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Constrained optimisation

Two strategies for solving constrained minimisation problems

• The penalty method: Problems with both equality
and inequality constraints

• The augmented Lagrangian method: Problems with
equality constraints only

The two methods allow the solution of simple problems and
provide basic tools for more robust and complex algorithms
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Constrained optimisation (cont.)

Definition

Let f : Rn → R with n ≥ 1 be a cost or objective function

The constrained optimisation problem is

min
x∈Ω⊂Rn

f (x) (1)

The closed subset Ω is determined by either equality and inequality
constraints that are dictated by the nature of the problem to solve

1 Given functions hi : Rn → R for i = 1, . . . , p

Ω = {x ∈ R
n : hi(x) = 0, for i = 1, . . . , p} (2)

2 Given functions gj : Rn → R for j = 1, . . . , g

Ω = {x ∈ R
n : gj(x) ≥ 0, for j = 1, . . . , q} (3)

p and q are natural numbers



Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

min
x∈Ω⊂Rn

f (x)

In general, Ω is defined by both equality and inequality constraints

Ω = {x ∈ R
n : hi(x) = 0 for i ∈ Ih, gj(x) ≥ 0 for j ∈ Ig}

The two sets Ih and Ig are st Ih = ∅ in Eq. 3 and Ig = ∅ in Eq. 2
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Constrained optimisation (cont.)

The constrained optimisation problem can thus be rewritten

Definition

min
x∈Rn

f (x) subjected to

hi(x) = 0, ∀i ∈ Ih

gj(x) ≥ 0, ∀j ∈ Ig

(4)
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Constrained optimisation (cont.)

We assume that f ∈ C1(Rn), and also hi and gj are C1(Rn), ∀i , j

• Points x ∈ Ω are said to be admissible
as they fulfil all the constraints

• Ω is the set of all admissible points
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Constrained optimisation (cont.)

A point x∗ ∈ Ω ⊂ Rn is a global minimiser for the problem if

f (x∗) ≤ f (x), ∀x ∈ Ω (5)

A point x∗ ∈ Ω ⊂ Rn is a local minimiser for the problem if there
is a ball Br (x) ∈ Rn with radius r > 0 and centred in x∗ such that

f (x∗) ≤ f (x), ∀x ∈ Br (x
∗) ∩ Ω (6)
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Constrained optimisation (cont.)

A constraint is active at x ∈ Ω if it is satisfied with equality at x

• According to this definition, active constraints at x
are all the hi as well as those gj such that gj(x) = 0
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Constrained optimisation (cont.)

Consider the following constrained optimisation problems

Example

Minimise f (x) with f (x) =
3

5
x21 +

1

2
x1x2 − x2 + 3x1, under the

equality constraint h1(x) = x21 + x22 − 1 = 0

Ω x1

x2

x
∗

• Contour lines of the cost f (x)

• Admissibility set Ω ∈ R2

• The global minimiser x∗

constrained to Ω
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Constrained optimisation (cont.)

Example

Minimise f (x) with f (x) = 100(x2 − x21 )
2 + (1− x1)

2, under the
following inequality constraints

Ω

x1

x2

x
∗

g1(x) = −34x1 − 30x2 + 19 ≥ 0

g2(x) = +10x1 − 05x2 + 11 ≥ 0

g3(x) = +03x1 + 22x2 + 08 ≥ 0

• Contour lines of the cost f (x)

• Admissibility set Ω ∈ R
2

• The global minimiser x∗

constrained to Ω



Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

If Ω is a non-empty, bounded and closed set, Weierstrass theorem
guarantees the existence of a maximum and a minimum for f in Ω

• Consequently, problem in Definition 4 admits a solution
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Constrained optimisation (cont.)

