UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free

Golden section and quadratic interpolation

The Newton method

Line-search methods

Descent directions

Ston longth o

Descent method

quasi-Newton's directions

Gradient and conjugate-

Trust-region methods

Nonlinear least-squar

The Gauss-Newton me

Unconstrained optimisation

Numerical optimisation

Francesco Corona

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fre

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search method

Step-length α_k

Newton's directions

quasi-Newton's direction

Trust-region method

The Gauss-Newton me

Numerical optimisation (cont.)

Example

Find the optimal allocation of i = 1, ..., n bounded resources x_i , the constraints will be expressed by inequalities of type

$$0 \le x_i \le C_i$$
, with C_i given constants

The set
$$\Omega = \left\{ \mathbf{x} = (x_1, \dots, x_n) : 0 \le x_i \le C_i, i = 1, \dots, n \right\}$$
 is a subset of \mathbb{R}^n that is determined by such constraints

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton method

Descent directions

Step-length α_k Descent method with

Descent method with quasi-Newton's direction: Gradient and conjugate-

rust-region method:

Nonlinear least-square The Gauss-Newton metho

Numerical optimisation

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ with $n \ge 1$ be a cost or objective function

The unconstrained optimisation problem is

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

The constrained optimisation problem is

$$\min_{\mathbf{x} \in \Omega \subset \mathbb{R}^n} f(\mathbf{x}) \tag{2}$$

The closed subset Ω is determined by either equality and inequality constraints that are dictated by the nature of the problem to solve

Unconstrained

UFC/DC AI (CK0031) 2016.2

optimisation

olden section and uadratic interpolation

The Newton metho

Descent directions

Step-length α_k Descent method with Newton's directions

Descent method with quasi-Newton's directions Gradient and conjugategradient descent directions

rust-region method:

Nonlinear least-square
The Gauss-Newton metho

Numerical optimisation (cont.)

Examples of constrained optimisation problems are those in which Ω is characterised by conditions like:

- h(x) = 0: equality constraints
- $h(x) \le 0$: inequality constraints

By $\mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$ with $m \leq n$ we denote a given function such that

• by $\mathbf{h} \leq \mathbf{0}$ we mean $h_i(\mathbf{x}) \leq 0$ for $i = 1, \dots, m$

Definition

If f is continuous and Ω is connected, the constrained optimisation problem is known also as a **non-linear programming problem**

- Convex programming: If f is a convex function and h has convex components
- Linear programming: If f and h are linear
- Quadratic programming: If f is quadratic and h is linear

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newson weeks at

ine-search methods

Jescent directions

Descent method wit

Descent method with

gradient descent direction

Nonlinear least-square The Gauss-Newton method

Numerical optimisation (cont.)

Remark

Computing the maximum of function f is equivalent to computing the minimum of function g = -f

• We only consider minimisation algorithms

Definition

More interesting of the minimum value of a given function is often the point at which such minimum is achieved

• Such point is called minimiser

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fre methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton metho

Line-search methods

Descent direction

Descent method wit

Descent method with

Cradient and conjugate

Trust-region method

Nonlinear least-squar The Gauss-Newton meth Levenberg-Marquardt

Unconstrained optimisation Numerical optimisation

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation

TVCIGCT BIIG TVCGG

The Newton method

Descent directions

Descent method with Newton's directions Descent method with quasi-Newton's directions Gradient and conjugate-

rust-region methods

onlinear least-squares
The Gauss-Newton method

Numerical optimisation (cont.)

In view of numerical solutions of optimisation problems, the ideal situation would be a cost function with an unique global minimiser

• There are often several (local) minimiser, though

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free nethods

olden section and uadratic interpolation

The Newton m

Descent directions

Newton's directions

Descent method with quasi-Newton's directions

Gradient and conjugate-

rust-region method

The Gauss-Newton met Levenberg-Marquardt

Unconstrained optimisation

When minimising an objective function, we are interested in finding either a (good) local or the global minimiser

Definition

- Point \mathbf{x}^* is a global minimiser of f, if $f(\mathbf{x}^*) \leq f(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{R}^n$
- Point \mathbf{x}^* is a **local minimiser** of f, if there is a $B_r(\mathbf{x}^*) \subset \mathbb{R}^n$, a ball centred in \mathbf{x}^* and radius r > 0, such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$, $\forall \mathbf{x} \in B_r(\mathbf{x}^*)$

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newson weekend

Line-search methods

Descent directions

Descent method with

Descent method with quasi-Newton's directions

Total and a second

The Gauss-Newton meth Levenberg-Marquardt

Unconstrained optimisation (cont.)

Definition

Provided that f is differentiable in \mathbb{R}^n with first and second derivatives, we denote by **gradient vector** and by **Hessian matrix** of f at point $\mathbf{x} \in \mathbb{R}^n$, the following objects

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)^T \tag{3}$$

$$\mathbf{H}(\mathbf{x}) = (h_{ij})_{i,j=1}^{n}, \text{ with } h_{ij} = \frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{i}}$$
(4)

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free methods

Golden section and quadratic interpolation

The Newton method

Descent directions

escent method with ewton's directions escent method with uasi-Newton's directions

ust-region method

Nonlinear least-square
The Gauss-Newton metho

Unconstrained optimisation (cont.)

In general, it will be assumed that problem functions are smooth

ullet Continuous and continuously (Frétchet) differentiable, \mathbb{C}^1

Thus for f(x) at any point x there is a vector of first derivatives

Gradient vector

$$\begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}_{\mathbf{x}} = \nabla f(\mathbf{x})$$
 (5)

 ∇ is the gradient operator $\left(\partial/\partial x_1,\partial/\partial x_2,\cdots,\partial/\partial x_n\right)^T$

If $f(\mathbf{x})$ is twice-differentiable, \mathbb{C}^2 , there is a **matrix of second** partial derivatives $\nabla^2 f(\mathbf{x})$ for whose (i,j)-th element is

$$\partial^2 f/(\partial x_i \partial x_j)$$

The **Hessian matrix** can be strictly written as $\mathbf{H}(\mathbf{x}) = \nabla(\nabla f^T)$

Unconstraine

UFC/DC AI (CK0031)

Unconstrained optimisation

Derivative-fre

quadratic interpolat Nelder and Mead

The Newton method

Descent directions

Step-length α_k

Newton's directions

Descent method with
quasi-Newton's direction

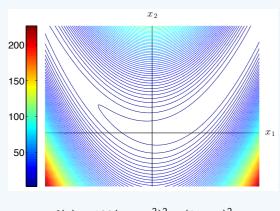
Trust region methods

The Gauss-Newton metho Levenberg-Marquardt

Unconstrained optimisation (cont.)

Example

Rosenbrock's function: A test-function for optimisation methods



$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Inconstrained

UFC/DC AI (CK0031)

Inconstrained ptimisation

erivative-free nethods

adratic interpolation elder and Mead

ine-search methods

Step-length α_k Descent method with
Newton's directions
Descent method with
Heasi-Newton's direction

Trust-region metho

The Gauss-Newton meth Levenberg-Marquardt

Unconstrained optimisation (cont.)

$$\nabla f(\mathbf{x}) = \begin{pmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix}$$
 (6a)

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}$$
 (6b)

In general, ∇f and $\nabla^2 f$ will and vary from point to point

At
$$\mathbf{x}^T = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\nabla f(\mathbf{x}^T) = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$ and $\nabla^2 f(\mathbf{x}^T) = \begin{bmatrix} 2 & 0 \\ 0 & 200 \end{bmatrix}$

UFC/DC AI (CK0031)

Unconstrained optimisation

Derivative-free

Golden section and quadratic interpolatio

Line-search methods

Descent direction

Sten-length ox.

Descent method wi

Descent method with

Gradient and conjugat

The Gauss-Newton meth

Unconstrained optimisation (cont.)

Definition

If $f \in \mathbb{C}^2(\mathbb{R}^n)$, that is all first and second derivatives of f exist and are continuous, then $\mathbf{H}(\mathbf{x})$ is symmetric for every $\mathbf{x} \in \mathbb{R}^n$

Definition

A point \mathbf{x}^* is called a **stationary** or **critical point** for f if $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and it is called a **regular point** if $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrained

Derivative-fre methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search method
Descent directions

Step-length α_k

Descent method with quasi-Newton's direction

The Gauss-Newton meth

Unconstrained optimisation (cont.)

Definition

Function $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ is **convex** in Ω if $\forall \alpha\in[0,1]$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \Omega$$
 (7)

Definition

f is a **Lipschitz function** in Ω if there is a constant L > 0

$$||f(\mathbf{x}) - f(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}||, \quad \forall \mathbf{x}, \mathbf{y} \in \Omega$$
 (8)

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Descent directions
Step-length α_k Descent method with
Newton's directions
Descent method with
quasi-Newton's directions

rust-region method

Vonlinear least-squar
The Gauss-Newton methology

Unconstrained optimisation (cont.)

Remark

A function f over \mathbb{R}^n does not necessarily admit a minimiser

• Also, should this point exist it is not necessarily unique

Example

- $f(\mathbf{x}) = x_1 + 3x_2$ is unbounded in \mathbb{R}^2
- $f(\mathbf{x}) = \sin(x_1)\sin(x_2)\cdots\sin(x_n)$ admits an infinite number of minimisers and maximisers in \mathbb{R}^n , either local and global

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton n

Step-length α_k Descent method with
Newton's directions
Descent method with
Heasi-Newton's direction

Gradient and conjugategradient descent direction

Nonlinear least-square

Unconstrained optimisation (cont.)

Proposition 1.

Optimality conditions

Let $\mathbf{x}^* \in \mathbb{R}^n$ and r > 0 exists such that $f \in \mathbb{C}^1(B_r(\mathbf{x}^*))$

- If \mathbf{x}^* is a minimiser for f (local or global), then $\nabla f(\mathbf{x}^*) = \mathbf{0}$
 - Also, if $f \in \mathbb{C}^2(B_r(\mathbf{x}^*))$, $\mathbf{H}(\mathbf{x}^*)$ is positive semidefinite

Let $\mathbf{x}^* \in \mathbb{R}^n$ and r > 0 exists such that $f \in \mathbb{C}^2(B_r(\mathbf{x}^*))$

- If $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\mathbf{H}(\mathbf{x}^*)$ is positive definite for all $\mathbf{x} \in B_r(\mathbf{x}^*)$, then \mathbf{x}^* is a local minimiser of f
- If $f \in \mathbb{C}^1(\mathbb{R}^n)$ is convex in \mathbb{R}^n and $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then \mathbf{x}^* is a global minimiser for f

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free

Golden section and quadratic interpolation

The Newson weekend

Line-search methods

Descent directions

Stop longth o

Step-length α_k

Descent method with quasi-Newton's direction

gradient descent directio

The Gauss-Newton method Levenberg-Marquardt

Unconstrained optimisation (cont.)

Definition

A symmetric real matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive definite if

$$\forall \mathbf{x} \in \mathbb{R}^n \text{ with } \mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$

A symmetric real matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is **positive semidefinite** if

$$\forall \mathbf{x} \in \mathbb{R}^n \text{ with } \mathbf{x} \neq \mathbf{0}, \quad \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$$

UFC/DC AI (CK0031)

Unconstrained

Unconstrained

Derivative-fre

Golden section and quadratic interpolati

The Newton method

Descent directions

Descent method with Newton's directions

quasi-Newton's direction Gradient and conjugate

Trust-region method

Nonlinear least-squa
The Gauss-Newton meth
Levenberg-Marquardt

Unconstrained optimisation (cont.)

In general, minimisation methods based on accurate derivatives can be expected to achieve faster convergence to the minimiser

Remark

• It can be shown that given $\overline{\mathbf{x}} \in \text{dom}(f)$, if $\nabla f(\overline{\mathbf{x}})$ exists and it is not null, then the largest increase of f from $\overline{\mathbf{x}}$ is along the gradient vector whereas the largest decrease is along the opposite direction

Among them, the two most important classes of techniques are

- Line-search methods
- Trust-region methods

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Ine-search method Descent directions Step-length $lpha_k$

escent method with ewton's directions escent method with uasi-Newton's directions

rust-region method

The Gauss-Newton metho

Unconstrained optimisation (cont.)

Most methods for numerical optimisation are of iterative type

They can be classified into two categories depending on whether they require knowledge of the derivatives of the cost function

- Derivative-free methods investigate the local behaviour of a cost function by direct comparison between the values it takes
- Methods using exact derivatives take advantage of accurate information on the local behaviour of the cost

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-free methods

quadratic interpola

The Newton m

Descent directions Step-length α_k

Newton's directions

Descent method with quasi-Newton's direction

Gradient and conjugate

Trust-region metho

The Gauss-Newton met Levenberg-Marquardt

Derivative-free methods Numerical optimisation

UFC/DC AI (CK0031)

We describe two simple numerical methods for

Derivative-free methods

- Minimisation of univariate real-valued functions
- Minimisation of multivariate real-valued functions, along a single direction

We then describe the **Nelder and Mead method** for the minimisation of functions of several variables

Unconstrained

UFC/DC AI (CK0031)

Golden section and quadratic interpolation **Derivative-free methods**

UFC/DC AI (CK0031)

Golden section and quadratic interpolation

Let $f:(a,b)\to\mathbb{R}$ be a continuous function with unique minimiser

$$x^* \in (a, b)$$

Set $I_0 = (a, b)$ and for $k \ge 0$ generate a sequence of intervals I_k

$$I_k = (a^{(k)}, b^{(k)})$$

The intervals I_k are of decreasing length and each contains x^*

optimisation

UFC/DC AI (CK0031)

Golden section and quadratic interpolation (cont.)

For any given k, the next interval I_{k+1} is determined as follows:

1) Let $c^{(k)}$, $d^{(k)} \in I_k$ with $c^{(k)} < d^{(k)}$ be two points such that

$$\frac{b^{(k)} - a^{(k)}}{d^{(k)} - a^{(k)}} = \frac{d^{(k)} - a^{(k)}}{b^{(k)} - d^{(k)}} = \varphi$$
 (9a)

$$\frac{b^{(k)} - a^{(k)}}{b^{(k)} - c^{(k)}} = \frac{b^{(k)} - c^{(k)}}{c^{(k)} - a^{(k)}} = \varphi$$
 (9b)

and let φ be the **golden ratio** $\varphi = \frac{1+\sqrt{5}}{2} \simeq 1.628$

UFC/DC AI (CK0031)

Unconstrained optimisation

erivative-free

Golden section and

Nelder and Mead

The Newton metho

Line coarch methods

Descent direction

Step-length α_k

Newton's directions

Descent method with

C P

gradient descent direction

Trust-region method

The Gauss-Newton meth

Golden section and quadratic interpolation (cont.)

2) Using Equation 9a and 9b, we find point $c^{(k)}$ and point $d^{(k)}$

$$c^{(k)} = a^{(k)} + \frac{1}{\omega^2} (b^{(k)} - a^{(k)})$$
 (10a)

$$d^{(k)} = a^{(k)} + \frac{1}{\varphi} (b^{(k)} - a^{(k)})$$
 (10b)

which are symmetrically placed about the mid-point of I_k

$$\frac{a^{(k)} + b^{(k)}}{2} - c^{(k)} = d^{(k)} - \frac{a^{(k)} + b^{(k)}}{2}$$
 (11)

Remark

By replacing $c^{(k)}$ and $d^{(k)}$ in Equation 11 and dividing by the common factor $\frac{b^{(k)}-a^{(k)}}{\varphi^2}$ we obtain the identity $\varphi^2-\varphi-1=0$

Inconstraine

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

Neider and Ivlead

....

- search metho

Step-length α_k

Newton's directions

quasi-Newton's direction

Gradient and conjugate-

Nauliana lant ann

The Gauss-Newton meti Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

Set $a^{(0)} = a$ and $b^{(0)} = b$, the golden section method formulates as

Pseudocode

For $k = 0, 1, \ldots$ until convergence

Compute $c^{(k)}$ and $d^{(k)}$ through Equation 10

If
$$f(c^{(k)}) \geq f(d^{(k)})$$

set
$$I_{k+1} = (a^{(k+1)}, b^{(k+1)}) = (c^{(k)}, b^{(k)})$$

else

set
$$I_{k+1} = (a^{(k+1)}, b^{(k+1)}) = (a^{(k)}, d^{(k)})$$

endif

It follows that:

• If
$$I_{k+1} = (c^{(k)}, b^{(k)})$$
, then $c^{(k+1)} = d^{(k)}$

• if
$$I_{k+1} = (a^{(k)}, d^{(k)})$$
, then $d^{(k+1)} = c^{(k)}$

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton week

.....

escent directions

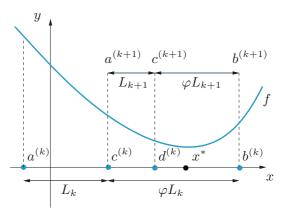
tep-length α_k

Descent method with Juasi-Newton's direction

Trust ragion mathods

The Gauss-Newton metho

Golden section and quadratic interpolation (cont.)



