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Numerical optimisation

Definition

Let f : Rn → R with n ≥ 1 be a cost or objective function

The unconstrained optimisation problem is

min
x∈Rn

f (x) (1)

The constrained optimisation problem is

min
x∈Ω⊂Rn

f (x) (2)

The closed subset Ω is determined by either equality and inequality
constraints that are dictated by the nature of the problem to solve
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Numerical optimisation (cont.)

Example

Find the optimal allocation of i = 1, . . . , n bounded resources xi ,
the constraints will be expressed by inequalities of type

0 ≤ xi ≤ Ci , with Ci given constants

The set Ω =
{

x = (x1, . . . , xn) : 0 ≤ xi ≤ Ci , i = 1, . . . , n
}

is a subset of Rn that is determined by such constraints
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Numerical optimisation (cont.)

Examples of constrained optimisation problems are
those in which Ω is characterised by conditions like:

• h(x) = 0: equality constraints

• h(x) ≤ 0: inequality constraints

By h : Rn → Rm with m ≤ n we denote a given function such that

• by h ≤ 0 we mean hi(x) ≤ 0 for i = 1, . . . ,m

Definition

If f is continuous and Ω is connected, the constrained optimisation
problem is known also as a non-linear programming problem

• Convex programming: If f is a convex function
and h has convex components

• Linear programming: If f and h are linear

• Quadratic programming: If f is quadratic and h is linear
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Numerical optimisation (cont.)

Remark

Computing the maximum of function f is equivalent
to computing the minimum of function g = −f

• We only consider minimisation algorithms

Definition

More interesting of the minimum value of a given function
is often the point at which such minimum is achieved

• Such point is called minimiser
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Numerical optimisation (cont.)

In view of numerical solutions of optimisation problems, the ideal
situation would be a cost function with an unique global minimiser

• There are often several (local) minimiser, though
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Unconstrained optimisation

When minimising an objective function, we are interested
in finding either a (good) local or the global minimiser

Definition

• Point x∗ is a global minimiser of f , if f (x∗) ≤ f (x), ∀x ∈ Rn

• Point x∗ is a local minimiser of f , if there is a Br (x∗) ⊂ Rn,
a ball centred in x∗ and radius r > 0, such that f (x∗) ≤ f (x),
∀x ∈ Br (x∗)
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Unconstrained optimisation (cont.)

Definition

Provided that f is differentiable in Rn with first and second
derivatives, we denote by gradient vector and by Hessian
matrix of f at point x ∈ Rn, the following objects

∇f (x) =
( ∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T

(3)

H(x) = (hij)
n
i ,j=1, with hij =

∂2f (x)

∂xj∂xi
(4)
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Unconstrained optimisation (cont.)

In general, it will be assumed that problem functions are smooth

• Continuous and continuously (Frétchet) differentiable, C1

Thus for f (x) at any point x there is a vector of first derivatives

• Gradient vector
⎛

⎜
⎜
⎜
⎝

∂f /∂x1
∂f /∂x2

...
∂f /∂xn

⎞

⎟
⎟
⎟
⎠

x

= ∇f (x) (5)

∇ is the gradient operator
(

∂/∂x1, ∂/∂x2, · · · , ∂/∂xn
)T

If f (x) is twice-differentiable, C2, there is a matrix of second
partial derivatives ∇2f (x) for whose (i , j)-th element is

∂2f /(∂xi∂xj)

The Hessian matrix can be strictly written as H(x) = ∇(∇f T )
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Unconstrained optimisation (cont.)

Example

Rosenbrock’s function: A test-function for optimisation methods

x1

x2

 

 

50

100

150

200

f (x) = 100(x2 − x21 )
2 + (1− x1)

2
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Unconstrained optimisation (cont.)

∇f (x) =

(

−400x1(x2 − x21 )− 2(1− x1)
200(x2 − x21 )

)

(6a)

∇
2f (x) =

[

1200x21 − 400x2 + 2 −400x1
−400x1 200

]

(6b)

In general, ∇f and ∇2f will and vary from point to point

At xT =

(

0
0

)

, ∇f (xT ) =

(

−2
0

)

and ∇2f (xT ) =

[

2 0
0 200

]
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Unconstrained optimisation (cont.)

Definition

If f ∈ C2(Rn), that is all first and second derivatives of f exist
and are continuous, then H(x) is symmetric for every x ∈ Rn

Definition

A point x∗ is called a stationary or critical point for f if
∇f (x∗) = 0 and it is called a regular point if ∇f (x∗) ̸= 0
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Unconstrained optimisation (cont.)

Remark

A function f over Rn does not necessarily admit a minimiser

• Also, should this point exist it is not necessarily unique

Example

• f (x) = x1 + 3x2 is unbounded in R2

• f (x) = sin (x1) sin (x2) · · · sin (xn) admits an infinite number
of minimisers and maximisers in Rn, either local and global
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Unconstrained optimisation (cont.)

Definition

Function f : Ω ⊆ Rn → R is convex in Ω if ∀α ∈ [0, 1]

f (αx+ (1 − α)y) ≤ αf (x) + (1 − α)f (y), ∀x, y ∈ Ω (7)

Definition

f is a Lipschitz function in Ω if there is a constant L > 0

||f (x)− f (y)|| ≤ L||x− y||, ∀x, y ∈ Ω (8)
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Unconstrained optimisation (cont.)

Proposition 1.1

Optimality conditions

Let x∗ ∈ Rn and r > 0 exists such that f ∈ C1(Br (x∗))

• If x∗ is a minimiser for f (local or global), then ∇f (x∗) = 0
• Also, if f ∈ C2(Br (x∗)), H(x∗) is positive semidefinite

Let x∗ ∈ Rn and r > 0 exists such that f ∈ C2(Br (x∗))

• If ∇f (x∗) = 0 and H(x∗) is positive definite for all
x ∈ Br (x∗), then x∗ is a local minimiser of f

• If f ∈ C1(Rn) is convex in Rn and ∇f (x∗) = 0,
then x∗ is a global minimiser for f
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Unconstrained optimisation (cont.)

Definition

A symmetric real matrix A ∈ Rn×n is positive definite if

∀x ∈ R
n with x ̸= 0, xTAx > 0

A symmetric real matrix A ∈ Rn×n is positive semidefinite if

∀x ∈ R
n with x ̸= 0, xTAx ≥ 0
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Unconstrained optimisation (cont.)

Most methods for numerical optimisation are of iterative type

They can be classified into two categories depending on whether
they require knowledge of the derivatives of the cost function

• Derivative-free methods investigate the local behaviour of a
cost function by direct comparison between the values it takes

• Methods using exact derivatives take advantage of
accurate information on the local behaviour of the cost
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Unconstrained optimisation (cont.)

In general, minimisation methods based on accurate derivatives
can be expected to achieve faster convergence to the minimiser

Remark

• It can be shown that given x ∈ dom(f ), if ∇f (x) exists and it
is not null, then the largest increase of f from x is along the
gradient vector whereas the largest decrease is along the
opposite direction

Among them, the two most important classes of techniques are

• Line-search methods

• Trust-region methods
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Derivative-free methods
Numerical optimisation
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Derivative-free methods

We describe two simple numerical methods for

• Minimisation of univariate real-valued functions

• Minimisation of multivariate real-valued functions,
along a single direction

We then describe the Nelder and Mead method for
the minimisation of functions of several variables
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Golden section
and

quadratic interpolation
Derivative-free methods
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Golden section and quadratic interpolation

Let f : (a, b) → R be a continuous function with unique minimiser

x∗ ∈ (a, b)

Set I0 = (a, b) and for k ≥ 0 generate a sequence of intervals Ik

Ik = (a(k), b(k))

The intervals Ik are of decreasing length and each contains x∗
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Golden section and quadratic
interpolation (cont.)

For any given k , the next interval Ik+1 is determined as follows:

1) Let c(k), d (k) ∈ Ik with c(k) < d (k) be two points such that

b(k) − a(k)

d (k) − a(k)
=

d (k) − a(k)

b(k) − d (k)
= ϕ (9a)

b(k) − a(k)

b(k) − c(k)
=

b(k) − c(k)

c(k) − a(k)
= ϕ (9b)

and let ϕ be the golden ratio ϕ =
1 +

√
5

2
≃ 1.628
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Golden section and quadratic
interpolation (cont.)

2) Using Equation 9a and 9b, we find point c(k) and point d (k)

c(k) = a(k) +
1

ϕ2
(b(k) − a(k)) (10a)

d (k) = a(k) +
1

ϕ
(b(k) − a(k)) (10b)

which are symmetrically placed about the mid-point of Ik

a(k) + b(k)

2
− c(k) = d (k) −

a(k) + b(k)

2
(11)

Remark

By replacing c(k) and d (k) in Equation 11 and dividing by the

common factor
b(k) − a(k)

ϕ2
we obtain the identity ϕ2 − ϕ− 1 = 0
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Golden section and quadratic
interpolation (cont.)

a(k) b(k)c(k) d(k)

b(k+1)a(k+1) c(k+1)

x∗

Lk ϕLk

Lk+1 ϕLk+1

x

y

f

The generic iteration of the golden-section method

• ϕ is the golden ratio, while Lk = c(k) − a(k)
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Golden section and quadratic
interpolation (cont.)

Set a(0) = a and b(0) = b, the golden section method formulates as

Pseudocode

For k = 0, 1, . . . until convergence

Compute c(k) and d (k) through Equation 10

If f (c (k)) ≥ f (d (k))
set Ik+1 = (a(k+1), b(k+1)) = (c(k), b(k))

else
set Ik+1 = (a(k+1), b(k+1)) = (a(k), d (k))

endif

It follows that:

• If Ik+1 = (c(k), b(k)), then c(k+1) = d (k)

• if Ik+1 = (a(k), d (k)), then d (k+1) = c(k)
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Golden section and quadratic
interpolation (cont.)

