the sequence is obtained by setting to zero the derivative of $p_2^{(k)}(x)$

We iterate until $|x^{(k+1)} - x^k| < \varepsilon$, for some tolerance $\varepsilon > 0$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolation

Nelder and Me

The Newton method

the second second

Descent directi

C. 1 ...

D

Newton's directions

Descent method with quasi-Newton's direction

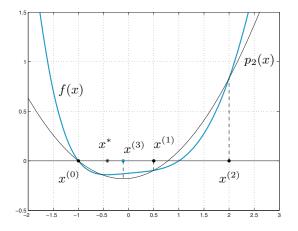
Gradient and conjugate-

Trust-region methods

Nonlinear least-square

The Gauss-Newton meth

Golden section and quadratic interpolation (cont.)



The first step of the quadratic interpolation method

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

methods

Golden section and

Golden section and quadratic interpolation

The Newton method

THE NEWLON MELHO

Line-search met

Descent direction

Descent method

Newton's direction

Descent method with quasi-Newton's direction

Gradient and conjugate

Trust-region method

Nonlinear least-squares
The Gauss-Newton method

Levenberg-Marquardt

Example

$$g(t) = -7500 \frac{\exp\left(\frac{t}{3}\right)}{\left(\exp\left(\frac{t}{3}\right) + 9\right)^{2}}$$

fminbnd combines golden section and parabolic interpolation

Quadratic interpolation: 8 iter, $t^* \approx 6.59$ and $f(t^*) \approx -208$

- optimset sets the tolerance value in structure optionsQ
- qminQ contains the evaluation of f at the minimiser tminQ
- exitflagQ indicates the termination state
- outputQ has number of iterations and function evaluations

UFC/DC AI (CK0031) 2016.2

Unconstrain

methods

Golden section and quadratic interpolation

The Newton method

THE NEWTON METHO

Line-search metho

Stop longth o

Descent method wit

Descent method with quasi-Newton's direction

Trust-region method

Nonlinear least-squares

Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

The golden section and the quadratic interpolation method are genuinely one-dimensional techniques

 They can be used to solve multidimensional optimisation problems, provided they are restricted to the search of optimisers along a given one dimensional direction

UFC/DC AI (CK0031) 2016.2

Optimisation optimisation

methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton metho

Line-search methods

Descent direct

Step-length α

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton method

Nelder and Mead Derivative-free methods

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton metho

The second second

Line-search method

Descent direc

Descent method

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton me

Nelder and Mead

Let n > 1 and $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function

Definition

The **n-simplex** with n+1 vertices $\mathbf{x}_i \in \mathbb{R}^n$ for $i=0,\ldots,n$ is

$$S = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \sum_{i=0}^n \lambda_i \mathbf{x}_i, \text{ with } \lambda_i \ge 0 : \sum_{i=0}^n \lambda_i = 1 \}$$
 (16)

Intrinsic assumption: Linearly independent vectors $\{(\mathbf{x}_i - \mathbf{x}_0)\}_{i=1}^n$

S is a segment in \mathbb{R} , it is a triangle in \mathbb{R}^2 and a tetrahedron in \mathbb{R}^3

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-fre

Golden section and quadratic interpolation

Nelder and Mead

The Newton metho

The Newton method

Line-search metho

Descent direction

Step-length α_k

Descent method wit Newton's directions

Descent method with quasi-Newton's direction Gradient and conjugate-

Trust-region metho

Nonlinear least-square: The Gauss-Newton method

Levenberg-Marquardt

Nelder and Mead (cont.)

The Nelder and Mead method is a derivative-free minimisation method that generates a sequence of simplices $\{S^{(k)}\}_{k\geq 0}$ in \mathbb{R}^n

• The simplices either run after or circumscribe the minimiser $\mathbf{x}^* \in \mathbb{R}^n$ of the cost function f

The method uses the evaluations of f at the simplices' vertices and geometrical transformations (reflections, expansions, contractions)

- At the k-th iteration, the 'worst' vertice of simplex $S^{(k)}$ is identified as $\mathbf{x}_M^{(k)}$ such that $f(\mathbf{x}_M^{(k)}) = \max_{0 \leq i \leq n} f(\mathbf{x}_i^{(k)})$ and then substituted with a new point at which f takes a smaller value
- The new point is obtained by reflecting, expanding or contracting the simplex along the line joining $\mathbf{x}_{M}^{(k)}$ with the centroid of the other vertices of the simplex

$$\mathbf{x}_c^{(k)} = \frac{1}{n} \sum_{\substack{i=0\\i\neq M}}^{n} \mathbf{x}_i^{(k)}$$

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton metho

Line-search metho

Descent direction

Step-length α

Newton's directions

Descent method with quasi-Newton's direction

gradient descent directio

Trust-region method

Nonlinear least-squares

Levenberg-Marquard

Nelder and Mead (cont.)

To generate the initial simplex $S^{(0)}$, we take a point $\tilde{\mathbf{x}} \in \mathbb{R}^n$ and a positive real number η and we set $\mathbf{x}_i^{(0)} = \tilde{\mathbf{x}} + \eta \mathbf{e}_i$ with $i = 1, \ldots, n$

• $\{{f e}_i\}$ are the vectors of the standard basis in ${\mathbb R}^n$

While $k \ge 0$ and until convergence, select the 'worst' vertex of $S^{(k)}$

$$\mathbf{x}_{M}^{(k)} = \max_{0 \le i \le n} f(\mathbf{x}_{i}^{(k)}) \tag{17}$$

and then replace it by a new point to form the new simplex $S^{(k+1)}$

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

methods

Golden section and quadratic interpolatio

Nelder and Mead

The Newton metho

Line coarch meth

Descent direct

Step-length α

Newton's directions

Descent method with quasi-Newton's directio

gradient and conjugategradient descent directions

Trust-region method

Nonlinear least-squares

Levenberg-Marquardt

Nelder and Mead (cont.)

The new point is chosen by firstly selecting

$$\mathbf{x}_{m}^{(k)} = \min_{0 \le i \le n} f(\mathbf{x}_{i}^{(k)})$$

$$\mathbf{x}_{\mu}^{(k)} = \max_{n} f(\mathbf{x}_{i}^{(k)})$$
(18)

and secondly by defining the centroid point

$$\overline{\mathbf{x}}^{(k)} = \frac{1}{n} \sum_{\substack{i=0\\i\neq M}}^{n} \mathbf{x}_i^{(k)} \tag{19}$$

This is the centroid point of hyperplane $H^{(k)}$ passing through the vertices $\{\mathbf{x}_i\}_{i=0}^n$

UFC/DC AI (CK0031) 2016.2

optimisation

methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton metho

Line coarch metho

Ellie-Search file

C. I II

Descent method w

Newton's directions

Descent method with

quasi-Newton's directions
Gradient and conjugate-

Trust-region method

Nonlinear least-square

Levenberg-Marquard

Nelder and Mead (cont.)

Thirdly, compute reflection $\mathbf{x}_{\alpha}^{(k)}$ of $\mathbf{x}_{M}^{(k)}$ wrt hyperplane $H^{(k)}$

$$\mathbf{x}_{\alpha}^{(k)} = (1 - \alpha)\overline{\mathbf{x}}^{(k)} + \alpha \mathbf{x}_{M}^{(\alpha)} \tag{20}$$

with reflection coefficient $\alpha < 0$ is typically set to be -1

Point $\mathbf{x}_{\alpha}^{(k)}$ lies on the straight line joining points $\overline{\mathbf{x}}^{(k)}$ and $\mathbf{x}_{M}^{(k)}$

• It is on the side of $\overline{\mathbf{x}}^{(k)}$ far from $\mathbf{x}_{M}^{(k)}$

UFC/DC AI (CK0031) 2016.2

Unconstraine

methods

Golden section and quadratic interpolatio

Nelder and Mead

The Newton metho

Descent directi

Carr Irrah

Descent method with

Descent method with quasi-Newton's direction

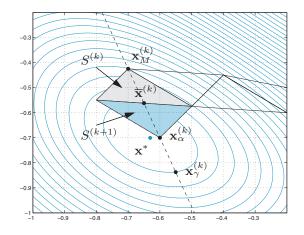
Gradient and conjugate-

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Nelder and Mead (cont.)



n=2, the centroid is midpoint of edge of $S^{(k)}$ opposite to $\mathbf{x}_{M}^{(k)}$

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre methods

Golden section and quadratic interpolati

Nelder and Mead

The Newton method

Line coarch metho

Descent direction

Step-length a

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

Levenberg-Marquardt

Nelder and Mead (cont.)

We fourthly compare $f(\mathbf{x}_{\alpha}^{(k)})$ with the values of f at the other vertices of the simplex before accepting $\mathbf{x}_{\alpha}^{(k)}$ as the new vertex

We also try to move $\mathbf{x}_{\alpha}^{(k)}$ on the straight line joining $\overline{\mathbf{x}}^{(k)}$ and $\mathbf{x}_{M}^{(k)}$ to set the new simplex $S^{(k+1)}$, as follows:

• If $f(\mathbf{x}_{\alpha}^{(k)}) < f(\mathbf{x}_{m}^{(k)})$ (reflection produced a minimum), then

$$\mathbf{x}_{\gamma}^{(k)} = (1 - \gamma)\overline{\mathbf{x}}^{(k)} + \gamma \mathbf{x}_{M}^{(k)}, \quad \text{with } \gamma < -1^{1}$$
 (21)

then, if $f(\mathbf{x}_{\gamma}^{(k)}) < f(\mathbf{x}_{m}^{(k)})$, replace \mathbf{x}_{M} by $\mathbf{x}_{\gamma}^{(k)}$, otherwise $\mathbf{x}_{M}^{(k)}$ is replaced by $\mathbf{x}_{\alpha}^{(k)}$

We then proceed by incrementing k by one

¹with typically $\gamma = -2$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton metho

1300 00000 00000

Line-search meth

Care Issuels -

Descent method w

Descent method with

Gradient and conjugate-

Trust-region method:

Nonlinear least-square

Levenberg-Marquardt

Nelder and Mead (cont.)

- If $f(\mathbf{x}_m^{(k)}) \leq f(\mathbf{x}_\alpha^{(k)}) < f(\mathbf{x}_\mu^{(k)})$, then $\mathbf{x}_M^{(k)}$ is replaced by $\mathbf{x}_\alpha^{(k)}$ and k is incremented by one
- If $f(\mathbf{x}_{\mu}^{(k)}) \leq f(\mathbf{x}_{\alpha}^{(k)}) < f(\mathbf{x}_{M}^{(k)})$, we compute

$$\mathbf{x}_{\beta}^{(k)} = (1 - \beta)\overline{\mathbf{x}}^{(k)} + \beta \mathbf{x}_{\alpha}^{(k)}, \text{ with } \beta > 0^2$$
 (22)

then, if $f(\mathbf{x}_{\beta}^{(k)}) > f(\mathbf{x}_{M}^{(k)})$ define the vertices $S^{(k+1)}$ by

$$\mathbf{x}_{i}^{(k+1)} = \frac{1}{2} (\overline{\mathbf{x}}^{(k)} + \mathbf{x}_{m}^{(k)})$$
 (23)

otherwise $\mathbf{x}_{M}^{(k)}$ is replaced by \mathbf{x}_{β} Then, we increment k

²with typically $\beta = 1/2$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods Coldon section and

Golden section and quadratic interpolatio

Nelder and Mead

The Newton metho

The second second

Line-search metr

Descent direct

Step-length o

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

Nelder and Mead (cont.)

• If $f(\mathbf{x}_{\alpha}^{(k)}) > f(\mathbf{x}_{M}^{(k)})$, we compute

$$\mathbf{x}_{\beta} = (1 - \beta)\overline{\mathbf{x}}^{(k)} + \beta \mathbf{x}_{M}^{(k)}, \text{ with } \beta > 0$$
 (24)

and if $f(\mathbf{x}_{\beta}^{(k)}) > f(\mathbf{x}_{M}^{(k)})$ define the vertices of $S^{(k+1)}$ by Equation 23, otherwise we replace $\mathbf{x}_{M}^{(k)}$ with $\mathbf{x}_{\beta}^{(k)}$ Then we increment k

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods
Golden section and

quadratic interpolation

Nelder and Mead

The Newton metho

Descent directi

Sten-length c

Descent method w

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-squares

Levenberg-Marquardt

Nelder and Mead (cont.)

When the stopping criterion $\max_{i=0,...,n} ||\mathbf{x}_i^{(k)} - \mathbf{x}_m^{(k)}||_{\infty} < \varepsilon$ is met, $\mathbf{x}_m^{(k)}$ is retained as approximation of the minimiser

Convergence is guaranteed in very special cases only Stagnation may occur, algorithm needs to be restarted

- The algorithm is nevertheless quite robust and efficient for small dimensional problems
- Its rate of convergence is severely affected by the choice of the initials simplex

UFC/DC AI (CK0031) 2016.2

optimisation

Golden section and

Golden section and quadratic interpolation

Nelder and Mead

The Newton metho

The second second

Line-search met

Descent direction

Descent method

Newton's directions

quasi-Newton's direction

Gradient and conjugategradient descent directio

Trust-region method

Nonlinear least-squares

Levenberg-Marquardt

Nelder and Mead (cont.)