Definition

We recall that a function f : Ω ⊆ Rn → R is strongly convex in Ω
if there exists a ρ > 0 such that ∀x, y ∈ Ω and ∀α ∈ [0, 1], we have

f (αx+(1−α)y) ≤ αf (x)+ (1−α)f (y)−α(1−α)ρ||x− y||2 (7)

This reduces to the usual definition of convexity when ρ = 0
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Constrained optimisation (cont.)

Proposition

Optimality conditions

Let Ω ⊂ Rn be a convex set, x∗ ∈ Ω be such that f ∈ C1(Br (x
∗))

If x∗ is a local minimiser for the constrained minimisation problem,

then, ∇f (x∗)T (x− x∗) ≥ 0, ∀x ∈ Ω (8)

If f is convex in Ω and (8) is satisfied, then x∗ is a global minimiser

Under the additional requirement for Ω to be closed and for f to
be strongly convex, it can be shown that the minimiser is unique
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Constrained optimisation (cont.)

Many algos for solving constrained minimisation problems can be
related to the search of the stationary points of the Lagrangian
function (the so-called KKT or Karush-Kuhn-Tucker points)

Definition

The Lagrangian function associated with problem min
x∈Ω

f (x) is

L(x,λ,µ) = f (x)−
∑

i∈Ih

λihi(x)−
∑

j∈Ig

µjgj(x) (9)

where λ = (λi ) for i ∈ Ih and µ = (µi ) for j ∈ Ig are Lagrangian
multipliers associated with the equality and inequality constraints
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Constrained optimisation (cont.)

Definition

Karush-Kuhn-Tucker conditions

Point x∗ is a KKT point for L if there exist λ∗ and µ∗ such
that the triplet (x∗,λ∗,µ∗) satisfies the following conditions

∇xL(x
∗,λ∗,µ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi(x

∗)−
∑

j∈Ig

µ∗
j ∇gj(x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

gi(x
∗) = 0, ∀j ∈ Ig

µ∗
j ≥ 0, ∀j ∈ Ig

µ∗
Jgj(x

∗) = 0, ∀j ∈ Ig
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Constrained optimisation (cont.)

Definition

For a x, constraints satisfy a linear independence (constraint)
qualification (LI(C)Q) in x∗, if the gradients ∇hi (x) and ∇gj(x)
associated with the active constraints in x are linearly independent



Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Theorem

First order KKT conditions

If x∗ is a local minimum for the constrained problem

min
x∈Rn

f (x) subjected to

hi(x) = 0, ∀i ∈ Ih

gj(x) ≥ 0, ∀j ∈ Ig

if f , hi and gj are C1(Ω), if the constraints are LIQ in x∗, then
there exist λ∗ and µ∗ such that (x∗,λ∗,µ∗) is a KKT point

As a consequence, local minima must be searched among KKT
points and among points that do not satisfy LICQ conditions
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Constrained optimisation (cont.)

Note that in the absence of inequality constraints, the Lagrangian
function takes the form L(x,λ) = f (x)−

∑

i∈Ih
λ∗
i ∇hi (x

∗)

• The KKT conditions are Lagrange (necessary) conditions

∇xL(x
∗,λ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi(x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

(10)

Remark

Sufficient conditions for a KKT point to be a minimiser of f in Ω
require knowledge about the Hessian of the Lagrangian or,
alternatively, strict convexity hypothesis on f and the constraints
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Constrained optimisation (cont.)

In general, it is possible to reformulate a constrained optimisation
problem in the form of an unconstrained optimisation problem

• Penalty function

• Augmented Lagrangian
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The penalty method

A strategy for solving a general constrained optimisation problem

min
x∈Rn

f (x) subjected to

hi(x) = 0, ∀i ∈ Ih

gj(x) ≥ 0, ∀j ∈ Ig

is to reformulate it as a new unconstrained optimisation problem

Definition

Pα(x) = f (x) +
α

2

∑

i∈Ih

h2i (x) +
α

2

∑

j∈Ig

(

max {−gj(x), 0}
)2

(11)

a modified penalty function, for a penalty parameter α > 0

• When the constraints are not satisfied at x, the sums
quantify how far point x is from the admissibility set Ω

• A large α heavily penalises such a violation
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The penalty method (cont.)

