UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

Constrained optimisation

Numerical optimisation

Francesco Corona

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation Numerical optimisation

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangia

Constrained optimisation

Two strategies for solving constrained minimisation problems

- The penalty method: Problems with both equality and inequality constraints
- The augmented Lagrangian method: Problems with equality constraints only

The two methods allow the solution of simple problems and provide basic tools for more robust and complex algorithms

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty meth

The penalty meth

The augmented Lagrangia

Constrained optimisation (cont.)

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ with $n \ge 1$ be a cost or objective function

The constrained optimisation problem is

$$\min_{\mathbf{x} \in \Omega \subset \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

The closed subset Ω is determined by either equality and inequality constraints that are dictated by the nature of the problem to solve

1 Given functions $h_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \dots, p$

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n : h_i(\mathbf{x}) = 0, \text{ for } i = 1, \dots, p \}$$
 (2)

2 Given functions $g_j: \mathbb{R}^n \to \mathbb{R}$ for $j = 1, \dots, g$

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \ge 0, \text{ for } j = 1, \dots, q \}$$
 (3)

p and q are natural numbers

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

$$\min_{\mathbf{x}\in\Omega\subset\mathbb{R}^n}f(\mathbf{x})$$

In general, Ω is defined by both equality and inequality constraints

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n : h_i(\mathbf{x}) = 0 \text{ for } i \in \mathcal{I}_h, g_j(\mathbf{x}) \geq 0 \text{ for } j \in \mathcal{I}_g \}$$

The two sets \mathcal{I}_h and \mathcal{I}_g are st $\mathcal{I}_h = \emptyset$ in Eq. 3 and $\mathcal{I}_g = \emptyset$ in Eq. 2

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

The constrained optimisation problem can thus be rewritten

Definition

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 subjected to $h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$ $g_i(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_g$ (4)

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangia

Constrained optimisation (cont.)

We assume that $f \in \mathbb{C}^1(\mathbb{R}^n)$, and also h_i and g_j are $\mathbb{C}^1(\mathbb{R}^n)$, $\forall i, j$

- Points x ∈ Ω are said to be admissible as they fulfil all the constraints
- ullet Ω is the set of all admissible points

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangia

Constrained optimisation (cont.)

A point $\mathbf{x}^* \in \Omega \subset \mathbb{R}^n$ is a **global minimiser** for the problem if

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega$$
 (5)

A point $\mathbf{x}^* \in \Omega \subset \mathbb{R}^n$ is a **local minimiser** for the problem if there is a ball $B_r(\mathbf{x}) \in \mathbb{R}^n$ with radius r > 0 and centred in \mathbf{x}^* such that

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in B_r(\mathbf{x}^*) \cap \Omega$$
 (6)

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

A constraint is **active** at $\mathbf{x} \in \Omega$ if it is satisfied with equality at \mathbf{x}

• According to this definition, active constraints at \mathbf{x} are all the h_i as well as those g_i such that $g_i(\mathbf{x}) = 0$

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty metho

The augmented Lagrang

Constrained optimisation (cont.)

Consider the following constrained optimisation problems

Example

Minimise
$$f(\mathbf{x})$$
 with $f(\mathbf{x}) = \frac{3}{5}x_1^2 + \frac{1}{2}x_1x_2 - x_2 + 3x_1$, under the equality constraint $h_1(\mathbf{x}) = x_1^2 + x_2^2 - 1 = 0$

- Contour lines of the cost $f(\mathbf{x})$
- Admissibility set $\Omega \in \mathbb{R}^2$
- The global minimiser x* constrained to Ω

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty met

The penalty method

Constrained optimisation (cont.)