Example

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

The function is the The Rosenbrock function, it is often used as testbench for efficiency and robustness of minimisation algos

• The global minimum is at $\mathbf{x}^* = (1,1)$, however its variation around \mathbf{x}^* is low, making algorithms' convergence problematic

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton metho

Descent directi

C. 1 .1

Descent method w

Newton's directions

Descent method with

quasi-Newton's direction Gradient and conjugate-

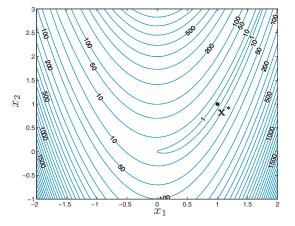
Trust-region methods

Nonlinear least-square

The Gruss Newton method

The Gauss-Newton me Levenberg-Marquardt

Nelder and Mead (cont.)



UFC/DC AI (CK0031) 2016.2

optimisation

methods

quadratic interpolatio

Nelder and Mead

THE REPRESENTATION

Line-search metho

-

Step-length α_k

Newton's direction

Descent method with quasi-Newton's directions

T.....

Trust-region methods

Nonlinear least-square

Levenberg-Marquardt

Nelder and Mead (cont.)

The simplex method: The M-command is fminsearch

```
1 x_0 = [-1.2,+1.0];
2
3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;
4
5 xstar = fminsearch(fun,x_0)
6
7 xstar =
8 1.000022021783570 1.000042219751772
```

To obtain additional information on the minimum value of f, we can replace the second instruction with the expanded one

```
[xstar,fval,exitflag,output] = fminsearch(fun,x_0)
```

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton method

Line-search method

Descent direc

Step-length o

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

The Newton method Numerical optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

the second contra

Descent direc

Step-length α

Newton's direction

quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

The Newton method

Assume $f: \mathbb{R}^n \to \mathbb{R}$ with $n \ge 1$ of class $\mathbb{C}^2(\mathbb{R}^n)$ and we know how to compute its first and second order partial derivatives

We can apply Newton's method for the solution of the system $\mathbf{F}(x) = \nabla f(\mathbf{x}) = \mathbf{0}$, whose Jacobian matrix $\mathbf{J}_{\mathbf{F}}(\mathbf{x}^{(k)})$ is the Hessian matrix of f computed at the generic iteration point $\mathbf{x}^{(k)}$

Pseudocode

Given $\mathbf{x}^{(0)} \in \mathbb{R}^n$, for $k = 0, 1, \ldots$ until convergence

Solve
$$\underbrace{\mathbf{H}(\mathbf{x}^{(k)})}_{\mathbf{J}_{\mathbf{F}(\mathbf{x}^{(k)})}} \delta \mathbf{x}^{(k)} = -\underbrace{\nabla f(\mathbf{x}^{(k)})}_{\mathbf{F}(\mathbf{x}^{(k)})}$$
(25)

Set
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$$

A suitable stopping test is $||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}|| \le \varepsilon$, $\varepsilon > 0$ the tolerance

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

The Newton method

Line-search meth

Descent direc

Step-length α

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

The Newton method (cont.)

Remark

Consider the problem of finding the zero of $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$

Find
$$\alpha \in [a, b]$$
 such that $f(\alpha) = 0$

Given the tangent to the function (x, f(x)) at some point $x^{(k)}$

$$y(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)})$$

and resolving for a point $x^{(k+1)}$ such that $y(x^{(k+1)}) = 0$, we get

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}, \text{ for } k \ge 0 \text{ and } f'(x^{(k)}) \ne 0$$

UFC/DC AI (CK0031) 2016.2

Unconstrair

Derivative-fr

Golden section and quadratic interpolation

Nelder and Mead

The Newton method

Production of the same

Line-search meth

Step-length o

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region method:

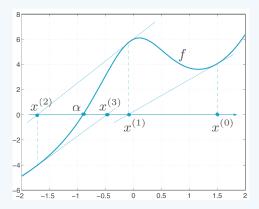
Nonlinear least-square

The Gauss-Newton method

The Newton method (cont.)

Remark

The sequence is the **Newton's method** for finding the zero of a function, and it reduces to locally substituting f with its tangent



UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fre

Golden section and quadratic interpolatio

The Newton method

Lille-Seal

Step-length α_k

Descent method wit Newton's directions

Descent method with quasi-Newton's direction: Gradient and conjugate-

Trust-region method

Nonlinear least-square

The Gauss-Newton me

Remark

Consider the following set of nonlinear equations

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

Let
$$\mathbf{f} \equiv (f_1, \dots, f_n)^T$$
 and $\mathbf{x} \equiv (x_1, \dots, x_n)^T$ to get $\mathbf{f}(\mathbf{x}) = \mathbf{0}$

To extend the Newton's method we replace the first derivative of scalar function f with the Jacobian matrix J_f of vectorial function f

$$(\mathbf{J_f})_{ij} \equiv \frac{\partial f_i}{\partial x_i}, \quad \text{with } i, j = 1, \dots, n$$

Pseudocode

Solve
$$\mathbf{J_f}(\mathbf{x}^{(k)})\delta\mathbf{x}^{(k)} = -\mathbf{f}(\mathbf{x}^{(k)})$$

Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta\mathbf{x}^{(k)}$

UFC/DC AI (CK0031) 2016.2

Unconstrair optimisatio

Derivative-fr

Golden section and quadratic interpola Nelder and Mead

The Newton method

Descent directions
Step-length α_k

Descent method with quasi-Newton's directions

Gradient and conjugategradient descent direction

Trust-region methods

Nonlinear least-square

Levenberg-Marquardt

The Newton method (cont.)

```
function [x,res,iter] = sNWT(F_fun,J_fun,x_0,tol,imx,varargin)
  %SNLENEWTON Approximates a root of a nonlinear system
    [ROOT.RES.ITER] = NLSE (F FUN. J FUN. X O. TOL. IMX) Calculate
     vector ROOT, the zero of a nonlinear system defined in
     F FUN with Jacobian J FUN, from initial point X 0
    RES is residual in ROOT and ITER is number of iterations
    F FUN e J FUN are external functions (as M-files)
  iter = 0: err = 1 + tol: x = x 0:
  while err >= tol & iter < imx
   J = J_fun(x, varargin(:));
   F = F_fun(x, varargin\{:\});
   delta = -J \ F:
   x = x + delta:
   err = norm(delta); iter = 1 + iter;
18
  end
  res = norm(F_fun(x, varargin{:}));
  if(iter==imx & err > tol)
   disp('[Out by KMAX]');
24
  else
   disp('[Out by TOL]'));
  end
  return
```

```
Unconstrained optimisation
```

UFC/DC AI (CK0031) 2016.2

Onconstrain optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton method

Line-search method

D . P . C

Step-length α_k

Newton's directions

Descent method with quasi-Newton's direction

gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

The Newton method (cont.)

```
function F = F_fun(x)
F(1,1) = F_1(x_1,x_2,...); % Add your own expression
F(2,1) = F_2(x_1,x_2,...); % Add your own expression
...
F(N,1) = F_N(x_1,x_2,...); % Add your own expression
return
```

```
function J = J_fun(x)

J(1,1) = dF_1 / dx_1; % Add your own expression

J(1,2) = dF_1 / dx_2; % Add your own expression

J(2,1) = dF_2 / dx_1; % Add your own expression

J(2,2) = dF_2 / dx_2; % Add your own expression

J(N,1) = dF_N / dx_1; % Add your own expression

J(N,2) = dF_N / dx_2; % Add your own expression

The state of the stat
```

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre

Golden section and quadratic interpolation

The Newton method

THE HEREON MELHOL

Line-search method

Descent direc

Step-length a

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

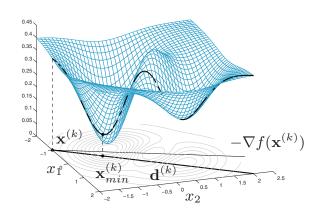
Nonlinear least-square

The Gauss-Newton me

Example

$$f(\mathbf{x}) = \frac{2}{5} - \frac{1}{10} (5x_1^2 + 5x_2^2 + 3x_1x_2 - x_1 - 2x_2) \exp(-(x_1^2 + x_2^2))$$

We want to approximate the global minimum $\mathbf{x}^* \approx (-0.63, -0.70)$



UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-free methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton method

Line-search methods

Sten-length or

Descent method wit

Descent method with quasi-Newton's direction

Gradient and conjugate gradient descent directi

Trust-region method

Nonlinear least-squares
The Gauss-Newton method

The Newton method (cont.)

Netwon's method with a tolerance $\varepsilon = 10^{-5}$

- If we choose $\mathbf{x}^{(0)} = (-0.9, -0.9)$, then after 5 iterations the method converges to $\mathbf{x} = [-0.63058; -0.70074]$
- If we choose $\mathbf{x}^{(0)} = (-1.0, -1.0)$, then after 400 iterations the stop criterion still would not be fulfilled

Moreover, Newton's method may converge to any stationary point (not necessarily to a minimiser)

• With $\mathbf{x}^{(0)} = (+0.5, -0.5)$, after 5 iterations the method converges to the saddle point $\mathbf{x} = [0.80659; -0.54010]$

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre methods

Golden section and quadratic interpolation

The Newton method

Line-search metho

Step-length α

Descent method w

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square: The Gauss-Newton method

The Newton method (cont.)

Remark

A necessary condition for convergence of Newton's method is that $\mathbf{x}^{(0)}$ should be sufficiently close to the minimiser \mathbf{x}^*

Reflects the local convergence property of the method

Remark

General convergence criterium for the Newton's method

If $f \in \mathbb{C}^2(\mathbb{R}^n)$ with stationary point \mathbf{x}^* , with positive definite Hessian $\mathbf{H}(\mathbf{x}^*)$, with Lipschitz continuous components of $\mathbf{H}(\mathbf{x})$ in a neighbourhood of \mathbf{x}^* and for $\mathbf{x}^{(0)}$ sufficiently close to \mathbf{x}^* , then the method converges quadratically to \mathbf{x}^*

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fr

Golden section and quadratic interpolation

The Newton method

The Newton metho

Line-search metho

Step-length α_k

Descent method wi Newton's directions

Descent method with quasi-Newton's directions

Trust-region metho

Nonlinear least-squares
The Gauss-Newton method
Levenberg-Marquardt

The Newton method (cont.)

In spite of a simple implementation, the method is demanding when n is large, as it requires the analytic expression of the derivatives and, at each iteration, the computation of both gradient and Hessian of f

• Let alone that $\mathbf{x}^{(0)}$ has to be chosen near enough \mathbf{x}^*

Remark

To design efficient and robust minimisation algorithms combine locally with globally convergent methods

• Global convergence guarantees convergence to a stationary point (not necessarily a global minimiser) for all $\mathbf{x}^{(0)} \in \mathbb{R}^n$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton method

Line-search methods

Descent direct

Step-length a

Descent method with

Descent method with

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton method

Line-search methods Numerical optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-fre

Golden section and quadratic interpolation

The Newton metho

Line-search methods

Descent direct

Step-length α

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate

Trust-region method

Nonlinear least-square

The Gauss-Newton method

Levenberg-Marquardt

Line-search methods

For simplicity, assume $f \in \mathbb{C}^2(\mathbb{R})$ and bounded from below

Line-search or descent methods are iterative methods

• For every step $k \geq 0$, point $\mathbf{x}^{(k+1)}$ depends on point \mathbf{x}^k , on a vector $\mathbf{d}^{(k)}$ which in turn depends on the gradient $\nabla f(\mathbf{x}^{(k)})$ of f, and on a suitable step-length parameter $\alpha_k \in \mathbb{R}$

Given an initial minimiser $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the method formulates as

Pseudocode

Find direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$

Compute step $\alpha_k \in \mathbb{R}$

Set $\mathbf{x}^{(\mathbf{k}+\mathbf{1})} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

UFC/DC AI (CK0031) 2016.2

optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton method

Line-search methods

Descent dire

Step-length a

Descent method wi

Descent method with quasi-Newton's direction:

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square: The Gauss-Newton method

Line-search methods (cont.)

