
Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation
Numerical optimisation

Francesco Corona

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained
optimisation
Numerical optimisation

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation

Two strategies for solving constrained minimisation problems

• The penalty method: Problems with both equality
and inequality constraints

• The augmented Lagrangian method: Problems with
equality constraints only

The two methods allow the solution of simple problems and
provide basic tools for more robust and complex algorithms

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

Let f : Rn → R with n ≥ 1 be a cost or objective function

The constrained optimisation problem is

min
x∈Ω⊂Rn

f (x) (1)

The closed subset Ω is determined by either equality and inequality
constraints that are dictated by the nature of the problem to solve

1 Given functions hi : Rn → R for i = 1, . . . , p

Ω = {x ∈ R
n : hi(x) = 0, for i = 1, . . . , p} (2)

2 Given functions gj : Rn → R for j = 1, . . . , g

Ω = {x ∈ R
n : gj(x) ≥ 0, for j = 1, . . . , q} (3)

p and q are natural numbers

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

min
x∈Ω⊂Rn

f (x)

In general, Ω is defined by both equality and inequality constraints

Ω = {x ∈ R
n : hi(x) = 0 for i ∈ Ih, gj(x) ≥ 0 for j ∈ Ig}

The two sets Ih and Ig are st Ih = ∅ in Eq. 3 and Ig = ∅ in Eq. 2

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

The constrained optimisation problem can thus be rewritten

Definition

min
x∈Rn

f (x) subjected to

hi(x) = 0, ∀i ∈ Ih

gj(x) ≥ 0, ∀j ∈ Ig

(4)

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

We assume that f ∈ C1(Rn), and also hi and gj are C1(Rn), ∀i , j

• Points x ∈ Ω are said to be admissible
as they fulfil all the constraints

• Ω is the set of all admissible points

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

A point x∗ ∈ Ω ⊂ Rn is a global minimiser for the problem if

f (x∗) ≤ f (x), ∀x ∈ Ω (5)

A point x∗ ∈ Ω ⊂ Rn is a local minimiser for the problem if there
is a ball Br (x) ∈ Rn with radius r > 0 and centred in x∗ such that

f (x∗) ≤ f (x), ∀x ∈ Br (x
∗) ∩ Ω (6)

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

A constraint is active at x ∈ Ω if it is satisfied with equality at x

• According to this definition, active constraints at x
are all the hi as well as those gj such that gj(x) = 0

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Consider the following constrained optimisation problems

Example

Minimise f (x) with f (x) =
3

5
x21 +

1

2
x1x2 − x2 + 3x1, under the

equality constraint h1(x) = x21 + x22 − 1 = 0

Ω x1

x2

x
∗

• Contour lines of the cost f (x)

• Admissibility set Ω ∈ R2

• The global minimiser x∗

constrained to Ω

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Example

Minimise f (x) with f (x) = 100(x2 − x21)
2 + (1− x1)

2, under the
following inequality constraints

Ω

x1

x2

x
∗

g1(x) = −34x1 − 30x2 + 19 ≥ 0

g2(x) = +10x1 − 05x2 + 11 ≥ 0

g3(x) = +03x1 + 22x2 + 08 ≥ 0

• Contour lines of the cost f (x)

• Admissibility set Ω ∈ R
2

• The global minimiser x∗

constrained to Ω

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

If Ω is a non-empty, bounded and closed set, Weierstrass theorem
guarantees the existence of a maximum and a minimum for f in Ω

• Consequently, problem in Definition 4 admits a solution

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

We recall that a function f : Ω ⊆ Rn → R is strongly convex in Ω
if there exists a ρ > 0 such that ∀x, y ∈ Ω and ∀α ∈ [0, 1], we have

f (αx+(1−α)y) ≤ αf (x)+ (1−α)f (y)−α(1−α)ρ||x− y||2 (7)

This reduces to the usual definition of convexity when ρ = 0

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Proposition

Optimality conditions

Let Ω ⊂ Rn be a convex set, x∗ ∈ Ω be such that f ∈ C1(Br (x
∗))

If x∗ is a local minimiser for the constrained minimisation problem,

then, ∇f (x∗)T (x− x∗) ≥ 0, ∀x ∈ Ω (8)

If f is convex in Ω and (8) is satisfied, then x∗ is a global minimiser

Under the additional requirement for Ω to be closed and for f to
be strongly convex, it can be shown that the minimiser is unique

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Many algos for solving constrained minimisation problems can be
related to the search of the stationary points of the Lagrangian
function (the so-called KKT or Karush-Kuhn-Tucker points)