Example

Minimise $f(\mathbf{x})$ with $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$, under the following inequality constraints

$$g_1(\mathbf{x}) = -34x_1 - 30x_2 + 19 \ge 0$$

$$g_2(\mathbf{x}) = +10x_1 - 05x_2 + 11 \ge 0$$

$$g_3(\mathbf{x}) = +03x_1 + 22x_2 + 08 \ge 0$$

- Contour lines of the cost f(x)
- Admissibility set $\Omega \in \mathbb{R}^2$
- The global minimiser x* constrained to Ω

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

If Ω is a non-empty, bounded and closed set, Weierstrass theorem guarantees the existence of a maximum and a minimum for f in Ω

• Consequently, problem in Definition 4 admits a solution

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

- rice penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

We recall that a function $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ is strongly convex in Ω if there exists a $\rho>0$ such that $\forall \mathbf{x},\mathbf{y}\in\Omega$ and $\forall \alpha\in[0,1]$, we have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - \alpha(1 - \alpha)\rho||\mathbf{x} - \mathbf{y}||^2$$
 (7)

This reduces to the usual definition of convexity when $\rho = 0$

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty metho

....

Constrained optimisation (cont.)

Proposition

Optimality conditions

Let $\Omega \subset \mathbb{R}^n$ be a convex set, $\mathbf{x}^* \in \Omega$ be such that $f \in \mathbb{C}^1(B_r(\mathbf{x}^*))$

If x* is a local minimiser for the constrained minimisation problem,

then,
$$\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \ge 0$$
, $\forall \mathbf{x} \in \Omega$ (8)

If f is convex in Ω and (8) is satisfied, then \mathbf{x}^* is a global minimiser

Under the additional requirement for Ω to be closed and for f to be strongly convex, it can be shown that the minimiser is unique

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty metho

The augmented Lagrang

Constrained optimisation (cont.)

Many algos for solving constrained minimisation problems can be related to the search of the stationary points of the Lagrangian function (the so-called KKT or Karush-Kuhn-Tucker points)

Definition

The Lagrangian function associated with problem $\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$ is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x}) - \sum_{j \in \mathcal{I}_g} \mu_j g_j(\mathbf{x})$$
(9)

where $\lambda = (\lambda_i)$ for $i \in \mathcal{I}_h$ and $\mu = (\mu_i)$ for $j \in \mathcal{I}_g$ are Lagrangian multipliers associated with the equality and inequality constraints

The nenalty meth

The penalty meth

The augmented Lagrang

Constrained optimisation (cont.)

Definition

Karush-Kuhn-Tucker conditions

Point \mathbf{x}^* is a KKT point for \mathcal{L} if there exist $\boldsymbol{\lambda}^*$ and $\boldsymbol{\mu}^*$ such that the triplet $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ satisfies the following conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) - \sum_{j \in \mathcal{I}_g} \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{I}_h$$

$$g_i(\mathbf{x}^*) = 0, \quad \forall j \in \mathcal{I}_g$$

$$\mu_j^* \geq 0, \quad \forall j \in \mathcal{I}_g$$

$$\mu_j^* g_j(\mathbf{x}^*) = 0, \quad \forall j \in \mathcal{I}_g$$

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

For a \mathbf{x} , constraints satisfy a linear independence (constraint) qualification (LI(C)Q) in \mathbf{x}^* , if the gradients $\nabla h_i(\mathbf{x})$ and $\nabla g_j(\mathbf{x})$ associated with the active constraints in \mathbf{x} are linearly independent

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty metho

The penalty metho

Constrained optimisation (cont.)

Theorem

First order KKT conditions

If x* is a local minimum for the constrained problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 subjected to $h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$ $g_j(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_g$

if f, h_i and g_j are $\mathbb{C}^1(\Omega)$, if the constraints are LIQ in \mathbf{x}^* , then there exist λ^* and μ^* such that $(\mathbf{x}^*, \lambda^*, \mu^*)$ is a KKT point

As a consequence, local minima must be searched among KKT points and among points that do not satisfy LICQ conditions

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty methy

The augmented Lagrangi

Constrained optimisation (cont.)