Definition

Vector $\mathbf{d}^{(k)}$ must be a **descent direction**, so it satisfies conditions

$$\mathbf{d}^{(k)}\nabla f(\mathbf{x}^{(k)}) < 0, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) \neq \mathbf{0}$$
$$\mathbf{d}^{(k)} = \mathbf{0}, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) = \mathbf{0}$$
(26)

In \mathbb{R}^n , the gradient $\nabla f(\mathbf{x}^{(k)})$ identifies the direction with sign of maximum positive growth of f from $\mathbf{x}^{(k)}$

As $\mathbf{d}^{(k)}\nabla f(\mathbf{x}^{(k)})$ is the directional derivative of f along $\mathbf{d}^{(k)}$

 First condition ensures that we move along the opposite direction of the gradient (towards the minimiser)

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton metho

Line-search methods

Descent directi

Sten-length ov

Descent method with

Descent method with

Gradient and conjugate-

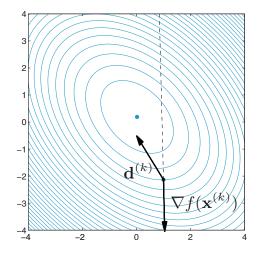
Trust-region method

Nonlinear least-square

The Gauss-Newton metho

Contour lines of function $f(\mathbf{x})$ and its gradient evaluated at $\mathbf{x}^{(k)}$

• $\mathbf{d}^{(k)}$ is a suitable descent direction



Once $\mathbf{d}^{(k)}$ is determined, the optimal value $\alpha_k \in \mathbb{R}$ is the one that guarantees maximum variation of f along $\mathbf{d}^{(k)}$

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fr

Golden section and quadratic interpolatio

The Newton me

Line-search methods

Descent direc

Step-length o

Newton's directions

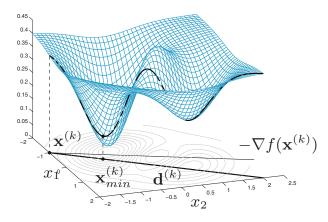
Descent method with quasi-Newton's direction

Trust-region metho

Nonlinear least-square

The Gauss-Newton met Levenberg-Marquardt $\alpha_{\it k}$ can be computed by solving a one-dimensional minimisation

- Minimise the restriction of $f(\mathbf{x})$ along $\mathbf{d}^{(k)}$
- $\mathbf{x}_{\min}^{(k)}$ is the minimiser along $\mathbf{d}^{(k)}$



The computation of α_k is quite involved when f is not quadratic

ullet There are alternative techniques aimed at approximating $lpha_{m{k}}$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

The Newson ----

Descent directions

. . . .

Descent method wit

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton method

Descent directions Line-search methods

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search meth Descent directions

Sten-length ov

Descent method wi

Newton's directions

Descent method with quasi-Newton's direction

Trust-region method

Nonlinear least-square

Levenberg-Marquard

Descent directions

Newton's directions

$$\mathbf{d}^{(k)} = -\mathbf{H}^{-1}(\mathbf{x}^{(k)})\nabla f(\mathbf{x}^{(k)}) \tag{27}$$

Matrix $\mathbf{H}(\mathbf{x}^{(k)})$ is the Hessian matrix at the k-th step

Quasi-Newton directions

$$\mathbf{d}^{(k)} = -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^{(k)}) \tag{28}$$

Matrix \mathbf{H}_k is an approximation of the true Hessian $\mathbf{H}(\mathbf{x}^{(k)})$, it is used when second derivatives are heavy to compute

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fi methods

Golden section and quadratic interpolation Nelder and Mead

The Newton me

Line-search methods

Descent directions

C. 1 ...

Descent method wi

Descent method with

quasi-Newton's direction

Nonlinear least-squares

Levenberg-Marquardt

Descent directions (cont.)

Gradient directions

$$\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) \tag{29}$$

These are quasi-Newton directions, with $\mathbf{H}_k = \mathbf{I}$, $\forall k \geq 0$

Conjugate-gradient directions

$$\mathbf{d}^{(0)} = -\nabla f(\mathbf{x}^{(0)}) \mathbf{d}^{(k+1)} = -\nabla f(\mathbf{x}^{(k+1)}) + \beta_k \mathbf{d}^{(k)}, \quad k \ge 0$$
(30)

Coefficients β_k can be chosen according to different criteria When f is quadratic, the descent directions correspond to those of the conjugate-gradient method for linear systems

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fr methods

Golden section and quadratic interpolation

The Newton metho

December 1

Line-search met

Descent directions

December of

Newton's directions

quasi-Newton's directions

gradient descent direction

Trust-region method

Nonlinear least-squares

Levenberg-Marquard

Descent directions (cont.)

For all $k \ge 0$, gradient directions are valid descent directions

$$\mathbf{d}^{(k)}\nabla f(\mathbf{x}^{(k)}) < 0, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) \neq \mathbf{0}$$

$$\mathbf{d}^{(k)} = \mathbf{0}, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) = \mathbf{0},$$
(31)

Newton's and quasi Newton's directions can be valid directions

• Only if $\mathbf{H}(\mathbf{x}^{(k)})$ and \mathbf{H}_k are positive definite matrices

Conjugate gradient directions are valid for suitable β_k

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre

Golden section and quadratic interpolatio

The Newton method

Line-search met Descent directions

Step-length α_k

Descent method with Newton's directions

Descent method with quasi-Newton's direction

gradient descent direction

Trust-region method

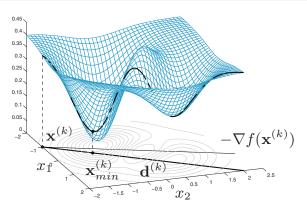
Nonlinear least-square

The Gauss-Newton me Levenberg-Marquardt

Example

$$f(\mathbf{x}) = \frac{2}{5} - \frac{1}{10} (5x_1^2 + 5x_2^2 + 3x_1x_2 - x_1 - 2x_2) \exp(-(x_1^2 + x_2^2))$$

Two local minimisers, one local maximiser and two saddle points



We compare sequences $\{\mathbf{x}^{(k)}\}$ generated by Newton's method and descent methods with various descent directions, from $\mathbf{x}_1^{(0)}$ and $\mathbf{x}_2^{(0)}$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-f methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton method

The second second

Descent directions

Descent method wi

Descent method with quasi-Newton's direction

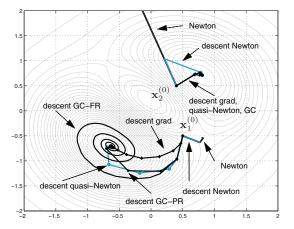
Gradient and conjugategradient descent directio

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

From $\mathbf{x}_1^{(0)} = (0.5, 0.5)$



- Newton's method converges rapidly towards the saddle point
- Newton's directions take a first step identical to Newton's and then collapses due to a non-positive definite matrix \mathbf{H}_k
- The others converge with different speeds into a local minimum, fastest convergence by quasi-Newton's directions

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fi methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

December 1

Descent directions

Step-length α_k

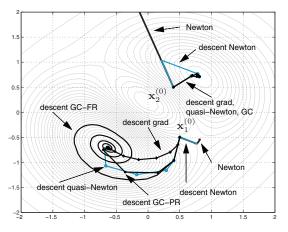
Newton's directions

quasi-Newton's directio

.. ..

The Gauss-Newton method

From $\mathbf{x}_2^{(0)} = (0.4, 0.5)$



- Newton's method diverges, Newton's directions converge to a local minimum, though sharing the same first direction with it
- All others also converge to the same local minimiser

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Step-length α_k

Descent method with

Descent method with

Gradient and conjugate-

Trust-region method:

Nonlinear least-squares

Levenberg-Marquardt

Step-length α_k Line-search methods

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolation

The Newton method

Line-search method

Descent direction

Step-length α_k

Newton's directions

Descent method with quasi-Newton's direction

gradient and conjugategradient descent direction

Trust-region methods

Nonlinear least-squares

Levenberg-Marquard

Step-length α_k

Given a descent direction $\mathbf{d}^{(k)}$, step-length α_k has to be set st the new iterate $\mathbf{x}^{(k+1)}$ is (approximates) the minimiser of f along $\mathbf{d}^{(k)}$

Choose α_k such that the minimisation is exact

$$\alpha_{k} = \underset{\alpha \in \mathbb{R}}{\arg \min} f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$$
or
$$f(\mathbf{x}^{(k)} + \alpha_{k} \mathbf{d}^{(k)}) = \underset{\alpha \in \mathbb{R}}{\min} f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$$
(32)

UFC/DC AI (CK0031) 2016.2

optimisation

methods

Golden section and quadratic interpolatio

The Newton meth

Charles and the second

Line-search method

Step-length α_k

Descent method

Newton's directions

quasi-Newton's directio

Gradient and conjugategradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton m Levenberg-Marquardt

Step-length α_k (cont.)

A second-order Taylor expansion of f around $\mathbf{x}^{(k)}$ yields

$$f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}) = f(\mathbf{x}^{(k)}) + \alpha \mathbf{d}^{(k)} \nabla f(\mathbf{x}^{(k)}) + \frac{\alpha^2}{2} \mathbf{d}^{(k)^T} \mathbf{H}(\mathbf{x}^{(k)}) \mathbf{d}^{(k)} + o(||\alpha \mathbf{d}^{(k)}||^2)$$
(33)

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton metho

Line-search method

D . P . C

Step-length α_k

Descent method w

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square

Levenberg-Marquard

Step-length α_k (cont.)

Remark

In the special case in which f is a quadratic function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{b} + c$$

with $\mathbf{A} \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, expansion in Eq. 33 is exact and the infinitesimal residual is null

As $\mathbf{H}^{(k)} = \mathbf{A}$ for every $k \ge 0$ and $\nabla f(\mathbf{x}^{(k)}) = \mathbf{A}\mathbf{x}^{(k)} - \mathbf{b} = -\mathbf{r}^{(k)}$, by differentiating Eq. 33 wrt α and setting the derivative to zero

$$\alpha_k = \frac{\mathbf{d}^{(k)^T} \mathbf{r}^{(k)}}{\mathbf{d}^{(k)^T} \mathbf{A} \mathbf{d}^{(k)}}$$
(34)

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton metho

THE REWIGH HICKING

Line-search metho

Sten-length α_{i}

Step-length a

Newton's direction

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-squares

Levenberg-Marquard

Step-length α_k (cont.)

For gradient directions $\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$, we find $\mathbf{d}^{(k)} = \mathbf{r}^{(k)}$

• We obtain the gradient method for solving linear systems

Should direction \mathbf{d}^k be chosen according to the conjugate-gradient, by setting

$$\beta_k = \frac{\left(\mathbf{A}\mathbf{d}^{(k)}\right)^T \mathbf{r}^{(k+1)}}{\mathbf{d}^{(k)^T} \mathbf{A}\mathbf{d}^{(k)}} \text{ or } \beta_k = \frac{\mathbf{d}^{(k)^T} \mathbf{A}\mathbf{r}^{(k+1)}}{\mathbf{d}^{(k)^T} \mathbf{A}\mathbf{d}^{(k)}}$$
(35)

we recover the conjugate-gradient for solving linear systems

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-free methods

Golden section and quadratic interpolatio

The Newton metho

Charles and the same

Descent directions

Step-length α_k

Descent method

Newton's direction

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-squares
The Gauss-Newton method

Levenberg-Marquard

Step-length α_k (cont.)

If f is a non-quadratic function, the computation of the optimal α_k requires an iterative method to solve the minimisation along $\mathbf{d}^{(k)}$

Remark

Demanding and not worth it, stick with an approximation

An approximated value of α_k can be chosen by requiring that the new iterate $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ ensures that

$$f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)}) \tag{36}$$

UFC/DC AI (CK0031) 2016.2

Unconstraine

methods

Golden section and quadratic interpolatio

The Newton method

THE REWIGH HICKING

Line-search metho

Step-length α_k

Descent method wit

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square

The Gauss-Newton method

Step-length α_k (cont.)

Example

A natural strategy would be to initially assign a large α_k and reduce it iteratively until $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$ is satisfied

 Unfortunately, the strategy does not guarantee a {x^k} that converges to the desired minimiser x*

A better criterium for $\alpha_k > 0$ is based on Wolfe's conditions

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fr methods

Golden section and quadratic interpolation

The Newton method

December 1

Line-search meth

Step-length α_k

Step-length c

Newton's directions

Descent method with quasi-Newton's direction

Monlinear least squar

The Gauss-Newton met

Step-length α_k (cont.)

Definition

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \ge \delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
(37)

The two given constants σ and δ are such that $0 < \sigma < \delta < 1$ $\mathbf{d}^{(k)} \nabla f(\mathbf{x}^{(k)})$ is the directional derivative of f along direction \mathbf{d}^k

- First condition (Armijo's rule) inhibits too small variations
 of f with respect to step-length and directional derivative
- This is practically obtained by requiring changes in f to be proportional to both step-length and directional derivative

UFC/DC AI (CK0031) 2016.2

Unconstrair

Derivative-fr methods

Golden section and quadratic interpolatio

The Newton metho

Line-search method

Line-search metric

Step-length α_k

Descent method w

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square
The Gauss-Newton method

Step-length α_k (cont.)