A stopping criterion can be set when the normalised size
of the k-th interval is smaller than a given tolerance ε

b(k+1) − a(k+1)

|c(k+1)|+ |d (k+1)|
< ε (12)

The mid-point of the last interval Ik+1 can be
taken as an approximation of the minimiser x∗

By using Equation 9a and 9b, we obtain the expression

|b(k+1) − a(k+1)| =
1

ϕ
|b(k) − a(k)| = · · · =

1

ϕk+1
|b(0) − a(0)| (13)

The golden-section method converges linearly with rate

ϕ−1 ≃ 0.618
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1 function [xmin ,fmin ,iter]= gSection (fun ,a,b,tol,kmax ,varargin )
2 %GSECTION finds the minimum of a function
3 % XMIN=GSECTION (FUN,A,B,TOL,KMAX) approximates a min point of
4 % function FUN in [A,B] by using the golden section method
5 % If the search fails , an error message is returned
6 % FUN can be i) an inline function , ii) an anonymous function
7 % or iii) a function defined in a M-file
8 % XMIN=GSECTION (FUN,A,B,TOL,KMAX ,P1,P2 ,...) passes parameters
9 % P1, P2 ,... to function FUN(X,P1,P2 ,...)

10 % [XMIN ,FMIN ,ITER]= GSECTION (FUN ,...) returns the value of FUN
11 % at XMIN and number of iterations ITER done to find XMIN
12

13 phi = (1+sqrt(5))/2;
14 iphi(1) = inv(phi); iphi(2) = inv(1+phi);
15 c = iphi(2)*(b-a) + a; d = iphi(1)*(b-a) + a;
16 err = 1+tol; k = 0;
17

18 while err > tol & k < kmax
19 if(fun(c) >= fun(d))
20 a = c; c = d; d = iphi(1)*(b-a) + a;
21 else
22 b = d; d = c; c = iphi(2)*(b-a) + a;
23 end
24 k = 1 + k; err = abs(b-a)/(abs(c)+abs(d));
25 end
26

27 xmin = 0.5*(a+b); fmin = fun(xmin); iter = k;
28 if (iter == kmax & err > tol)
29 fprintf (’The method stopped after reaching the maximum number
30 of iterations , and without meeting the tolerance’);
31 end
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Golden section and quadratic
interpolation (cont.)

• fun is either an anonymous or an inline function for function f

• a and b are endpoints of the search interval

• tol is the tolerance ε

• kmax is the maximum allowed number of iterations

• xmin contains the value of the minimiser

• fmin is the minimum value of f in (a, b)

• iter is the number of iterations carried out by the algorithm
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Golden section and quadratic
interpolation (cont.)

Example

Evolution of an isolated culture of 250 bacteria (Verhulst model)

f (t) =
2500

1 + 9 exp−t/3
, for t > 0

where t denotes time (expressed in days)

Find after how many days population growth rate is maximum

• That is, when function g(t) = −f ′(t) has its minimum

g(t) = −7500
exp

( t

3

)

(

exp
( t

3

)

+ 9
)2
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Golden section and quadratic
interpolation (cont.)
Function g(t) admits a global minimiser in [6, 7], see its plot

1 g = @(t) [ -(7500*exp(t/3)) / (exp(t/3)+9)^2];
2

3 a = 0; b = 10;
4 tol = 1.0e-8; kmax = 100;
5

6 [tmin gmin ,iter]= gSection (g,a,b,tol ,kmax);

Golden section: 38 iterations, t∗ ≈ 6.59 and g(t∗) ≈ −208
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Golden section and quadratic
interpolation (cont.)

The quadratic interpolation method is often used as alternative

• Let f be a continuous and convex function

• Let x (0), x (1) and x (2) be three distinct points

We build a sequence of points x (k) with k ≥ 3 such that x (k+1)

is the vertex (and thus the minimiser) of the parabola p
(k)
2 that

interpolates f at (node points) x (k), x (k−1) and x (k−2)

Definition

For k ≥ 2, the order-2 Lagrange polynomial at such nodes is

p
(k)
2 (x) = f (x (k−2))+f [x (k−2), x (k−1)](x − x (k−2))

+f [x (k−2), x (k−1), x (k)](x − x (k−2))(x − x (k−1)))
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Golden section and quadratic
interpolation (cont.)

p
(k)
2 (x) = f (x (k−2))+f [x (k−2), x (k−1)](x − x (k−2))

+f [x (k−2), x (k−1), x (k)](x − x (k−2))(x − x (k−1)))

The Newton divided differences are the quantities

f [xi , xj ] =
f (xj)− f (xi )

xj − xi

f [xi , xj , xk ] =
f [xj , xl ]− f [xi , xj ]

xl − xi

(14)

in the 2nd order Lagrange polynomial p(k)2 for k ≥ 2
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Theorem

For n+ 1 distinct points {(xi , yi (xi ))}n+1
n=0, there exists only one

polynomial Πn ∈ Pn of order n or smaller that interpolates them

Πn(xi ) = yi , ∀i = 0, . . . , n

If yi = f (xi ) for some continuous function f , Πn is said to be
the interpolating polynomial of f and it is denoted as Πnf

Definition

Components of the Lagrangian basis associated to nodes {xi}ni=0

ϕi (x) =
n∏

j=0,j ̸=i

x − xj

xi − xj
, i = 0, . . . , n

are polynomials such that {ϕi} is the only basis of Pn satisfying

ϕi (x) ∈ Pn,ϕi (xj) = δij =

{

1, if i = j

0, otherwise
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Definition

The Lagrange polynomial is the interpolating polynomial Πn(x)

Πn(x) =
n

∑

i=0

yiϕi (x)

expressed in Lagrange form, or with respect to the Lagrange basis

Πn(xi ) =
n

∑

j=0

yjϕj(xi ) =
n

∑

j=0

yjδij = yi , i = 0, . . . , n
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Golden section and quadratic
interpolation (cont.)

By solving the first-order equation p′
(k)
2 (x (k+1)) = 0, we get

x (k+1) =
1

2

(

x (k−2) + x (k−1) −
f [x (k−2), x (k−1)]

f [x (k−2), x (k−1), x (k)]

)

(15)

The next point in the sequence is obtained

by setting to zero the derivative of p(k)2 (x)

We iterate until |x (k+1) − xk | < ε, for some tolerance ε > 0
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Golden section and quadratic
interpolation (cont.)
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Example

g(t) = −7500
exp

( t

3

)

(

exp
( t

3

)

+ 9
)2

fminbnd combines golden section and parabolic interpolation

1 g = @(t) [ -(7500*exp(t/3))/(exp(t/3)+9)^2];
2

3 a = 0.0; b = 10.0;
4 tol = 1.0e-8; kmax = 100;
5

6 optionsQ = optimset (’TolX’, 1.0e-8)
7 [tminQ ,gminQ ,exitflagQ ,outputQ ] = fminbnd (g,a,b,optionsQ );

Quadratic interpolation: 8 iter, t∗ ≈ 6.59 and f (t∗) ≈ −208

• optimset sets the tolerance value in structure optionsQ

• qminQ contains the evaluation of f at the minimiser tminQ

• exitflagQ indicates the termination state

• outputQ has number of iterations and function evaluations
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Golden section and quadratic
interpolation (cont.)

The golden section and the quadratic interpolation
method are genuinely one-dimensional techniques

• They can be used to solve multidimensional optimisation
problems, provided they are restricted to the search of
optimisers along a given one dimensional direction
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Nelder and Mead
Derivative-free methods
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Nelder and Mead

Let n > 1 and f : Rn → R be a continuous function

Definition

The n-simplex with n+ 1 vertices xi ∈ Rn for i = 0, . . . , n is

S = {y ∈ R
n : y =

n
∑

i=0

λixi ,with λi ≥ 0 :
n

∑

i=0

λi = 1} (16)

Intrinsic assumption: Linearly independent vectors {(xi − x0)}ni=1

S is a segment in R, it is a triangle in R2 and a tetrahedron in R3
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Nelder and Mead (cont.)

The Nelder and Mead method is a derivative-free minimisation
method that generates a sequence of simplices {S (k)}k≥0 in Rn

• The simplices either run after or circumscribe
the minimiser x∗ ∈ Rn of the cost function f

The method uses the evaluations of f at the simplices’ vertices and
geometrical transformations (reflections, expansions, contractions)

• At the k-th iteration, the ‘worst’ vertice of simplex S (k) is

identified as x(k)M such that f (x(k)M ) = max
0≤i≤n

f (x(k)i ) and then

substituted with a new point at which f takes a smaller value

• The new point is obtained by reflecting, expanding or

contracting the simplex along the line joining x(k)M with
the centroid of the other vertices of the simplex

x(k)c =
1

n

n
∑

i=0
i ̸=M

x(k)i
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Nelder and Mead (cont.)

To generate the initial simplex S (0), we take a point x̃ ∈ Rn and a

positive real number η and we set x(0)i = x̃+ ηei with i = 1, . . . , n

• {ei} are the vectors of the standard basis in Rn

While k ≥ 0 and until convergence, select the ‘worst’ vertex of S (k)

x(k)M = max
0≤i≤n

f (x(k)i ) (17)

and then replace it by a new point to form the new simplex S (k+1)
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Nelder and Mead (cont.)