If x∗ is a solution, clearly x∗ must also be a minimiser of P

Conversely, under some regularity hypothesis for f , hi and gi ,

lim
α→∞

x∗(α) = x∗,

in which x∗(α) denotes a minimiser of Pα(x)
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The penalty method (cont.)

Due to numerical instability, it is not advised to
minimise Pα(x) directly for a large value of α

• Rather, consider an increasing and
unbounded series of parameters {αk}

• For each αk , calculate an approximation x(k)

of the solution x∗(αk) of min
x∈Rn

Pαk
(x)

x(k) = arg min
x∈Rn

Pαk
(x)

with an unconstrained optimisation method

• At each step k , αk+1 is a chosen as a function
of αk (e.g., αk+1 = δαk , for δ ∈ [1.5, 2]) and
x(k) is used as initial point for solving the
minimisation at step k + 1
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The penalty method (cont.)

In the first iterations there is no reason to believe that the solution
to min

x∈Rn
Pαk

(x) should resemble the solution to the original problem

• This supports the idea of searching for an inexact solution to
min
x∈Rn

Pαk
(x) that differs from the exact one, x(k), a small εk
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The penalty method (cont.)

• Given α0, (typically, α0 = 1), ε0 (typically ε0 = 1/10), ε > 0,

x
(0)
0 ∈ Rn and λ

(0)
0 ∈ Rp for k = 0, 1, . . . until convergence

Pseudocode

Compute an approx. solution x(k) = arg min
x∈Rn

Pαk
(x) to

min
x∈Rn

Pαk
(x), by using initial point x

(0)
0 and tolerance εk

If ||∇xLA(x
(k),λ(k), αk)|| ≤ ε

Set x∗ = x(k) (convergence)
else

Choose αk+1 > αk

Choose εk+1 < εk
Set x

(k+1)
0 = x(k)

Endif

Note the extra tolerance ε to assess the gradient of Pαk
at x(k)



Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

1 % PENALTY Constrained optimisation with penalty function

2 % [X,ERR,K]= PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_0,TOL ,...
3 % KMAX ,KMAXD ,TYP)

4 % Approximate a minimiser of the cost function F
5 % under constraints H=0 and G>=0
6 %

7 % X0 is initial point , TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations

9 % GRAD_F, GRAD_H, and GRAD_G are the gradients of F, H, and G
10 % H and G, GRAD_H and GRAD_G can be initialised to []

11 %
12 % For TYP=0 solution by FMINSEARCH M-function
13 %

14 % For TYP >0 solution by a DESCENT METHOD
15 % KMAXD is maximum number of iterations

16 % TYP is the choice of descent directions
17 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
18 % [X,ERR,K]= PFUNCTION(F,GRAD_F ,H,GRAD_H,G,GRAD_G,X_0,TOL ,...

19 % KMAX ,KMAXD ,TYP,HESS_FUN )
20 % For TYP=1 HESS_FUN is the function handle associated

21 % For TYP=2 HESS_FUN is a suitable approx. of Hessian at k=0
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The penalty method (cont.)

1 function [x,err,k]= pFunction(f,grad_f ,h,grad_h ,g,grad_g ,...
2 x_0 ,tol ,kmax ,kmaxd ,typ,varargin )

3

4 xk=x_0(:); mu_0=1.0;

5

6 if typ==1; hess=varargin {1};
7 elseif typ==2; hess=varargin {1};

8 else; hess=[]; end
9 if ~isempty (h), [nh,mh]=size(h(xk)); end

10 if ~isempty (g), [ng,mg]=size(g(xk)); end
11

12 err=1+tol; k=0; muk=mu_0; muk2=muk/2; told=0.1;
13

14 while err >tol && k<kmax

15 if typ==0
16 options =optimset (’TolX’,told);