Definition

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \ge \delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$

The two given constants σ and δ are such that $0 < \sigma < \delta < 1$ $\mathbf{d}^{(k)} \nabla f(\mathbf{x}^{(k)})$ is the directional derivative of f along direction \mathbf{d}^k

- Second condition states that at new point $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ the value of the directional derivative of f should be δ times larger than the same derivative at previous point $\mathbf{x}^{(k)}$
- Point $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ is a valid candidate if f at such point decreases less than it does at $\mathbf{x}^{(k)}$ (closer to a minimiser)

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fromethods

Golden section and quadratic interpolation

The Newton

Line coarch methods

Line-search method

Step-length α_k

Descent method w

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

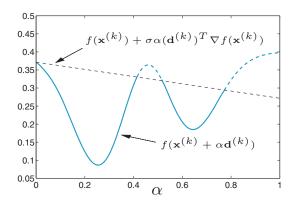
Nonlinear least-square

The Gauss-Newton me Levenberg-Marquardt

Step-length α_k (cont.)

The terms in the first of the two Wolfe's conditions, for $\sigma = 0.2$

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$



Condition is satisfied for α corresponding to the continuous line

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fromethods

Golden section and quadratic interpolatio

The Newton method

Line coarch method

Descent direc

Step-length α_k

Newton's directions

Descent method with quasi-Newton's direction

Trust-region method

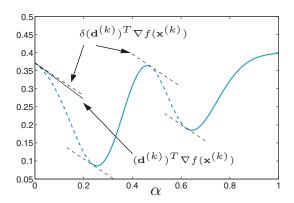
Nonlinear least-square

The Gauss-Newton meth

Step-length α_k (cont.)

Lines with slope $\delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$ in second condition, $\delta = 0.9$

$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \ge \delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$



Condition is satisfied for α corresponding to the continuous line

UFC/DC AI (CK0031) 2016.2

optimisation

methods

quadratic interpolation

Line-search metho

Step-length α_k

Descent method wi

Descent method with quasi-Newton's directions

Gradient and conjugategradient descent directions

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

Step-length α_k (cont.)

Wolfe's conditions are jointly satisfied in the interval

$$0.23 \leq \alpha \leq 0.41$$
 or $0.62 \leq \alpha \leq 0.77$

That is, also far from the minimiser of f along $\mathbf{d}^{(k)}$

Or when the directional derivative is large

UFC/DC AI (CK0031) 2016.2

optimisation

methods

Golden section and quadratic interpolatio

Neider and IVIE

The Newton method

Line-search metho

Line-search metho

Step-length α_k

Step-length c

Newton's direction

quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

Step-length α_k (cont.)

Definition

Wolfe's strong conditions: More restrictive conditions

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
$$|\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)})| \le -\delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
(38)

The first condition is unchanged, the second one inhibits f from large variations about $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-fre

Golden section and quadratic interpolation

The Newton

Line-search methods

Descent direction

Step-length α_k

Newton's direction

Descent method with quasi-Newton's direction

Gradient and conjugate gradient descent directi

Trust-region methods

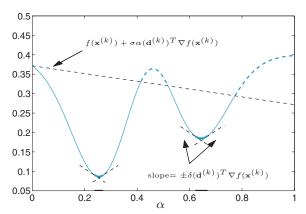
Nonlinear least-square

The Gauss-Newton method

Step-length α_k (cont.)

Wolfe's strong conditions are satisfied when α belongs to the small intervals around the minimisers (thick continuous arcs)

• For $\sigma = 0.2$ and $\delta = 0.9$



UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre

Golden section and quadratic interpolati

Ti bi ...

The Newton metho

Line-search metho

Sten-length or

Descent method wi

Descent method with quasi-Newton's directions

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

Levenberg-Marquardt

Step-length α_k (cont.)

Remark

It can be shown that if $f \in \mathbb{C}^2(\mathbb{R}^n)$ is bounded from below in $\{\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}, \alpha > 0\}$ with $\mathbf{d}^{(k)}$ a descent direction at $\mathbf{x}^{(k)}$, then for all σ and δ st $0 < \sigma < \delta < 1$ there exist non-empty intervals of α_k that satisfy Wolfe's weak and strong conditions

In practice³, σ is usually chosen to be very small (e.g., $\sigma=10^4$), while typical values for δ are $\delta=0.9$ for Newton, quasi-Newton and gradient directions, and $\delta=0.1$ for CG directions

³J. Nocedal and S. Wrigth (2006): *Numerical optimization*.

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fromethods

Golden section and quadratic interpolatio Nelder and Mead

The Newton method

1:------

Descent directions

Step-length α_k

Descent method with

Descent method with quasi-Newton's directions

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Step-length α_k (cont.)

A strategy for step lengths α_k satisfying Wolfe's conditions

• Backtracking: Start with $\alpha=1$ and then reduce it by a given factor ρ (tipically, $\rho\in[0.1,0.5)$) until the first condition is satisfied

For $\mathbf{x}^{(k)}$ and a direction $\mathbf{d}^{(k)}$, for $\sigma \in (0,1)$ and $\rho \in [0.1,0.5)$

Pseudocode

Set
$$\alpha = 1$$
 while $f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}) > f(\mathbf{x}^{(k)}) + \sigma \alpha \mathbf{d}^{(k)} \nabla f(\mathbf{x}^{(k)})$ and $\alpha = \rho \alpha$ end Set $\alpha_k = \alpha$

Second condition is never checked: Step lengths are not small

UFC/DC AI (CK0031) 2016.2

Nolder and Mead

Step-length α_k

Step-length α_k (cont.)

```
function [x,alpha_k] = bTrack(fun,x_k,g_k,d_k,varargin)
  %BTRACK Backtracking with line search
  % [X.ALPHA K]=BTRACK(FUN.X K.G K.D K) x {k+1}=x k+alpha k*d k
    in the descent method, alpha_k by backtracking with
     sigma=1e-4 and rho=0.25
    [X.ALPHA K]=BTRACK(FUN.X K.G K.D K.SIGMA.RHO) sigma and rho
     can be inputed - sigma in (1e-4,0.1) and rho in (0.1,0.5)
  % FUN is the function handle of the objective function
  % X_K is element x_k, G_K is the gradient, D_K is d_k
13 if nargin == 4
   sigma = 1.0e-4; rho = 1/4;
15 else
   sigma = varargin {1}; rho = varargin {2};
  end
  minAlpha = 1.0e-5; % Smallest steplength
  alpha_k = 1.0; f_k = fun(x_k);
  k = 0: x = x k + alpha k*d k:
23 while fun(x) > f_k + sigma*alpha_k*g_k'*d_k & alpha_k >
       minAlpha
   alpha_k = alpha_k*rho;
   x = x_k + alpha_k*d_k; k = k+1;
  end
```

UFC/DC AI (CK0031) 2016.2

optimisation

Derivative-fromethods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search method

Step-length α_k

Descent met

Descent method with

Gradient and conjugate-

Trust-region methods

Nonlinear least-square

The Gauss-Newton me Levenberg-Marquardt

Step-length α_k (cont.)

The descent method with various descent directions

• α_k is determined by backtracking

```
1 %DSCENT Descent method of minimisation
 %[X,ERR,ITER]=DSCENT(FUN,GRAD_FUN,X_O,TOL,KMAX,TYP,HESS_FUN)
   Approximates the minimiser of FUN using descent directions
   Newton (TYP=1), BFGS (TYP=2), GRADIENT (TYP=3), and the
    CONJUGATE-GRADIENT method with
    beta k by Fletcher and Reeves (TYP=41)
    beta k by Polak and Ribiere
     beta_k by Hestenes and Stiefel(TYP=43)
   Step length is calculated using backtracking (bTrack.m)
   FUN. GRAD FUN and HESS FUN (TYP=1 only) are function handles
    for the objective, gradient and Hessian matrix
    With TYP=2, HESS_FUN approximates the exact Hessian at X_0
 % TOL is the stop check tolerance
 % KMAX is the maximum number of iteration
```

```
optimisation
                    varargin)
                if nargin >6: if typ==1: hess=varargin {1}:
   UFC/DC
  AI (CK0031)
                   elseif typ==2; H=varargin{1}; end; end
   2016.2
                err=tol+1; k=0; xk=x0(:); gk=grad(xk); dk=-gk; eps2=sqrt(eps);
                while err>tol & k<kmax
                 if typ==1; H = hess_fun(xk); dk = -H\gk;
                                                                         % Newton
                 elseif typ==2; dk = -H\gk;
                                                                           % BFGS
                 elseif tvp==3: dk = -gk:
                                                                       % Gradient
                 end
                 [xk1,alphak]=bTrack(fun,xk,gk,dk);
                 gk1=grad fun(xk1):
                  if typ==2
                                                                    % BFGS update
             14
                   yk = gk1-gk; sk = xk1-xk; yks = yk'*sk;
Step-length \alpha_k
                   if yks > eps2*norm(sk)*norm(yk)
                    Hs=H*sk; H=H+(vk*vk')/vks-(Hs*Hs')/(sk'*Hs);
                   end
                  elseif tvp>=40
                                                                     % CG upgrade
                   if typ==41; betak=(gk1'*gk1)/(gk'*gk);
                                                                              % FR.
                   elseif typ==42; betak=(gk1'*(gk1-gk))/(gk'*gk);
                                                                                PR
                   elseif typ==43; betak=(gk1 \cdot *(gk1-gk))/(dk \cdot *(gk1-gk));
                                                                                HS
                   end
                   dk = -gk1 + betak*dk;
             24
                  end
                  xk = xk1; gk = gk1; k = 1 + k; xkt = xk1;
             26
                 for i=1:length(xk1); xkt(i) = max([abs(xk1(i)),1]); end
                 err = norm((gk1.*xkt)/max([abs(fun(xk1)),1]),Inf);
                end
               x = xk: iter = k:
                if (k==kmax & err>tol); disp('[KMAX]'); end
```

function [x,err,iter]=dScent(fun,grad_fun,x_0.tol.kmax.tvp.

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton met

Line-search methods

Descent directi

Step-length α_k

Descent method with Newton's directions

Descent method with

Gradient and conjugategradient descent directions

Trust-region method

Nonlinear least-squares

The Gauss-Newton method

Descent method with Newton's directions Line-search methods

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-fre methods

Golden section and quadratic interpolation

The Newton method

Line-search metho

Descent directions

Step-length α_k Descent method with

Newton's directions

Descent method with quasi-Newton's direction:

gradient descent direct

Nonlinear least-square

Levenberg-Marquardt

Descent method with Newton's directions

A $f \in \mathbb{C}^2(\mathbb{R}^n)$ bounded from below and the descent method

Pseudocode

Find direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$

Compute step $\alpha_k \in \mathbb{R}$

Set
$$\mathbf{x}^{(\mathbf{k}+\mathbf{1})} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

- Newton directions $\mathbf{d}^{(k)} = -\mathbf{H}^{-1}(\mathbf{x}^{(k)})\nabla f(\mathbf{x}^{(k)})$
- Wolfe step lengths α_k

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \ge \delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre

Golden section and quadratic interpolation

The Newton metho

Line-search method

Descent directions

Step-length α_k Descent method with

Newton's directions

Descent method with quasi-Newton's directions Gradient and conjugate-

Trust-region method

Nonlinear least-squares
The Gauss-Newton method

Descent method with Newton's directions (cont.)

Assume that for every $k \ge 0$, the Hessian $\mathbf{H}(\mathbf{x}^{(k)})$ is symmetric (from the assumption on f) and that it is also positive definite

Let
$$\mathbf{B}_k = \mathbf{H}(\mathbf{x}^{(k)})$$

Suppose that $\exists M > 0 : K(\mathbf{B}_k) = ||\mathbf{B}_k|| ||\mathbf{B}_k^{-1}|| \leq M \text{ with } k \geq 0$

• $K(B_k)$ is the spectral condition number of B_k

Under such conditions, the sequence $\{\mathbf{x}^{(k)}\}$ by Newton method converges to a stationary point \mathbf{x}^* of f

• By letting $\alpha_k = 1$ for $k \ge \overline{k}$, the converge is quadratic

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fi

Golden section and quadratic interpolation

The Newton method

The Newton method

Line-search method

Ellie-Scarcii illetiid

Step-length α_k

Descent method with

Descent method with quasi-Newton's directions

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Descent method with Newton's directions (cont.)

Definition

Given a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, consider the problem of finding a scalar λ (complex or real) and a non-null vector $\mathbf{x} \in \mathbb{C}^n$ such that

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

Any λ that satisfy the equation above is an eigenvalue of **A**

• x is the corresponding eigenvector

Definition

The spectral condition number of A is the quantity

$$K(\mathbf{A}) = \frac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}}$$

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fr

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line-search method

Step-length α_k

Descent method with Newton's directions

Descent method with quasi-Newton's directions Gradient and conjugate-

Trust-region method

Nonlinear least-square

The Gauss-Newton meth Levenberg-Marquardt

Descent method with Newton's directions (cont.)