The new point is chosen by firstly selecting

x(k)m = min
0≤i≤n

f (x(k)i )

x(k)µ = max
a

f (x(k)i )
(18)

and secondly by defining the centroid point

x(k) =
1

n

n
∑

i=0
i ̸=M

x(k)i (19)

This is the centroid point of hyperplane H (k)

passing through the vertices {xi}ni=0
i ̸=M
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Nelder and Mead (cont.)

Thirdly, compute reflection x(k)α of x(k)M wrt hyperplane H (k)

x(k)α = (1− α)x(k) + αx(α)M (20)

with reflection coefficient α < 0 is typically set to be −1

Point x(k)α lies on the straight line joining points x(k) and x(k)M

• It is on the side of x(k) far from x(k)M
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Nelder and Mead (cont.)
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n = 2, the centroid is midpoint of edge of S (k) opposite to x(k)M
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Nelder and Mead (cont.)

We fourthly compare f (x(k)α ) with the values of f at the other

vertices of the simplex before accepting x(k)α as the new vertex

We also try to move x(k)α on the straight line joining

x(k) and x(k)M to set the new simplex S (k+1), as follows:

• If f (x(k)α ) < f (x(k)m ) (reflection produced a minimum), then

x(k)γ = (1− γ)x(k) + γx(k)M , with γ < −11 (21)

then, if f (x(k)γ ) < f (x(k)m ), replace xM by x(k)γ , otherwise

x(k)M is replaced by x(k)α

We then proceed by incrementing k by one

1with typically γ = −2
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Nelder and Mead (cont.)

• If f (x(k)m ) ≤ f (x(k)α ) < f (x(k)µ ), then x(k)M is replaced by x(k)α

and k is incremented by one

• If f (x(k)µ ) ≤ f (x(k)α )) < f (x(k)M ), we compute

x(k)β = (1− β)x(k) + βx(k)α , with β > 02 (22)

then, if f (x(k)β ) > f (x(k)M ) define the vertices S (k+1) by

x(k+1)
i =

1

2
(x(k) + x(k)m ) (23)

otherwise x(k)M is replaced by xβ
Then, we increment k

2with typically β = 1/2
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Nelder and Mead (cont.)

• If f (x(k)α ) > f (x(k)M ), we compute

xβ = (1− β)x(k) + βx(k)M , with β > 0 (24)

and if f (x(k)β ) > f (x(k)M ) define the vertices of S (k+1) by

Equation 23, otherwise we replace x(k)M with x(k)β

Then we increment k
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Nelder and Mead (cont.)

When the stopping criterion max
i=0,...,n

||x(k)i − x(k)m ||∞ < ε

is met, x(k)m is retained as approximation of the minimiser

Convergence is guaranteed in very special cases only

Stagnation may occur, algorithm needs to be restarted

• The algorithm is nevertheless quite robust
and efficient for small dimensional problems

• Its rate of convergence is severely affected
by the choice of the initials simplex
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Nelder and Mead (cont.)

Example

f (x1, x2) = 100(x2 − x21 )
2 + (1− x1)

2

The function is the The Rosenbrock function, it is often used
as testbench for efficiency and robustness of minimisation algos

• The global minimum is at x∗ = (1, 1), however its variation
around x∗ is low, making algorithms’ convergence problematic
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Nelder and Mead (cont.)
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Nelder and Mead (cont.)

The simplex method: The M-command is fminsearch

1 x_0 = [-1.2 ,+1.0];
2

3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;
4

5 xstar = fminsearch(fun,x_0)
6

7 xstar =
8 1.000022021783570 1.000042219751772

To obtain additional information on the minimum value of f ,
we can replace the second instruction with the expanded one

1 [xstar ,fval ,exitflag ,output] = fminsearch(fun,x_0)
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The Newton method
Numerical optimisation
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The Newton method

Assume f : Rn → R with n ≥ 1 of class C2(Rn) and we know
how to compute its first and second order partial derivatives

We can apply Newton’s method for the solution of the system
F(x) = ∇f (x) = 0, whose Jacobian matrix JF(x(k)) is the
Hessian matrix of f computed at the generic iteration point x(k)

Pseudocode

Given x(0) ∈ Rn, for k = 0, 1, . . . until convergence

Solve H(x(k))
︸ ︷︷ ︸

J
F(x(k))

δx(k) = −∇f (x(k))
︸ ︷︷ ︸

F(x(k))

Set x(k+1) = x(k) + δx(k)

(25)

A suitable stopping test is ||x(k+1) − x(k)|| ≤ ε, ε > 0 the tolerance
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The Newton method (cont.)

Remark

Consider the problem of finding the zero of f : [a, b] ⊂ R → R

Find α ∈ [a, b] such that f (α) = 0

Given the tangent to the function (x , f (x)) at some point x (k)

y(x) = f (x (k)) + f ′(x (k))(x − x (k))

and resolving for a point x (k+1) such that y(x (k+1)) = 0, we get

x (k+1) = x (k) −
f (x (k))

f ′(x (k))
, for k ≥ 0 and f ′(x (k)) ̸= 0
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The Newton method (cont.)

Remark

The sequence is the Newton’s method for finding the zero of a
function, and it reduces to locally substituting f with its tangent
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Remark

Consider the following set of nonlinear equations
⎧

⎪
⎪
⎨

⎪
⎪
⎩

f1(x1, x2, . . . , xn) = 0
...

fn(x1, x2, . . . , xn) = 0

Let f ≡ (f1, . . . , fn)T and x ≡ (x1, . . . , xn)T to get f(x) = 0

To extend the Newton’s method we replace the first derivative of
scalar function f with the Jacobian matrix Jf of vectorial function f

(Jf)ij ≡
∂fi
∂xj

, with i , j = 1, . . . , n

Pseudocode

Solve Jf(x
(k))δx(k) = −f(x(k))

Set x(k+1) = x(k) + δx(k)
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The Newton method (cont.)

1 function [x,res,iter] = sNWT(F_fun ,J_fun ,x_0,tol,imx,varargin )
2 %SNLENEWTON Approximates a root of a nonlinear system
3 % [ROOT ,RES,ITER]=NLSE(F_FUN ,J_FUN ,X_0,TOL,IMX) Calculate
4 % vector ROOT , the zero of a nonlinear system defined in
5 % F_FUN with Jacobian J_FUN , from initial point X_0
6 %
7 % RES is residual in ROOT and ITER is number of iterations
8 % F_FUN e J_FUN are external functions (as M-files)
9

10 iter = 0; err = 1 + tol; x = x_0;
11

12 while err >= tol & iter < imx
13 J = J_fun(x,varargin {:});
14 F = F_fun(x,varargin {:});
15 delta = -J\F;
16 x = x + delta;
17 err = norm(delta); iter = 1 + iter;
18 end
19

20 res = norm(F_fun(x,varargin {:}));
21

22 if(iter==imx & err > tol)
23 disp(’[Out by KMAX]’);
24 else
25 disp(’[Out by TOL]’));
26 end
27 return
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The Newton method (cont.)

1 function F = F_fun(x)
2 F(1,1) = F_1(x_1,x_2 ,...); % Add your own expression
3 F(2,1) = F_2(x_1,x_2 ,...); % Add your own expression
4 ...
5 F(N,1) = F_N(x_1,x_2 ,...); % Add your own expression
6

7 return

1 function J = J_fun(x)
2 J(1,1) = dF_1 / dx_1; % Add your own expression
3 J(1,2) = dF_1 / dx_2; % Add your own expression
4 ...
5

6 J(2,1) = dF_2 / dx_1; % Add your own expression
7 J(2,2) = dF_2 / dx_2; % Add your own expression
8 ...
9

10 J(N,1) = dF_N / dx_1; % Add your own expression
11 J(N,2) = dF_N / dx_2; % Add your own expression
12 ...
13

14 return
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Example

f (x) =
2

5
−

1

10
(5x21 + 5x22 + 3x1x2 − x1 − 2x2) exp (−(x21 + x22 ))

We want to approximate the global minimum x∗ ≈ (−0.63,−0.70)
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The Newton method (cont.)

Netwon’s method with a tolerance ε = 10−5

• If we choose x(0) = (−0.9,−0.9), then after 5 iterations the
method converges to x=[-0.63058;-0.70074]

• If we choose x(0) = (−1.0,−1.0), then after 400 iterations
the stop criterion still would not be fulfilled

Moreover, Newton’s method may converge to any
stationary point (not necessarily to a minimiser)

• With x(0) = (+0.5,−0.5), after 5 iterations the method
converges to the saddle point x=[0.80659; -0.54010]
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The Newton method (cont.)

Remark

A necessary condition for convergence of Newton’s method
is that x(0) should be sufficiently close to the minimiser x∗

• Reflects the local convergence property of the method

Remark

General convergence criterium for the Newton’s method

If f ∈ C2(Rn) with stationary point x∗, with positive definite
Hessian H(x∗), with Lipschitz continuous components of H(x)
in a neighbourhood of x∗ and for x(0) sufficiently close to x∗,
then the method converges quadratically to x∗
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The Newton method (cont.)

In spite of a simple implementation, the method is demanding
when n is large, as it requires the analytic expression of the
derivatives and, at each iteration, the computation of both
gradient and Hessian of f

• Let alone that x(0) has to be chosen near enough x∗

Remark

To design efficient and robust minimisation algorithms
combine locally with globally convergent methods

• Global convergence guarantees convergence to a stationary
point (not necessarily a global minimiser) for all x(0) ∈ Rn
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Line-search methods
Numerical optimisation
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Line-search methods

For simplicity, assume f ∈ C2(R) and bounded from below

Line-search or descent methods are iterative methods

• For every step k ≥ 0, point x(k+1) depends on point xk , on a
vector d(k) which in turn depends on the gradient ∇f (x(k)))
of f , and on a suitable step-length parameter αk ∈ R

Given an initial minimiser x(0) ∈ Rn, the method formulates as

Pseudocode

Find direction d(k) ∈ Rn

Compute step αk ∈ R

Set x(k+1) = x(k) + αkd(k)
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Line-search methods (cont.)