The generic iteration of the golden-section method

• φ is the golden ratio, while $L_k = c^{(k)} - a^{(k)}$

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton met

ine-search methods

Descent directions

Descent method with Newton's directions

Descent method with quasi-Newton's directions Gradient and conjugate-

rust-region method

The Gauss-Newton metho Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

A stopping criterion can be set when the normalised size of the k-th interval is smaller than a given tolerance ε

$$\frac{b^{(k+1)} - a^{(k+1)}}{|c^{(k+1)}| + |d^{(k+1)}|} < \varepsilon \tag{12}$$

The mid-point of the last interval I_{k+1} can be taken as an approximation of the minimiser \mathbf{x}^*

By using Equation 9a and 9b, we obtain the expression

$$|b^{(k+1)} - a^{(k+1)}| = \frac{1}{\varphi}|b^{(k)} - a^{(k)}| = \dots = \frac{1}{\varphi^{k+1}}|b^{(0)} - a^{(0)}| \quad (13)$$

The golden-section method converges linearly with rate

$$\varphi^{-1} \simeq 0.618$$

```
Unconstrained
              1 function [xmin,fmin,iter] = gSection(fun,a,b,tol,kmax,varargin)
             2 %GSECTION finds the minimum of a function
  UFC/DC
             3 % XMIN=GSECTION(FUN,A,B,TOL,KMAX) approximates a min point of
  AI (CK0031)
             4 % function FUN in [A,B] by using the golden section method
             5 % If the search fails, an error message is returned
             6 % FUN can be i) an inline function, ii) an anonymous function
             7 % or iii) a function defined in a M-file
             8 % XMIN=GSECTION(FUN, A, B, TOL, KMAX, P1, P2,...) passes parameters
             9 % P1, P2,... to function FUN(X,P1,P2,...)
Golden section and
             10 % [XMIN, FMIN, ITER] = GSECTION (FUN, ...) returns the value of FUN
             11 % at XMIN and number of iterations ITER done to find XMIN
             13 phi = (1+sqrt(5))/2;
            iphi(1) = inv(phi); iphi(2) = inv(1+phi);
             c = iphi(2)*(b-a) + a; d = iphi(1)*(b-a) + a;
            16 err = 1+tol; k = 0;
Descent method with
            18 while err > tol & k < kmax
            19 if(fun(c) >= fun(d))
                a = c; c = d; d = iphi(1)*(b-a) + a;
             21 else
            b = d; d = c; c = iphi(2)*(b-a) + a;
The Gauss-Newton method 24 k = 1 + k; err = abs(b-a)/(abs(c)+abs(d));
            25 end
            27 \text{ xmin} = 0.5*(a+b); \text{ fmin} = \text{fun(xmin)}; \text{ iter} = k;
             28 if (iter == kmax & err > tol)
             fprintf('The method stopped after reaching the maximum number
                          of iterations, and without meeting the tolerance');
             31 end
```

UFC/DC AI (CK0031) 2016.2

Unconstrained

Derivative-fre

Golden section and

Neider and Ivlead

....

Line-search method

Descent directions

Descent method with

Newton's directions

quasi-Newton's direction

Gradient and conjugate-

Trust-region method

Nonlinear least-squa
The Gauss-Newton meti
Levenberg-Marguardt

Golden section and quadratic interpolation (cont.)

Example

Evolution of an isolated culture of 250 bacteria (Verhulst model)

$$f(t) = \frac{2500}{1 + 9 \exp(-t/3)}, \quad \text{for } t > 0$$

where t denotes time (expressed in days)

Find after how many days population growth rate is maximum

• That is, when function g(t) = -f'(t) has its minimum

$$g(t) = -7500 \frac{\exp\left(\frac{t}{3}\right)}{\left(\exp\left(\frac{t}{3}\right) + 9\right)^2}$$

Unconstrained

UFC/DC AI (CK0031)

Jnconstrained

Derivative-free

Golden section and

ne newton method

Descent directions

Descent method with Newton's directions Descent method with quasi-Newton's directions

rust-region method

Vonlinear least-square
The Gauss-Newton metho

Golden section and quadratic interpolation (cont.)

- fun is either an anonymous or an inline function for function f
- a and b are endpoints of the search interval
- tol is the tolerance ε
- kmax is the maximum allowed number of iterations
- xmin contains the value of the minimiser
- fmin is the minimum value of f in (a, b)
- iter is the number of iterations carried out by the algorithm

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton metho

Descent directions
Step-length α_k

Newton's directions
Descent method with
quasi-Newton's direction
Gradient and conjugate-

Trust-region methods

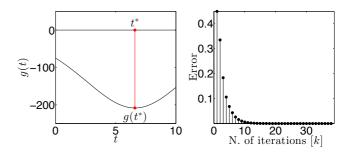
Nonlinear least-square: The Gauss-Newton method Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

Function g(t) admits a global minimiser in [6, 7], see its plot

```
1 g = @(t) [-(7500*exp(t/3)) / (exp(t/3)+9)^2];
2 a = 0; b = 10;
4 tol = 1.0e-8; kmax = 100;
5 [tmin gmin,iter] = gSection(g,a,b,tol,kmax);
```

Golden section: 38 iterations, $t^* \approx 6.59$ and $g(t^*) \approx -208$



UFC/DC AI (CK0031)

Unconstrained ontimisation

Derivative-free

Golden section and

Maldan and Mand

The Neuton method

and the second

.....

Descent direction

Step-length α_k

Newton's directions

Descent method with

quasi-Newton's direction

T.....

The Gauss-Newton meth Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

The quadratic interpolation method is often used as alternative

- Let f be a continuous and convex function
- Let $x^{(0)}$, $x^{(1)}$ and $x^{(2)}$ be three distinct points

We build a sequence of points $x^{(k)}$ with $k \geq 3$ such that $x^{(k+1)}$ is the vertex (and thus the minimiser) of the parabola $p_2^{(k)}$ that interpolates f at (node points) $x^{(k)}$, $x^{(k-1)}$ and $x^{(k-2)}$

Definition

For $k \ge 2$, the order-2 Lagrange polynomial at such nodes is

$$\rho_2^{(k)}(x) = f(x^{(k-2)}) + f[x^{(k-2)}, x^{(k-1)}](x - x^{(k-2)})
+ f[x^{(k-2)}, x^{(k-1)}, x^{(k)}](x - x^{(k-2)})(x - x^{(k-1)}))$$

ined tion

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolati

The Newton method

Charles and the second

Descent directions

Descent method with

Newton's directions

Descent method with

Gradient and conjugate-

Trust-region method

Nonlinear least-squ
The Gauss-Newton me

Theorem

For n+1 distinct points $\{(x_i, y_i(x_i))\}_{n=0}^{n+1}$, there exists only one polynomial $\Pi_n \in \mathbb{P}_n$ of order n or smaller that interpolates them

$$\Pi_n(x_i) = y_i, \quad \forall i = 0, \ldots, n$$

If $y_i = f(x_i)$ for some continuous function f, Π_n is said to be the interpolating polynomial of f and it is denoted as $\Pi_n f$

Definition

Components of the Lagrangian basis associated to nodes $\{x_i\}_{i=0}^n$

$$\varphi_i(x) = \prod_{j=0, j\neq i}^n \frac{x-x_j}{x_i-x_j}, \quad i=0,\ldots,n$$

are polynomials such that $\{\varphi_i\}$ is the only basis of \mathbb{P}_n satisfying

$$\varphi_i(x) \in \mathbb{P}_n, \varphi_i(x_j) = \delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

nconstrained

UFC/DC AI (CK0031) 2016 2

optimisation

Derivative-free

quadratic interpolat

The Newton method

e-search method

Descent method with Newton's directions Descent method with quasi-Newton's direction:

Nonlinear least-square
The Gauss-Newton methor

Golden section and quadratic interpolation (cont.)

$$\rho_2^{(k)}(x) = f(x^{(k-2)}) + f[x^{(k-2)}, x^{(k-1)}](x - x^{(k-2)})
+ f[x^{(k-2)}, x^{(k-1)}, x^{(k)}](x - x^{(k-2)})(x - x^{(k-1)}))$$

The Newton divided differences are the quantities

$$f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i}$$

$$f[x_i, x_j, x_k] = \frac{f[x_j, x_l] - f[x_i, x_j]}{x_l - x_i}$$
(14)

in the 2nd order Lagrange polynomial $p_2^{(k)}$ for $k \geq 2$

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fi methods

> Golden section and quadratic interpolation

Sten-length ox

Descent method with

Descent method with quasi-Newton's directions

gradient descent directs

Nonlinear least-square
The Gauss-Newton metho

Definition

The Lagrange polynomial is the interpolating polynomial $\Pi_n(x)$

$$\Pi_n(x) = \sum_{i=0}^n y_i \varphi_i(x)$$

expressed in Lagrange form, or with respect to the Lagrange basis

$$\Pi_n(x_i) = \sum_{j=0}^n y_j \varphi_j(x_i) = \sum_{j=0}^n y_j \delta_{ij} = y_i, \quad i = 0, \dots, n$$

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolatio

Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length α_k

Descent method

Newton's directions

quasi-Newton's directi

Gradient and conjugate-

The Gauss-Newton meth

Golden section and quadratic interpolation (cont.)

By solving the first-order equation $p_2^{\prime(k)}(x^{(k+1)})=0$, we get

$$x^{(k+1)} = \frac{1}{2} \left(x^{(k-2)} + x^{(k-1)} - \frac{f[x^{(k-2)}, x^{(k-1)}]}{f[x^{(k-2)}, x^{(k-1)}, x^{(k)}]} \right)$$
(15)

The next point in the sequence is obtained by setting to zero the derivative of $p_2^{(k)}(x)$

We iterate until $|x^{(k+1)}-x^k|<\varepsilon$, for some tolerance $\varepsilon>0$

timisation

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fre

Golden section and

The Newton method

er er er er er

Descent directions

Descent method with

Descent method with

quasi-Newton's direction

gradient descent directio

Trust-region methods

The Gauss-Newton meth Levenberg-Marquardt

Example

$$g(t) = -7500 \frac{\exp\left(\frac{t}{3}\right)}{\left(\exp\left(\frac{t}{3}\right) + 9\right)^{2}}$$

fminbnd combines golden section and parabolic interpolation

Quadratic interpolation: 8 iter, $t^* \approx 6.59$ and $f(t^*) \approx -208$

- \bullet optimset sets the tolerance value in structure optionsQ
- qminQ contains the evaluation of f at the minimiser tminQ
- exitflagQ indicates the termination state
- outputQ has number of iterations and function evaluations

Unconstrained

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

olden section and

TI NO I

The Newton metho

escent directions

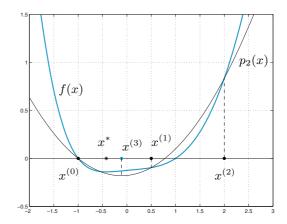
itep-length α_k

Pescent method with lewton's directions Descent method with

± 100 m

Nonlinear least-squa The Gauss-Newton met

Golden section and quadratic interpolation (cont.)



The first step of the quadratic interpolation method

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-free

Golden section and quadratic interpolatio

Nelder and Mead

ine-search methods

Step-length α_k Descent method with
Newton's directions

Descent method with juasi-Newton's directions Gradient and conjugate-

Trust-region metho

The Gauss-Newton metil Levenberg-Marquardt

Golden section and quadratic interpolation (cont.)

The golden section and the quadratic interpolation method are genuinely one-dimensional techniques

 They can be used to solve multidimensional optimisation problems, provided they are restricted to the search of optimisers along a given one dimensional direction

UFC/DC AI (CK0031) 2016.2

Unconstrained

Derivative-fre

Golden section and

Nelder and Mead

Nelder and Mead

line-search methods

Step-length α_k

Newton's directions

Descent method with

Gradient and conjugate-

Frust-region methods

The Gauss-Newton metho

Nelder and Mead Derivative-free methods

UFC/DC AI (CK0031)

Unconstraine

Derivative-free methods

Golden section and

Nelder and Mead

The Newton metho

Line-search metho

Descent directions

Newton's directions

Descent method with

quasi-Newton's directions Gradient and conjugate-

Trust-region method

The Gauss-Newton meth Levenberg-Marquardt

Nelder and Mead (cont.)

The Nelder and Mead method is a derivative-free minimisation method that generates a sequence of simplices $\{S^{(k)}\}_{k\geq 0}$ in \mathbb{R}^n

• The simplices either run after or circumscribe the minimiser $\mathbf{x}^* \in \mathbb{R}^n$ of the cost function f

The method uses the evaluations of f at the simplices' vertices and geometrical transformations (reflections, expansions, contractions)

- At the k-th iteration, the 'worst' vertice of simplex $S^{(k)}$ is identified as $\mathbf{x}_M^{(k)}$ such that $f(\mathbf{x}_M^{(k)}) = \max_{0 \le i \le n} f(\mathbf{x}_i^{(k)})$ and then substituted with a new point at which f takes a smaller value
- The new point is obtained by reflecting, expanding or contracting the simplex along the line joining $\mathbf{x}_{M}^{(k)}$ with the centroid of the other vertices of the simplex

$$\mathbf{x}_c^{(k)} = \frac{1}{n} \sum_{\substack{i=0\\i \neq M}}^{n} \mathbf{x}_i^{(k)}$$

Unconstrained

UFC/DC AI (CK0031) 2016 2

nconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton makes

escent directions

tep-length αι

escent method with ewton's directions escent method with asi-Newton's directions

rust-region methods

onlinear least-squares
he Gauss-Newton method
evenberg-Marquardt

Nelder and Mead

Let n > 1 and $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function

Definition

The **n-simplex** with n+1 vertices $\mathbf{x}_i \in \mathbb{R}^n$ for $i=0,\ldots,n$ is

$$S = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \sum_{i=0}^n \lambda_i \mathbf{x}_i, \text{ with } \lambda_i \ge 0 : \sum_{i=0}^n \lambda_i = 1 \}$$
 (16)

Intrinsic assumption: Linearly independent vectors $\{(\mathbf{x}_i - \mathbf{x}_0)\}_{i=1}^n$

S is a segment in \mathbb{R} , it is a triangle in \mathbb{R}^2 and a tetrahedron in \mathbb{R}^3

nconstrained

UFC/DC AI (CK0031) 2016.2

Inconstrained

Derivative-free methods

quadratic interpo

The Newton meth

The-search methods

Descent directions

Step-length α_k

Descent method with juasi-Newton's direction Gradient and conjugate-

rust-region method

The Gauss-Newton metho Levenberg-Marquardt

Nelder and Mead (cont.)

To generate the initial simplex $S^{(0)}$, we take a point $\tilde{\mathbf{x}} \in \mathbb{R}^n$ and a positive real number η and we set $\mathbf{x}_i^{(0)} = \tilde{\mathbf{x}} + \eta \mathbf{e}_i$ with $i = 1, \ldots, n$

• $\{\mathbf{e}_i\}$ are the vectors of the standard basis in \mathbb{R}^n

While $k \ge 0$ and until convergence, select the 'worst' vertex of $S^{(k)}$

$$\mathbf{x}_{M}^{(k)} = \max_{0 < i < n} f(\mathbf{x}_{i}^{(k)}) \tag{17}$$

and then replace it by a new point to form the new simplex $S^{(k+1)}$

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and

Nelder and Mead

The Newton metho

Line-search methods

Descent directions

Step-length α_k

Descent method w

Descent method with

gradient descent direction

Trust-region methods

The Gauss-Newton meth

UFC/DC AI (CK0031)

Nelder and Mead (cont.)