Remark

Since Hessians are positive definite, stationary point \mathbf{x}^* cannot be a maximiser or a saddle point and must necessarily be a minimiser

However, if H(x^(k)) is not positive definite for some point x^(k), then d^(k) may not be a descent direction and Wolfe's conditions might become meaningless

In such situations, the Hessian is replaced by $\mathbf{B}_k = \mathbf{H}(\mathbf{x}^{(k)}) + \mathbf{E}_k$ for some suitable matrix \mathbf{E}_k (either diagonal or full) such that \mathbf{B}_k is positive definite and $\mathbf{d}^{(k)} = -\mathbf{B}_k^{-1} \nabla f(\mathbf{x}^{(k)})$ is a valid direction

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolation

The Newton method

Line coarch method

Descent direct

Step-length α

Newton's directions

Descent method with quasi-Newton's directions

Gradient and conjugate-

Nonlinear least-squares

The Gauss-Newton metho

Descent method with quasi-Newton's directions Line-search methods

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fromethods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search method

Descent direct

Step-length α_k

Newton's directions

Descent method with quasi-Newton's directions

gradient and conjugategradient descent direction

gradient descent direction

Nonlinear least-squares

Nonlinear least-squares

Levenberg-Marquard

Descent method with quasi-Newton

When using quasi-Newton directions $\mathbf{d}^{(k)} = -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^{(k)})$, we need to define an approximation \mathbf{H}_k of the true Hessian $\mathbf{H}(\mathbf{x}^{(k)})$

Given a symmetric and positive definite matrix \mathbf{H}_0 , the recursive **Broyden's rank-one update** for nonlinear systems is popular

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolatio

The Newton metho

THE NEWTON METHO

Line-search met

Step-length α_k

Descent method with Newton's directions

Descent method with quasi-Newton's directions

Gradient and conjugate

Trust-region method

Nonlinear least-square

Levenberg-Marquardt

Descent method with quasi-Newton's directions (cont.)

Matrices \mathbf{H}_k are required the following

To satisfy the secant condition

$$\mathbf{H}_{k+1}(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^k)$$

- To be symmetric, as H(x)
- To be positive definite to guarantee that vectors d^(k) are descent directions
- To satisfy the condition

$$\lim_{k\to\infty}\frac{||(\mathbf{H}_k-\mathbf{H}(\mathbf{x}^*))\mathbf{d}^{(k)}||}{||\mathbf{d}^{(k)}||}=0,$$

which ensures that \mathbf{H}_k is a good approximation of $\mathbf{H}(\mathbf{x}^*)$ along the descent direction $\mathbf{d}^{(k)}$ and guarantees a super-linear rate of convergence

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fr

Golden section and quadratic interpolation

The Newton metho

Line-search metho

Descent direct

Step-length

Newton's directions

Descent method with quasi-Newton's directions

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton me Levenberg-Marquardt

Descent method with quasi-Newton's directions (cont.)

Definition

A strategy by Broyden, Fletcher, Goldfarb and Shanno (BFGS)

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\mathbf{y}^{(k)}\mathbf{y}^{(k)^T}}{\mathbf{x}^{(k)^T}\mathbf{s}^{(k)}} - \frac{\mathbf{H}_k\mathbf{s}^{(k)}\mathbf{s}^{(k)^T}\mathbf{H}_k^T}{\mathbf{s}^{(k)^T}\mathbf{H}_k\mathbf{s}^{(k)}}$$
(39)

where
$$\mathbf{s}^{(k)} = (\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)})$$
 and $\mathbf{y}^k = (\nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)}))$

Matrices \mathbf{H}_{k+1} are symmetric and positive definite under condition

$$\mathbf{y}^{(k)^T}\mathbf{s}^{(s)} > 0$$

It is satisfied when step lengths α_k are either weak or strong Wolfe

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fromethods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

The second second

Descent direction

Step-length a

Descent method with Newton's directions

Descent method with quasi-Newton's directions

quasi-Newton's direction

Nonlinear least-square

The Gauss-Newton me Levenberg-Marquardt

Descent method with quasi-Newton's directions (cont.)

BFGS is a thus a descent method, as generally implemented by

Pseudocode

Find direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$

Compute step $\alpha_{\mathbf{k}} \in \mathbb{R}$

Set
$$\mathbf{x}^{(\mathbf{k}+\mathbf{1})} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

UFC/DC AI (CK0031) 2016.2

Optimisation optimisation

Derivative-free methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length α_k

Newton's directions

Descent method with quasi-Newton's directions

Gradient and conjugate-

Trust-region method

Nonlinear least-square

The Gauss-Newton me Levenberg-Marquardt

Descent method with quasi-Newton's directions (cont.)

For a given \mathbf{x}_0 and a suitable symmetric and positive definite matrix $\mathbf{H}_0 \in \mathbb{R}^{n \times n}$ that approximates $\mathbf{H}(\mathbf{x}^{(0)})$, for k = 0, 1, ...

Pseudocode

Solve $\mathbf{H}_k \mathbf{d}^{(k)} = -\nabla \mathbf{f}(\mathbf{x}^{(k)})$

Compute α_k that satisfies Wolfe's conditions Set

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

$$\mathbf{s}^{(k)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$$

$$\mathbf{y}^{(k)} = \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)})$$

Compute
$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\mathbf{y}^{(k)}\mathbf{y}^{(k)^T}}{\mathbf{x}^{(k)^T}\mathbf{s}^{(k)}} - \frac{\mathbf{H}_k\mathbf{s}^{(k)}\mathbf{s}^{(k)^T}\mathbf{H}_k^T}{\mathbf{s}^{(k)^T}\mathbf{H}_k\mathbf{s}^{(k)}}$$

UFC/DC AI (CK0031) 2016.2

Optimisation optimisation

Derivative-fre methods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line-search meth

Descent directio

Descent method

Descent method with quasi-Newton's directions

quasi-Newton's directions Gradient and conjugate-

Trust-region methods

Nonlinear least-square

The Gauss-Newton me

Descent method with quasi-Newton's directions (cont.)

Example

Rosenbrock: $f(\mathbf{x}) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$, for a $\varepsilon = 10^{-6}$

```
1 x_0 = [+1.2; -1.0];
2
3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;
4
5 options = optimset ('LargeScale','off');  % Switches to BFGS
6 [xstar,fval,exitflag,output] = fminunc(fun,x_0,options)
```

Convergence after 24 iterations and 93 function evaluations

We did not input an expression for evaluating the gradient

It was, silently, approximated using finite difference methods

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search meth

Step-length α_k

Descent method w Newton's direction

Descent method with quasi-Newton's directions

Gradient and conjugategradient descent direction

Trust-region metho

Nonlinear least-squares

Levenberg-Marquardt

Descent method with quasi-Newton's directions (cont.)

We can define and input the analytical gradient expression

Convergence after 25 iterations and 32 function evaluations

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolation

reciaci una meat

The Newton method

the second control

Line-search met

Sten-length of

Descent method

Descent method with guasi-Newton's directions

Gradient and conjugate-

gradient descent directions

Nonlinear least-squares

Nonlinear least-squares

Levenberg-Marquard

Descent method with quasi-Newton's directions (cont.)

Remark

In Octave, BFGS is implemented by the M-command ${\tt bfgsmin}$

M-command fminunc implements a trust-region method

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton method

Line-search metho

D

Step-length o

Descent method wit

Descent method with

Gradient and conjugategradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton meth

Gradient and conjugate-gradient directions Line-search methods

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre methods

Golden section and quadratic interpolatio

The Newton method

Line-search metho

Doccont directions

Step-length a

Descent method

Descent method with

quasi-Newton's direction Gradient and conjugate-

gradient descent directions

Trust-region methods

Nonlinear least-square

Levenberg-Marquardt

Gradient and conjugate-gradient

Let us first consider the general descent method

Pseudocode

Find direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$

Compute step $\alpha_{\mathbf{k}} \in \mathbb{R}$

Set
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

with gradient (descent) directions $\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$

If $f \in \mathbb{C}^2(\mathbb{R}^n)$ is bounded from below and step lengths α_k are Wolfe, this method converges (linearly) to a stationary point

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolatio

The Newton method

The second second

Descent direct

Sten-length o

Descent method with

Descent method with

Gradient and conjugate-

gradient descent directions

ALC: U.S. Company

Nonlinear least-squares

Levenberg-Marquardt

Gradient and conjugate-gradient directions (cont.)

Let us now consider conjugate directions,

$$\mathbf{d}^{(0)} = -\nabla f(\mathbf{x}^{(0)})$$

$$\mathbf{d}^{(k+1)} = -\nabla f(\mathbf{x}^{(k+1)}) - \beta_k \mathbf{d}^{(k)}, \quad k \ge 0$$

several options for setting β_k are available

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre methods

Golden section and quadratic interpolation

The Newton metho

The second second

Descent direct

Step-length o

Descent method wit

Descent method with

quasi-Newton's direction Gradient and conjugate-

gradient descent directions

Trust-region method

Nonlinear least-square

Levenberg-Marquard

Gradient and conjugate-gradient directions (cont.)

Fletcher-Reeves

$$\beta_k^{FR} = -\frac{||\nabla f(\mathbf{x}^{(k)})||^2}{||\nabla f(\mathbf{x}^{(k-1)})||^2}$$
(40)

Polak-Ribière (-Polyak)

$$\beta_k^{PR} = -\frac{\nabla f(\mathbf{x}^{(k)})^T (\nabla f(\mathbf{x}^{(k)}) - \nabla f(\mathbf{x}^{(k-1)}))}{||\nabla f(\mathbf{x}^{(k-1)})||^2}$$
(41)

Hestenes-Stiefel

$$\beta_k^{HS} = -\frac{\nabla f(\mathbf{x}^{(k)})^T (\nabla f(\mathbf{x}^{(k)})^T - \nabla f(\mathbf{x}^{(k-1)}))}{\mathbf{d}^{(k-1)^T} (\nabla f(\mathbf{x}^{(k)}) - \nabla f(\mathbf{x}^{(k-1)}))}$$
(42)

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fromethods

Golden section and quadratic interpolatio

The Newton metho

and the same of the same of

Line-search metho

C. I .I

Step-length α

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton me Levenberg-Marquardt

Gradient and conjugate-gradient directions (cont.)

Remark

Under the condition that f is quadratic and strictly convex, all the aforementioned options are equivalent and reduce to

$$\beta_k = \frac{(\mathbf{Ad}^{(k)})^T \mathbf{r}^{(k+1)}}{\mathbf{d}^{(k)^T} \mathbf{Ad}^{(k)}}$$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

Nelder and Me

The Newton method

randa and an and a second

Descent direct

Step-length α

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Trust-region methods Numerical optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fi

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search meth

Descent direct

Descent method

Descent method with

Gradient and conjugategradient descent direction

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

Trust-region methods

Line search methods are designed to determine first the descent direction $\mathbf{d}^{(k)}$ and then the step-length α_k , at any k-th step

Trust-region methods simultaneously choose direction and step length, by building a trust ball centred at $\mathbf{x}^{(k)}$ and of radius δ_k

ullet In the trust region, compute a quadratic approximation $ilde{f}_k$ of f

The new value of $\mathbf{x}^{(k+1)}$ is the minimiser of \tilde{f}_k in the trust region

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre

Golden section and quadratic interpolati

The Newton metho

Line-search met

Descent direct

Step-length α

Descent method w

Descent method with quasi-Newton's direction

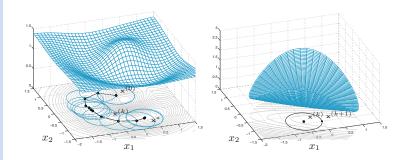
Gradient and conjugate-

Trust-region methods

Nonlinear least-square

The Gauss-Newton m

Trust-region methods (cont.)



Convergence history and quadratic approximation \tilde{f}_k at step k=8

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fr methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton method

Line-search method

Descent direct

Step-length α_k

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

Trust-region methods (cont.)

To compute \tilde{f}_k , we start with a trust radius $\delta_k > 0$ and a second-order Taylor expansion of f about $\mathbf{x}^{(k)}$

$$\tilde{f}_k(\mathbf{s}) = f(\mathbf{x}^{(k)}) + \mathbf{s} \nabla f(\mathbf{x}^{(k)}) + \frac{1}{2} \mathbf{s}^T \mathbf{H}_k \mathbf{s}, \quad \forall \mathbf{s} \in \mathbb{R}^n$$
 (43)

 \mathbf{H}_k is either the Hessian of f at $\mathbf{x}^{(k)}$ or a suitable approximation

We then compute the solution $\mathbf{s}^{(k)}$

$$\mathbf{s}^{(k)} = \underset{\mathbf{s} \in \mathbb{R}^n: ||\mathbf{s}|| \le \delta_k}{\min} \, \tilde{f}_k(\mathbf{s})$$
 (44)

At this stage, we also compute

$$\rho_{k} = \frac{f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)}) - f(\mathbf{x}^{(k)})}{\tilde{f}_{k}(\mathbf{s}^{(k)}) - \tilde{f}_{k}(\mathbf{0})}$$
(45)

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fr

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

and the same

Descent directi

Step-length α

Descent method with

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent directio

Trust-region methods

Nonlinear least-squares
The Gauss-Newton method

Trust-region methods (cont.)