Definition

Vector d(k) must be a descent direction, so it satisfies conditions

d(k)∇f (x(k)) < 0, if ∇f (x(k)) ̸= 0

d(k) = 0, if ∇f (x(k)) = 0
(26)

In Rn, the gradient ∇f (x(k)) identifies the direction
with sign of maximum positive growth of f from x(k)

As d(k)∇f (x(k)) is the directional derivative of f along d(k)

• First condition ensures that we move along the opposite
direction of the gradient (towards the minimiser)
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Contour lines of function f (x) and its gradient evaluated at x(k)

• d(k) is a suitable descent direction
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Once d(k) is determined, the optimal value αk ∈ R is the
one that guarantees maximum variation of f along d(k)
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αk can be computed by solving a one-dimensional minimisation

• Minimise the restriction of f (x) along d(k)

• x(k)min is the minimiser along d(k)
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The computation of αk is quite involved when f is not quadratic

• There are alternative techniques aimed at approximating αk
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Descent directions
Line-search methods

Unconstrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Unconstrained
optimisation

Derivative-free
methods

Golden section and
quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length αk

Descent method with
Newton’s directions

Descent method with
quasi-Newton’s directions

Gradient and conjugate-
gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

Descent directions

• Newton’s directions

d(k) = −H−1(x(k))∇f (x(k)) (27)

Matrix H(x(k)) is the Hessian matrix at the k-th step

• Quasi-Newton directions

d(k) = −H−1
k ∇f (x(k)) (28)

Matrix Hk is an approximation of the true Hessian H(x(k)),
it is used when second derivatives are heavy to compute
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Descent directions (cont.)

• Gradient directions

d(k) = −∇f (x(k)) (29)

These are quasi-Newton directions, with Hk = I, ∀k ≥ 0

• Conjugate-gradient directions

d(0) = −∇f (x(0))

d(k+1) = −∇f (x(k+1)) + βkd
(k), k ≥ 0

(30)

Coefficients βk can be chosen according to different criteria
When f is quadratic, the descent directions correspond to
those of the conjugate-gradient method for linear systems
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Descent directions (cont.)

For all k ≥ 0, gradient directions are valid descent directions

d(k)∇f (x(k)) < 0, if ∇f (x(k)) ̸= 0

d(k) = 0, if ∇f (x(k)) = 0,
(31)

Newton’s and quasi Newton’s directions can be valid directions

• Only if H(x(k)) and Hk are positive definite matrices

Conjugate gradient directions are valid for suitable βk
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Example

f (x) =
2

5
−

1

10
(5x21 + 5x22 + 3x1x2 − x1 − 2x2) exp (−(x21 + x22 ))

Two local minimisers, one local maximiser and two saddle points
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We compare sequences {x(k)} generated by Newton’s method and

descent methods with various descent directions, from x(0)1 and x(0)2
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From x(0)1 = (0.5, 0.5)

Newton

descent Newton

descent grad

descent GC−PR

descent GC−FR

descent quasi−Newton

Newton

descent Newton

descent grad,

quasi−Newton, GC
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• Newton’s method converges rapidly towards the saddle point

• Newton’s directions take a first step identical to Newton’s
and then collapses due to a non-positive definite matrix Hk

• The others converge with different speeds into a local
minimum, fastest convergence by quasi-Newton’s directions
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From x(0)2 = (0.4, 0.5)

Newton

descent Newton

descent grad

descent GC−PR

descent GC−FR

descent quasi−Newton

Newton

descent Newton

descent grad,

quasi−Newton, GC
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• Newton’s method diverges, Newton’s directions converge to a
local minimum, though sharing the same first direction with it

• All others also converge to the same local minimiser
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Step-length αk
Line-search methods
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Step-length αk

Given a descent direction d(k), step-length αk has to be set st the
new iterate x(k+1) is (approximates) the minimiser of f along d(k)

Choose αk such that the minimisation is exact

αk = arg min
α∈R

f (x(k) + αd(k))

or

f (x(k) + αkd
(k)) = min

α∈R
f (x(k) + αd(k))

(32)
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Step-length αk (cont.)

A second-order Taylor expansion of f around x(k) yields

f (x(k) + αd(k)) = f (x(k)) + αd(k)∇f (x(k))

+
α2

2
d(k)TH(x(k))d(k)

+ o(||αd(k)||2)

(33)



Unconstrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Unconstrained
optimisation

Derivative-free
methods

Golden section and
quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length αk

Descent method with
Newton’s directions

Descent method with
quasi-Newton’s directions

Gradient and conjugate-
gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

Step-length αk (cont.)

Remark

In the special case in which f is a quadratic function

f (x) =
1

2
xTAx− xTb+ c

with A ∈ Rn×n symmetric and positive definite, b ∈ Rn and c ∈ R,
expansion in Eq. 33 is exact and the infinitesimal residual is null

As H(k) = A for every k ≥ 0 and ∇f (x(k)) = Ax(k) − b = −r(k),
by differentiating Eq. 33 wrt α and setting the derivative to zero

αk =
d(k)T r(k)

d(k)TAd(k)
(34)
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Step-length αk (cont.)

For gradient directions d(k) = −∇f (x(k)), we find d(k) = r(k)

• We obtain the gradient method for solving linear systems

Should direction dk be chosen according
to the conjugate-gradient, by setting

βk =
(Ad(k))T r(k+1)

d(k)TAd(k)
or βk =

d(k)TAr(k+1)

d(k)TAd(k)
(35)

we recover the conjugate-gradient for solving linear systems
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Step-length αk (cont.)

If f is a non-quadratic function, the computation of the optimal αk

requires an iterative method to solve the minimisation along d(k)

Remark

• Demanding and not worth it, stick with an approxinmation

An approximated value of αk can be chosen by requiring
that the new iterate x(k+1) = x(k) + αkd(k) ensures that

f (x(k+1)) < f (x(k)) (36)
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Step-length αk (cont.)

Example

A natural strategy would be to initially assign a large αk

and reduce it iteratively until f (x(k+1)) < f (x(k)) is satisfied

• Unfortunately, the strategy does not guarantee a
{xk} that converges to the desired minimiser x∗

A better criterium for αk > 0 is based on Wolfe’s conditions
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Step-length αk (cont.)

Definition

f (x(k) + αkd
(k)) ≤ f (x(k)) + σαkd

(k)T∇f (x(k))

d(k)T∇f (x(k) + αkd
(k)) ≥ δd(k)T∇f (x(k))

(37)

The two given constants σ and δ are such that 0 < σ < δ < 1

d(k)∇f (x(k)) is the directional derivative of f along direction dk

• First condition (Armijo’s rule) inhibits too small variations
of f with respect to step-length and directional derivative

• This is practically obtained by requiring changes in f to be
proportional to both step-length and directional derivative
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Step-length αk (cont.)

Definition

f (x(k) + αkd
(k)) ≤ f (x(k)) + σαkd

(k)T∇f (x(k))

d(k)T∇f (x(k) + αkd
(k)) ≥ δd(k)T∇f (x(k))

The two given constants σ and δ are such that 0 < σ < δ < 1

d(k)∇f (x(k)) is the directional derivative of f along direction dk

• Second condition states that at new point x(k) + αkd(k)

the value of the directional derivative of f should be δ
times larger than the same derivative at previous point x(k)

• Point x(k) + αkd(k) is a valid candidate if f at such point
decreases less than it does at x(k) (closer to a minimiser)
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Step-length αk (cont.)

The terms in the first of the two Wolfe’s conditions, for σ = 0.2

f (x(k) + αkd
(k)) ≤ f (x(k)) + σαkd

(k)T∇f (x(k))
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f(x(k) + αd
(k))

f(x(k)) + σα(d(k))T ∇f(x(k))

α

Condition is satisfied for α corresponding to the continuous line
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Step-length αk (cont.)

Lines with slope δd(k)T∇f (x(k)) in second condition, δ = 0.9

d(k)T∇f (x(k) + αkd
(k)) ≥ δd(k)T∇f (x(k))
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(d(k))T ∇f(x(k))

δ(d(k))T ∇f(x(k))

Condition is satisfied for α corresponding to the continuous line
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Step-length αk (cont.)

Wolfe’s conditions are jointly satisfied in the interval

0.23 ≤ α ≤ 0.41 or 0.62 ≤ α ≤ 0.77

That is, also far from the minimiser of f along d(k)

• Or when the directional derivative is large
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Step-length αk (cont.)

Definition

Wolfe’s strong conditions: More restrictive conditions

f (x(k) + αkd
(k)) ≤ f (x(k)) + σαkd

(k)T∇f (x(k))

|d(k)T∇f (x(k) + αkd
(k))| ≤ −δd(k)T∇f (x(k))

(38)

The first condition is unchanged, the second one
inhibits f from large variations about x(k) + αkd(k)
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Step-length αk (cont.)

Wolfe’s strong conditions are satisfied when α belongs to the
small intervals around the minimisers (thick continuous arcs)

• For σ = 0.2 and δ = 0.9
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slope= ±δ(d(k))T ∇f(x(k))

f(x(k)) + σα(d(k))T ∇f(x(k))

α
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Step-length αk (cont.)