The new point is chosen by firstly selecting

$$\mathbf{x}_{m}^{(k)} = \min_{0 \le i \le n} f(\mathbf{x}_{i}^{(k)})$$

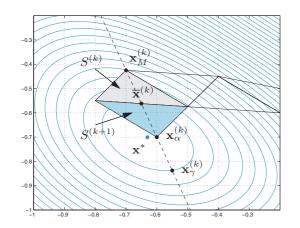
$$\mathbf{x}_{\mu}^{(k)} = \max_{i} f(\mathbf{x}_{i}^{(k)})$$
(18)

and secondly by defining the centroid point

$$\overline{\mathbf{x}}^{(k)} = \frac{1}{n} \sum_{\substack{i=0\\i\neq M}}^{n} \mathbf{x}_i^{(k)} \tag{19}$$

This is the centroid point of hyperplane $H^{(k)}$ passing through the vertices $\{\mathbf{x}_i\}_{\substack{i=0\\i\neq M}}^n$

Nelder and Mead (cont.)



n=2, the centroid is midpoint of edge of $S^{(k)}$ opposite to $\mathbf{x}_{M}^{(k)}$

nconstrained

UFC/DC AI (CK0031)

Unconstraine

Derivative-free

Golden section and Juadratic interpolati

lelder and Mead

The Newton method

escent directions

Descent method with lewton's directions Descent method with

gradient descent directio

Vonlinear least-square
The Gauss-Newton metho

Nelder and Mead (cont.)

Thirdly, compute reflection $\mathbf{x}_{\alpha}^{(k)}$ of $\mathbf{x}_{M}^{(k)}$ wrt hyperplane $H^{(k)}$

$$\mathbf{x}_{\alpha}^{(k)} = (1 - \alpha)\overline{\mathbf{x}}^{(k)} + \alpha \mathbf{x}_{M}^{(\alpha)} \tag{20}$$

with reflection coefficient $\alpha < 0$ is typically set to be -1

Point $\mathbf{x}_{\alpha}^{(k)}$ lies on the straight line joining points $\overline{\mathbf{x}}^{(k)}$ and $\mathbf{x}_{M}^{(k)}$

• It is on the side of $\overline{\mathbf{x}}^{(k)}$ far from $\mathbf{x}_{M}^{(k)}$

Unconstrained optimisation

UFC/DC AI (CK0031)

. . . .

Derivative-fre

nethods Golden section and

quadratic interpolatio Nelder and Mead

ine-search methods

Descent directions

Descent method with Newton's directions

Descent method with quasi-Newton's directions Gradient and conjugategradient descent direction

rust-region method:

The Gauss-Newton methor Levenberg-Marquardt

Nelder and Mead (cont.)

We fourthly compare $f(\mathbf{x}_{\alpha}^{(k)})$ with the values of f at the other vertices of the simplex before accepting $\mathbf{x}_{\alpha}^{(k)}$ as the new vertex

We also try to move $\mathbf{x}_{\alpha}^{(k)}$ on the straight line joining $\overline{\mathbf{x}}^{(k)}$ and $\mathbf{x}_{M}^{(k)}$ to set the new simplex $S^{(k+1)}$, as follows:

ullet If $f(\mathbf{x}_lpha^{(k)}) < f(\mathbf{x}_m^{(k)})$ (reflection produced a minimum), then

$$\mathbf{x}_{\gamma}^{(k)} = (1 - \gamma)\overline{\mathbf{x}}^{(k)} + \gamma \mathbf{x}_{M}^{(k)}, \quad \text{with } \gamma < -1^{1}$$
 (21)

then, if $f(\mathbf{x}_{\gamma}^{(k)}) < f(\mathbf{x}_{m}^{(k)})$, replace \mathbf{x}_{M} by $\mathbf{x}_{\gamma}^{(k)}$, otherwise $\mathbf{x}_{M}^{(k)}$ is replaced by $\mathbf{x}_{\alpha}^{(k)}$ We then proceed by incrementing k by one

¹with typically $\gamma = -2$

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and

Nelder and Mead

The Newton method

Line-search methods

Danne dinastras

Ston longth o

.

Newton's directions

aussi-Newton's directiv

Gradient and conjugate-

0-----

, and the second second

The Gauss-Newton meth

Nelder and Mead (cont.)

- If $f(\mathbf{x}_m^{(k)}) \leq f(\mathbf{x}_\alpha^{(k)}) < f(\mathbf{x}_\mu^{(k)})$, then $\mathbf{x}_M^{(k)}$ is replaced by $\mathbf{x}_\alpha^{(k)}$ and k is incremented by one
- If $f(\mathbf{x}_{\mu}^{(k)}) \leq f(\mathbf{x}_{\alpha}^{(k)}) < f(\mathbf{x}_{M}^{(k)})$, we compute

$$\mathbf{x}_{\beta}^{(k)} = (1 - \beta)\overline{\mathbf{x}}^{(k)} + \beta \mathbf{x}_{\alpha}^{(k)}, \quad \text{with } \beta > 0^2$$
 (22)

then, if $f(\mathbf{x}_{eta}^{(k)}) > f(\mathbf{x}_{M}^{(k)})$ define the vertices $S^{(k+1)}$ by

$$\mathbf{x}_{i}^{(k+1)} = \frac{1}{2} (\overline{\mathbf{x}}^{(k)} + \mathbf{x}_{m}^{(k)})$$
 (23)

otherwise $\mathbf{x}_{M}^{(k)}$ is replaced by \mathbf{x}_{β} Then, we increment k

Unconstraine optimisatio

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolati

Nelder and Mead

The Newton metho

Line-search method

Descent directions

Descent method with

Descent method with quasi-Newton's direction

+ 1000

Nonlinear least-squa
The Gauss-Newton meti
Levenberg-Marquardt

Nelder and Mead (cont.)

When the stopping criterion $\max_{i=0,...,n} ||\mathbf{x}_i^{(k)} - \mathbf{x}_m^{(k)}||_{\infty} < \varepsilon$ is met, $\mathbf{x}_m^{(k)}$ is retained as approximation of the minimiser

Convergence is guaranteed in very special cases only

Stagnation may occur, algorithm needs to be restarted

- The algorithm is nevertheless quite robust and efficient for small dimensional problems
- Its rate of convergence is severely affected by the choice of the initials simplex

Unconstrained optimisation

UFC/DC AI (CK0031)

Jnconstrained on timication

Derivative-free

Golden section and quadratic interpolatio

The Newton weeks

The Newton metho

scent directions

Descent method with Newton's directions Descent method with Juasi-Newton's direction

T.....

Nonlinear least-square
The Gauss-Newton metho

Nelder and Mead (cont.)

• If $f(\mathbf{x}_{\alpha}^{(k)}) > f(\mathbf{x}_{M}^{(k)})$, we compute

$$\mathbf{x}_{\beta} = (1 - \beta)\overline{\mathbf{x}}^{(k)} + \beta \mathbf{x}_{M}^{(k)}, \quad \text{with } \beta > 0$$
 (24)

and if $f(\mathbf{x}_{\beta}^{(k)}) > f(\mathbf{x}_{M}^{(k)})$ define the vertices of $S^{(k+1)}$ by Equation 23, otherwise we replace $\mathbf{x}_{M}^{(k)}$ with $\mathbf{x}_{\beta}^{(k)}$ Then we increment k

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-free methods

Golden section and quadratic interpola

Nelder and Mead

Line-search methods

Step-length α_k

Descent method with quasi-Newton's directions Gradient and conjugate-

Trust-region metho

The Gauss-Newton met Levenberg-Marquardt

Nelder and Mead (cont.)

Example

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

The function is the **The Rosenbrock function**, it is often used as testbench for efficiency and robustness of minimisation algos

• The global minimum is at $\mathbf{x}^* = (1, 1)$, however its variation around \mathbf{x}^* is low, making algorithms' convergence problematic

²with typically $\beta = 1/2$

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and

Nelder and Mead

The Newton method

ine-search methods

B

Cara Irrah

Descent method wit

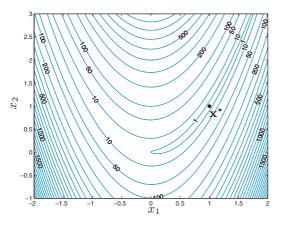
Descent method with

gradient descent direction

Trust-region method:

The Gauss-Newton metho

Nelder and Mead (cont.)



Unconstraine

UFC/DC AI (CK0031) 2016.2

Unconstrained

Derivative-fr

Golden section and

quadratic interpolati

The Newton metho

Line-search methods

Descent direction

Descent method wit

Descent method with

Cradient and conjugate

Nonlinear least-squar
The Gauss-Newton meth

The Newton method Numerical optimisation

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and

quadratic interpolation Nelder and Mead

The Newton method

ine coarch methods

escent directions tep-length $lpha_k$

Descent method with Jewton's directions Descent method with Juasi-Newton's directions Gradient and conjugate-

rust-region method

onlinear least-squares
The Gauss-Newton method
.evenberg-Marquardt

Nelder and Mead (cont.)

The simplex method: The M-command is fminsearch

```
1 x_0 = [-1.2,+1.0];
2
3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;
4
5 xstar = fminsearch(fun,x_0)
6
7 xstar =
8 1.000022021783570 1.000042219751772
```

To obtain additional information on the minimum value of f, we can replace the second instruction with the expanded one

[xstar,fval,exitflag,output] = fminsearch(fun,x_0)

Unconstrained

UFC/DC AI (CK0031) 2016.2

Inconstrained

Derivative-free

Solden section and juadratic interpolation Velder and Mead

The Newtor

Line-search methods

Step-length α_k Descent method with

Descent method with juasi-Newton's directions Gradient and conjugate-

rust-region methods

The Gauss-Newton method

The Newton method

Assume $f: \mathbb{R}^n \to \mathbb{R}$ with $n \geq 1$ of class $\mathbb{C}^2(\mathbb{R}^n)$ and we know how to compute its first and second order partial derivatives

We can apply Newton's method for the solution of the system $\mathbf{F}(x) = \nabla f(\mathbf{x}) = \mathbf{0}$, whose Jacobian matrix $\mathbf{J}_{\mathbf{F}}(\mathbf{x}^{(k)})$ is the Hessian matrix of f computed at the generic iteration point $\mathbf{x}^{(k)}$

Pseudocode

Given $\mathbf{x}^{(0)} \in \mathbb{R}^n$, for $k = 0, 1, \ldots$ until convergence

Solve
$$\underbrace{\mathbf{H}(\mathbf{x}^{(k)})}_{\mathbf{J}_{\mathbf{F}(\mathbf{x}^{(k)})}} \delta \mathbf{x}^{(k)} = -\underbrace{\nabla f(\mathbf{x}^{(k)})}_{\mathbf{F}(\mathbf{x}^{(k)})}$$
Set
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$$
(25)

A suitable stopping test is $||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}|| \le \varepsilon$, $\varepsilon > 0$ the tolerance

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton method

Line-search methods

Descent directions

tep-length α:

Descent method with

Newton's directions

quasi-Newton's direction

quasi-ivewton's direction

gradient descent dire

Trust-region method

The Gauss-Newton meth

2016.2

Remark

Consider the problem of finding the zero of $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$

The Newton method (cont.)

Find
$$\alpha \in [a, b]$$
 such that $f(\alpha) = 0$

Given the tangent to the function (x, f(x)) at some point $x^{(k)}$

$$y(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)})$$

and resolving for a point $x^{(k+1)}$ such that $y(x^{(k+1)}) = 0$, we get

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}, \quad \text{for } k \ge 0 \text{ and } f'(x^{(k)}) \ne 0$$

rained ation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation Nelder and Mead

The Newton method

er er er er er

Descent directions

Descent method with Newton's directions

Descent method with

Gradient and conjugate-

Trust-region method

Nonlinear least-square

Remark

Consider the following set of nonlinear equations

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

Let
$$\mathbf{f} \equiv (f_1, \dots, f_n)^T$$
 and $\mathbf{x} \equiv (x_1, \dots, x_n)^T$ to get $\mathbf{f}(\mathbf{x}) = \mathbf{0}$

To extend the Newton's method we replace the first derivative of scalar function f with the Jacobian matrix $\mathbf{J_f}$ of vectorial function \mathbf{f}

$$(\mathbf{J_f})_{ij} \equiv rac{\partial f_i}{\partial x_j}, \quad ext{with } i,j=1,\ldots,n$$

Pseudocode

Solve
$$\mathbf{J_f}(\mathbf{x}^{(k)})\delta\mathbf{x}^{(k)} = -\mathbf{f}(\mathbf{x}^{(k)})$$

Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta\mathbf{x}^{(k)}$

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrained

rivative-free

Golden section and quadratic interpolation

The Newton method

Descent directions

Step-length α_k
Descent method with
Newton's directions
Descent method with
Juasi-Newton's direction
Gradient and conjugate-

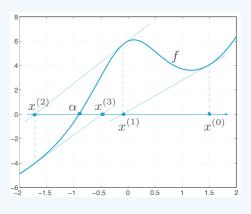
rust-region methods

Nonlinear least-square
The Gauss-Newton metho

The Newton method (cont.)

Remark

The sequence is the **Newton's method** for finding the zero of a function, and it reduces to locally substituting f with its tangent



Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-free methods

Golden section and quadratic interpolati

The Newton method

Line-search methods

Descent directions

tep-length α_k Descent method with

Descent method with quasi-Newton's directions Gradient and conjugate-

Frust-region methods

Nonlinear least-square
The Gauss-Newton method
Levenberg-Marquardt

The Newton method (cont.)

```
1 function [x,res,iter] = sNWT(F_fun,J_fun,x_0,tol,imx,varargin)
2 %SNLENEWTON Approximates a root of a nonlinear system
% [ROOT, RES, ITER] = NLSE (F_FUN, J_FUN, X_O, TOL, IMX) Calculate
4 % vector ROOT, the zero of a nonlinear system defined in
5 % F_FUN with Jacobian J_FUN, from initial point X_0
7 % RES is residual in ROOT and ITER is number of iterations
8 % F_FUN e J_FUN are external functions (as M-files)
10 iter = 0; err = 1 + tol; x = x_0;
12 while err >= tol & iter < imx
J = J fun(x.varargin\{:\}):
14 F = F_fun(x, varargin{:});
x = x + delta:
17 err = norm(delta); iter = 1 + iter;
20 res = norm(F_fun(x, varargin{:}));
22 if (iter==imx & err > tol)
disp('[Out by KMAX]');
24 else
disp('[Out by TOL]'));
27 return
```

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

er er er er

Line-search methods

Descent directions
Sten-length α_i

Descent method wi

Newton's directions

Descent method with

quasi-Newton's direction

gradient descent directions

Trust-region methods

The Gauss-Newton metho

```
The Newton method (cont.)
```

1 function F = F fun(x)

```
F(1,1) = F_1(x_1,x_2,...); % Add your own expression
F(2,1) = F_2(x_1,x_2,...); % Add your own expression
...
F(N,1) = F_N(x_1,x_2,...); % Add your own expression
return

function J = J_fun(x)
J(1,1) = dF_1 / dx_1; % Add your own expression
J(1,2) = dF_1 / dx_2; % Add your own expression
...

J(2,1) = dF_2 / dx_1; % Add your own expression
J(2,2) = dF_2 / dx_2; % Add your own expression
J(N,1) = dF_N / dx_1; % Add your own expression
J(N,2) = dF_N / dx_2; % Add your own expression
J(N,2) = dF_N / dx_2; % Add your own expression
return

return
```

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search methods

Descent directions

Step-length α_k Descent method with

Newton's directions

Descent method with

Gradient and conjugategradient descent direction

Trust-region method

The Gauss-Newton met

The Newton method (cont.)

Netwon's method with a tolerance $\varepsilon = 10^{-5}$

- If we choose $\mathbf{x}^{(0)} = (-0.9, -0.9)$, then after 5 iterations the method converges to $\mathbf{x} = [-0.63058; -0.70074]$
- If we choose $\mathbf{x}^{(0)} = (-1.0, -1.0)$, then after 400 iterations the stop criterion still would not be fulfilled

Moreover, Newton's method may converge to any stationary point (not necessarily to a minimiser)

• With $\mathbf{x}^{(0)} = (+0.5, -0.5)$, after 5 iterations the method converges to the saddle point $\mathbf{x} = [0.80659; -0.54010]$

Unconstrained

UFC/DC AI (CK0031)

Inconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton method

Descent directions

Descent method with Newton's directions Descent method with quasi-Newton's directions

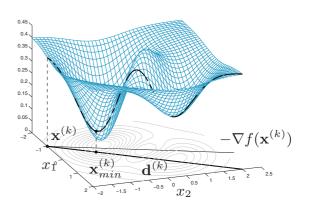
Trust-region method

The Gauss-Newton met Levenberg-Marquardt

Example

$$f(\mathbf{x}) = \frac{2}{5} - \frac{1}{10} (5x_1^2 + 5x_2^2 + 3x_1x_2 - x_1 - 2x_2) \exp(-(x_1^2 + x_2^2))$$

We want to approximate the global minimum $\mathbf{x}^* \approx (-0.63, -0.70)$



Unconstrained

UFC/DC AI (CK0031) 2016.2

Inconstrained

Golden section and

The Newton

Descent directions $Step-length \ \alpha_k$ Descent method with Newton's directions $Descent method with quasi-Newton's directions <math display="block">Gradient \ and \ conjugate-gradient descent directions$

lonlinear least-squar

The Gauss-Newton methor Levenberg-Marquardt

The Newton method (cont.)