Definition

The Lagrangian function associated with problem min
x∈Ω

f (x) is

L(x,λ,µ) = f (x)−
∑

i∈Ih

λihi(x)−
∑

j∈Ig

µjgj(x) (9)

where λ = (λi) for i ∈ Ih and µ = (µi) for j ∈ Ig are Lagrangian
multipliers associated with the equality and inequality constraints

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

Karush-Kuhn-Tucker conditions

Point x∗ is a KKT point for L if there exist λ∗ and µ∗ such
that the triplet (x∗,λ∗,µ∗) satisfies the following conditions

∇xL(x
∗,λ∗,µ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi(x

∗)−
∑

j∈Ig

µ∗
j ∇gj(x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

gi(x
∗) = 0, ∀j ∈ Ig

µ∗
j ≥ 0, ∀j ∈ Ig

µ∗
Jgj(x

∗) = 0, ∀j ∈ Ig

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

For a x, constraints satisfy a linear independence (constraint)
qualification (LI(C)Q) in x∗, if the gradients ∇hi (x) and ∇gj(x)
associated with the active constraints in x are linearly independent

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Theorem

First order KKT conditions

If x∗ is a local minimum for the constrained problem

min
x∈Rn

f (x) subjected to

hi(x) = 0, ∀i ∈ Ih

gj(x) ≥ 0, ∀j ∈ Ig

if f , hi and gj are C1(Ω), if the constraints are LIQ in x∗, then
there exist λ∗ and µ∗ such that (x∗,λ∗,µ∗) is a KKT point

As a consequence, local minima must be searched among KKT
points and among points that do not satisfy LICQ conditions

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Note that in the absence of inequality constraints, the Lagrangian
function takes the form L(x,λ) = f (x)−

∑

i∈Ih
λ∗
i ∇hi (x

∗)

• The KKT conditions are Lagrange (necessary) conditions

∇xL(x
∗,λ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi(x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

(10)

Remark

Sufficient conditions for a KKT point to be a minimiser of f in Ω
require knowledge about the Hessian of the Lagrangian or,
alternatively, strict convexity hypothesis on f and the constraints

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

In general, it is possible to reformulate a constrained optimisation
problem in the form of an unconstrained optimisation problem

• Penalty function

• Augmented Lagrangian

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method
Constrained optimisation

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method

A strategy for solving a general constrained optimisation problem

min
x∈Rn

f (x) subjected to

hi(x) = 0, ∀i ∈ Ih

gj(x) ≥ 0, ∀j ∈ Ig

is to reformulate it as a new unconstrained optimisation problem

Definition

Pα(x) = f (x) +
α

2

∑

i∈Ih

h2i (x) +
α

2

∑

j∈Ig

(

max {−gj(x), 0}
)2

(11)

a modified penalty function, for a penalty parameter α > 0

• When the constraints are not satisfied at x, the sums
quantify how far point x is from the admissibility set Ω

• A large α heavily penalises such a violation

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

If x∗ is a solution, clearly x∗ must also be a minimiser of P

Conversely, under some regularity hypothesis for f , hi and gi ,

lim
α→∞

x∗(α) = x∗,

in which x∗(α) denotes a minimiser of Pα(x)

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

Due to numerical instability, it is not advised to
minimise Pα(x) directly for a large value of α

• Rather, consider an increasing and
unbounded series of parameters {αk}

• For each αk , calculate an approximation x(k)

of the solution x∗(αk) of min
x∈Rn

Pαk
(x)

x(k) = arg min
x∈Rn

Pαk
(x)

with an unconstrained optimisation method

• At each step k , αk+1 is a chosen as a function
of αk (e.g., αk+1 = δαk , for δ ∈ [1.5, 2]) and
x(k) is used as initial point for solving the
minimisation at step k + 1

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

In the first iterations there is no reason to believe that the solution
to min

x∈Rn
Pαk

(x) should resemble the solution to the original problem

• This supports the idea of searching for an inexact solution to
min
x∈Rn

Pαk
(x) that differs from the exact one, x(k), a small εk

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

• Given α0, (typically, α0 = 1), ε0 (typically ε0 = 1/10), ε > 0,

x
(0)
0 ∈ Rn and λ

(0)
0 ∈ Rp for k = 0, 1, . . . until convergence

Pseudocode

Compute an approx. solution x(k) = arg min
x∈Rn

Pαk
(x) to

min
x∈Rn

Pαk
(x), by using initial point x

(0)
0 and tolerance εk

If ||∇xLA(x
(k),λ(k), αk)|| ≤ ε

Set x∗ = x(k) (convergence)
else

Choose αk+1 > αk

Choose εk+1 < εk
Set x

(k+1)
0 = x(k)

Endif

Note the extra tolerance ε to assess the gradient of Pαk
at x(k)