Remark

It can be shown that if f ∈ C2(Rn) is bounded from below in
{x(k) + αd(k),α > 0} with d(k) a descent direction at x(k),
then for all σ and δ st 0 < σ < δ < 1 there exist non-empty
intervals of αk that satisfy Wolfe’s weak and strong conditions

In practice3, σ is usually chosen to be very small (e.g., σ = 104),
while typical values for δ are δ = 0.9 for Newton, quasi-Newton
and gradient directions, and δ = 0.1 for CG directions

3J. Nocedal and S. Wrigth (2006): Numerical optimization.
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Step-length αk (cont.)

A strategy for step lengths αk satisfying Wolfe’s conditions

• Backtracking: Start with α = 1 and then reduce it by a
given factor ρ (tipically, ρ ∈ [0.1, 0.5)) until the first condition
is satisfied

For x(k) and a direction d(k), for σ ∈ (0, 1) and ρ ∈ [0.1, 0.5)

Pseudocode

Set α = 1
while f (x(k) + αd(k)) > f (x(k)) + σαd(k)∇f (x(k))

α = ρα
end

Set αk = α

Second condition is never checked: Step lengths are not small
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Step-length αk (cont.)

1 function [x,alpha_k ]= bTrack(fun ,x_k ,g_k ,d_k,varargin )
2 %BTRACK Backtracking with line search
3 % [X,ALPHA_K ]=BTRACK(FUN,X_K,G_K ,D_K) x_{k+1}=x_k+alpha_k *d_k
4 % in the descent method, alpha_k by backtracking with
5 % sigma=1e-4 and rho=0.25
6 %
7 % [X,ALPHA_K ]=BTRACK(FUN,X_K,G_K ,D_K,SIGMA ,RHO) sigma and rho
8 % can be inputed - sigma in (1e-4 ,0.1) and rho in (0.1 ,0.5)
9 %

10 % FUN is the function handle of the objective function
11 % X_K is element x_k, G_K is the gradient , D_K is d_k
12

13 if nargin == 4
14 sigma = 1.0e-4; rho = 1/4;
15 else
16 sigma = varargin {1}; rho = varargin {2};
17 end
18

19 minAlpha = 1.0e-5; % Smallest steplength
20 alpha_k = 1.0; f_k = fun(x_k);
21

22 k = 0; x = x_k + alpha_k *d_k;
23 while fun(x) > f_k + sigma*alpha_k *g_k ’*d_k & alpha_k >

minAlpha
24 alpha_k = alpha_k *rho;
25 x = x_k + alpha_k *d_k; k = k+1;
26 end
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Step-length αk (cont.)

The descent method with various descent directions

• αk is determined by backtracking

1 %DSCENT Descent method of minimisation
2 %[X,ERR,ITER]=DSCENT(FUN,GRAD_FUN ,X_0,TOL,KMAX ,TYP,HESS_FUN )
3 % Approximates the minimiser of FUN using descent directions
4 % Newton (TYP=1), BFGS (TYP=2), GRADIENT (TYP=3), and the
5 % CONJUGATE -GRADIENT method with
6 % beta_k by Fletcher and Reeves (TYP=41)
7 % beta_k by Polak and Ribiere (TYP=42)
8 % beta_k by Hestenes and Stiefel (TYP=43)
9 %

10 % Step length is calculated using backtracking (bTrack.m)
11 %
12 % FUN, GRAD_FUN and HESS_FUN (TYP=1 only) are function handles
13 % for the objective , gradient and Hessian matrix
14 % With TYP=2, HESS_FUN approximates the exact Hessian at X_0
15 %
16 % TOL is the stop check tolerance
17 % KMAX is the maximum number of iteration
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1 function [x,err,iter]= dScent(fun ,grad_fun ,x_0,tol,kmax ,typ,
varargin )

2 if nargin >6; if typ==1; hess=varargin {1};
3 elseif typ==2; H=varargin {1}; end; end
4

5 err=tol+1; k=0; xk=x0(:); gk=grad(xk); dk=-gk; eps2=sqrt(eps);
6

7 while err >tol & k<kmax
8 if typ==1; H = hess_fun (xk); dk = -H\gk; % Newton
9 elseif typ==2; dk = -H\gk; % BFGS

10 elseif typ==3; dk = -gk; % Gradient
11 end
12 [xk1 ,alphak ]=bTrack(fun,xk,gk,dk);
13 gk1=grad_fun (xk1);
14 if typ==2 % BFGS update
15 yk = gk1-gk; sk = xk1-xk; yks = yk ’*sk;
16 if yks > eps2*norm(sk)*norm(yk)
17 Hs=H*sk; H=H+(yk*yk ’)/yks -(Hs*Hs ’)/(sk ’*Hs);
18 end
19 elseif typ >=40 % CG upgrade
20 if typ==41; betak=(gk1 ’*gk1)/(gk ’*gk); % FR
21 elseif typ==42; betak=(gk1 ’*(gk1 -gk))/(gk ’*gk); % PR
22 elseif typ==43; betak=(gk1 ’*(gk1 -gk))/(dk ’*(gk1-gk)); % HS
23 end
24 dk = -gk1 + betak*dk;
25 end
26 xk = xk1; gk = gk1; k = 1 + k; xkt = xk1;
27 for i=1:length(xk1); xkt(i) = max([abs(xk1(i)) ,1]); end
28 err = norm((gk1.*xkt)/max([abs(fun(xk1)) ,1]),Inf);
29 end
30 x = xk; iter = k;
31 if (k==kmax & err>tol); disp(’[KMAX]’); end
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Descent method with Newton’s directions

A f ∈ C2(Rn) bounded from below and the descent method

Pseudocode

Find direction d(k) ∈ Rn

Compute step αk ∈ R

Set x(k+1) = x(k) + αkd(k)

• Newton directions d(k) = −H−1(x(k))∇f (x(k))

• Wolfe step lengths αk

f (x(k) + αkd
(k)) ≤ f (x(k)) + σαkd

(k)T∇f (x(k))

d(k)T∇f (x(k) + αkd
(k)) ≥ δd(k)T∇f (x(k))
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Descent method with Newton’s directions
(cont.)

Assume that for every k ≥ 0, the Hessian H(x(k)) is symmetric
(from the assumption on f ) and that it is also positive definite

Let Bk = H(x(k))

Suppose that ∃M > 0 : K (Bk) = ||Bk ||||B−1
k || ≤ M with k ≥ 0

• K (Bk) is the spectral condition number of Bk

Under such conditions, the sequence {x(k)} by Newton
method converges to a stationary point x∗ of f

• By letting αk = 1 for k ≥ k, the converge is quadratic
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Descent method with Newton’s directions
(cont.)

Definition

Given a matrix A ∈ Rn×n, consider the problem of finding a scalar
λ (complex or real) and a non-null vector x ∈ Cn such that

Ax = λx

Any λ that satisfy the equation above is an eigenvalue of A

• x is the corresponding eigenvector

Definition

The spectral condition number of A is the quantity

K (A) =
λmax

λmin
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Descent method with Newton’s directions
(cont.)

Remark

Since Hessians are positive definite, stationary point x∗ cannot be
a maximiser or a saddle point and must necessarily be a minimiser

• However, if H(x(k)) is not positive definite for some point
x(k), then d(k) may not be a descent direction and Wolfe’s
conditions might become meaningless

In such situations, the Hessian is replaced by Bk = H(x(k)) + Ek

for some suitable matrix Ek (either diagonal or full) such that Bk

is positive definite and d(k) = −B−1
k ∇f (x(k)) is a valid direction
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Descent method with quasi-Newton

When using quasi-Newton directions d(k) = −H−1
k ∇f (x(k)), we

need to define an approximation Hk of the true Hessian H(x(k))

Given a symmetric and positive definite matrix H0, the recursive
Broyden’s rank-one update for nonlinear systems is popular
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Descent method with quasi-Newton’s
directions (cont.)

Matrices Hk are required the following

• To satisfy the secant condition

Hk+1(x
(k+1) − x(k)) = ∇f (x(k+1))−∇f (xk)

• To be symmetric, as H(x)

• To be positive definite to guarantee that
vectors d(k) are descent directions

• To satisfy the condition

lim
k→∞

||(Hk −H(x∗))d(k)||
||d(k)||

= 0,

which ensures that Hk is a good approximation of
H(x∗) along the descent direction d(k) and guarantees
a super-linear rate of convergence
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Descent method with quasi-Newton’s
directions (cont.)

Definition

A strategy by Broyden, Fletcher, Goldfarb and Shanno (BFGS)

Hk+1 = Hk +
y(k)y(k)

T

x(k)T s(k)
−

Hks(k)s(k)
T

HT
k

s(k)THks(k)
(39)

where s(k) = (x(k+1) − x(k)) and yk = (∇f (x(k+1))−∇f (x(k)))

Matrices Hk+1 are symmetric and positive definite under condition

y(k)
T

s(s) > 0

It is satisfied when step lengths αk are either weak or strong Wolfe
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Descent method with quasi-Newton’s
directions (cont.)

BFGS is a thus a descent method, as generally implemented by

Pseudocode

Find direction d(k) ∈ Rn

Compute step αk ∈ R

Set x(k+1) = x(k) + αkd(k)
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Descent method with quasi-Newton’s
directions (cont.)

For a given x0 and a suitable symmetric and positive definite
matrix H0 ∈ Rn×n that approximates H(x(0)), for k = 0, 1, . . .

Pseudocode

Solve Hkd(k) = −∇f(x(k))
Compute αk that satisfies Wolfe’s conditions
Set

x(k+1) = x(k) + αkd
(k)

s(k) = x(k+1) − x(k)

y(k) = ∇f (x(k+1))−∇f (x(k))

Compute Hk+1 = Hk +
y(k)y(k)

T

x(k)T s(k)
−

Hks(k)s(k)
T

HT
k

s(k)THks(k)
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Descent method with quasi-Newton’s
directions (cont.)