Remark

A necessary condition for convergence of Newton's method is that $\mathbf{x}^{(0)}$ should be sufficiently close to the minimiser \mathbf{x}^*

• Reflects the local convergence property of the method

Remark

General convergence criterium for the Newton's method

If $f \in \mathbb{C}^2(\mathbb{R}^n)$ with stationary point \mathbf{x}^* , with positive definite Hessian $\mathbf{H}(\mathbf{x}^*)$, with Lipschitz continuous components of $\mathbf{H}(\mathbf{x})$ in a neighbourhood of \mathbf{x}^* and for $\mathbf{x}^{(0)}$ sufficiently close to \mathbf{x}^* , then the method converges quadratically to \mathbf{x}^*

UFC/DC AI (CK0031)

Unconstrained optimisation

Derivative-free

Golden section and quadratic interpolation

The Newton metho

Line-search method Descent directions Step-length α_k

Descent method with quasi-Newton's direction

Trust-region method

The Gauss-Newton metho Levenberg-Marquardt

The Newton method (cont.)

In spite of a simple implementation, the method is demanding when n is large, as it requires the analytic expression of the derivatives and, at each iteration, the computation of both gradient and Hessian of f

• Let alone that $\mathbf{x}^{(0)}$ has to be chosen near enough \mathbf{x}^*

Remark

To design efficient and robust minimisation algorithms combine locally with globally convergent methods

• Global convergence guarantees convergence to a stationary point (not necessarily a global minimiser) for all $\mathbf{x}^{(0)} \in \mathbb{R}^n$

Unconstrained

UFC/DC

AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolatio

The Newton metho

Line-search

Descent directions Step-length α_k

Newton's directions

Descent method with
quasi-Newton's directic

T.....

onlinear least-squa

Line-search methods Numerical optimisation

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstraine

methods Golden section an

The Newton method

er er er er

Descent directions

Step-length α_g Descent method with

Newton's directions

Descent method with

Quasi-Newton's directions

Gradient and conjugate
readient descent direction

Trust-region method

The Gauss-Newton meth Levenberg-Marquardt

Line-search methods

For simplicity, assume $f \in \mathbb{C}^2(\mathbb{R})$ and bounded from below

Line-search or descent methods are iterative methods

• For every step $k \geq 0$, point $\mathbf{x}^{(k+1)}$ depends on point \mathbf{x}^k , on a vector $\mathbf{d}^{(k)}$ which in turn depends on the gradient $\nabla f(\mathbf{x}^{(k)})$ of f, and on a suitable step-length parameter $\alpha_k \in \mathbb{R}$

Given an initial minimiser $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the method formulates as

Pseudocode

Find direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$

Compute step $\alpha_k \in \mathbb{R}$

Set $\mathbf{x}^{(\mathbf{k}+\mathbf{1})} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstraine optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

er e e e

ine-search methods

Descent method with Newton's directions Descent method with quasi-Newton's directions

Trust-region metho

Vonlinear least-square
The Gauss-Newton metho

Line-search methods (cont.)

Definition

Vector $\mathbf{d}^{(k)}$ must be a **descent direction**, so it satisfies conditions

$$\mathbf{d}^{(k)}\nabla f(\mathbf{x}^{(k)}) < 0, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) \neq \mathbf{0}$$

$$\mathbf{d}^{(k)} = \mathbf{0}, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) = \mathbf{0}$$
(26)

In \mathbb{R}^n , the gradient $\nabla f(\mathbf{x}^{(k)})$ identifies the direction with sign of maximum positive growth of f from $\mathbf{x}^{(k)}$

As $\mathbf{d}^{(k)}\nabla f(\mathbf{x}^{(k)})$ is the directional derivative of f along $\mathbf{d}^{(k)}$

• First condition ensures that we move along the opposite direction of the gradient (towards the minimiser)

UFC/DC AI (CK0031)

Unconstrained optimisation

Derivative-free

Golden section and quadratic interpolatio

The Newson westerd

Line-search methods

Descent directions

Step-length α_k

Newton's directions

escent method with

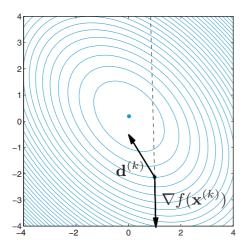
Gradient and conjugate-

Frust-region methods

Nonlinear least-squar

The Gauss-Newton meti Levenberg-Marguardt Contour lines of function $f(\mathbf{x})$ and its gradient evaluated at $\mathbf{x}^{(k)}$

• $\mathbf{d}^{(k)}$ is a suitable descent direction



Once $\mathbf{d}^{(k)}$ is determined, the optimal value $\alpha_k \in \mathbb{R}$ is the one that guarantees maximum variation of f along $\mathbf{d}^{(k)}$

optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-fre methods

Golden section and quadratic interpolatio

The Newton metho

er er er er

Descent directions

Descent method with Newton's directions

Descent method with quasi-Newton's direction

Statione descent direction

Nonlinear least-squar

The Gauss-Newton meth Levenberg-Marquardt

Descent directions Line-search methods

UFC/DC AI (CK0031)

Unconstrained

rivative-free

Golden section and quadratic interpolation

The Newton method

ine-search metho

Descent directions Step-length α_k

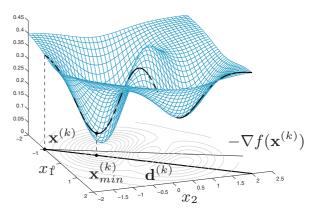
Descent method with Newton's directions Descent method with quasi-Newton's directions

Frust-region methods

Nonlinear least-square
The Gauss-Newton metho

 α_k can be computed by solving a one-dimensional minimisation

- Minimise the restriction of $f(\mathbf{x})$ along $\mathbf{d}^{(k)}$
- $\mathbf{x}_{\min}^{(k)}$ is the minimiser along $\mathbf{d}^{(k)}$



The computation of α_k is quite involved when f is not quadratic

ullet There are alternative techniques aimed at approximating $lpha_{m{k}}$

Unconstrained

UFC/DC AI (CK0031) 2016.2

.

Derivative-free

Golden section and quadratic interpolation Nelder and Mead

The Newton

tep-length α_k escent method with ewton's directions

Descent method with quasi-Newton's direction gradient and conjugategradient descent direction

rust-region method

The Gauss-Newton methor Levenberg-Marquardt

Descent directions

• Newton's directions

$$\mathbf{d}^{(k)} = -\mathbf{H}^{-1}(\mathbf{x}^{(k)})\nabla f(\mathbf{x}^{(k)})$$
 (27)

Matrix $\mathbf{H}(\mathbf{x}^{(k)})$ is the Hessian matrix at the k-th step

Quasi-Newton directions

$$\mathbf{d}^{(k)} = -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^{(k)}) \tag{28}$$

Matrix \mathbf{H}_k is an approximation of the true Hessian $\mathbf{H}(\mathbf{x}^{(k)})$, it is used when second derivatives are heavy to compute

UFC/DC AI (CK0031) 2016.2

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton method

Charles and the second

Descent directions

Step-length α_k Descent method with
Newton's directions

quasi-Newton's directions

Torres and the annual control

The Gauss-Newton meth

Descent directions (cont.)

Gradient directions

$$\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) \tag{29}$$

These are quasi-Newton directions, with $\mathbf{H}_k = \mathbf{I}$, $\forall k > 0$

Conjugate-gradient directions

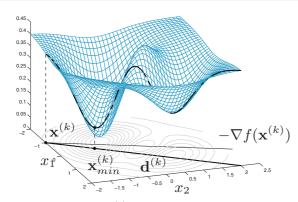
$$\mathbf{d}^{(0)} = -\nabla f(\mathbf{x}^{(0)}) \mathbf{d}^{(k+1)} = -\nabla f(\mathbf{x}^{(k+1)}) + \beta_k \mathbf{d}^{(k)}, \quad k \ge 0$$
 (30)

Coefficients β_k can be chosen according to different criteria When f is quadratic, the descent directions correspond to those of the conjugate-gradient method for linear systems

Example

 $f(\mathbf{x}) = \frac{2}{5} - \frac{1}{10} (5x_1^2 + 5x_2^2 + 3x_1x_2 - x_1 - 2x_2) \exp(-(x_1^2 + x_2^2))$

Two local minimisers, one local maximiser and two saddle points



We compare sequences $\{\mathbf{x}^{(k)}\}$ generated by Newton's method and descent methods with various descent directions, from $\mathbf{x}_1^{(0)}$ and $\mathbf{x}_2^{(0)}$

nconstrained

UFC/DC AI (CK0031)

Jnconstrained on the section

erivative-free

Golden section and quadratic interpolation

ha Maurtan mathad

escent directions

wton's directions
scent method with
asi-Newton's directions

radient descent direction

onlinear least-squar The Gauss-Newton meth evenberg-Marquardt

Descent directions (cont.)

For all $k \geq 0$, gradient directions are valid descent directions

$$\mathbf{d}^{(k)}\nabla f(\mathbf{x}^{(k)}) < 0, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) \neq \mathbf{0}$$

$$\mathbf{d}^{(k)} = \mathbf{0}, \quad \text{if } \nabla f(\mathbf{x}^{(k)}) = \mathbf{0},$$
(31)

Newton's and quasi Newton's directions can be valid directions

• Only if $\mathbf{H}(\mathbf{x}^{(k)})$ and \mathbf{H}_k are positive definite matrices

Conjugate gradient directions are valid for suitable β_k

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Inconstrained

ptimisation

Solden section and

quadratic interpolatio Nelder and Mead

Line-search met

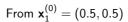
escent directions

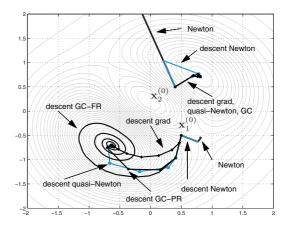
Descent method with Newton's directions

> scent method with asi-Newton's directions adient and conjugateadient descent directions

ust-region method

The Gauss-Newton metho Levenberg-Marquardt





- Newton's method converges rapidly towards the saddle point
- Newton's directions take a first step identical to Newton's and then collapses due to a non-positive definite matrix \mathbf{H}_k
- The others converge with different speeds into a local minimum, fastest convergence by quasi-Newton's directions

constrained itimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine optimisation

Derivative-fr methods

Nelder and Mead

Descent directions

Descent method with

Descent method with quasi-Newton's directions

Gradient and conjugategradient descent direction

Trust-region method

The Gauss-Newton me

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton method

and the second

Descent directions

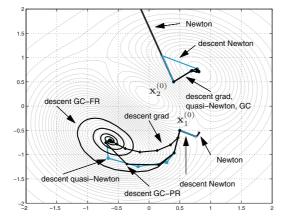
Step-length α_k

Descent method with uasi-Newton's directions

Tours and the market and

The Gauss-Newton meth

From $\mathbf{x}_2^{(0)} = (0.4, 0.5)$



- Newton's method diverges, Newton's directions converge to a local minimum, though sharing the same first direction with it
- All others also converge to the same local minimiser

Unconstrain

UFC/DC AI (CK0031) 2016 2

Unconstrained

Derivative-fre

methods

quadratic interpola

TVCIOCI UIIU IVICUU

The Newton metho

Descent direction

Step-length α

lewton's directions

escent method with

gradient descent direction

lonlinear least-squar

Step-length α_k

Jnconstrair optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre methods

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search method

Step-length α_k

Newton's directions

Descent method with

Gradient and conjugate

Trust-region method

The Gauss-Newton meth Levenberg-Marquardt

Step-length α_k

Given a descent direction $\mathbf{d}^{(k)}$, step-length α_k has to be set st the new iterate $\mathbf{x}^{(k+1)}$ is (approximates) the minimiser of f along $\mathbf{d}^{(k)}$

Choose α_k such that the minimisation is exact

$$\alpha_{k} = \underset{\alpha \in \mathbb{R}}{\arg \min} f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$$
or
$$f(\mathbf{x}^{(k)} + \alpha_{k} \mathbf{d}^{(k)}) = \underset{\alpha \in \mathbb{R}}{\min} f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$$
(32)

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine

erivative-free

uadratic interpolati

The Newton metho

ine-search methods

Step-length α_k

Descent method with quasi-Newton's direction Gradient and conjugate

Trust-region metho

The Gauss-Newton me Levenberg-Marquardt

Step-length α_k (cont.)

A second-order Taylor expansion of f around $\mathbf{x}^{(k)}$ yields

$$f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}) = f(\mathbf{x}^{(k)}) + \alpha \mathbf{d}^{(k)} \nabla f(\mathbf{x}^{(k)})$$

$$+ \frac{\alpha^2}{2} \mathbf{d}^{(k)^T} \mathbf{H}(\mathbf{x}^{(k)}) \mathbf{d}^{(k)}$$

$$+ o(||\alpha \mathbf{d}^{(k)}||^2)$$
(33)

UFC/DC AI (CK0031)

optimisation

Derivative-free methods

Golden section and quadratic interpolation

The Newton method

Line-search methods

Step-length α_k

Descent method with Newton's directions Descent method with quasi-Newton's direction

Torres and the analysis of

Nonlinear least-square
The Gauss-Newton methor
Levenberg-Marquardt

Step-length α_k (cont.)

Remark

In the special case in which f is a quadratic function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{b} + c$$

with $\mathbf{A} \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, expansion in Eq. 33 is exact and the infinitesimal residual is null

As $\mathbf{H}^{(k)} = \mathbf{A}$ for every $k \ge 0$ and $\nabla f(\mathbf{x}^{(k)}) = \mathbf{A}\mathbf{x}^{(k)} - \mathbf{b} = -\mathbf{r}^{(k)}$, by differentiating Eq. 33 wrt α and setting the derivative to zero

$$\alpha_k = \frac{\mathbf{d}^{(k)^T} \mathbf{r}^{(k)}}{\mathbf{d}^{(k)^T} \mathbf{A} \mathbf{d}^{(k)}}$$
(34)

Unconstrain optimisatio

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolati

The Newton method

Line-search method

Descent directions

Descent method with Newton's directions Descent method with quasi-Newton's directions Gradient and conjugate-

Nonlinear least-squ The Gauss-Newton me

Step-length α_k (cont.)

If f is a non-quadratic function, the computation of the optimal α_k requires an iterative method to solve the minimisation along $\mathbf{d}^{(k)}$

Remark

• Demanding and not worth it, stick with an approxinmation

An approximated value of α_k can be chosen by requiring that the new iterate $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ ensures that

$$f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)}) \tag{36}$$

nconstrained

UFC/DC AI (CK0031) 2016 2

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton method

ine-search methods

Step-length α_{i}

Descent method with Newton's directions Descent method with Juasi-Newton's direction Gradient and conjugate-

lonlinear least-sq

Step-length α_k (cont.)

For gradient directions $\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$, we find $\mathbf{d}^{(k)} = \mathbf{r}^{(k)}$

• We obtain the gradient method for solving linear systems

Should direction \mathbf{d}^k be chosen according to the conjugate-gradient, by setting

$$\beta_k = \frac{(\mathbf{A}\mathbf{d}^{(k)})^T \mathbf{r}^{(k+1)}}{\mathbf{d}^{(k)^T} \mathbf{A}\mathbf{d}^{(k)}} \text{ or } \beta_k = \frac{\mathbf{d}^{(k)^T} \mathbf{A}\mathbf{r}^{(k+1)}}{\mathbf{d}^{(k)^T} \mathbf{A}\mathbf{d}^{(k)}}$$
(35)

we recover the conjugate-gradient for solving linear systems

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Inconstrained

erivative-free

Golden section and quadratic interpolation

Nelder and Mead

ine-search methods

Descent direction $Step-length \; lpha_k$

Descent method with quasi-Newton's directions Gradient and conjugate-

rust-region method

The Gauss-Newton met Levenberg-Marquardt

Step-length α_k (cont.)

Example

A natural strategy would be to initially assign a large α_k and reduce it iteratively until $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$ is satisfied

 Unfortunately, the strategy does not guarantee a {x^k} that converges to the desired minimiser x*

A better criterium for $\alpha_k > 0$ is based on Wolfe's conditions

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newton method

Line-search methods

Descent directio

tep-length α_i

Newton's directions

Descent method with
quasi-Newton's directions

Gradient and conjugate-

rust-region methods

The Gauss-Newton methol Levenberg-Marquardt

Step-length α_k (cont.)