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

1 % PENALTY Constrained optimisation with penalty function

2 % [X,ERR,K]= PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_0,TOL ,...
3 % KMAX ,KMAXD ,TYP)

4 % Approximate a minimiser of the cost function F
5 % under constraints H=0 and G>=0
6 %

7 % X0 is initial point , TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations

9 % GRAD_F, GRAD_H, and GRAD_G are the gradients of F, H, and G
10 % H and G, GRAD_H and GRAD_G can be initialised to []

11 %
12 % For TYP=0 solution by FMINSEARCH M-function
13 %

14 % For TYP >0 solution by a DESCENT METHOD
15 % KMAXD is maximum number of iterations

16 % TYP is the choice of descent directions
17 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
18 % [X,ERR,K]= PFUNCTION(F,GRAD_F ,H,GRAD_H,G,GRAD_G,X_0,TOL ,...

19 % KMAX ,KMAXD ,TYP,HESS_FUN)
20 % For TYP=1 HESS_FUN is the function handle associated

21 % For TYP=2 HESS_FUN is a suitable approx. of Hessian at k=0

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

1 function [x,err,k]= pFunction(f,grad_f ,h,grad_h ,g,grad_g ,...
2 x_0 ,tol ,kmax ,kmaxd ,typ,varargin)

3

4 xk=x_0(:); mu_0=1.0;

5

6 if typ==1; hess=varargin {1};
7 elseif typ==2; hess=varargin {1};

8 else; hess=[]; end
9 if ~isempty (h), [nh,mh]=size(h(xk)); end

10 if ~isempty (g), [ng,mg]=size(g(xk)); end
11

12 err=1+tol; k=0; muk=mu_0; muk2=muk/2; told=0.1;
13

14 while err >tol && k<kmax

15 if typ==0
16 options =optimset (’TolX’,told);

17 [x,err ,kd]= fminsearch(@P,xk ,options); err=norm(x-xk);
18 else
19 [x,err ,kd]=dScent(@P,@grad_P ,xk,told ,kmaxd ,typ,hess);

20 err=norm(grad_P(x));
21 end

22

23 if kd<kmaxd; muk=10*muk; muk2 =0.5*muk;

24 else muk=1.5* muk; muk2=0.5* muk; end
25

26 k=1+k; xk=x; told=max([tol ,0.10* told]);

27 end

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

1 function y=P(x) % This function is nested inside pFunction
2

3 y=fun(x);
4 if ~isempty (h); y=y+muk2*sum((h(x)).^2); end
5 if ~isempty (g); G=g(x);

6 for j=1:ng
7 y=y+muk2*max([-G(j) ,0])^2;

8 end
9 end

1 function y=grad_P(x) % This function is nested in pFunction

2

3 y=grad_fun (x);

4 if ~isempty (h), y=y+muk*grad_h(x)*h(x); end
5 if ~isempty (g), G=g(x); Gg=grad_g(x);
6 for j=1:ng

7 if G(j)<0
8 y=y+muk*Gg(:,j)*G(j);

9 end
10 end
11 end

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented
Lagrangian

Constrained optimisation

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian

Consider minimisation problems with equality constraints (Ig = ∅)

min
x∈Rn

f (x) subjected to

hi(x) = 0, ∀i ∈ Ih

gj(x) ≥ 0, ∀j ∈ Ig

Definition

For a suitable coefficient α > 0, define the augmented Laplacian

LA(x,λ, α) = f (x)−
∑

i∈Ih

λihi (x) +
α

2

∑

i∈Ih

h2i (x) (12)

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

The augmented Laplacian method is an iterative method that, at
the k-th iteration and for a given αk and a given λ(k) computes

x(k) = arg min
x∈Rn

LA(x,λ
(k), αk) (13)

in such a way that the sequence x(k) converges to the KKT
point for the Lagrangian L(x,λ) = f (x)−

∑

i∈Ih
λihi (x)

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

Initial α0 and λ(0) are set arbitrarily and new values are given by

• Coefficient αk+1 is obtained from αk , such that αk+1 > αk

• To set λ(k+1), compute the gradient of the augmented
Lagrangian wrt x ∇xLA(x,λ

(k), αk) and set it to zero

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

∇xLA(x
(k),λ(k), αk) = ∇f (x(k))−

∑

i∈Ih

(

λ
(k)
i − αkhi (x

(k))
)

∇hi (x
(k))

We identify λ
(k)
i , by comparison with optimality condition

∇xL(x
∗,λ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi(x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

The comparison yields λ
(k)
i − αkhi(x

(k)) ≃ λ∗
i and we define

λ
(k+1)
i = λ

(k)
i − µkhi (x

(k)) (14)