- If ρ_k is approximately one, we accept $\mathbf{s}^{(k)}$, we move on to the next iteration and set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$ (however, if the minimiser of \tilde{f}_k lie on the boundary of the trust region , we extend the latter before proceeding to next iteration)
- If ρ_k is either negative or positive and much smaller than one), we reduce the ball's size and we calculate a new $\mathbf{s}^{(k)}$

$$\mathbf{s}^{(k)} = \mathop{\mathrm{arg \; min}}\limits_{\mathbf{s} \in \mathbf{R}^n: ||\mathbf{s}|| \leq \delta_k} \tilde{f}_k(\mathbf{s})$$

• If ρ_k is much larger than one, we accept $\mathbf{s}^{(k)}$, we keep the trust region as it is and then we move to the next iteration

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fromethods

Golden section and quadratic interpolation

The Newton metho

THE THEMEON MELINE

Line-search metho

Descent direction

Step-length α_k

Newton's directions

quasi-Newton's directions Gradient and conjugate-

gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton metho Levenberg-Marquardt

Trust-region methods (cont.)

Remark

When the second derivative of f are available, we can set \mathbf{H}_k to be equal to the Hessian (or a variant, if not positive definite)

• Otherwise, \mathbf{H}_k can be built recursively

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fr methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

THE NEWLON MELHO

Line-search method

Eme-search methor

Step-length α

Doccont motho

Newton's direction

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region methods

Nonlinear least-square

Levenberg-Marquardt

Trust-region methods (cont.)

If \mathbf{H}_k is symmetric positive definite and $||\mathbf{H}_k^{-1}\nabla f(\mathbf{x}^{(k)})|| \leq \delta_k$ then $\mathbf{s}^{(k)} = \mathbf{H}_k^{-1}\nabla f(\mathbf{x}^{(k)})$ is a minimiser and it is within the trust region

• Otherwise, the minimiser of \tilde{f}_k lies outside the trust region

It is a minimisation of \tilde{f}_k constrained to the δ_k -ball centred at $\mathbf{x}^{(k)}$

$$\min_{\mathbf{s} \in \mathbb{R}^n: ||\mathbf{s}|| = \delta_k} \tilde{f}_k(\mathbf{s}) \tag{46}$$

which can be solved using Lagrange multipliers

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolation

The Newton metho

The Newton method

Line-search method

Line-search metho

Carr Irrah

Step-length α

Newton's directions

Descent method with

quasi-Newton's direction Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

Trust-region methods (cont.)

We look for the saddle point of the Lagrangian

$$\mathcal{L}(\mathbf{s},\lambda) = \tilde{f}_k(\mathbf{s}) + \frac{1}{2}\lambda(\mathbf{s}^T\mathbf{s} - \delta_k)$$

So, a vector $\mathbf{s}^{(k)}$ and a scalar $\lambda^{(k)} > 0$ satisfying

$$(\mathbf{H}_{k} + \lambda^{(k)}\mathbf{I})\mathbf{s}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$$

$$(\mathbf{H}_{k} + \lambda^{(k)}\mathbf{I}) \text{ is PSD}$$

$$||\mathbf{s}^{(k)}|| - \delta_{k} = 0$$
(47)

is what we are after in this minimisation task

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search methods

Descent direc

Step-length α

Newton's directions

Descent method with quasi-Newton's directio

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

Levenberg-Marquard

Trust-region methods (cont.)

From
$$(\mathbf{H}_k + \lambda^{(k)} \mathbf{I}) \mathbf{s}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$$
, we compute $\mathbf{s}^{(k)} = \mathbf{s}^{(k)} (\lambda^{(k)})$

We substitute it in $||\mathbf{s}^{(k)}|| - \delta_k = 0$ to get

$$\varphi(\lambda^{(k)}) = \frac{1}{||\mathbf{s}^{(k)}(\lambda^{(k)})||} - \frac{1}{\delta_k} = 0$$

Alone, this non-linear equation in the unknown λ is equivalent to System 47 and can be easily solved using Newton's method

Golden section and quadratic interpolation

The Newton method

The second second

Line-search metho

Descent direc

Step-length α

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region methods

Nonlinear least-square

The Gauss-Newton method

Trust-region methods (cont.)

Given λ_0 and set $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)})$

Pseudocode

For l = 0, 1, ... (typically, less than 5 iterations are needed)

Compute
$$\mathbf{s}_{l}^{(k)} = -(\mathbf{H}_{k} + \lambda_{l}^{(k)}\mathbf{I})^{-1}\mathbf{g}^{(k)}$$

Evaluate
$$\varphi(\lambda_l^{(k)}) = \frac{1}{||\mathbf{s}_l^{(k)}||} - \frac{1}{\delta_k}$$

Evaluate
$$\varphi'(\lambda_I^{(k)})$$

Compute
$$\lambda_{l+1}^{(k)} = \lambda_l^{(k)} - \frac{\varphi \lambda_l^{(k)}}{\varphi'(\lambda_l^{(k)})}$$

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search methods

Descent directions

Step-length α_k

Descent method wit Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate

Trust-region methods

Nonlinear least-squares
The Gauss-Newton method

Trust-region methods (cont.)

Vector $\mathbf{s}_{l}^{(k)}$ is obtained by Cholesky factorisation of $(\mathbf{H}_k + \lambda_l^{(k)}\mathbf{I})$

- Provided that matrix $\mathbf{B}^{(k)} = \mathbf{H}_k + \lambda_l^{(k)} \mathbf{I}$ is positive definite
- $\mathbf{B}^{(k)}$ is symmetric (definition of \mathbf{H}_k)
- Its eigenvalues are all real

Remark

Usually, a regularised matrix $\mathbf{B}_{l}^{(k)} + \beta \mathbf{I}$ is used instead of $\mathbf{B}^{(k)}$

• β is chosen to be larger than the negative eigenvalue of $\mathbf{B}^{(k)}$ with largest modulus

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton method

The second second

D

Sten-length o

Descent method

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

Trust-region methods (cont.)

Definition

Cholesky factorisation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix

$$\mathbf{A} = \mathbf{R}^T \mathbf{R}$$

R is upper triangular with positive elements on the diagonal

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fr methods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line-search metho

Descent direct

Step-length α

Descent method w Newton's direction

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent directio

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

Trust region methods (cont.)

For $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)})$ and for a given δ_k ,

Pseudocode

Solve
$$\mathbf{H}_k \mathbf{s} = -\mathbf{g}^{(k)}$$
 (means $\mathbf{s} = -\mathbf{H}_k^{(-1)}\mathbf{g}^{(k)}$) If $||\mathbf{s}|| \leq \delta_k$ and \mathbf{H}_k is positive definite Set $\mathbf{s}^{(k)} = \mathbf{s}$

else

Let β_1 be the negative eigenvalue of \mathbf{H}_k with largest modulus

Set
$$\lambda_0^{(k)} = 2|\beta_1|$$

For
$$I = 0, 1, ...$$

Compute
$$\mathbf{R} : \mathbf{R}^T \mathbf{R} = \mathbf{H}_k + \lambda_l^{(k)} \mathbf{I}$$

Solve
$$\mathbf{R}^T \mathbf{R} \mathbf{s} = \mathbf{g}^{(k)}$$
, $\mathbf{R}^T \mathbf{q} = \mathbf{s}$

Update
$$\lambda_{l+1}^{(k)} = \lambda_l^{(k)} + \left(\frac{||\mathbf{s}||}{||\mathbf{g}||}\right)^2 \frac{||\mathbf{s}|| - \delta_k}{\delta_k}$$

Set
$$\mathbf{s}^{(k)} = \mathbf{s}$$

endif

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fromethods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

....

Line-search metho

Ston-longth (

Descent method w

Descent method with

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

Levenberg-Marquardt

Trust-region methods (cont.)

For a fast convergence, a good radius δ_k is truly fundamental

The criterion for accepting a solution $\mathbf{s}^{(k)}$ is based on a comparison between variation of f and that of its quadratic approximation \tilde{f}_k

• as $\mathbf{x}^{(k)}$ moves to $\mathbf{x}^{(k)} + \mathbf{s}^{(k)}$

$$\rho_k = \frac{f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)}) - f(\mathbf{x}^{(k)})}{\tilde{f}_k(\mathbf{s}^{(k)}) - \tilde{f}_k(\mathbf{0})}$$

Remark

- If $\rho_k \approx 1$, $\mathbf{s}^{(k)}$ is accepted and the ball is enlarged, if the minimum is on the boundary
- If $\rho_k \approx 0$ or $\rho_k < 0$, $\mathbf{s}^{(k)}$ is not accepted and the ball is diminished

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fi methods

Golden section and quadratic interpolatio

The Newton method

Line-search m

Descent directi

Descent method w

Newton's directions

quasi-Newton's directio

Gradient and conjugategradient descent direction

Trust-region methods

Nonlinear least-squares

The Gauss-Newton meth Levenberg-Marquardt

Trust-region methods (cont.)

Given an initial solution $\mathbf{x}^{(0)}$, an initial radius of the ball $\delta_0 \in (0, \hat{\delta})$ with maximum radius $\hat{\delta} > 0$, four real parameters $\{\eta_1, \eta_2, \gamma_1, \gamma_2\}$ such that $0 < \eta_1 < \eta_2 < 1$ and $0 < \gamma_1 < 1 < \gamma_2$ for updating the ball and a real parameter $0 \le \mu \le \eta_1$ for accepting a solution, ...

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-free methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton method

The second second

Line-search method

Descent directions

Step-length α_k

Descent method w Newton's direction

Descent method with

quasi-Newton's direction Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

TI C N

Levenberg-Marquardt

Trust-region methods (cont.)

... for $k = 0, 1, \ldots$ until convergence

Pseudocode

Compute
$$f(\mathbf{x}^{(k)})$$
, $\nabla f(\mathbf{x}^{(k)})$ and \mathbf{H}_k Solve $\min_{\|\mathbf{s} \in \mathbf{R}^{n}: \mathbf{s}\|_2 \leq \delta_k} \tilde{f}_k(\mathbf{s})$
Compute ρ_k
If $\rho_k > \mu$
Set $\mathbf{x}^{(x+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$
else
Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}$
endif
If $\rho_k < \eta_1$
Set $\delta_{k+1} = \gamma_1 \delta_k$
elseif $\eta_1 \leq \rho_k \leq \eta_2$
Set $\delta_{k+1} = \delta_k$
elseif $\rho_k > \eta_2$ and $||\mathbf{s}^{(k)}|| = \delta_k$
Set $\delta_{k+1} = \min\{\gamma_2 \delta_k, \hat{\delta}\}$
endif

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fromethods

Golden section and quadratic interpolatio

Nelder and Me

The Newton metho

Line coarch method

Line-search meth

Step-length α_k

Descent method wit

Descent method with

quasi-Newton's direction Gradient and conjugate-

Trust-region methods

Nonlinear least-square

The Gauss-Newton method

Trust-region methods (cont.)

Choice of parameters⁴: $\eta_1 = 1/4$, $\eta_2 = 3/4$, $\gamma_1 = 1/4$, $\gamma_2 = 8/4$

- ullet By choosing $\mu=0$ we accept any step yielding a decrease of f
- By choosing $\mu > 0$ we accept steps for which the variation of f is at least μ times the variation of its quadratic model \tilde{f}_k

⁴J. Nocedal and S. Wrigth (2006): *Numerical optimization*.

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

quadratic interp

Nelder and Mea

The Newton meth-

Line-search metho

Step-length α_k

Descent method w

Descent method with

quasi-Newton's directions

Gradient and conjugate-

Trust-region methods

Trust-region methods

Nonlinear least-squares

The Gauss-Newton me Levenberg-Marquardt

Trust-region methods (cont.)