Definition

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \ge \delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
(37)

The two given constants σ and δ are such that $0<\sigma<\delta<1$ $\mathbf{d}^{(k)}\nabla f(\mathbf{x}^{(k)}) \text{ is the directional derivative of } f \text{ along direction } \mathbf{d}^k$

- First condition (Armijo's rule) inhibits too small variations of f with respect to step-length and directional derivative
- This is practically obtained by requiring changes in *f* to be proportional to both step-length and directional derivative

UFC/DC AI (CK0031)

Unconstrained

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search method

Descent directions

Descent method with Newton's directions

quasi-Newton's directions

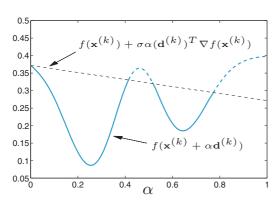
+ 1 1 1 1 1 1 1

The Gauss-Newton me

Step-length α_k (cont.)

The terms in the first of the two Wolfe's conditions, for $\sigma=0.2\,$

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$



Condition is satisfied for α corresponding to the continuous line

nconstrained

UFC/DC AI (CK0031) 2016 2

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton metho

ne-search meth

Step-length α_k

scent method with wton's directions scent method with asi-Newton's directions adient and conjugate-

-Frust-region meth

Vonlinear least-squar
The Gauss-Newton methology

Step-length α_k (cont.)

Definition

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \ge \delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$

The two given constants σ and δ are such that $0 < \sigma < \delta < 1$ $\mathbf{d}^{(k)} \nabla f(\mathbf{x}^{(k)})$ is the directional derivative of f along direction \mathbf{d}^k

- Second condition states that at new point $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ the value of the directional derivative of f should be δ times larger than the same derivative at previous point $\mathbf{x}^{(k)}$
- Point $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ is a valid candidate if f at such point decreases less than it does at $\mathbf{x}^{(k)}$ (closer to a minimiser)

Unconstrained

UFC/DC AI (CK0031) 2016.2

Inconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newton meth

Pescent directions

Step-length α_k

Descent method with quasi-Newton's directions Gradient and conjugategradient descent direction

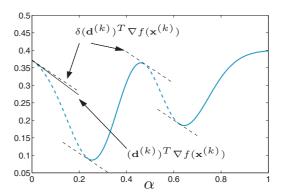
rust-region method

The Gauss-Newton method Levenberg-Marquardt

Step-length α_k (cont.)

Lines with slope $\delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$ in second condition, $\delta = 0.9$

$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \ge \delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$



Condition is satisfied for $\boldsymbol{\alpha}$ corresponding to the continuous line

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolatio

.....

Charles and the second

ine-search methods

Step-length α_k

Descent method with Newton's directions Descent method with quasi-Newton's direction

.....

Nonlinear least-square
The Gauss-Newton methods

Step-length α_k (cont.)

Wolfe's conditions are jointly satisfied in the interval

$$0.23 \le \alpha \le 0.41 \text{ or } 0.62 \le \alpha \le 0.77$$

That is, also far from the minimiser of f along $\mathbf{d}^{(k)}$

• Or when the directional derivative is large

Unconstraine optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search method

Step-length α_k

Newton's directions

Descent method with
quasi-Newton's directions

Gradient and conjugate-

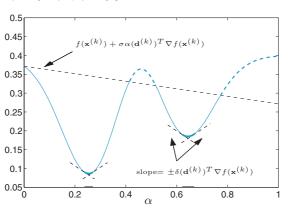
Trust-region method

The Gauss-Newton meth Levenberg-Marquardt

Step-length α_k (cont.)

Wolfe's strong conditions are satisfied when α belongs to the small intervals around the minimisers (thick continuous arcs)

• For $\sigma=0.2$ and $\delta=0.9$



nconstrained

UFC/DC AI (CK0031)

Jnconstrained on timication

Derivative-fre

Golden section and quadratic interpolation

The Newton method

Line-search metho

Step-length α_k

Descent method with Newton's directions Descent method with quasi-Newton's direction: Gradient and conjugate-

rust-region metl

onlinear least-squares
he Gauss-Newton method
evenberg-Marquardt

Step-length α_k (cont.)

Definition

Wolfe's strong conditions: More restrictive conditions

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
$$|\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)})| \le -\delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
(38)

The first condition is unchanged, the second one inhibits f from large variations about $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

nconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-free

Golden section and quadratic interpolatio

The Newton method

Descent directions

itep-length lpha_k Descent method with

escent method with uasi-Newton's directions radient and conjugate-

Trust-region metho

The Gauss-Newton methor Levenberg-Marquardt

Step-length α_k (cont.)

Remark

It can be shown that if $f \in \mathbb{C}^2(\mathbb{R}^n)$ is bounded from below in $\{\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}, \alpha > 0\}$ with $\mathbf{d}^{(k)}$ a descent direction at $\mathbf{x}^{(k)}$, then for all σ and δ st $0 < \sigma < \delta < 1$ there exist non-empty intervals of α_k that satisfy Wolfe's weak and strong conditions

In practice³, σ is usually chosen to be very small (e.g., $\sigma=10^4$), while typical values for δ are $\delta=0.9$ for Newton, quasi-Newton and gradient directions, and $\delta=0.1$ for CG directions

³J. Nocedal and S. Wrigth (2006): Numerical optimization.

UFC/DC AI (CK0031)

Descent directions

Step-length α_{ν}

Descent method with

Levenberg-Marguardt

Step-length α_k (cont.)

A strategy for step lengths α_k satisfying Wolfe's conditions

• Backtracking: Start with $\alpha = 1$ and then reduce it by a given factor ρ (tipically, $\rho \in [0.1, 0.5)$) until the first condition is satisfied

For $\mathbf{x}^{(k)}$ and a direction $\mathbf{d}^{(k)}$, for $\sigma \in (0,1)$ and $\rho \in [0,1,0.5)$

Pseudocode

```
Set \alpha = 1
      while f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}) > f(\mathbf{x}^{(k)}) + \sigma \alpha \mathbf{d}^{(k)} \nabla f(\mathbf{x}^{(k)})
            \alpha = \rho \alpha
       end
Set \alpha_k = \alpha
```

Second condition is never checked: Step lengths are not small

Unconstrained optimisation

UFC/DC AI (CK0031)

Nelder and Mead

Descent directions Step-length α_k

Newton's directions

Levenberg-Marquardt

Step-length α_k (cont.)

The descent method with various descent directions

• α_k is determined by backtracking

```
1 %DSCENT Descent method of minimisation
             2 %[X, ERR, ITER] = DSCENT (FUN, GRAD_FUN, X_O, TOL, KMAX, TYP, HESS_FUN)
             3 % Approximates the minimiser of FUN using descent directions
            4 % Newton (TYP=1), BFGS (TYP=2), GRADIENT (TYP=3), and the
            5 % CONJUGATE-GRADIENT method with
            6 % beta k by Fletcher and Reeves (TYP=41)
            7 % beta_k by Polak and Ribiere (TYP=42)
            8 % beta_k by Hestenes and Stiefel(TYP=43)
Gradient and conjugate- 10 % Step length is calculated using backtracking (bTrack.m)
            12 % FUN, GRAD_FUN and HESS_FUN (TYP=1 only) are function handles
            13 % for the objective, gradient and Hessian matrix
            14 % With TYP=2, HESS_FUN approximates the exact Hessian at X_0
            16 % TOL is the stop check tolerance
            17 % KMAX is the maximum number of iteration
```

Unconstrained

UFC/DC AI (CK0031)

Nelder and Mead

Descent directions

Step-length α_k

Descent method with

Levenberg-Marguardt

Step-length α_k (cont.)

```
1 function [x,alpha_k] = bTrack(fun,x_k,g_k,d_k,varargin)
2 %BTRACK Backtracking with line search
3 % [X, ALPHA_K] = BTRACK (FUN, X_K, G_K, D_K) x_{k+1} = x_k + alpha_k * d_k
4 % in the descent method, alpha_k by backtracking with
5 % sigma=1e-4 and rho=0.25
7 % [X,ALPHA_K]=BTRACK(FUN,X_K,G_K,D_K,SIGMA,RHO) sigma and rho
8 % can be inputed - sigma in (1e-4,0.1) and rho in (0.1,0.5)
10 % FUN is the function handle of the objective function
11 % X_K is element x_k, G_K is the gradient, D_K is d_k
13 if nargin == 4
14 sigma = 1.0e-4; rho = 1/4;
sigma = varargin {1}; rho = varargin {2};
19 minAlpha = 1.0e-5; % Smallest steplength
20 alpha_k = 1.0; f_k = fun(x_k);
22 k = 0; x = x_k + alpha_k*d_k;
while fun(x) > f_k + sigma*alpha_k*g_k'*d_k & alpha_k >
      minAlpha
24 alpha_k = alpha_k*rho;
x = x_k + alpha_k*d_k; k = k+1;
```

```
Unconstrained
             1 function [x,err,iter]=dScent(fun,grad_fun,x_0,tol,kmax,typ,
  optimisation
                   varargin)
   UFC/DC
             2 if nargin>6; if typ==1; hess=varargin{1};
  AI (CK0031)
             elseif typ==2; H=varargin{1}; end; end
             5 err=tol+1; k=0; xk=x0(:); gk=grad(xk); dk=-gk; eps2=sqrt(eps);
             7 while err>tol & k<kmax</pre>
             8 if typ==1; H = hess_fun(xk); dk = -H\gk;
                                                                     % Newton
             elseif typ==2; dk = -H\gk;
                                                                      % BFGS
            10 elseif typ==3; dk = -gk;
                                                                   % Gradient
Nelder and Mead
            11 end
            [xk1,alphak]=bTrack(fun,xk,gk,dk);
            gk1=grad_fun(xk1);
                                                                 % BFGS update
Descent directions
                  vk = gk1-gk; sk = xk1-xk; vks = vk'*sk;
Step-length \alpha_k
                  if yks > eps2*norm(sk)*norm(yk)
                  Hs=H*sk; H=H+(yk*yk')/yks-(Hs*Hs')/(sk'*Hs);
Descent method with
                 elseif typ>=40
                                                                 % CG upgrade
                 if typ==41; betak=(gk1'*gk1)/(gk'*gk);
                                                                          % FR
                  elseif typ==42; betak=(gk1'*(gk1-gk))/(gk'*gk);
                  elseif typ==43; betak=(gk1'*(gk1-gk))/(dk'*(gk1-gk)); % HS
                  dk = -gk1 + betak*dk;
Levenberg-Marquardt
                 xk = xk1; gk = gk1; k = 1 + k; xkt = xk1;
             for i=1:length(xk1); xkt(i) = max([abs(xk1(i)),1]); end
            28 err = norm((gk1.*xkt)/max([abs(fun(xk1)),1]),Inf);
             30 x = xk; iter = k;
             if (k==kmax & err>tol); disp('[KMAX]'); end
```

UFC/DC AI (CK0031) 2016.2

Unconstrained

Derivative-fre

Golden section and quadratic interpolatio

The Newson weeks at

Line-search methods

Descent directions

Stop longth o

Descent method with

Descent method with quasi-Newton's direction Gradient and conjugate-

Trust-region methods

Nonlinear least-squar

Levenberg-Marquardt

Descent method with Newton's directions

Unconstraine optimisatio

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolati Nelder and Mead

The Newton method

Descent directions

Descent method with Newton's directions

Descent method with quasi-Newton's directions Gradient and conjugategradient descent direction

Trust-region method

The Gauss-Newton meth Levenberg-Marquardt

Descent method with Newton's directions (cont.)

Assume that for every $k \ge 0$, the Hessian $\mathbf{H}(\mathbf{x}^{(k)})$ is symmetric (from the assumption on f) and that it is also positive definite

Let
$$\mathbf{B}_k = \mathbf{H}(\mathbf{x}^{(k)})$$

Suppose that $\exists M > 0 : K(\mathbf{B}_k) = ||\mathbf{B}_k|| ||\mathbf{B}_k^{-1}|| \le M$ with $k \ge 0$

• $K(\mathbf{B}_k)$ is the spectral condition number of \mathbf{B}_k

Under such conditions, the sequence $\{\mathbf{x}^{(k)}\}$ by Newton method converges to a stationary point \mathbf{x}^* of f

• By letting $\alpha_k = 1$ for $k \ge \overline{k}$, the converge is quadratic

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton method

Descent directions

Descent method with Newton's directions

Descent method with juasi-Newton's direction

rust-region methods

Vonlinear least-squar
The Gauss-Newton methology

Descent method with Newton's directions

A $f \in \mathbb{C}^2(\mathbb{R}^n)$ bounded from below and the descent method

Pseudocode

Find direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$

Compute step $\alpha_k \in \mathbb{R}$

Set
$$\mathbf{x}^{(\mathbf{k}+\mathbf{1})} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

- Newton directions $\mathbf{d}^{(k)} = -\mathbf{H}^{-1}(\mathbf{x}^{(k)})\nabla f(\mathbf{x}^{(k)})$
- Wolfe step lengths α_k

$$f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \le f(\mathbf{x}^{(k)}) + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$
$$\mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \ge \delta \mathbf{d}^{(k)^T} \nabla f(\mathbf{x}^{(k)})$$

Unconstrained

UFC/DC AI (CK0031)

Unconstraine

erivative-free

olden section and uadratic interpolation

The Newton meth

Descent directions

Descent method with Newton's directions

Descent method with quasi-Newton's directions Gradient and conjugategradient descent directions

rust-region method

Nonlinear least-square
The Gauss-Newton method
Levenberg-Marquardt

Descent method with Newton's directions (cont.)

Definition

Given a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, consider the problem of finding a scalar λ (complex or real) and a non-null vector $\mathbf{x} \in \mathbb{C}^n$ such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Any λ that satisfy the equation above is an **eigenvalue** of ${\bf A}$

• x is the corresponding eigenvector

Definition

The spectral condition number of A is the quantity

$$\mathcal{K}(\mathbf{A}) = rac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}}$$

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolatio

The Newson westerd

Line-search method

Descent method with

Descent method with quasi-Newton's direction Gradient and conjugate-

Frust-region methods

Vonlinear least-square
The Gauss-Newton metho
Levenberg-Marquardt

Descent method with Newton's directions (cont.)

Remark

Since Hessians are positive definite, stationary point \mathbf{x}^* cannot be a maximiser or a saddle point and must necessarily be a minimiser

• However, if $\mathbf{H}(\mathbf{x}^{(k)})$ is not positive definite for some point $\mathbf{x}^{(k)}$, then $\mathbf{d}^{(k)}$ may not be a descent direction and Wolfe's conditions might become meaningless

In such situations, the Hessian is replaced by $\mathbf{B}_k = \mathbf{H}(\mathbf{x}^{(k)}) + \mathbf{E}_k$ for some suitable matrix \mathbf{E}_k (either diagonal or full) such that \mathbf{B}_k is positive definite and $\mathbf{d}^{(k)} = -\mathbf{B}_k^{-1} \nabla f(\mathbf{x}^{(k)})$ is a valid direction

Unconstrained optimisation

UFC/DC AI (CK0031)

Inconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newton method

Step-length α_k

Descent method wit

Descent method with

Statione descent direction

Ionlinear least-squar
The Gauss-Newton meth

Descent method with quasi-Newton's directions

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolat Nelder and Mead

The Newton metho

Line-search methods

Descent directions

Newton's directions

quasi-Newton's direction Gradient and conjugate-

Trust-region method

Nonlinear least-squar The Gauss-Newton meth Levenberg-Marquardt

Descent method with quasi-Newton

When using quasi-Newton directions $\mathbf{d}^{(k)} = -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}^{(k)})$, we need to define an approximation \mathbf{H}_k of the true Hessian $\mathbf{H}(\mathbf{x}^{(k)})$

Given a symmetric and positive definite matrix \mathbf{H}_0 , the recursive **Broyden's rank-one update** for nonlinear systems is popular

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

nconstrained

nethods
Golden section and

Nelder and Mead

Line-search methods

Step-length α_k Descent method with

Descent method with uasi-Newton's direction

Gradient and conjugategradient descent direction

onlinear least-squares
The Gauss-Newton method

Descent method with quasi-Newton's directions (cont.)