Example

Rosenbrock: f (x) = (1− x1)2 + 100(x2 − x21 )
2, for a ε = 10−6

1 x_0 = [+1.2; -1.0];
2

3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;
4

5 options = optimset (’LargeScale’,’off’); % Switches to BFGS
6 [xstar ,fval ,exitflag ,output] = fminunc (fun ,x_0,options )

Convergence after 24 iterations and 93 function evaluations

We did not input an expression for evaluating the gradient

• It was, silently, approximated using finite difference methods
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Descent method with quasi-Newton’s
directions (cont.)

We can define and input the analytical gradient expression

1 x_0 = [+1.2; -1.0];
2

3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;
4 grad_fun = @(x)[ -400*(x(2)-x(1)^2)*x(1) -2*(1-x(1)); ...
5 +200*(x(2)-x(1)^2)];
6

7 options = optimset (’LargeScale’,’off’,’GradObj ’,’on’);
8 [xstar ,fval ,exitflag ,output] = fminunc ({fun,grad_fun } ,...
9 x_0,options )

Convergence after 25 iterations and 32 function evaluations
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Descent method with quasi-Newton’s
directions (cont.)

Remark

In Octave, BFGS is implemented by the M-command bfgsmin

• M-command fminunc implements a trust-region method
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Gradient and
conjugate-gradient

directions
Line-search methods
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Gradient and conjugate-gradient

Let us first consider the general descent method

Pseudocode

Find direction d(k) ∈ Rn

Compute step αk ∈ R

Set x(k+1) = x(k) + αkd(k)

with gradient (descent) directions d(k) = −∇f (x(k))

If f ∈ C2(Rn) is bounded from below and step lengths αk are
Wolfe, this method converges (linearly) to a stationary point
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Gradient and conjugate-gradient
directions (cont.)

Let us now consider conjugate directions,

d(0) = −∇f (x(0))

d(k+1) = −∇f (x(k+1))− βkd
(k), k ≥ 0

several options for setting βk are available
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Gradient and conjugate-gradient
directions (cont.)

• Fletcher-Reeves

βFR
k = −

||∇f (x(k))||2

||∇f (x(k−1))||2
(40)

• Polak-Ribière (-Polyak)

βPR
k = −

∇f (x(k))T (∇f (x(k))−∇f (x(k−1)))

||∇f (x(k−1))||2
(41)

• Hestenes-Stiefel

βHS
k = −

∇f (x(k))T (∇f (x(k))T −∇f (x(k−1)))

d(k−1)T (∇f (x(k))−∇f (x(k−1)))
(42)
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Gradient and conjugate-gradient
directions (cont.)

Remark

Under the condition that f is quadratic and strictly convex,
all the aforementioned options are equivalent and reduce to

βk =
(Ad(k))T r(k+1)

d(k)TAd(k)

Unconstrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Unconstrained
optimisation

Derivative-free
methods

Golden section and
quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length αk

Descent method with
Newton’s directions

Descent method with
quasi-Newton’s directions

Gradient and conjugate-
gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

Trust-region methods
Numerical optimisation
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Trust-region methods

Line search methods are designed to determine first the descent
direction d(k) first and then the step-length αk , at any k-th step

Trust-region methods simultaneously choose direction and step
length, by building a trust ball centred at x(k) and of radius δk

• In the trust region, compute a quadratic approximation f̃k of f

The new value of x(k+1) is the minimiser of f̃k in the trust region
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Trust-region methods (cont.)
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Trust-region methods (cont.)

To compute f̃k , we start with a trust radius δk > 0
and a second-order Taylor expansion of f about x(k)

f̃k(s) = f (x(k)) + s∇f (x(k)) +
1

2
sTHks, ∀s ∈ R

n (43)

Hk is either the Hessian of f at x(k) or a suitable approximation

We then compute the solution s(k)

s(k) = arg min
s∈Rn:||s||≤δk

f̃k(s) (44)

At this stage, we also compute

ρk =
f (x(k) + s(k))− f (x(k))

f̃k(s(k))− f̃k (0)
(45)
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Trust-region methods (cont.)

• If ρk is approximately one, we accept s(k), we move on to
the next iteration and set x(k+1) = x(k) + s(k) (however, if
the minimiser of f̃k lie on the boundary of the trust region
, we extend the latter before proceeding to next iteration)

• If ρk is either negative or positive and much smaller than
one), we reduce the ball’s size and we calculate a new s(k)

s(k) = arg min
s∈Rn:||s||≤δk

f̃k(s)

• If ρk is much larger than one, we accept s(k), we keep the
trust region as it is and then we move to the next iteration
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Trust-region methods (cont.)

Remark

When the second derivative of f are available, we can set Hk to
be equal to the Hessian (or a variant, if not positive definite)

• Otherwise, Hk can be built recursively
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Trust-region methods (cont.)

If Hk is symmetric positive definite and ||H−1
k ∇f (x(k))|| ≤ δk then

s(k) = H−1
k ∇f (x(k)) is a minimiser and it is within the trust region

• Otherwise, the minimiser of f̃k lies outside the trust region

It is a minimisation of f̃k constrained to the δk -ball centred at x(k)

min
s∈Rn:||s||=δk

f̃k (s) (46)

which can be solved using Lagrange multipliers
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Trust-region methods (cont.)

We look for the saddle point of the Lagrangian

L(s,λ) = f̃k(s) +
1

2
λ(sT s− δk)

So, a vector s(k) and a scalar λ(k) > 0 satisfying

(Hk + λ(k)I)s(k) = −∇f (x(k))

(Hk + λ(k)I) is PSD

||s(k)||− δk = 0

(47)

is what we are after in this minimisation task
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Trust-region methods (cont.)

From (Hk + λ(k)I)s(k) = −∇f (x(k)), we compute s(k) = s(k)(λ(k))

We substitute it in ||s(k)||− δk = 0 to get

ϕ(λ(k)) =
1

||s(k)(λ(k))||
−

1

δk
= 0

Alone, this non-linear equation in the unknown λ is equivalent
to System 47 and can be easily solved using Newton’s method
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Trust-region methods (cont.)

Given λ0 and set g(k) = ∇f (x(k))

Pseudocode

For l = 0, 1, . . . (typically, less than 5 iterations are needed)

Compute s(k)l = −(Hk + λ(k)
l I)−1g(k)

Evaluate ϕ(λ(k)
l ) =

1

||s(k)l ||
−

1

δk

Evaluate ϕ′(λ(k)
l )

Compute λ(k)
l+1 = λ(k)

l −
ϕλ(k)

l

ϕ′(λ(k)
l )
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Trust-region methods (cont.)

Vector s(k)l is obtained by Cholesky factorisation of (Hk + λ(k)
l I)

• Provided that matrix B(k) = Hk + λ(k)
l I is positive definite

• B(k) is symmetric (definition of Hk)

• Its eigenvalues are all real

Remark

Usually, a regularised matrix B(k)
l + βI is used instead of B(k)

• β is chosen to be larger than the negative
eigenvalue of B(k) with largest modulus
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Trust-region methods (cont.)

Definition

Cholesky factorisation

Let A ∈ Rn×n be a symmetric and positive definite matrix

A = RTR

R is upper triangular with positive elements on the diagonal
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Trust region methods (cont.)

For g(k) = ∇f (x(k)) and for a given δk ,

Pseudocode

Solve Hks = −g(k) (means s = −H(−1)
k g(k))

If ||s|| ≤ δk and Hk is positive definite
Set s(k) = s

else
Let β1 be the negative eigenvalue of Hk with largest modulus

Set λ(k)
0 = 2|β1|

For l = 0, 1, . . .

Compute R : RTR = Hk + λ(k)
l I

Solve RTRs = g(k), RTq = s

Update λ(k)
l+1 = λ(k)

l +
( ||s||
||q||

)2 ||s||− δk
δk

Set s(k) = s
endif
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Trust-region methods (cont.)

For a fast convergence, a good radius δk is truly fundamental

The criterion for accepting a solution s(k) is based on a comparison
between variation of f and that of its quadratic approximation f̃k

• as x(k) moves to x(k) + s(k)

ρk =
f (x(k) + s(k))− f (x(k))

f̃k(s(k))− f̃k (0)

Remark

• If ρk ≈ 1, s(k) is accepted and the ball is enlarged,
if the minimum is on the boundary

• If ρk ≈ 0 or ρk < 0, s(k) is not accepted and
the ball is diminished
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Trust-region methods (cont.)

Given an initial solution x(0), an initial radius of the ball δ0 ∈ (0, δ̂)
with maximum radius δ̂ > 0, four real parameters {η1, η2, γ1, γ2}
such that 0 < η1 < η2 < 1 and 0 < γ1 < 1 < γ2 for updating the
ball and a real parameter 0 ≤ µ ≤ η1 for accepting a solution, ...
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Trust-region methods (cont.)

... for k = 0, 1, . . . until convergence

Pseudocode

Compute f (x(k)), ∇f (x(k)) and Hk

Solve min
||s∈Rn:s||2≤δk

f̃k (s)

Compute ρk
If ρk > µ

Set x(x+1) = x(k) + s(k)

else
Set x(k+1) = x(k)

endif
If ρk < η1

Set δk+1 = γ1δk
elseif η1 ≤ ρk ≤ η2

Set δk+1 = δk
elseif ρk > η2 and ||s(k)|| = δk

Set δk+1 = min{γ2δk , δ̂}
endif
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Trust-region methods (cont.)