17 [x,err ,kd]= fminsearch(@P,xk ,options ); err=norm(x-xk);
18 else
19 [x,err ,kd]=dScent(@P,@grad_P ,xk,told ,kmaxd ,typ,hess);

20 err=norm(grad_P(x));
21 end

22

23 if kd<kmaxd; muk=10*muk; muk2 =0.5*muk;

24 else muk=1.5* muk; muk2=0.5* muk; end
25

26 k=1+k; xk=x; told=max([tol ,0.10* told]);

27 end
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The penalty method (cont.)

1 function y=P(x) % This function is nested inside pFunction
2

3 y=fun(x);
4 if ~isempty (h); y=y+muk2*sum((h(x)).^2); end
5 if ~isempty (g); G=g(x);

6 for j=1:ng
7 y=y+muk2*max([-G(j) ,0])^2;

8 end
9 end

1 function y=grad_P(x) % This function is nested in pFunction

2

3 y=grad_fun (x);

4 if ~isempty (h), y=y+muk*grad_h(x)*h(x); end
5 if ~isempty (g), G=g(x); Gg=grad_g(x);
6 for j=1:ng

7 if G(j)<0
8 y=y+muk*Gg(:,j)*G(j);

9 end
10 end
11 end
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The augmented Lagrangian

Consider minimisation problems with equality constraints (Ig = ∅)

min
x∈Rn

f (x) subjected to

hi(x) = 0, ∀i ∈ Ih

gj(x) ≥ 0, ∀j ∈ Ig

Definition

For a suitable coefficient α > 0, define the augmented Laplacian

LA(x,λ, α) = f (x)−
∑

i∈Ih

λihi (x) +
α

2

∑

i∈Ih

h2i (x) (12)
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The augmented Lagrangian (cont.)

The augmented Laplacian method is an iterative method that, at
the k-th iteration and for a given αk and a given λ(k) computes

x(k) = arg min
x∈Rn

LA(x,λ
(k), αk) (13)

in such a way that the sequence x(k) converges to the KKT
point for the Lagrangian L(x,λ) = f (x)−

∑

i∈Ih
λihi (x)
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The augmented Lagrangian (cont.)

Initial α0 and λ(0) are set arbitrarily and new values are given by

• Coefficient αk+1 is obtained from αk , such that αk+1 > αk

• To set λ(k+1), compute the gradient of the augmented
Lagrangian wrt x ∇xLA(x,λ

(k), αk) and set it to zero



Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

∇xLA(x
(k),λ(k), αk) = ∇f (x(k))−

∑

i∈Ih

(

λ
(k)
i − αkhi (x

(k))
)

∇hi (x
(k))

We identify λ
(k)
i , by comparison with optimality condition

∇xL(x
∗,λ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi(x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih
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The augmented Lagrangian (cont.)

The comparison yields λ
(k)
i − αkhi(x

(k)) ≃ λ∗
i and we define

λ
(k+1)
i = λ

(k)
i − µkhi (x

(k)) (14)

We identify x(k+1) by solving with k replaced by k + 1

xk = arg min
x∈Rn

LA(x,λ
k , αk)
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The augmented Lagrangian (cont.)

• Given α0, (typically, α0 = 1), ε0 (typically ε0 = 1/10), ε > 0,

x
(0)
0 ∈ Rn and λ

(0)
0 ∈ Rp for k = 0, 1, . . . until convergence

Pseudocode

Compute an approx. solution x(k) = arg min
x∈Rn

LA(x,λ
(k), αk),

by using initial point x
(0)
0 and a tolerance εk

If ||∇xLA(x
(k),λ(k), αk)|| ≤ ε

Set x∗ = x(k) (convergence)
else

Compute λ
(k+1)
i = λ

(k)
i − µkhi(x

(k))
Choose αk+1 > αk

Choose εk+1 < εk
Set x

(k+1)
0 = x(k)

Endif
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The augmented Lagrangian (cont.)