Matrices \mathbf{H}_k are required the following

• To satisfy the secant condition

$$\mathbf{H}_{k+1}(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^k)$$

- To be symmetric, as $\mathbf{H}(\mathbf{x})$
- To be positive definite to guarantee that vectors d^(k) are descent directions
- To satisfy the condition

$$\lim_{k\to\infty} \frac{||(\mathbf{H}_k - \mathbf{H}(\mathbf{x}^*))\mathbf{d}^{(k)}||}{||\mathbf{d}^{(k)}||} = 0,$$

which ensures that \mathbf{H}_k is a good approximation of $\mathbf{H}(\mathbf{x}^*)$ along the descent direction $\mathbf{d}^{(k)}$ and guarantees a super-linear rate of convergence

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and

quadratic interpolatio

The Newton method

and the second

Line search meerious

Descent uncertons

Descent method with

Descent method with

quasi-Newton's directio

Nonlinear least-squa

The Gauss-Newton meth Levenberg-Marquardt

Descent method with quasi-Newton's directions (cont.)

Definition

A strategy by Broyden, Fletcher, Goldfarb and Shanno (BFGS)

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\mathbf{y}^{(k)} \mathbf{y}^{(k)^T}}{\mathbf{x}^{(k)^T} \mathbf{s}^{(k)}} - \frac{\mathbf{H}_k \mathbf{s}^{(k)} \mathbf{s}^{(k)^T} \mathbf{H}_k^T}{\mathbf{s}^{(k)^T} \mathbf{H}_k \mathbf{s}^{(k)}}$$
(39)

where
$$\mathbf{s}^{(k)} = (\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)})$$
 and $\mathbf{y}^k = (\nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)}))$

Matrices \mathbf{H}_{k+1} are symmetric and positive definite under condition

$$\mathbf{y}^{(k)^T}\mathbf{s}^{(s)} > 0$$

It is satisfied when step lengths α_k are either weak or strong Wolfe

Unconstraine optimisatio

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolat Nelder and Mead

The Newton method

Descent directions

Step-length α_k

Descent method with

Gradient and conjugate-

gradient descent direction

Trust-region method:

Nonlinear least-squar
The Gauss-Newton methology
Levenberg-Marquardt

Descent method with quasi-Newton's directions (cont.)

For a given \mathbf{x}_0 and a suitable symmetric and positive definite matrix $\mathbf{H}_0 \in \mathbb{R}^{n \times n}$ that approximates $\mathbf{H}(\mathbf{x}^{(0)})$, for k = 0, 1, ...

Pseudocode

Solve $\mathbf{H}_k \mathbf{d}^{(k)} = -\nabla \mathbf{f}(\mathbf{x}^{(k)})$

Compute α_k that satisfies Wolfe's conditions Set

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$

$$\mathbf{s}^{(k)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$$

$$\mathbf{v}^{(k)} = \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)})$$

Compute
$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\mathbf{y}^{(k)}\mathbf{y}^{(k)^T}}{\mathbf{x}^{(k)^T}\mathbf{s}^{(k)}} - \frac{\mathbf{H}_k\mathbf{s}^{(k)}\mathbf{s}^{(k)^T}\mathbf{H}_k^T}{\mathbf{s}^{(k)^T}\mathbf{H}_k\mathbf{s}^{(k)}}$$

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton metho

ne-search methods

tep-length α_k

scent method with

radient descent directions

Nonlinear least-square The Gauss-Newton metho

Descent method with quasi-Newton's directions (cont.)

BFGS is a thus a descent method, as generally implemented by

Pseudocode

Find direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$

Compute step $\alpha_k \in \mathbb{R}$

Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstrained optimisation

Derivative-free methods

Golden section and quadratic interpolation Nelder and Mead

The Newton meth

Descent directions

Step-length α_k Descent method with
Newton's directions

Descent method with quasi-Newton's directions Gradient and conjugategradient descent directions

Trust-region method

The Gauss-Newton metl Levenberg-Marquardt

Descent method with quasi-Newton's directions (cont.)

Example

Rosenbrock:
$$f(\mathbf{x}) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$
, for a $\varepsilon = 10^{-6}$

```
1 x_0 = [+1.2; -1.0];
2
3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;
4
5 options = optimset ('LargeScale','off');  % Switches to BFGS
6 [xstar,fval,exitflag,output] = fminunc(fun,x_0,options)
```

Convergence after 24 iterations and 93 function evaluations

We did not input an expression for evaluating the gradient

• It was, silently, approximated using finite difference methods

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and

Nelder and Mead

The Newton method

D

Descent directions

Step-length α_k

Newton's directions

Descent method with

Studient descent direction

Frust-region methods

The Gauss-Newton meth

Descent method with quasi-Newton's directions (cont.)

We can define and input the analytical gradient expression

Convergence after 25 iterations and 32 function evaluations

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free methods

Golden section and quadratic interpolatio Nelder and Mead

The Newton method

Line-search method

Descent directions

Descent method wit

Descent method with

Cradient and conjugate

Bradiene descene directio

Trust-region method

The Gauss-Newton method Levenberg-Marquardt Gradient and conjugate-gradient directions

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newton weeks

Line-search metho

Step-length α_k

Descent method with

Gradient and conjugategradient descent direction

Frust-region methods

onlinear least-squares
he Gauss-Newton method

Descent method with quasi-Newton's directions (cont.)

Remark

In Octave, BFGS is implemented by the M-command bfgsmin

• M-command fminunc implements a trust-region method

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Descent directions

Step-length α_k

Newton's directions

Descent method with

Gradient and conjugategradient descent directions

Frust-region methods

Nonlinear least-square
The Gauss-Newton method
Levenberg-Marquardt

Gradient and conjugate-gradient

Let us first consider the general descent method

Pseudocode

Find direction $\mathbf{d}^{(k)} \in \mathbb{R}^n$

Compute step $\alpha_k \in \mathbb{R}$

Set $\mathbf{x}^{(\mathbf{k}+\mathbf{1})} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

with gradient (descent) directions $\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$

If $f \in \mathbb{C}^2(\mathbb{R}^n)$ is bounded from below and step lengths α_k are Wolfe, this method converges (linearly) to a stationary point

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and

Nelder and Mead

The Newton method

Line-search method:

Descent direction

Step-length α_k

Newton's directions

Descent method with

Gradient and conjugate-

Torre and a second

lonlinear least-squar

Levenberg-Marquardt

Gradient and conjugate-gradient directions (cont.)

Let us now consider conjugate directions,

$$\mathbf{d}^{(0)} = -\nabla f(\mathbf{x}^{(0)})$$

$$\mathbf{d}^{(k+1)} = -\nabla f(\mathbf{x}^{(k+1)}) - \beta_k \mathbf{d}^{(k)}, \quad k \ge 0$$

several options for setting β_k are available

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newton weeks

ne-search methods

Descent directions

Step-length α_k Descent method with

Descent method with quasi-Newton's directions

rust-region methods

The Gauss-Newton met Levenberg-Marquardt

Gradient and conjugate-gradient directions (cont.)

Fletcher-Reeves

$$\beta_k^{FR} = -\frac{||\nabla f(\mathbf{x}^{(k)})||^2}{||\nabla f(\mathbf{x}^{(k-1)})||^2}$$
(40)

Polak-Ribière (-Polyak)

$$\beta_k^{PR} = -\frac{\nabla f(\mathbf{x}^{(k)})^T (\nabla f(\mathbf{x}^{(k)}) - \nabla f(\mathbf{x}^{(k-1)}))}{||\nabla f(\mathbf{x}^{(k-1)})||^2}$$
(41)

• Hestenes-Stiefel

$$\beta_k^{HS} = -\frac{\nabla f(\mathbf{x}^{(k)})^T (\nabla f(\mathbf{x}^{(k)})^T - \nabla f(\mathbf{x}^{(k-1)}))}{\mathbf{d}^{(k-1)^T} (\nabla f(\mathbf{x}^{(k)}) - \nabla f(\mathbf{x}^{(k-1)}))}$$
(42)

Unconstrain optimisatio

UFC/DC AI (CK0031)

.

optimisation

Golden section and

Charles and the same of the same of

Line-search method

Step-length α_k

Newton's directions

quasi-Newton's direction

+ 1 1 1 1 1 1 1

Trust-region method:

The Gauss-Newton meth Levenberg-Marquardt

Gradient and conjugate-gradient directions (cont.)

Remark

Under the condition that f is quadratic and strictly convex, all the aforementioned options are equivalent and reduce to

$$\beta_k = \frac{(\mathsf{Ad}^{(k)})^\mathsf{T} \mathsf{r}^{(k+1)}}{\mathsf{d}^{(k)^\mathsf{T}} \mathsf{Ad}^{(k)}}$$

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-fre

quadratic interpolat

The Newton metho

Line-search method

Step-length α_k

Newton's directions

uasi-Newton's directions radient and conjugate-

Trust-region methods

Vonlinear least-squar
The Gauss-Newton methology
Levenberg-Marquardt

Trust-region methods Numerical optimisation

UFC/DC AI (CK0031)

Unconstrained

erivative-fre

Golden section and quadratic interpolatio

The Neuton method

Charles and the same and a state of the

Carr Irrah

Descent method

Newton's directions

Descent method with

gradient descent direct

Nonlinear least-square
The Gauss-Newton methods

Trust-region methods

Line search methods are designed to determine first the descent direction $\mathbf{d}^{(k)}$ first and then the step-length α_k , at any k-th step

Trust-region methods simultaneously choose direction and step length, by building a trust ball centred at $\mathbf{x}^{(k)}$ and of radius δ_k

• In the trust region, compute a quadratic approximation \tilde{f}_k of f

The new value of $\mathbf{x}^{(k+1)}$ is the minimiser of \tilde{f}_k in the trust region

strained nisation

UFC/DC AI (CK0031)

Unconstraine

Derivative-fre methods

Golden section and quadratic interpolation Nelder and Mead

The Newton metho

Line-search method

Step-length α_k

Descent method with quasi-Newton's direction

Trust-region method

Nonlinear least-squa
The Gauss-Newton meth
Levenberg-Marguardt

Trust-region methods (cont.)

To compute \tilde{f}_k , we start with a trust radius $\delta_k > 0$ and a second-order Taylor expansion of f about $\mathbf{x}^{(k)}$

$$\tilde{f}_k(\mathbf{s}) = f(\mathbf{x}^{(k)}) + \mathbf{s}\nabla f(\mathbf{x}^{(k)}) + \frac{1}{2}\mathbf{s}^T\mathbf{H}_k\mathbf{s}, \quad \forall \mathbf{s} \in \mathbb{R}^n$$
 (43)

 \mathbf{H}_k is either the Hessian of f at $\mathbf{x}^{(k)}$ or a suitable approximation

We then compute the solution $\mathbf{s}^{(k)}$

$$\mathbf{s}^{(k)} = \operatorname*{arg\ min}_{\mathbf{s} \in \mathbb{R}^n: ||\mathbf{s}|| \le \delta_k} \tilde{f}_k(\mathbf{s}) \tag{44}$$

At this stage, we also compute

$$\rho_k = \frac{f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)}) - f(\mathbf{x}^{(k)})}{\tilde{f}_k(\mathbf{s}^{(k)}) - \tilde{f}_k(\mathbf{0})}$$
(45)

nconstrained

UFC/DC AI (CK0031)

Inconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newton metho

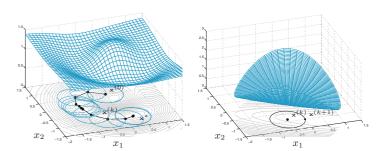
.ine-search metho Descent directions

Descent method with Newton's directions Descent method with quasi-Newton's direction:

Trust-region metho

Vonlinear least-square The Gauss-Newton metho Levenberg-Marquardt

Trust-region methods (cont.)



Convergence history and quadratic approximation \tilde{f}_k at step k=8

Unconstrainer optimisation

UFC/DC AI (CK0031) 2016.2

Inconstrained ptimisation

nethods
Golden section and

Nelder and Mead

Descent directions
Step-length α_k Descent method with
Newton's directions
Descent method with
quasi-Newton's directic
Gradient and conjugate
gradient descent direct

ust-region method

The Gauss-Newton metho Levenberg-Marquardt

Trust-region methods (cont.)

- If ρ_k is approximately one, we accept $\mathbf{s}^{(k)}$, we move on to the next iteration and set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$ (however, if the minimiser of \tilde{f}_k lie on the boundary of the trust region , we extend the latter before proceeding to next iteration)
- If ρ_k is either negative or positive and much smaller than one), we reduce the ball's size and we calculate a new $\mathbf{s}^{(k)}$

$$\mathbf{s}^{(k)} = \mathop{\mathsf{arg \; min}}\limits_{\mathbf{s} \in \mathbf{R}^n: ||\mathbf{s}|| \leq \delta_k} ilde{f}_k(\mathbf{s})$$

• If ρ_k is much larger than one, we accept $\mathbf{s}^{(k)}$, we keep the trust region as it is and then we move to the next iteration

UFC/DC AI (CK0031) 2016.2

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Newton method

Line-search methods

Descent direction

Step-length α_k

Newton's directions

gradient descent direct

Nonlinear least-squar

2016.2

Remark

When the second derivative of f are available, we can set \mathbf{H}_k to be equal to the Hessian (or a variant, if not positive definite)

• Otherwise, \mathbf{H}_k can be built recursively

Trust-region methods (cont.)

optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolat Nelder and Mead

The Newton method

Line-search methods

Step-length α_k

Descent method with quasi-Newton's direction

Trust-region method

Nonlinear least-squar The Gauss-Newton meth

Trust-region methods (cont.)

We look for the saddle point of the Lagrangian

$$\mathcal{L}(\mathbf{s}, \lambda) = \tilde{f}_k(\mathbf{s}) + \frac{1}{2}\lambda(\mathbf{s}^T\mathbf{s} - \delta_k)$$

So, a vector $\mathbf{s}^{(k)}$ and a scalar $\lambda^{(k)} > 0$ satisfying

$$(\mathbf{H}_{k} + \lambda^{(k)} \mathbf{I}) \mathbf{s}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$$

$$(\mathbf{H}_{k} + \lambda^{(k)} \mathbf{I}) \text{ is PSD}$$

$$||\mathbf{s}^{(k)}|| - \delta_{k} = 0$$
(47)

is what we are after in this minimisation task

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolati

The Newton metho

escent directions

Descent method with Newton's directions Descent method with quasi-Newton's directions

rust-region method

Nonlinear least-squar The Gauss-Newton metho Levenberg-Marquardt

Trust-region methods (cont.)

If \mathbf{H}_k is symmetric positive definite and $||\mathbf{H}_k^{-1}\nabla f(\mathbf{x}^{(k)})|| \leq \delta_k$ then $\mathbf{s}^{(k)} = \mathbf{H}_k^{-1}\nabla f(\mathbf{x}^{(k)})$ is a minimiser and it is within the trust region

• Otherwise, the minimiser of \tilde{f}_k lies outside the trust region

It is a minimisation of \tilde{f}_k constrained to the δ_k -ball centred at $\mathbf{x}^{(k)}$

$$\min_{\mathbf{s} \in \mathbb{R}^{n}: ||\mathbf{s}|| = \delta_{k}} \tilde{f}_{k}(\mathbf{s}) \tag{46}$$

which can be solved using Lagrange multipliers

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

nconstrained

erivative-free

Golden section and quadratic interpolation Nelder and Mead

The Newto

Line-search metho Descent directions

Step-length α_k Descent method with

Descent method with quasi-Newton's directions Gradient and conjugate-

rust-region methods

The Gauss-Newton met Levenberg-Marquardt

Trust-region methods (cont.)

From $(\mathbf{H}_k + \lambda^{(k)}\mathbf{I})\mathbf{s}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$, we compute $\mathbf{s}^{(k)} = \mathbf{s}^{(k)}(\lambda^{(k)})$

We substitute it in $||\mathbf{s}^{(k)}|| - \delta_k = 0$ to get

$$arphi(\lambda^{(k)}) = rac{1}{||\mathbf{s}^{(k)}(\lambda^{(k)})||} - rac{1}{\delta_k} = 0$$

Alone, this non-linear equation in the unknown λ is equivalent to System 47 and can be easily solved using Newton's method

UFC/DC AI (CK0031)

Unconstrained optimisation

Derivative-fre

Golden section and quadratic interpolatio

The Newton method

Line-search methods

Descent direction

Step-length α_k

Newton's directions

Descent method with quasi-Newton's directic

quasi-Newton's direction

gradient descent direction

Nonlinear least-squa

The Gauss-Newton meth Levenberg-Marquardt

UFC/DC

AI (CK0031)

Trust-region methods (cont.)