13 % KMAX are maximum number of iterations

```
1 %TREGION Trust region optimisation method
2 %[X,ERR,ITER]=TREGION(FUN,GRAD_FUN,X_0,DELTA_0, ...
3 % TOL,KMAX,TYP,HESS_FUN)
4 % Approximates the minimiser of FUN with gradient GRAD_FUN
5 %
6 % If TYP=1 Hessian is inputed as HESS_FUN
7 % If TYP NE 1 Hessian is rank-one approximated
8 %
9 % FUN and GRAD_FUN (and HESS_FUN) are function handles
10 % X_0 is the initial point
11 % TOL is stop check tolerance
12 % DELTA_0 is initial radius of trust ball
```

```
function [x,err,iter] = tRegion(fun,grad_fun,x_0,delta_0, ...
  optimisation
                                                 tol, kmax, typ, hess_fun)
   UFC/DC
  AI (CK0031)
                delta = delta_0; err = 1 + tol; k = 0; mu = 0.1; delta_m = 5;
    2016.2
                eta_1 = 0.25; eta_2 = 0.75; gamma_1 = 0.25; gamma_2 = 2.00;
                xk = x_0(:); gk = grad_fun(xk); eps2 = sqrt(eps);
                if typ==1; Hk=hess_fun(xk); else; Hk=eye(length(xk)); end
                while err > tol & k < kmax
                 [s]=trust one(Hk.gk.delta):
                 rho = (fun(xk+s) - fun(xk))/(s'*gk+1/2*s'*Hk*s);
                 if rho > mu; xk1 = xk + s; else; xk1 = xk; end
                 if rho < eta_1; delta = gamma_1*delta;</pre>
                 elseif rho > eta_2 & abs(norm(s)-delta) < sqrt(eps)
                 delta=min([gamma 2*delta.delta m]):
                 end
                 gk1 = grad_fun(xk1);
                 err = norm((gk1.*xk1)/max([abs(fun(xk1)),1]),Inf);
                 if typ == 1; xk = xk1; gk = gk1; Hk = hess_fun(xk); % Newton
                 else
                                                                   % quasi-Newton
                  gk1 = grad(xk1); yk = gk1-gk; sk=xk1-xk; yks = yk'*sk;
Trust-region methods
                  if vks > eps_2*norm(sk)*norm(vk)
                   Hs = Hk*sk; Hk = Hk+(yk*yk')/yks-(Hs*Hs')/(sk'*Hs);
                  end
                  xk = xk1; gk = gk1;
                 end
                 k=k+1:
                end
             30
               x = xk: iter = k:
                if (k == kmax & err > tol); disp('Accuracy not met [KMAX]'); end
```

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolatio

Nelder and Mea

The Newton method

Line-search metho

Line-search metho

Step-length α_k

Descent method w

Descent method

quasi-Newton's direction

Trust-region methods

....

Nonlinear least-squares

Levenberg-Marquardt

Trust-region methods (cont.)

```
function [s] = trust_one (Hk,gk,delta)
  maxiter=5;
  s = -Hk\gk; d = eigs(Hk,1,'sa'); % 1st smallest algebraic
       evalue
  if norm(s) > delta | d<0
   lambda = abs(2*d); I = eve(size(Hk));
   for l=1:maxiter
    R = chol(lambda*I+Hk);
    s = -R \setminus (R' \setminus gk); q = R' \setminus s;
    lambda = lambda+(s'*s)/(q'*q)*(norm(s)-delta)/delta;
    if lambda < -d
     lambda = abs(2*lambda):
     end
   end
16 end
```

UFC/DC AI (CK0031) 2016.2

Trust-region methods

Trust-region methods (cont.)

Approximate the minimiser of function

$$f(x_1, x_2) = \frac{7}{5} + \frac{(x_1 + 2x_2 + 2x_1x_2 - 5x_1^2 - 5x_2^2)}{(5\exp(x_1^2 + x_2^2))}$$

using the trust-region method

A local maximum, a saddle point and two local minima at approx. (-1.0, +0.2) and (+0.3, -0.9), the second being the global one

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

quadratic interpolation

Nelder and Mead

The Newton method

Line-search metho

- ...

Step-length α_k

Descent method w Newton's direction

Descent method with quasi-Newton's direct

Gradient and conjugat

Trust-region methods

Nonlinear least-square

The Court Newton week

The Gauss-Newton m

Trust region methods (cont.)

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre

Golden section and quadratic interpolati

The Newton metho

Line-search metho

Descent direc

Step-length a

Newton's directions

Descent method wit

quasi-Newton's direction Gradient and conjugate-

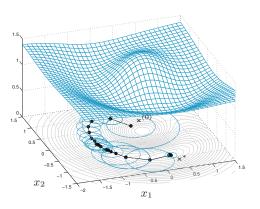
Trust-region methods

Nonlinear least-square

The Gauss-Newton me Levenberg-Marquardt

Trust-region methods (cont.)

Trust-region, approx. Hessian: 24 iters, $\mathbf{x}^* \approx (+0.28, -0.90)$



UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre

Golden section and quadratic interpolat

The Newton metho

Line-search meth

C. 1 ...

Descent method

Newton's directions

Descent method with quasi-Newton's direction

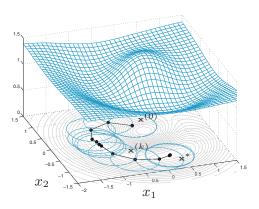
Trust-region methods

Nonlinear least-square

The Court Newton method

Trust-region methods (cont.)

Trust-region, exact Hessian: 12 iterations



UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fre methods

Golden section and quadratic interpolation

rveider allu ivieau

The Newton metho

December 1

Line-search metho

Descent directions

Step-length α_k

Newton's direction

Descent method v

quasi-Newton's directions

gradient descent direc

Trust-region methods

Nonlinear least-square

Levenherg-Marguardt

Trust region methods (cont.)

Example

Rosenbrock's function: $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

```
fun = @(x) (1-x(1))^2+100*(x(2)-x(1)^2)^2;
grad_fun = @(x)[-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1)); ...
200*(x(2)-x(1)^2)];

x_0=[+1.2;-1.0];

options = optimset ('LargeScale','on'); % Trust-region options = optimset ('GradObj','on'); % Gradient

[x,fval,exitflag,output]=fminunc({fun,grad_fun},x_0,options)
```

Trust-region (Matlab): 8 iterations, 9 function evaluations

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolation

The Newton metho

Line-search metho

Descent direc

Step-length α

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

The Gauss-Newton me Levenberg-Marquardt

Trust-region methods (cont.)

Remark

The M-command fminunc in Octave implements the trust region method with approximated Hessians \mathbf{H}_k , computed with BFGS

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\mathbf{y}^{(k)}\mathbf{y}^{(k)^T}}{\mathbf{x}^{(k)^T}\mathbf{s}^{(k)}} - \frac{\mathbf{H}_k\mathbf{s}^{(k)}\mathbf{s}^{(k)^T}\mathbf{H}_k^T}{\mathbf{s}^{(k)^T}\mathbf{H}_k\mathbf{s}^{(k)}}$$

The option 'LargeScale' is not used

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fre methods

Golden section and quadratic interpolation

iveluer and ivie

THE NEWLON MELHO

Line-search methods

Descent direct

Step-length α

Newton's directions

Descent method with

quasi-Newton's directions

gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton metho Levenberg-Marquardt

Non-linear least-squares Numerical optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton metho

12 -----

Line-search metho

Descent direction

Descent method

Newton's directions

quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton m Levenberg-Marquardt

Non-linear least-squares

The least-squares method is often used for approximating either functions f(x) or sets of data $\{(x_k, y_k), k = 0, ..., K\}$ by function \tilde{f} linearly depending on a set of coefficients $\{a_j, j = 1, ..., m\}$

Example

$$\tilde{f}(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$

The coefficients $\{a_i\}_{i=0}^m$ are unknown and must be determined

$$\sum_{k=0}^{K} \left(y_k - \tilde{f}(x_k) \right)^2$$

 Non-linear least-squares refers to problems in which such a dependence is non-linear

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-fromethods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line-search metho

Descent direct

Step-length

Descent meth

Newton's directions

quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-squares

The Gauss-Newton me Levenberg-Marquardt

Non-linear least-squares(cont.)

Definition

Let $\mathbf{R}(\mathbf{x}) = (r_1(\mathbf{x}), \dots, r_n(\mathbf{x}))^T$ with $r_i : \mathbb{R}^m \to \mathbb{R}$ be some function

$$\min_{\mathbf{x} \in \mathbb{R}^m} \Phi(\mathbf{x}), \quad \text{with } \Phi(\mathbf{x}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x})||^2 = \frac{1}{2} \sum_{i=1}^n r_i^2(\mathbf{x})$$
 (48)

When functions r_i are non-linear, function Φ may not be convex

Thus, have multiple stationary points

Newton, descent directions, trust-region methods can be used

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fr methods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search metho

Stop longth o

Descent method

Newton's directions

quasi-Newton's direction

gradient descent direction

Trust-region methods

Nonlinear least-squares

The Gauss-Newton met Levenberg-Marquardt

Non-linear least-squares(cont.)

Because of the form of Φ , gradient and Hessian can be written in terms of the Jacobian $\mathbf{J}_{\mathbf{R}}(\mathbf{x}) \in \mathbb{R}^{n \times m}$ and second derivatives of \mathbf{R}

$$\nabla \Phi(\mathbf{x}) = \mathbf{J}_{\mathbf{R}}(\mathbf{x})^{T} \mathbf{R}(\mathbf{x})$$
$$\mathbf{H}(\mathbf{x}) = \mathbf{J}_{\mathbf{R}}(\mathbf{x})^{T} \mathbf{J}_{\mathbf{R}}(\mathbf{x}) + \mathbf{S}(\mathbf{x})$$
(49)

in which
$$\mathbf{S}_{lj}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial^{2} r_{i}}{\partial x_{l} \partial x_{j}} (\mathbf{x}) r_{i}(\mathbf{x}) r_{i}(\mathbf{x})$$
 for $l, j = 1, ..., m$

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-fromethods

Golden section and quadratic interpolatio

The Newton metho

Line-search method

Descent direction

Descent method wi

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton m

Non-linear least-squares(cont.)

Calculation of the Hessian can be heavy when m and n are large

• This is especially due to matrix S(x)

In some cases S(x) is less influent than $J_R(x)^T J_R(x)$ and could be approximated or neglected in the construction of the Hessian H(x)

We discuss two methods devoted to handling such cases

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

Nelder and Me

The Newton method

Charles and the second

Descent direc

Step-length a

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares
The Gauss-Newton method

Levenberg-Marquardt

Gauss-Newton method Nonlinear least-squares

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search method

Line-search metho

Sten-length of

Step-length α

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square

The Gauss-Newton method

Levenberg-Marquard

The Gauss-Newton method

The Gauss-Newton method is a variant of the Newton method

Given $\mathbf{x}^{(0)} \in \mathbb{R}^n$, for $k = 0, 1, \ldots$ until convergence

Pseudocode

Solve
$$\mathbf{H}(\mathbf{x}^{(k)})\delta\mathbf{x}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$$

Set
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$$

The Hessian $\mathbf{H}(\mathbf{x})$ is approximated by neglecting $\mathbf{S}(\mathbf{x})$

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-fre methods

Golden section and quadratic interpolation

Nelder and Me

The Newton metho

Line-search method

December discretions

Sten-length

Descent method w

Descent method with quasi-Newton's direction

quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-squares

The Gauss-Newton method

The Gauss-Newton method (cont.)

Given $\mathbf{x}^{(0)} \in \mathbb{R}^m$ and for $k = 0, 1, \dots$ until the convergence

Pseudocode

Solve
$$[\mathbf{J}_{\mathsf{R}}(\mathbf{x}^k)^{\mathsf{T}}\mathbf{J}_{\mathsf{R}}(\mathbf{x}^{(k)})]\delta\mathbf{x}^{(k)} = -\mathbf{J}_{\mathsf{R}}(\mathbf{x}^{(k)})^{\mathsf{T}}\mathbf{R}(\mathbf{x}^{(k)})$$

Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta\mathbf{x}^{(k)}$

If $J_R(\mathbf{x}^{(k)})$ is not full rank, the linear system in the first equation has infinitely many solutions leading either to a stagnation of the method or to convergence to a non-stationary point

If $J_R(\mathbf{x}^{(k)})$ is full rank, the linear system has form $\mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b}$ and it can be solved by using QR or SVD factorisations of $J_R(\mathbf{x})$

UFC/DC AI (CK0031) 2016.2

Optimisation optimisation

Derivative-f

Golden section and quadratic interpolation

ivelder and iviea

THE INCINCOLL HIEL

Line-search meth

Ellic-scarcii ilici

Step-length α_k

Descent method Newton's direction

Descent method with quasi-Newton's direction

quasi-Newton's directio Gradient and conjugate

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

The Gauss-Newton method (cont.)

```
function [x,err,iter]=nllsGauNewtn(r,jr,x_0,tol,kmax,varargin)
 %NLLSGAUNEW Nonlinear least-squares with Gauss-Newton method
 % [X, ERR, ITER] = NLLSGAUNEW(R, JR, X_O, TOL, KMAX)
 % R and JR: Function handles for objective R and its Jacobian
 % X_0 is the initial solution
 % TOL is the stop check tolerance
 % KMAX is the max number of iterations
 err = 1 + tol; k = 0;
 xk = x 0(:):
 rk = r(xk, varargin{:}); jrk = jr(xk, varargin{:});
 while err > tol & k < kmax
   [0,R] = qr(irk,0): dk = -R\setminus(0,*rk):
  xk1 = xk + dk;
  rk1 = r(xk1, varargin\{:\});
  jrk1 = jr(xk1, varargin{:});
  k = 1 + k: err = norm(xk1 - xk):
  xk = xk1; rk = rk1; jrk = jrk1;
 end
 x = xk; iter = k;
 if (k==kmax & err > tol)
  disp('nllsGauNewtn stopped w\o reaching accuracy [KMAX]');
 end
```

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

Nelder and M

The Newton metho

Line-search method

D

Stop longth o

D

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugategradient descent directions

Trust-region method

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquard

The Gauss-Newton method (cont.)