Note that in the absence of inequality constraints, the Lagrangian function takes the form $\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*)$

• The KKT conditions are Lagrange (necessary) conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \forall i \in \mathcal{I}_h$$
(10)

Remark

Sufficient conditions for a KKT point to be a minimiser of f in Ω require knowledge about the Hessian of the Lagrangian or, alternatively, strict convexity hypothesis on f and the constraints

UFC/DC AI (CK0031) 2016.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

In general, it is possible to reformulate a constrained optimisation problem in the form of an unconstrained optimisation problem

- Penalty function
- Augmented Lagrangian

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

The penalty method Constrained optimisation

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

The penalty method

A strategy for solving a general constrained optimisation problem

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) & ext{subjected to} \ h_i(\mathbf{x}) = 0, orall i \in \mathcal{I}_h \ g_j(\mathbf{x}) \geq 0, orall j \in \mathcal{I}_g \end{aligned}$$

is to reformulate it as a new unconstrained optimisation problem

Definition

$$\mathcal{P}_{\alpha}(\mathbf{x}) = f(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_h} h_i^2(\mathbf{x}) + \frac{\alpha}{2} \sum_{j \in \mathcal{I}_g} \left(\max \left\{ -g_j(\mathbf{x}), 0 \right\} \right)^2 \quad (11)$$

a modified penalty function, for a penalty parameter $\alpha > 0$

- When the constraints are not satisfied at \mathbf{x} , the sums quantify how far point \mathbf{x} is from the admissibility set Ω
- A large α heavily penalises such a violation

UFC/DC AI (CK0031) 2016.2

Constraine

The penalty method

The augmented Lagrangian

The penalty method (cont.)

If \mathbf{x}^* is a solution, clearly \mathbf{x}^* must also be a minimiser of \mathcal{P}

Conversely, under some regularity hypothesis for f, h_i and g_i ,

$$\lim_{\alpha \to \infty} \mathbf{x}^*(\alpha) = \mathbf{x}^*,$$

in which $\mathbf{x}^*(\alpha)$ denotes a minimiser of $\mathcal{P}_{\alpha}(\mathbf{x})$

UFC/DC AI (CK0031) 2016.2

Constraine

The penalty method

The augmented Lagrangian

The penalty method (cont.)

Due to numerical instability, it is not advised to minimise $\mathcal{P}_{\alpha}(\mathbf{x})$ directly for a large value of α

- Rather, consider an increasing and unbounded series of parameters $\{\alpha_k\}$
- For each α_k , calculate an approximation $\mathbf{x}^{(k)}$ of the solution $\mathbf{x}^*(\alpha_k)$ of $\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$

$$\mathbf{x}^{(k)} = \operatorname*{arg\ min}_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{lpha_k}(\mathbf{x})$$

with an unconstrained optimisation method

• At each step k, α_{k+1} is a chosen as a function of α_k (e.g., $\alpha_{k+1} = \delta \alpha_k$, for $\delta \in [1.5, 2]$) and $\mathbf{x}^{(k)}$ is used as initial point for solving the minimisation at step k+1

UFC/DC AI (CK0031) 2016.2

Constraine

The penalty method

The augmented Lagrangia

The penalty method (cont.)

In the first iterations there is no reason to believe that the solution to $\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$ should resemble the solution to the original problem

 This supports the idea of searching for an inexact solution to min P_{αk}(x) that differs from the exact one, x^(k), a small ε_k

```
Constrained optimisation
```

UFC/DC AI (CK0031) 2016.2

Constraine

The penalty method

...

The penalty method (cont.)

• Given α_0 , (typically, $\alpha_0=1$), ε_0 (typically $\varepsilon_0=1/10$), $\overline{\varepsilon}>0$, $\mathbf{x}_0^{(0)} \in \mathbb{R}^n$ and $\boldsymbol{\lambda}_0^{(0)} \in \mathbb{R}^p$ for $k=0,1,\ldots$ until convergence

Pseudocode

```
Compute an approx. solution \mathbf{x}^{(k)} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x}) to \min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x}), by using initial point \mathbf{x}_0^{(0)} and tolerance \varepsilon_k If ||\nabla_{\mathbf{x}} \mathcal{L}_A(\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_k)|| \leq \overline{\varepsilon} Set \mathbf{x}^* = \mathbf{x}^{(k)} (convergence) else Choose \alpha_{k+1} > \alpha_k Choose \varepsilon_{k+1} < \varepsilon_k Set \mathbf{x}_0^{(k+1)} = \mathbf{x}^{(k)} Endif
```

Note the extra tolerance $\overline{\varepsilon}$ to assess the gradient of $\mathcal{P}_{\alpha_{k}}$ at $\mathbf{x}^{(k)}$