Given λ_0 and set $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)})$

Pseudocode

For $l = 0, 1, \dots$ (typically, less than 5 iterations are needed)

Compute
$$\mathbf{s}_{l}^{(k)} = -(\mathbf{H}_{k} + \lambda_{l}^{(k)}\mathbf{I})^{-1}\mathbf{g}^{(k)}$$

Evaluate
$$\varphi(\lambda_l^{(k)}) = \frac{1}{||\mathbf{s}_l^{(k)}||} - \frac{1}{\delta_k}$$

Evaluate $arphi'(\lambda_I^{(k)})$

Compute
$$\lambda_{l+1}^{(k)} = \lambda_l^{(k)} - \frac{\varphi \lambda_l^{(k)}}{\varphi'(\lambda_l^{(k)})}$$

Trust-region methods (cont.)

4

Cholesky factorisation

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite matrix

$$\mathbf{A} = \mathbf{R}^T \mathbf{R}$$

 \boldsymbol{R} is upper triangular with positive elements on the diagonal

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newton method

Descent directions
Step-length α_k

Descent method with Newton's directions Descent method with quasi-Newton's directions

Trust-region method

Nonlinear least-square The Gauss-Newton metho Levenberg-Marquardt

Trust-region methods (cont.)

Vector $\mathbf{s}_{l}^{(k)}$ is obtained by **Cholesky factorisation** of $(\mathbf{H}_{k} + \lambda_{l}^{(k)}\mathbf{I})$

- Provided that matrix $\mathbf{B}^{(k)} = \mathbf{H}_k + \lambda_l^{(k)} \mathbf{I}$ is positive definite
- $\mathbf{B}^{(k)}$ is symmetric (definition of \mathbf{H}_k)
- Its eigenvalues are all real

Remark

Usually, a regularised matrix $\mathbf{B}_{I}^{(k)} + \beta \mathbf{I}$ is used instead of $\mathbf{B}^{(k)}$

• β is chosen to be larger than the negative eigenvalue of $\mathbf{B}^{(k)}$ with largest modulus

ined Tru

UFC/DC AI (CK0031) 2016.2

nconstrained

optimisation

Golden section and quadratic interpolatio

The Newton method

Line-search methods

Step-length α_k Descent method with

Descent method with quasi-Newton's directions Gradient and conjugate-

rust-region method:

Nonlinear least-square
The Gauss-Newton metho

Trust region methods (cont.)

For $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)})$ and for a given δ_k ,

Pseudocod

Solve
$$\mathbf{H}_k \mathbf{s} = -\mathbf{g}^{(k)}$$
 (means $\mathbf{s} = -\mathbf{H}_k^{(-1)} \mathbf{g}^{(k)}$)
If $||\mathbf{s}|| \le \delta_k$ and \mathbf{H}_k is positive definite

Set
$$\mathbf{s}^{(k)} = \mathbf{s}$$

Let β_1 be the negative eigenvalue of \mathbf{H}_k with largest modulus Set $\lambda_0^{(k)} = 2|\beta_1|$

For
$$l = 0, 1, ...$$

Compute
$$\mathbf{R} : \mathbf{R}^T \mathbf{R} = \mathbf{H}_k + \lambda_l^{(k)} \mathbf{I}$$

Solve $\mathbf{R}^T \mathbf{R} \mathbf{s} = \mathbf{g}^{(k)}, \ \mathbf{R}^T \mathbf{q} = \mathbf{s}$

Update
$$\lambda_{l+1}^{(k)} = \lambda_l^{(k)} + \left(\frac{||\mathbf{s}||}{||\mathbf{q}||}\right)^2 \frac{||\mathbf{s}|| - \delta_k}{\delta_k}$$

Set
$$\mathbf{s}^{(k)} = \mathbf{s}$$

endif

UFC/DC AI (CK0031)

Unconstrained optimisation

Derivative-free

Golden section and quadratic interpolation

The Newton method

Line-search methods

Line-scaren methods

- Descent direction

Step-length α_k

Newton's directions

quasi-Newton's direction

Gradient and conjugate

Trust-region method

The Gauss-Newton methor Levenberg-Marquardt

Trust-region methods (cont.)

For a fast convergence, a good radius δ_k is truly fundamental

The criterion for accepting a solution $\mathbf{s}^{(k)}$ is based on a comparison between variation of f and that of its quadratic approximation \tilde{f}_k

• as $\mathbf{x}^{(k)}$ moves to $\mathbf{x}^{(k)} + \mathbf{s}^{(k)}$

$$\rho_k = \frac{f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)}) - f(\mathbf{x}^{(k)})}{\tilde{f}_k(\mathbf{s}^{(k)}) - \tilde{f}_k(\mathbf{0})}$$

Remark

- If $\rho_k \approx 1$, $\mathbf{s}^{(k)}$ is accepted and the ball is enlarged, if the minimum is on the boundary
- If $\rho_k \approx 0$ or $\rho_k < 0$, $\mathbf{s}^{(k)}$ is not accepted and the ball is diminished

Jnconstraine optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation

The Newton metho

Line-search method

Descent directions

Descent method with

Descent method with

Gradient and conjugate-

gradient descent direction

Trust-region method

The Gauss-Newton me

Trust-region methods (cont.)

... for $k = 0, 1, \ldots$ until convergence

Pseudocode

Compute $f(\mathbf{x}^{(k)})$, $\nabla f(\mathbf{x}^{(k)})$ and \mathbf{H}_k Solve $\min_{||\mathbf{s} \in \mathbf{R}^n: \mathbf{s}||_2 \le \delta_k} \tilde{f}_k(\mathbf{s})$

Compute ρ_k

If $\rho_k > \mu$ Set $\mathbf{x}^{(x+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$

else

Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}$

endif

If $\rho_k < \eta_1$

Set $\delta_{k+1} = \gamma_1 \delta_k$

elseif $\eta_1 \le \rho_k \le \eta_2$ Set $\delta_{k+1} = \delta_k$

elseif $\rho_k > \eta_2$ and $||\mathbf{s}^{(k)}|| = \delta_k$ Set $\delta_{k+1} = \min\{\gamma_2 \delta_k, \hat{\delta}\}$

endif

Unconstrained optimisation

UFC/DC AI (CK0031) 2016 2

Unconstrained

Derivative-free

Golden section and quadratic interpolatio

The Newton methy

ie Newton metho

escent directions

Descent method with Newton's directions Descent method with quasi-Newton's directions

Trust-region metho

Vonlinear least-square The Gauss-Newton metho Levenberg-Marquardt

Trust-region methods (cont.)

Given an initial solution $\mathbf{x}^{(0)}$, an initial radius of the ball $\delta_0 \in (0, \hat{\delta})$ with maximum radius $\hat{\delta} > 0$, four real parameters $\{\eta_1, \eta_2, \gamma_1, \gamma_2\}$ such that $0 < \eta_1 < \eta_2 < 1$ and $0 < \gamma_1 < 1 < \gamma_2$ for updating the ball and a real parameter $0 < \mu < \eta_1$ for accepting a solution, ...

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstraine

Derivative-free methods

Golden section and quadratic interpolatio

The Newton m

Line-search method: Descent directions

Step-length α_k Descent method with Newton's directions

Descent method with

Descent method with quasi-Newton's directions Gradient and conjugategradient descent direction

Trust-region method

The Gauss-Newton met Levenberg-Marquardt

Trust-region methods (cont.)

Choice of parameters⁴: $\eta_1 = 1/4$, $\eta_2 = 3/4$, $\gamma_1 = 1/4$, $\gamma_2 = 8/4$

- \bullet By choosing $\mu={\bf 0}$ we accept any step yielding a decrease of f
- By choosing $\mu > 0$ we accept steps for which the variation of f is at least μ times the variation of its quadratic model \tilde{f}_k

⁴J. Nocedal and S. Wrigth (2006): *Numerical optimization*.

UFC/DC AI (CK0031)

Nelder and Mead

Descent directions

Descent method with

The Gauss-Newton method Levenberg-Marguardt

Trust-region methods (cont.)

```
1 %TREGION Trust region optimisation method
              2 % [X, ERR, ITER] = TREGION (FUN, GRAD_FUN, X_O, DELTA_O, ...
              3 % TOL, KMAX, TYP, HESS_FUN)
              4 % Approximates the minimiser of FUN with gradient GRAD_FUN
              6 % If TYP=1 Hessian is inputed as HESS_FUN
              7 % If TYP NE 1 Hessian is rank-one approximated
             9 % FUN and GRAD_FUN (and HESS_FUN) are function handles
Descent method with quasi-Newton's directions 10 % X_O is the initial point
             11 % TOL is stop check tolerance
             12 % DELTA_O is initial radius of trust ball
Trust-region methods 13 % KMAX are maximum number of iterations
```

Unconstrained optimisation

UFC/DC AI (CK0031)

Nelder and Mead

Descent directions

Newton's directions

Trust-region methods

Nonlinear least-squares 15 end The Gauss-Newton method 16 end Levenberg-Marguardt

Trust-region methods (cont.)

```
1 function [s] = trust_one (Hk,gk,delta)
             2 maxiter=5;
             4 s = -Hk\gk; d = eigs(Hk,1,'sa'); % 1st smallest algebraic
                    evalue
             6 if norm(s) > delta | d<0
             lambda = abs(2*d); I = eve(size(Hk));
             8 for l=1:maxiter
             9 R = chol(lambda*I+Hk);
            s = -R\setminus(R'\setminus gk); q = R'\setminus s;
            lambda = lambda+(s'*s)/(q'*q)*(norm(s)-delta)/delta;
gradient descent directions 12 if lambda < -d
            lambda = abs(2*lambda);
```

```
Unconstrained
               function [x,err,iter] = tRegion(fun,grad_fun,x_0,delta_0, ...
  ontimisation
                                                    tol, kmax, typ, hess_fun)
   UFC/DC
  AI (CK0031)
               4 delta = delta_0; err = 1 + tol; k = 0; mu = 0.1; delta_m = 5;
               5 eta 1 = 0.25: eta 2 = 0.75: gamma 1 = 0.25: gamma 2 = 2.00:
              7 \text{ xk} = x_0(:); \text{ gk} = \text{grad}_\text{fun}(xk); \text{ eps2} = \text{sqrt}(\text{eps});
              8 if typ==1; Hk=hess_fun(xk); else; Hk=eye(length(xk)); end
              10 while err > tol & k < kmax
              [s]=trust_one(Hk,gk,delta);
Nelder and Mead
              rho=(fun(xk+s)-fun(xk))/(s'*gk+1/2*s'*Hk*s);
The Newton method 13 if rho > mu; xk1 = xk + s; else; xk1 = xk; end
              if rho < eta_1; delta = gamma_1*delta;
              elseif rho > eta_2 & abs(norm(s)-delta) < sqrt(eps)
Descent directions
              delta=min([gamma_2*delta,delta_m]);
Descent method with 17 end
Newton's directions 18 gk1 = grad_fun(xk1);
Descent method with
Descent method with quasi-Newton's directions 19 err = norm((gk1.*xk1)/max([abs(fun(xk1)),1]),Inf);
Gradient and conjugate. 20 if typ == 1; xk = xk1; gk = gk1; Hk = hess_fun(xk); % Newton
                                                                       % quasi-Newton
Trust-region methods 22 gk1 = grad(xk1); yk = gk1-gk; sk=xk1-xk; yks = yk'*sk;
             23 if yks > eps_2*norm(sk)*norm(yk)
                  Hs = Hk*sk; Hk = Hk+(yk*yk')/yks-(Hs*Hs')/(sk'*Hs);
Levenberg-Marquardt
                  xk = xk1; gk = gk1;
              27 end
              28 k=k+1;
              29 end
              31 x = xk: iter = k:
              32 if (k==kmax & err>tol); disp('Accuracy not met [KMAX]'); end
```

Unconstrained optimisation

UFC/DC AI (CK0031)

Nelder and Mead

Descent directions

Descent method with

Trust-region methods

Trust-region methods (cont.)

Approximate the minimiser of function

$$f(x_1, x_2) = \frac{7}{5} + \frac{(x_1 + 2x_2 + 2x_1x_2 - 5x_1^2 - 5x_2^2)}{(5 \exp(x_1^2 + x_2^2))}$$

using the trust-region method

A local maximum, a saddle point and two local minima at approx. (-1.0, +0.2) and (+0.3, -0.9), the second being the global one

UFC/DC AI (CK0031)

Descent method with

Trust-region methods

Levenberg-Marguardt

Trust region methods (cont.)

```
fun = Q(x) (x(1)+2*x(2)+2*x(1)*x(2)-5*x(1)^2-5*x(2)^2) / ...
                          (5*exp(x(1)^2+x(2)^2)) + 7.5;
              grad_fun = @(x) [(1 + 2*x(2) - 10*x(1) - 2*x(1)*(x(1) + 2*x(2) + ...
                                    2*x(1)*x(2)-5*x(1)^2-5*x(2)^2) / ...
                                     (5*exp(x(1)^2+x(2)^2));
                                (2 + 2*x(1) - 10*x(2) - 2*x(2)*(x(1) + 2*x(2) + ...
                                     2*x(1)*x(2)-5*x(1)^2-5*x(2)^2) / ...
                                     (5*exp(x(1)^2+x(2)^2));
            11 delta 0 = 0.5: x 0 = [0.0:0.5]:
            tol = 1e-5; kmax = 100; imax=5;
Nonlinear least-squares 15 [x,er,it]=tRegion(fun,grad_fun,x_0,delta_0,tol,kmax,typ,imax)
```

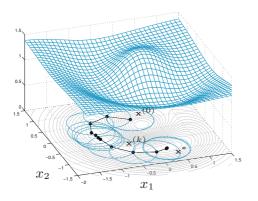
UFC/DC AI (CK0031)

Nelder and Mead

Trust-region methods

Trust-region methods (cont.)

Trust-region, exact Hessian: 12 iterations

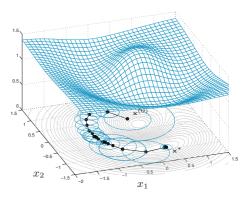


Unconstrained

UFC/DC AI (CK0031)

Trust-region methods (cont.)

Trust-region, approx. Hessian: 24 iters, $\mathbf{x}^* \approx (+0.28, -0.90)$



optimisation

UFC/DC AI (CK0031)

Nelder and Mead

Trust-region methods

Trust region methods (cont.)

Rosenbrock's function: $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

```
fun = Q(x) (1-x(1))^2+100*(x(2)-x(1)^2)^2;
 grad_fun = @(x)[-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1)); ...
                  200*(x(2)-x(1)^2);
 x_0 = [+1.2; -1.0];
 options = optimset ('LargeScale', 'on'); % Trust-region
 options = optimset ('GradObj', 'on');  % Gradient
[x,fval,exitflag,output]=fminunc({fun,grad_fun},x_0,options)
```

Trust-region (Matlab): 8 iterations, 9 function evaluations

UFC/DC AI (CK0031)

Unconstrained optimisation

Derivative-free

Golden section and quadratic interpolation

The Newton method

Line-search methods

Descent direction

Step-length α_k

Descent method witl

Descent method with quasi-Newton's direction

Frust-region metho

The Gauss-Newton meth

Trust-region methods (cont.)

Remark

The M-command fminunc in Octave implements the trust region method with approximated Hessians \mathbf{H}_k , computed with BFGS

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\mathbf{y}^{(k)} \mathbf{y}^{(k)^T}}{\mathbf{x}^{(k)^T} \mathbf{s}^{(k)}} - \frac{\mathbf{H}_k \mathbf{s}^{(k)} \mathbf{s}^{(k)^T} \mathbf{H}_k^T}{\mathbf{s}^{(k)^T} \mathbf{H}_k \mathbf{s}^{(k)}}$$

The option 'LargeScale' is not used

Non-linear least-squares Numerical optimisation

Unconstrair optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolati

The Newton method

er er er er

Descent directions

Step-length α_k

Descent method with Newton's directions

quasi-Newton's direction

Gradient and conjugate

Trust-region method

Nonlinear least-squa

The Gauss-Newton meth Levenberg-Marquardt

Non-linear least-squares

The **least-squares method** is often used for approximating either functions f(x) or sets of data $\{(x_k, y_k), k = 0, ..., K\}$ by function \tilde{f} linearly depending on a set of coefficients $\{a_i, j = 1, ..., m\}$

Example

$$\tilde{f}(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$

The coefficients $\{a_i\}_{i=0}^m$ are unknown and must be determined

$$\sum_{k=0}^{K} \left(y_k - \tilde{f}(x_k) \right)^2$$

 Non-linear least-squares refers to problems in which such a dependence is non-linear

Unconstrained optimisation

Unconstrained

UFC/DC

AI (CK0031)

UFC/DC AI (CK0031) 2016.2

Unconstraine

erivative-free

Golden section and quadratic interpolatio

The Newton met

Descent directions Step-length α_k

Descent method with quasi-Newton's directions Gradient and conjugate-

rust-region method:

Nonlinear least-squa
The Gauss-Newton metl

Non-linear least-squares(cont.)