Remark

It can be shown that neglecting $S(x^{(k)})$ at step k amounts to approximating R(x) with its first-order Taylor expansion at x^*

$$\tilde{\mathbf{R}}_k(\mathbf{x}) = \mathbf{R}(\mathbf{x}^{(k)}) + \mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)})$$
 (50)

UFC/DC AI (CK0031) 2016.2

Unconstrair

Derivative-fi

Golden section and quadratic interpolati

The Newton metho

Descent directions

Step-length α_k Descent method

Descent method with quasi-Newton's directions

quasi-Newton's directions
Gradient and conjugategradient descent direction

Trust-region method

Nonlinear least-square

The Gauss-Newton method

The Gauss-Newton method (cont.)

Convergence of the method is not always guaranteed as it depends on both properties of Φ and initial solution

If \mathbf{x}^* is stationary point for Φ and $\mathbf{J}_{\mathbf{R}}(\mathbf{x})$ is full rank in a suitable neighbourhood of \mathbf{x}^* , then

- 1 If $S(x^*) = 0$, which is the case if R(x) is linear or $R(x^*) = 0$, the Gauss-Newton method is locally quadratically convergent and it coincides with the Newton's method
- ② If $||\mathbf{S}(\mathbf{x}^*)||_2$ is small compared to the smallest positive e-value of $\mathbf{J}_{\mathbf{R}}(\mathbf{x}^*)^T \mathbf{J}_{\mathbf{R}}(\mathbf{x}^*)$, then Gauss-Newton converges linearly (for instance, when $\mathbf{R}(\mathbf{x})$ is mildly non-linear or $\mathbf{R}(\mathbf{x}^*)$ is small)
- 3 If $||\mathbf{S}(\mathbf{x})||_2$ is large compared to the smallest positive e-value of $\mathbf{J}_{\mathbf{R}}(\mathbf{x}^*)^T \mathbf{J}_{\mathbf{R}}(\mathbf{x}^*)$, then Gauss-Newton may not converge even if $\mathbf{x}^{(0)}$ is very close to \mathbf{x}^* (this happens if $\mathbf{R}(\mathbf{x})$ is strongly non-linear or if its residual $\mathbf{R}(\mathbf{x}^*)$ is large)

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fromethods

Golden section and quadratic interpolati

The Newton metho

Line-search metho

Descent direction

Step-length α

Descent method wir Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-square

The Gauss-Newton method

Levenberg-Marquards

The Gauss-Newton method (cont.)

Remark

Line-search can be used in combination with Gauss-Newton by replacing $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$ with $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \delta \mathbf{x}^{(k)}$

• Computation of step-lengths α_k is as per usual

If $\mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})$ is full rank, matrix $\mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})^T \mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})$ is symmetric and positive definite and $\delta \mathbf{x}^{(k)}$ is a descent direction for Φ

In this case, under suitable assumptions on Φ , we get the globally convergent method known as damped Gauss-Newton method

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

The Newton metho

Line-search meth

Descent direc

Step-length a

Newton's directions

Descent method with

Gradient and conjugate-

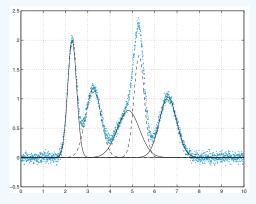
Trust-region method

Nonlinear least-squares

The Gauss-Newton method

Example

Voice recognition: Compress an audio signal to a set of parameters



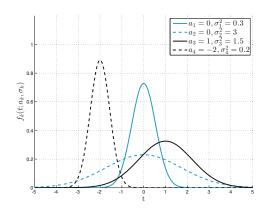
The signal intensity is modelled as a sum of m Gaussian functions

$$f_k(t|a_k,\sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(t-a_k)^2}{2\sigma_k^2}\right), t \in [t_0,t_F], k=1,\ldots,m$$

UFC/DC AI (CK0031) 2016.2

The Gauss-Newton method

The Gauss-Newton method (cont.)



Each peak or component is characterised by two coefficients

- The centre, ak
- The (square of the) spread, σ_{ν}^2

$$f(t|\mathbf{a}, \boldsymbol{\sigma}) = \sum_{k=1}^{m} f_k(t; a_k, \sigma_k)$$
• $\mathbf{a} = [a_1, \dots, a_k]$
• $\boldsymbol{\sigma} = [\sigma_1, \dots, \sigma_k]$

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

methods

Golden section and quadratic interpolation

The Newton week

Line-search metho

Descent direc

Step-length a

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate-

Trust-region method:

Nonlinear least-squares
The Gauss-Newton method

Levenberg-Marquard

The Gauss-Newton method (cont.)

Find $\bf a$ and $\bf \sigma$ that minimise the residual sum of squares

$$\min_{\mathbf{a},\boldsymbol{\sigma}} \sum_{i=1}^{n} \left(f(t_i|\mathbf{a},\boldsymbol{\sigma}) - y_i \right)^2$$

From recorded audio intensities y_i at sampling times t_i

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-free methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton metho

Line-search met

Sten-length ou

Descent method wi

Descent method with quasi-Newton's direction

Gradient and conjugate

Trust-region method

Nonlinear least-squares

The Gauss-Newton method

The Gauss-Newton method (cont.)

Generate n = 2000 time-intensity pairs $(t_i, y_i)_{i=1}^n$ with $t_i \in (0, 10)$

By summing 5 Gaussian components

$$f_k(t|a_k,\sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(t-a_k)^2}{(2\sigma_k^2)}\right)$$

and by adding little random noise

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrain

Derivative-fre

Golden section and quadratic interpolatio

The Newton metho

December 1

Line-search metr

Step-length o

Descent method wit

Descent method with

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

The Gauss-Newton method (cont.)

We want to solve the nonlinear least-squares problem of form

$$\min_{\mathbf{x} \in \mathbb{R}^m} \Phi(\mathbf{x}), \quad \text{with } \Phi(\mathbf{x}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x})||^2 = \frac{1}{2} \sum_{i=1}^n r_i^2(\mathbf{x})$$

in which
$$r_i(\mathbf{x}) = f(t_i|\mathbf{a}, \sigma) - y_i = \sum_{k=1}^m f_k(t_i|a_k, \sigma_k) - y_i$$
 and

$$\frac{\partial r_i}{\partial a_k} = f_k(t_i|a_k,\sigma_k) \frac{t_i - a_k}{\sigma_k}$$

$$\frac{\partial r_i}{\partial \sigma_k} = f_k(t_i|a_k, \sigma_k) \left[\frac{(t_i - a_k)^2}{\sigma_k^3} - \frac{1}{2\sigma_k} \right]$$

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton meth

Line-search method

Descent directions

Step-length α_k Descent method

Newton's direction Descent method w

Gradient and conjuga

Nonlinear least-squares

The Gauss-Newton method Levenberg-Marquardt

The Gauss-Newton method (cont.)

Using the M-command nllsGauNewtn

```
1  x_0 = [2.0,3.0,4.0,5.0,6.0,0.3,0.3,0.6,0.3,0.3];
2  tol = 3.0e-5;
4  kmax = 200;
5  [x,err,iter]=nllsGauNew(@gmR,@gmJR,x_0,tol,kmax,t,y)
7  x_a = x(1:m);
9  x_sigma = x(m+1:end);
10
11  h = 1./(x_sigma*sqrt(2*pi));
12  w = 2*x_sigma*sqrt(log(4));
```

Gauss-Newton: 22 iterations

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-fi

Golden section and quadratic interpolation

The Newton n

Line-search meth

_

Step-length α_k

Newton's direction

Descent method with quasi-Newton's directions

Gradient and conjugate

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marguardt

The Gauss-Newton method (cont.)

```
function [R]=gmR(x,t,v)
x = x(:): m = round(0.5*length(x)):
a = x(1:m); sigma = x(m+1: end);
gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ...
                      /(sigma*sqrt(pi*2))];
n = length(t): R = zeros(n.1):
for k = 1:m; R = R + gauFun(t,a(k),sigma(k)); end
R = R - v:
function [Jr]=gmJR(x,t,v)
x = x(:); m = round(0.5*length(x));
a = x(1:m); sigma = x(m+1: end);
gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ...
                      /(sigma*sgrt(pi*2))]:
n = length(t): JR = zeros(n.2*m): fk = zeros(n.m):
for k = 1:m; fk(:,k) = gauFun(t,a(k),sigma(k)); end
for k = 1:m; JR(:,k) = (fk(:,k).*(t-a(k))/sigma(k)^2); end
for k = 1:m
 JR(:,k+m) = (fk(:,k).*((t-a(k)).^2/(k)^3-1/(2*sigma(k))));
end
```

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free methods

Golden section and quadratic interpolation

Nelder and Mead

The Newton method

Line-search methor

Descent direct

Step-length α

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region methods

Nonlinear least-squares

The Gauss-Newton metho Levenberg-Marguardt

Levenberg-Marquardt Nonlinear least-squares

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fre methods

Golden section and quadratic interpolatio

Nelder and Me

The Newton metho

District of the sales

Line-search meth-

Descent direc

Step-length c

Newton's directions

Descent method with quasi-Newton's direction

Nonlinear least-square

The Gauss-Newton method

Levenberg-Marquardt

Levenberg-Marquardt

Levenberg-Marquardt is a trust-region method for

$$\min_{\mathbf{x} \in \mathbb{R}^m} f(\mathbf{x}), \text{ with } f(\mathbf{x}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x})||^2 = \frac{1}{2} \sum_{i=1}^n r_i^2(\mathbf{x})$$

We can use the general trust-region pseudocode

UFC/DC AI (CK0031) 2016.2

Unconstrair optimisatio

Derivative-fr methods

Golden section and quadratic interpolatio

Nelder and Mead

The Newton metho

Line-search method

Line-search metho

Descent directions

Step-length α_k Descent method v

Newton's directions

Descent method with

quasi-Newton's directions

Nonlinear least-squares
The Gauss-Newton method

Levenberg-Marquardt

Levenberg-Marquardt (cont.)

Pseudocode

Compute
$$f(\mathbf{x}^{(k)})$$
, $\nabla f(\mathbf{x}^{(k)})$ and \mathbf{H}_k Solve $\min_{||\mathbf{s}||_2 \le \delta_k} \tilde{f}_k(\mathbf{s})$ Compute ρ_k If $\rho_k > \mu$ Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$ else Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}$ endif If $\rho_k < \eta_1$ Set $\delta_{k+1} = \gamma_1 \delta_k$ elseif $\eta_1 \le \rho_k \le \eta_2$ Set $\delta_{k+1} = \delta_k$ elseif $\rho_k > \eta_2$ and $||\mathbf{s}^{(k)}|| = \delta_k$ Set $\delta_{k+1} = \min\{\gamma_2 \delta_k, \hat{\delta}\}$ endif

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fromethods

Golden section and quadratic interpolation

The Newton metho

Descent direction

Step-length α_k

Newton's directions

quasi-Newton's direction

Trust-region methods

Nonlinear least-squares
The Gauss-Newton method

Levenberg-Marquardt

Levenberg-Marquardt (cont.)

After replacing f with Φ and \tilde{f} with $\tilde{\Phi}$, at each step k we solve

$$\min_{\mathbf{s} \in \mathbb{R}^n: ||\mathbf{s}|| \le \delta_k} \tilde{\Phi}_k(\mathbf{s}), \quad \text{with } \tilde{\Phi}_k(\mathbf{s}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x}^{(k)}) + \mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})\mathbf{s}||^2 \quad (51)$$

Note how $\tilde{\Phi}_k(\mathbf{x})$ is a quadratic approximation of $\Phi(\mathbf{x})$ about $\mathbf{x}^{(k)}$

 \bullet It is obtained by approximating $R(\boldsymbol{x})$ with its linear model

$$\tilde{\mathsf{R}}_k(\mathsf{x}) = \mathsf{R}(\mathsf{x}^{(k)}) + \mathsf{J}_\mathsf{R}(\mathsf{x}^{(k)})(\mathsf{x} - \mathsf{x}^{(k)})$$

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrain optimisation

Derivative-free methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton metho

The second second

Descent direc

Step-length a

Newton's direction

Descent method with quasi-Newton's direction

Bradient descent direc

Trust-region method

Nonlinear least-square
The Gauss-Newton methor
Levenberg-Marquardt

Levenberg-Marquardt (cont.)

Even when $J_R(x)$ is not full rank, the method is well suited for minimisation problems with strong non-linearities or large residuals 1

$$\Phi(\mathbf{x}^*) = \frac{1}{2} ||\mathbf{R}(\mathbf{x}^*))||^2$$
 at the local minimiser \mathbf{x}^*

Remark

Hessian approximations are those of the Gauss-Newton method, the two methods share the same local convergence properties

- When Levenberg-Marquardt iterations converge, convergence rate is quadratic if the residual is small at a local minimiser
- · Convergence rate is linear otherwise