Choice of parameters4: η1 = 1/4, η2 = 3/4, γ1 = 1/4, γ2 = 8/4

• By choosing µ = 0 we accept any step yielding a decrease of f

• By choosing µ > 0 we accept steps for which the variation of
f is at least µ times the variation of its quadratic model f̃k

4J. Nocedal and S. Wrigth (2006): Numerical optimization.
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Trust-region methods (cont.)

1 %TREGION Trust region optimisation method
2 %[X,ERR,ITER]=TREGION (FUN,GRAD_FUN ,X_0,DELTA_0 , ...
3 % TOL,KMAX ,TYP,HESS_FUN )
4 % Approximates the minimiser of FUN with gradient GRAD_FUN
5 %
6 % If TYP=1 Hessian is inputed as HESS_FUN
7 % If TYP NE 1 Hessian is rank -one approximated
8 %
9 % FUN and GRAD_FUN (and HESS_FUN ) are function handles

10 % X_0 is the initial point
11 % TOL is stop check tolerance
12 % DELTA_0 is initial radius of trust ball
13 % KMAX are maximum number of iterations
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1 function [x,err,iter]= tRegion (fun ,grad_fun ,x_0,delta_0 , ...
2 tol ,kmax ,typ,hess_fun )
3

4 delta = delta_0 ; err = 1 + tol; k = 0; mu = 0.1; delta_m = 5;
5 eta_1 = 0.25; eta_2 = 0.75; gamma_1 = 0.25; gamma_2 = 2.00;
6

7 xk = x_0(:); gk = grad_fun (xk); eps2 = sqrt(eps);
8 if typ==1; Hk=hess_fun (xk); else; Hk=eye(length(xk)); end
9

10 while err > tol & k < kmax
11 [s]=trust_one(Hk,gk,delta);
12 rho=(fun(xk+s)-fun(xk))/(s’*gk+1/2*s’*Hk*s);
13 if rho > mu; xk1 = xk + s; else; xk1 = xk; end
14 if rho < eta_1; delta = gamma_1 *delta;
15 elseif rho > eta_2 & abs(norm(s)-delta) < sqrt(eps)
16 delta=min([gamma_2 *delta ,delta_m ]);
17 end
18 gk1 = grad_fun (xk1);
19 err = norm((gk1.*xk1)/max([abs(fun(xk1)) ,1]),Inf);
20 if typ == 1; xk = xk1; gk = gk1; Hk = hess_fun (xk); % Newton
21 else % quasi -Newton
22 gk1 = grad(xk1); yk = gk1-gk; sk=xk1 -xk; yks = yk ’*sk;
23 if yks > eps_2*norm(sk)*norm(yk)
24 Hs = Hk*sk; Hk = Hk+(yk*yk ’)/yks -(Hs*Hs ’)/(sk ’*Hs);
25 end
26 xk = xk1; gk = gk1;
27 end
28 k=k+1;
29 end
30

31 x = xk; iter = k;
32 if (k==kmax & err>tol); disp(’Accuracy not met [KMAX]’); end
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Trust-region methods (cont.)

1 function [s] = trust_one (Hk ,gk,delta)
2 maxiter =5;
3

4 s = -Hk\gk; d = eigs(Hk ,1,’sa’); % 1st smallest algebraic
evalue

5

6 if norm(s) > delta | d<0
7 lambda = abs(2*d); I = eye(size(Hk));
8 for l=1:maxiter
9 R = chol(lambda*I+Hk);

10 s = -R\(R’\gk); q = R’\s;
11 lambda = lambda +(s’*s)/(q’*q)*(norm(s)-delta)/delta;
12 if lambda < -d
13 lambda = abs(2*lambda);
14 end
15 end
16 end
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Trust-region methods (cont.)

Example

Approximate the minimiser of function

f (x1, x2) =
7

5
+

(x1 + 2x2 + 2x1x2 − 5x21 − 5x22 )

(5 exp (x21 + x22 ))

using the trust-region method

A local maximum, a saddle point and two local minima at approx.
(−1.0,+0.2) and (+0.3,−0.9), the second being the global one
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Trust region methods (cont.)

1 fun = @(x) (x(1)+2*x(2)+2*x(1)*x(2) -5*x(1)^2-5*x(2)^2) / ...
2 (5*exp(x(1)^2+x(2)^2)) + 7.5;
3

4 grad_fun = @(x) [(1 + 2*x(2) -10*x(1) -2*x(1)*(x(1)+2*x(2) + ...
5 2*x(1)*x(2) -5*x(1)^2-5*x(2)^2)) / ...
6 (5*exp(x(1)^2+x (2)^2));
7 (2 + 2*x(1) -10*x(2) -2*x(2)*(x(1)+2*x(2) + ...
8 2*x(1)*x(2) -5*x(1)^2-5*x(2)^2)) / ...
9 (5*exp(x(1)^2+x(2)^2))];

10

11 delta_0 = 0.5; x_0 = [0.0;0.5];
12 tol = 1e-5; kmax = 100; imax=5;
13 typ = 2;
14

15 [x,er,it]=tRegion (fun,grad_fun ,x_0 ,delta_0 ,tol,kmax ,typ,imax)
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Trust-region methods (cont.)

Trust-region, approx. Hessian: 24 iters, x∗ ≈ (+0.28,−0.90)
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Trust-region methods (cont.)

Trust-region, exact Hessian: 12 iterations
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Trust region methods (cont.)

Example

Rosenbrock’s function: f (x) = 100(x2 − x21 )
2 + (1 − x1)2

1 fun = @(x) (1-x(1))^2+100*( x(2)-x(1)^2)^2;
2 grad_fun = @(x)[ -400*(x(2)-x(1)^2)*x(1) -2*(1-x(1)); ...
3 200*(x(2)-x(1)^2)];
4

5 x_0=[+1.2; -1.0];
6

7 options = optimset (’LargeScale’,’on’); % Trust -region
8 options = optimset (’GradObj ’,’on’); % Gradient
9

10 [x,fval ,exitflag ,output ]= fminunc ({fun ,grad_fun },x_0,options)

Trust-region (Matlab): 8 iterations, 9 function evaluations
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Trust-region methods (cont.)

Remark

The M-command fminunc in Octave implements the trust region
method with approximated Hessians Hk , computed with BFGS

Hk+1 = Hk +
y(k)y(k)

T

x(k)T s(k)
−

Hks(k)s(k)
T

HT
k

s(k)THks(k)

The option ’LargeScale’ is not used
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Non-linear least-squares
Numerical optimisation
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Non-linear least-squares

The least-squares method is often used for approximating either
functions f (x) or sets of data {(xk , yk ), k = 0, . . . ,K} by function
f̃ linearly depending on a set of coefficients {aj , j = 1, . . . ,m}

Example

f̃ (x) = a0 + a1x + a2x
2 + · · ·+ amx

m

The coefficients {ai}mi=0 are unknown and must be determined

K
∑

k=0

(

yk − f̃ (xk)
)2

• Non-linear least-squares refers to problems
in which such a dependence is non-linear
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Non-linear least-squares(cont.)

Definition

Let R(x) = (r1(x), . . . , rn(x))T with ri : Rm → R be some function

min
x∈Rm

Φ(x), with Φ(x) =
1

2
||R(x)||2 =

1

2

n
∑

i=1

r2i (x) (48)

When functions ri are non-linear, function Φ may not be convex

• Thus, have multiple stationary points

Newton, descent directions, trust-region methods can be used
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Non-linear least-squares(cont.)

Because of the form of Φ, gradient and Hessian can be written in
terms of the Jacobian JR(x) ∈ Rn×m and second derivatives of R

∇Φ(x) = JR(x)
TR(x)

H(x) = JR(x)
TJR(x) + S(x)

(49)

in which Slj(x) =
∑n

i=1

∂2ri

∂xl∂xj
(x)ri (x)ri (x) for l , j = 1, . . . ,m

Unconstrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Unconstrained
optimisation

Derivative-free
methods

Golden section and
quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length αk

Descent method with
Newton’s directions

Descent method with
quasi-Newton’s directions

Gradient and conjugate-
gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

Non-linear least-squares(cont.)

Calculation of the Hessian can be heavy when m and n are large

• This is especially due to matrix S(x)

In some cases S(x) is less influent than JR(x)TJR(x) and could be
approximated or neglected in the construction of the Hessian H(x)

We discuss two methods devoted to handling such cases

Unconstrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Unconstrained
optimisation

Derivative-free
methods

Golden section and
quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length αk

Descent method with
Newton’s directions

Descent method with
quasi-Newton’s directions

Gradient and conjugate-
gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

Gauss-Newton method
Nonlinear least-squares
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The Gauss-Newton method

The Gauss-Newton method is a variant of the Newton method

Given x(0) ∈ Rn, for k = 0, 1, . . . until convergence

Pseudocode

Solve H(x(k))δx(k) = −∇f (x(k))

Set x(k+1) = x(k) + δx(k)

The Hessian H(x) is approximated by neglecting S(x)
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The Gauss-Newton method (cont.)

Given x(0) ∈ Rm and for k = 0, 1, . . . until the convergence

Pseudocode

Solve [JR(xk)TJR(x(k))]δx(k) = −JR(x(k))TR(x(k))

Set x(k+1) = x(k) + δx(k)

If JR(x(k)) is not full rank, the linear system in the first equation
has infinitely many solutions leading either to a stagnation of the
method or to convergence to a non-stationary point

If JR(x(k)) is full rank, the linear system has form ATAx∗ = ATb
and it can be solved by using QR or SVD factorisations of JR(x)
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The Gauss-Newton method (cont.)