Definition

Let $\mathbf{R}(\mathbf{x}) = (r_1(\mathbf{x}), \dots, r_n(\mathbf{x}))^T$ with $r_i : \mathbb{R}^m \to \mathbb{R}$ be some function

$$\min_{\mathbf{x} \in \mathbb{R}^m} \Phi(\mathbf{x}), \quad \text{with } \Phi(\mathbf{x}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x})||^2 = \frac{1}{2} \sum_{i=1}^n r_i^2(\mathbf{x})$$
(48)

When functions r_i are non-linear, function Φ may not be convex

• Thus, have multiple stationary points

Newton, descent directions, trust-region methods can be used

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

TI No. 1

Line-search methods

Descent directions

Step-length α_k

D

Danasa araba danish

quasi-Newton's directi

Gradient and conjugate

e de la companya de

Nonlinear least-squar

Levenberg-Marquardt

Non-linear least-squares(cont.)

Because of the form of Φ , gradient and Hessian can be written in terms of the Jacobian $\mathbf{J}_{\mathbf{R}}(\mathbf{x}) \in \mathbb{R}^{n \times m}$ and second derivatives of \mathbf{R}

$$\nabla \Phi(\mathbf{x}) = \mathbf{J}_{\mathbf{R}}(\mathbf{x})^{\mathsf{T}} \mathbf{R}(\mathbf{x})$$
$$\mathbf{H}(\mathbf{x}) = \mathbf{J}_{\mathbf{R}}(\mathbf{x})^{\mathsf{T}} \mathbf{J}_{\mathbf{R}}(\mathbf{x}) + \mathbf{S}(\mathbf{x})$$
(49)

in which
$$\mathbf{S}_{lj}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial^{2} r_{i}}{\partial x_{l} \partial x_{j}}(\mathbf{x}) r_{i}(\mathbf{x}) r_{i}(\mathbf{x})$$
 for $l, j = 1, \dots, m$

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search method

Descent direction

Descent method with

Descent method with

Gradient and conjugate-

Trust-region method:

Nonlinear least-square

I ne Gauss-Newton meti

Gauss-Newton method Nonlinear least-squares

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation Nelder and Mead

he Neuton method

Ine-search metho

Step-length α_k Descent method with
Newton's directions
Descent method with
quasi-Newton's direction

Trust-region n

Nonlinear least-squ The Gauss-Newton m

Non-linear least-squares(cont.)

Calculation of the Hessian can be heavy when m and n are large

This is especially due to matrix S(x)

In some cases S(x) is less influent than $J_R(x)^T J_R(x)$ and could be approximated or neglected in the construction of the Hessian H(x)

We discuss two methods devoted to handling such cases

Unconstrained optimisation

UFC/DC AI (CK0031) 2016.2

Unconstraine

erivative-free ethods

quadratic interpolation Nelder and Mead

The Newton metho

Descent directions ${\it Step-length} \,\, \alpha_k$

Descent method with quasi-Newton's directions Gradient and conjugate-

rust-region method:

The Gauss-Newton metho-Levenberg-Marquardt

The Gauss-Newton method

The Gauss-Newton method is a variant of the Newton method

Given $\mathbf{x}^{(0)} \in \mathbb{R}^n$, for $k = 0, 1, \dots$ until convergence

Seudocode

Solve
$$\mathbf{H}(\mathbf{x}^{(k)}) \delta \mathbf{x}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$$

Set
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$$

The Hessian $\mathbf{H}(\mathbf{x})$ is approximated by neglecting $\mathbf{S}(\mathbf{x})$

UFC/DC AI (CK0031)

The Gauss-Newton method

The Gauss-Newton method (cont.)

Given $\mathbf{x}^{(0)} \in \mathbb{R}^m$ and for k = 0, 1, ... until the convergence

Solve
$$[\mathbf{J}_{\mathbf{R}}(\mathbf{x}^k)^{\mathsf{T}}\mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})]\delta\mathbf{x}^{(k)} = -\mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})^{\mathsf{T}}\mathbf{R}(\mathbf{x}^{(k)})$$

Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta\mathbf{x}^{(k)}$

If $J_R(x^{(k)})$ is not full rank, the linear system in the first equation has infinitely many solutions leading either to a stagnation of the method or to convergence to a non-stationary point

If $J_R(x^{(k)})$ is full rank, the linear system has form $A^TAx^* = A^Tb$ and it can be solved by using QR or SVD factorisations of $J_R(x)$

UFC/DC AI (CK0031)

The Gauss-Newton method (cont.)

It can be shown that neglecting $S(x^{(k)})$ at step k amounts to approximating R(x) with its first-order Taylor expansion at x^*

$$\tilde{\mathbf{R}}_{k}(\mathbf{x}) = \mathbf{R}(\mathbf{x}^{(k)}) + \mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})(\mathbf{x} - \mathbf{x}^{(k)})$$
 (50)

ontimisation

UFC/DC AI (CK0031)

The Gauss-Newton method (cont.)

```
1 function [x,err,iter]=nllsGauNewtn(r,jr,x_0,tol,kmax,varargin)
             2 %NLLSGAUNEW Nonlinear least-squares with Gauss-Newton method
             3 % [X,ERR,ITER] = NLLSGAUNEW(R,JR,X_O,TOL,KMAX)
             4 % R and JR: Function handles for objective R and its Jacobian
             5 % X_0 is the initial solution
             6 % TOL is the stop check tolerance
             7 % KMAX is the max number of iterations
             9 err = 1 + tol; k = 0;
             10 xk = x_0(:);
            rk = r(xk, varargin{:}); jrk = jr(xk, varargin{:});
            14 while err > tol & k < kmax
            [Q,R] = qr(jrk,0); dk = -R\setminus(Q'*rk);
            16 	 xk1 = xk + dk:
            17  rk1 = r(xk1, varargin {:});
            18     jrk1 = jr(xk1, varargin{:});
            k = 1 + k; err = norm(xk1 - xk);
The Gauss-Newton method 21 xk = xk1; rk = rk1; jrk = jrk1;
            24 x = xk: iter = k:
            26 if (k==kmax & err > tol)
            disp('nllsGauNewtn stopped w\o reaching accuracy [KMAX]'):
```

optimisation

UFC/DC AI (CK0031)

The Gauss-Newton method (cont.)

Convergence of the method is not always guaranteed as it depends on both properties of Φ and initial solution

If x^* is stationary point for Φ and $J_R(x)$ is full rank in a suitable neighbourhood of x^* , then

- 1 If $S(x^*) = 0$, which is the case if R(x) is linear or $R(x^*) = 0$, the Gauss-Newton method is locally quadratically convergent and it coincides with the Newton's method
- 2 If $||\mathbf{S}(\mathbf{x}^*)||_2$ is small compared to the smallest positive e-value of $J_R(x^*)^T J_R(x^*)$, then Gauss-Newton converges linearly (for instance, when R(x) is mildly non-linear or $R(x^*)$ is small)
- 3 If $||S(x)||_2$ is large compared to the smallest positive e-value of $\mathbf{J}_{\mathbf{R}}(\mathbf{x}^*)^T \mathbf{J}_{\mathbf{R}}(\mathbf{x}^*)$, then Gauss-Newton may not converge even if $\mathbf{x}^{(0)}$ is very close to \mathbf{x}^* (this happens if $\mathbf{R}(\mathbf{x})$ is strongly non-linear or if its residual $R(x^*)$ is large)

UFC/DC AI (CK0031)

The Gauss-Newton method (cont.)

Line-search can be used in combination with Gauss-Newton by replacing $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$ with $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \delta \mathbf{x}^{(k)}$

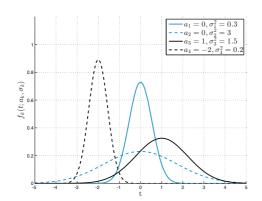
• Computation of step-lengths α_k is as per usual

If $J_R(\mathbf{x}^{(k)})$ is full rank, matrix $J_R(\mathbf{x}^{(k)})^T J_R(\mathbf{x}^{(k)})$ is symmetric and positive definite and $\delta \mathbf{x}^{(k)}$ is a descent direction for Φ

In this case, under suitable assumptions on Φ , we get the globally convergent method known as damped Gauss-Newton method

UFC/DC AI (CK0031)

The Gauss-Newton method (cont.)



Each peak or component is characterised by two coefficients

- The centre, a_k
- The (square of the) spread, σ_k^2

$$f(t|\mathbf{a},\sigma) = \sum_{k=1}^{m} f_k(t; a_k, \sigma_k)$$
• $\mathbf{a} = [a_1, \dots, a_k]$
• $\sigma = [\sigma_1, \dots, \sigma_k]$

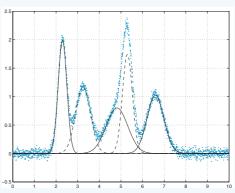
•
$$\mathbf{a} = [a_1, \cdots, a_k]$$

•
$$\boldsymbol{\sigma} = [\sigma_1, \cdots, \sigma_k]$$

Unconstrained optimisation

UFC/DC AI (CK0031)

Voice recognition: Compress an audio signal to a set of parameters



The signal intensity is modelled as a sum of m Gaussian functions

$$f_k(t|a_k,\sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\Big(-\frac{(t-a_k)^2}{2\sigma_k^2}\Big), t \in [t_0,t_F], k = 1,\ldots,m$$

UFC/DC AI (CK0031)

The Gauss-Newton method (cont.)

Find **a** and σ that minimise the residual sum of squares

$$\min_{\mathbf{a}, \boldsymbol{\sigma}} \sum_{i=1}^{n} \left(f(t_i | \mathbf{a}, \boldsymbol{\sigma}) - y_i \right)^2$$

From recorded audio intensities y_i at sampling times t_i

UFC/DC AI (CK0031)

Unconstrained

Derivative-free

Golden section and quadratic interpolation

The Neuton method

the second of

D------

Sten-length ov.

Descent method with

Newton's directions

quasi-Newton's direction

Gradient and conjugate-

The Gauss-Newton method

Levenberg-Marquardt

The Gauss-Newton method (cont.)

Generate n = 2000 time-intensity pairs $(t_i, y_i)_{i=1}^n$ with $t_i \in (0, 10)$

By summing 5 Gaussian components

$$f_k(t|a_k,\sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(t-a_k)^2}{(2\sigma_k^2)}\right)$$

• and by adding little random noise

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstrained

Derivative-fre

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search method:

Step-length α_k Descent method with

quasi-Newton's direction Gradient and conjugate-

Trust-region method:

Nonlinear least-squar

The Gauss-Newton method Levenberg-Marquardt

The Gauss-Newton method (cont.)

Using the M-command nllsGauNewtn

Gauss-Newton: 22 iterations

Unconstrained

UFC/DC AI (CK0031) 2016.2

Unconstrained

Derivative-fre

Golden section and quadratic interpolation

The Name of State of

Ine-search metho

Descent directions

Step-length α_k

Newton's directions

Descent method with
quasi-Newton's directions

Trust-region methods

Nonlinear least-squares
The Gauss-Newton method

The Gauss-Newton method (cont.)

We want to solve the nonlinear least-squares problem of form

$$\min_{\mathbf{x} \in \mathbb{R}^m} \Phi(\mathbf{x}), \quad \text{with } \Phi(\mathbf{x}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x})||^2 = \frac{1}{2} \sum_{i=1}^n r_i^2(\mathbf{x})$$

in which
$$r_i(\mathbf{x}) = f(t_i|\mathbf{a}, \boldsymbol{\sigma}) - y_i = \sum_{k=1}^m f_k(t_i|a_k, \sigma_k) - y_i$$
 and

$$\frac{\partial r_i}{\partial a_k} = f_k(t_i|a_k, \sigma_k) \frac{t_i - a_k}{\sigma_k}$$
$$\frac{\partial r_i}{\partial \sigma_k} = f_k(t_i|a_k, \sigma_k) \left[\frac{(t_i - a_k)^2}{\sigma_k^3} - \frac{1}{2\sigma_k} \right]$$

Unconstrained optimisation

UFC/DC AI (CK0031)

Unconstraine

Derivative-free methods

quadratic interpolation Nelder and Mead

Line-search methods

Descent method with Newton's directions Descent method with quasi-Newton's directions Gradient and conjugate-

Trust-region methods

The Gauss-Newton method

The Gauss-Newton method (cont.)

```
x = x(:); m = round(0.5*length(x));
a = x(1:m); sigma = x(m+1: end);

gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ...

/(sigma*sqrt(pi*2))];

n = length(t); JR = zeros(n,2*m); fk = zeros(n,m);
for k = 1:m; fk(:,k) = gauFun(t,a(k),sigma(k)); end
for k = 1:m; JR(:,k) = (fk(:,k).*(t-a(k))/sigma(k)^2)'; end
for k = 1:m
JR(:,k+m) = (fk(:,k).*((t-a(k)).^2/(k)^3-1/(2*sigma(k))))';
end
```

UFC/DC AI (CK0031)

Levenberg-Marquardt

Levenberg-Marquardt Nonlinear least-squares

AI (CK0031)

UFC/DC

Levenberg-Marquardt (cont.)

Compute $f(\mathbf{x}^{(k)})$, $\nabla f(\mathbf{x}^{(k)})$ and \mathbf{H}_k Solve min $\tilde{f}_k(\mathbf{s})$ $||\mathbf{s}||_2 \leq \delta_k$ Compute ρ_k

If $\rho_k > \mu$

Set $\mathbf{x}^{(x+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$

else

Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}$

endif

If $\rho_k < \eta_1$

Set $\delta_{k+1} = \gamma_1 \delta_k$ elseif $\eta_1 \leq \rho_k \leq \eta_2$

Set $\delta_{k+1} = \delta_k$

elseif $\rho_k > \eta_2$ and $||\mathbf{s}^{(k)}|| = \delta_k$

Set $\delta_{k+1} = \min\{\gamma_2 \delta_k, \hat{\delta}\}\$

endif

UFC/DC AI (CK0031)

Levenberg-Marguardt

Levenberg-Marquardt

Levenberg-Marquardt is a trust-region method for

$$\min_{\mathbf{x} \in \mathbb{R}^m} f(\mathbf{x}), \quad \text{with } f(\mathbf{x}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x})||^2 = \frac{1}{2} \sum_{i=1}^n r_i^2(\mathbf{x})$$

We can use the general trust-region pseudocode

optimisation

UFC/DC AI (CK0031)

Levenberg-Marquardt (cont.)

After replacing f with Φ and \tilde{f} with $\tilde{\Phi}$, at each step k we solve

$$\min_{\mathbf{s} \in \mathbb{R}^n: ||\mathbf{s}|| \le \delta_k} \tilde{\Phi}_k(\mathbf{s}), \quad \text{with } \tilde{\Phi}_k(\mathbf{s}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x}^{(k)}) + \mathbf{J}_{\mathbf{R}}(\mathbf{x}^{(k)})\mathbf{s}||^2 \quad (51)$$

Note how $\tilde{\Phi}_k(\mathbf{x})$ is a quadratic approximation of $\Phi(\mathbf{x})$ about $\mathbf{x}^{(k)}$

• It is obtained by approximating R(x) with its linear model

$$\tilde{\mathsf{R}}_k(\mathsf{x}) = \mathsf{R}(\mathsf{x}^{(k)}) + \mathsf{J}_\mathsf{R}(\mathsf{x}^{(k)})(\mathsf{x} - \mathsf{x}^{(k)})$$

UFC/DC AI (CK0031) 2016.2

Jnconstrained optimisation

erivative-free

Golden section and quadratic interpolation Nelder and Mead

The Newton method

Line-search methods

Descent direction

Step-length α_k

Descent method with Newton's directions

Descent method with quasi-Newton's direction Gradient and conjugate

Trust-region metho

The Gauss-Newton met

Levenberg-Marquardt

Levenberg-Marquardt (cont.)

Even when $J_R(x)$ is not full rank, the method is well suited for minimisation problems with strong non-linearities or large residuals

$$\Phi(\mathbf{x}^*) = \frac{1}{2} ||\mathbf{R}(\mathbf{x}^*))||^2$$
 at the local minimiser \mathbf{x}^*

Remark

Hessian approximations are those of the Gauss-Newton method, the two methods share the same local convergence properties

- When Levenberg-Marquardt iterations converge, convergence rate is quadratic if the residual is small at a local minimiser
- Convergence rate is linear otherwise