The implementation of the algorithm is given in the following

• Except for lambda_0 that contains the initial vector λ(0) of
Lagrange multipliers, all other inputs and outputs have been
already explained for pFunction, dScent and others
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The augmented Lagrangian (cont.)

1 % ALGRNG Constrained optimisation with augmented Lagrangian
2 % [X,ERR,K]=ALGRNG(F,GRAD_F,H,GRAD_H ,X_0,LAMBDA_0 ,...

3 % TOL,KMAX ,KMAXD ,TYP)
4 % Approximate a minimiser of the cost function F
5 % under equality constraints H=0

6 %
7 % X_0 is initial point , TOL is tolerance for stop check

8 % KMAX is the maximum number of iterations
9 % GRAD_F and GRAD_H are the gradients of F and H

10 %
11 % For TYP=0 solution by FMINSEARCH M-function
12 % FOR TYP >0 solution by a DESCENT METHOD

13 % KMAXD is maximum number of iterations
14 % TYP is the choice of descent directions

15 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
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The augmented Lagrangian (cont.)

1 function [x,err,k]=aLgrng(f,grad_f ,h,grad_h ,x_0,lambda_0 ,...
2 tol ,kmax ,kmaxd ,typ,varargin )

3

4 mu_0=1.0;
5

6 if typ==1; hess=varargin {1};
7 elseif typ==2; hess=varargin {1};

8 else; hess=[]; end
9

10 err=1+tol+1; k=0; xk=x_0(:); lambdak =lambda_0 (:);

11

12 if ~isempty (h); [nh,mh]=size(h(xk)); end

13

14 muk=mu_0; muk2=muk/2; told =0.1;

15

16 while err >tol && k<kmax
17 if typ==0

18 options =optimset (’TolX’,told);
19 [x,err ,kd]= fminsearch(@L,xk ,options ); err=norm(x-xk);

20 else
21 [x,err ,kd]=descent (@L,@grad_L ,xk,told ,kmaxd ,typ,hess);
22 err=norm(grad_L(x));

23 end
24

25 lambdak =lambdak -muk*h(x);
26 if kd<kmaxd; muk=10*muk; muk2 =0.5*muk;

27 else muk=1.5* muk; muk2=0.5* muk; end
28

29 k=1+k; xk=x; told=max([tol ,0.10* told]);
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The augmented Lagrangian (cont.)

1 function y=L(x) % This function is nested inside aLgrng

2

3 y=fun(x);

4 if ~isempty (h)
5 y=y-sum(lambdak ’*h(x))+muk2*sum((h(x)).^2);
6 end

1 function y=grad_L(x) % This function is nested inside aLgrng
2

3 y=grad_fun (x);

4 if ~isempty (h)
5 y=y+grad_h(x)*(muk*h(x)-lambdak );

6 end
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The augmented Lagrangian (cont.)

Example

1 fun = @(x) 0.6*x(1).^2 + 0.5*x(2).*x(1) - x(2) + 3*x(1);
2 grad_fun = @(x) [1.2*x(1) + 0.5*x(2) + 3; 0.5*x(1) - 1];

3

4 h = @(x) x(1).^2 + x(2).^2 - 1;

5 grad_h = @(x) [2*x(1); 2*x(2)];
6

7 x_0 = [1.2 ,0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;

8 p=1; % The number of equality constraints
9 lambda_0 = rand(p,1); typ=2; hess=eye(2);

10

11 [xmin ,err ,k] = aLagrange(fun ,grad_fun ,h,grad_h ,x_0 ,...

12 lambda_0 ,tol ,kmax ,kmax ,typ,hess)

As stopping criterion, we have set the tolerance to be 10−5 and we
opted for an associated unconstrained minimisation problem by
quasi-Newton descent directions (with typ=2 and hess=eye(2))
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