1 function [x,err,iter]= nllsGauNewtn(r,jr,x_0,tol,kmax ,varargin )
2 %NLLSGAUNEW Nonlinear least -squares with Gauss -Newton method
3 % [X,ERR,ITER]= NLLSGAUNEW(R,JR,X_0,TOL,KMAX)
4 % R and JR: Function handles for objective R and its Jacobian
5 % X_0 is the initial solution
6 % TOL is the stop check tolerance
7 % KMAX is the max number of iterations
8

9 err = 1 + tol; k = 0;
10 xk = x_0(:);
11

12 rk = r(xk,varargin {:}); jrk = jr(xk,varargin {:});
13

14 while err > tol & k < kmax
15 [Q,R] = qr(jrk ,0); dk = -R\(Q’*rk);
16 xk1 = xk + dk;
17 rk1 = r(xk1,varargin {:});
18 jrk1 = jr(xk1,varargin {:});
19

20 k = 1 + k; err = norm(xk1 - xk);
21 xk = xk1; rk = rk1; jrk = jrk1;
22 end
23

24 x = xk; iter = k;
25

26 if (k==kmax & err > tol)
27 disp(’nllsGauNewtn stopped w\o reaching accuracy [KMAX]’);
28 end

Unconstrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Unconstrained
optimisation

Derivative-free
methods

Golden section and
quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length αk

Descent method with
Newton’s directions

Descent method with
quasi-Newton’s directions

Gradient and conjugate-
gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

The Gauss-Newton method (cont.)

Remark

It can be shown that neglecting S(x(k)) at step k amounts to
approximating R(x) with its first-order Taylor expansion at x∗

R̃k(x) = R(x(k)) + JR(x
(k))(x− x(k)) (50)
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The Gauss-Newton method (cont.)

Convergence of the method is not always guaranteed as
it depends on both properties of Φ and initial solution

If x∗ is stationary point for Φ and JR(x) is full
rank in a suitable neighbourhood of x∗, then

1 If S(x∗) = 0, which is the case if R(x) is linear or R(x∗) = 0,
the Gauss-Newton method is locally quadratically convergent
and it coincides with the Newton’s method

2 If ||S(x∗)||2 is small compared to the smallest positive e-value
of JR(x∗)TJR(x∗), then Gauss-Newton converges linearly (for
instance, when R(x) is mildly non-linear or R(x∗) is small)

3 If ||S(x)||2 is large compared to the smallest positive e-value
of JR(x∗)TJR(x∗), then Gauss-Newton may not converge
even if x(0) is very close to x∗ (this happens if R(x) is strongly
non-linear or if its residual R(x∗) is large)
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The Gauss-Newton method (cont.)

Remark

Line-search can be used in combination with Gauss-Newton by
replacing x(k+1) = x(k) + δx(k) with x(k+1) = x(k) + αkδx(k)

• Computation of step-lengths αk is as per usual

If JR(x(k)) is full rank, matrix JR(x(k))TJR(x(k)) is symmetric
and positive definite and δx(k) is a descent direction for Φ

In this case, under suitable assumptions on Φ, we get the globally
convergent method known as damped Gauss-Newton method
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Example

Voice recognition: Compress an audio signal to a set of parameters
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The signal intensity is modelled as a sum of m Gaussian functions

fk(t|ak ,σk ) =
1

√

2πσ2
k

exp
(

−
(t − ak)2

2σ2
k

)

, t ∈ [t0, tF ], k = 1, . . . ,m
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The Gauss-Newton method (cont.)
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Each peak or component is characterised by two coefficients

• The centre, ak
• The (square of the) spread, σ2

k

f (t|a,σ) =
m
∑

k=1

fk (t; ak ,σk)
• a = [a1, · · · , ak ]
• σ = [σ1, · · · ,σk ]
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The Gauss-Newton method (cont.)

Find a and σ that minimise the residual sum of squares

min
a,σ

n
∑

i=1

(

f (ti |a,σ)− yi

)2

From recorded audio intensities yi at sampling times ti
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The Gauss-Newton method (cont.)

Generate n = 2000 time-intensity pairs (ti , yi )ni=1 with ti ∈ (0, 10)

• By summing 5 Gaussian components

fk(t|ak ,σk ) =
1

√

2πσ2
k

exp
(

−
(t − ak)2

(2σ2
k )

)

• and by adding little random noise

1 a = [2.30, 3.25, 4.82, 5.30, 6.60]; m = length(a);
2 sigma = [0.20, 0.34, 0.50, 0.23, 0.39];
3

4 gComp = @(t,a,sigma) exp(-((t-a)/(sigma*sqrt(2))).^2)/ ...
5 (sigma*sqrt(pi*2));
6

7 n = 2000; t = linspace (0,10,n)’; y = zeros(n,1);
8 for k=1:m
9 y = y + gComp(t,a(k),sigma(k));

10 end
11

12 y = y + 0.05* randn(n,1); % Additive random noise

Unconstrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Unconstrained
optimisation

Derivative-free
methods

Golden section and
quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length αk

Descent method with
Newton’s directions

Descent method with
quasi-Newton’s directions

Gradient and conjugate-
gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

The Gauss-Newton method (cont.)

We want to solve the nonlinear least-squares problem of form

min
x∈Rm

Φ(x), with Φ(x) =
1

2
||R(x)||2 =

1

2

n
∑

i=1

r2i (x)

in which ri (x) = f (ti |a,σ)− yi =
∑m

k=1 fk (ti |ak ,σk)− yi and

∂ri
∂ak

= fk(ti |ak ,σk)
ti − ak

σk

∂ri
∂σk

= fk(ti |ak ,σk)[
(ti − ak)2

σ3
k

−
1

2σk
]
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The Gauss-Newton method (cont.)

Using the M-command nllsGauNewtn

1 x_0 = [2.0,3.0,4.0 ,5.0,6.0 ,0.3,0.3,0.6 ,0.3,0.3];
2

3 tol = 3.0e-5;
4 kmax = 200;
5

6 [x,err ,iter]= nllsGauNew(@gmR ,@gmJR ,x_0 ,tol ,kmax ,t,y)
7

8 x_a = x(1:m);
9 x_sigma = x(m+1:end);

10

11 h = 1./(x_sigma *sqrt(2*pi));
12 w = 2*x_sigma *sqrt(log(4));

Gauss-Newton: 22 iterations
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The Gauss-Newton method (cont.)

1 function [R]=gmR(x,t,y)
2

3 x = x(:); m = round (0.5* length(x));
4 a = x(1:m); sigma = x(m+1: end );
5

6 gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ...
7 /(sigma*sqrt(pi*2))];
8

9 n = length(t); R = zeros(n,1);
10 for k = 1:m; R = R + gauFun(t,a(k),sigma(k)); end
11 R = R - y;

1 function [Jr]=gmJR(x,t,y)
2 x = x(:); m = round (0.5* length(x));
3 a = x(1:m); sigma = x(m+1: end);
4

5 gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ...
6 /(sigma*sqrt(pi*2))];
7

8 n = length(t); JR = zeros(n,2*m); fk = zeros(n,m);
9 for k = 1:m; fk(:,k) = gauFun(t,a(k),sigma(k)); end

10 for k = 1:m; JR(:,k) = (fk(:,k).*(t-a(k))/sigma(k)^2)’; end
11 for k = 1:m
12 JR(:,k+m) = (fk(:,k).*((t-a(k)).^2/(k)^3-1/(2*sigma(k)))) ’;
13 end



Unconstrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Unconstrained
optimisation

Derivative-free
methods

Golden section and
quadratic interpolation

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length αk

Descent method with
Newton’s directions

Descent method with
quasi-Newton’s directions

Gradient and conjugate-
gradient descent directions

Trust-region methods

Nonlinear least-squares

The Gauss-Newton method

Levenberg-Marquardt

Levenberg-Marquardt
Nonlinear least-squares
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Levenberg-Marquardt

Levenberg-Marquardt is a trust-region method for

min
x∈Rm

f (x), with f (x) =
1

2
||R(x)||2 =

1

2

n
∑

i=1

r2i (x)

We can use the general trust-region pseudocode
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Levenberg-Marquardt (cont.)

Pseudocode

Compute f (x(k)), ∇f (x(k)) and Hk

Solve min
||s||2≤δk

f̃k (s)

Compute ρk
If ρk > µ

Set x(x+1) = x(k) + s(k)

else
Set x(k+1) = x(k)

endif
If ρk < η1

Set δk+1 = γ1δk
elseif η1 ≤ ρk ≤ η2

Set δk+1 = δk
elseif ρk > η2 and ||s(k)|| = δk

Set δk+1 = min{γ2δk , δ̂}
endif
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Levenberg-Marquardt (cont.)

After replacing f with Φ and f̃ with Φ̃, at each step k we solve

min
s∈Rn:||s||≤δk

Φ̃k(s), with Φ̃k(s) =
1

2
||R(x(k)) + JR(x

(k))s||2 (51)

Note how Φ̃k(x) is a quadratic approximation of Φ(x) about x(k)

• It is obtained by approximating R(x) with its linear model

R̃k(x) = R(x(k)) + JR(x
(k))(x− x(k))
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Levenberg-Marquardt (cont.)

Even when JR(x) is not full rank, the method is well suited for
minimisation problems with strong non-linearities or large residuals

Φ(x∗) =
1

2
||R(x∗))||2 at the local minimiser x∗

Remark

Hessian approximations are those of the Gauss-Newton method,
the two methods share the same local convergence properties

• When Levenberg-Marquardt iterations converge, convergence
rate is quadratic if the residual is small at a local minimiser

• Convergence rate is linear otherwise