We identify x(k+1) by solving with k replaced by k + 1

xk = arg min
x∈Rn

LA(x,λ
k , αk)

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

• Given α0, (typically, α0 = 1), ε0 (typically ε0 = 1/10), ε > 0,

x
(0)
0 ∈ Rn and λ

(0)
0 ∈ Rp for k = 0, 1, . . . until convergence

Pseudocode

Compute an approx. solution x(k) = arg min
x∈Rn

LA(x,λ
(k), αk),

by using initial point x
(0)
0 and a tolerance εk

If ||∇xLA(x
(k),λ(k), αk)|| ≤ ε

Set x∗ = x(k) (convergence)
else

Compute λ
(k+1)
i = λ

(k)
i − µkhi(x

(k))
Choose αk+1 > αk

Choose εk+1 < εk
Set x

(k+1)
0 = x(k)

Endif

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

The implementation of the algorithm is given in the following

• Except for lambda_0 that contains the initial vector λ(0) of
Lagrange multipliers, all other inputs and outputs have been
already explained for pFunction, dScent and others

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

1 % ALGRNG Constrained optimisation with augmented Lagrangian
2 % [X,ERR,K]=ALGRNG(F,GRAD_F,H,GRAD_H ,X_0,LAMBDA_0 ,...

3 % TOL,KMAX ,KMAXD ,TYP)
4 % Approximate a minimiser of the cost function F
5 % under equality constraints H=0

6 %
7 % X_0 is initial point , TOL is tolerance for stop check

8 % KMAX is the maximum number of iterations
9 % GRAD_F and GRAD_H are the gradients of F and H

10 %
11 % For TYP=0 solution by FMINSEARCH M-function
12 % FOR TYP >0 solution by a DESCENT METHOD

13 % KMAXD is maximum number of iterations
14 % TYP is the choice of descent directions

15 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

1 function [x,err,k]=aLgrng(f,grad_f ,h,grad_h ,x_0,lambda_0 ,...
2 tol ,kmax ,kmaxd ,typ,varargin)

3

4 mu_0=1.0;
5

6 if typ==1; hess=varargin {1};
7 elseif typ==2; hess=varargin {1};

8 else; hess=[]; end
9

10 err=1+tol+1; k=0; xk=x_0(:); lambdak =lambda_0 (:);

11

12 if ~isempty (h); [nh,mh]=size(h(xk)); end

13

14 muk=mu_0; muk2=muk/2; told =0.1;

15

16 while err >tol && k<kmax
17 if typ==0

18 options =optimset (’TolX’,told);
19 [x,err ,kd]= fminsearch(@L,xk ,options); err=norm(x-xk);

20 else
21 [x,err ,kd]=descent (@L,@grad_L ,xk,told ,kmaxd ,typ,hess);
22 err=norm(grad_L(x));

23 end
24

25 lambdak =lambdak -muk*h(x);
26 if kd<kmaxd; muk=10*muk; muk2 =0.5*muk;

27 else muk=1.5* muk; muk2=0.5* muk; end
28

29 k=1+k; xk=x; told=max([tol ,0.10* told]);

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

1 function y=L(x) % This function is nested inside aLgrng

2

3 y=fun(x);

4 if ~isempty (h)
5 y=y-sum(lambdak ’*h(x))+muk2*sum((h(x)).^2);
6 end

1 function y=grad_L(x) % This function is nested inside aLgrng
2

3 y=grad_fun (x);

4 if ~isempty (h)
5 y=y+grad_h(x)*(muk*h(x)-lambdak);

6 end

Constrained
optimisation

UFC/DC
AI (CK0031)

2016.2

Constrained
optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

Example

1 fun = @(x) 0.6*x(1).^2 + 0.5*x(2).*x(1) - x(2) + 3*x(1);
2 grad_fun = @(x) [1.2*x(1) + 0.5*x(2) + 3; 0.5*x(1) - 1];

3

4 h = @(x) x(1).^2 + x(2).^2 - 1;

5 grad_h = @(x) [2*x(1); 2*x(2)];
6

7 x_0 = [1.2 ,0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;

8 p=1; % The number of equality constraints
9 lambda_0 = rand(p,1); typ=2; hess=eye(2);

10

11 [xmin ,err ,k] = aLagrange(fun ,grad_fun ,h,grad_h ,x_0 ,...

12 lambda_0 ,tol ,kmax ,kmax ,typ,hess)

As stopping criterion, we have set the tolerance to be 10−5 and we
opted for an associated unconstrained minimisation problem by
quasi-Newton descent directions (with typ=2 and hess=eye(2))

	Constrained optimisation
	The penalty method
	The augmented Lagrangian