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

The penalty method (cont.)

```
PENALTY Constrained optimisation with penalty function
  [X, ERR, K] = PFUNCTION (F, GRAD_F, H, GRAD_H, G, GRAD_G, X_O, TOL, ...
                      KMAX, KMAXD, TYP)
  Approximate a minimiser of the cost function F
  under constraints H=0 and G>=0
 XO is initial point, TOL is tolerance for stop check
 KMAX is the maximum number of iterations
% GRAD_F, GRAD_H, and GRAD_G are the gradients of F, H, and G
% H and G, GRAD_H and GRAD_G can be initialised to []
% For TYP=0 solution by FMINSEARCH M-function
% For TYP>O solution by a DESCENT METHOD
  KMAXD is maximum number of iterations
  TYP is the choice of descent directions
  TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
  [X,ERR,K]=PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_O,TOL,...
                       KMAX, KMAXD, TYP, HESS_FUN)
  For TYP=1 HESS FUN is the function handle associated
   For TYP=2 HESS_FUN is a suitable approx. of Hessian at k=0
```

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

The penalty method (cont.)

```
function [x,err,k]=pFunction(f,grad_f,h,grad_h,g,grad_g,...
                                x 0.tol.kmax.kmaxd.tvp.varargin)
  xk=x_0(:); mu_0=1.0;
  if typ==1; hess=varargin{1};
   elseif typ==2; hess=varargin{1};
   else: hess=[]: end
  if "isempty(h), [nh,mh]=size(h(xk)); end
  if "isempty(g), [ng,mg]=size(g(xk)); end
  err=1+tol; k=0; muk=mu_0; muk2=muk/2; told=0.1;
  while err>tol && k<kmax
   if typ == 0
   options = optimset('TolX', told);
    [x,err,kd]=fminsearch(@P,xk,options); err=norm(x-xk);
   else
    [x,err,kd]=dScent(@P,@grad_P,xk,told,kmaxd,typ,hess);
    err=norm(grad_P(x));
   end
   if kd<kmaxd; muk=10*muk; muk2=0.5*muk;
   else muk=1.5*muk: muk2=0.5*muk: end
24
   k=1+k: xk=x: told=max([tol.0.10*told]):
  end
```

UFC/DC AI (CK0031) 2016.2

ontimisatio

The penalty method

The augmented Lagrangia

The penalty method (cont.)

```
function y=P(x) % This function is nested inside pFunction

y=fun(x);
if ~isempty(h); y=y+muk2*sum((h(x)).^2); end
if ~isempty(g); G=g(x);
for j=1:ng
y=y+muk2*max([-G(j),0])^2;
end
end
end
```

```
function y=grad_P(x) % This function is nested in pFunction

y=grad_fun(x);

if ~isempty(h), y=y+muk*grad_h(x)*h(x); end

if ~isempty(g), G=g(x); Gg=grad_g(x);

for j=1:ng
  if G(j)<0
    y=y+muk*Gg(:,j)*G(j);
  end

end
end</pre>
```

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

The augmented Lagrangian Constrained optimisation

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

The augmented Lagrangian

Consider minimisation problems with equality constraints ($\mathcal{I}_g = \emptyset$)

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) & ext{subjected to} \ h_i(\mathbf{x}) = 0, orall i \in \mathcal{I}_h \ g_i(\mathbf{x}) \geq 0, orall j \in \mathcal{I}_g \end{aligned}$$

Definition

For a suitable coefficient $\alpha > 0$, define the **augmented Laplacian**

$$\mathcal{L}_{A}(\mathbf{x}, \boldsymbol{\lambda}, \alpha) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_{b}} \lambda_{i} h_{i}(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_{b}} h_{i}^{2}(\mathbf{x})$$
(12)

UFC/DC AI (CK0031) 2016.2

Constraine

T1 1 1

The augmented Lagrangian

The augmented Lagrangian (cont.)

The augmented Laplacian method is an iterative method that, at the k-th iteration and for a given α_k and a given $\lambda^{(k)}$ computes

$$\mathbf{x}^{(k)} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}_A(\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k)$$
 (13)

in such a way that the sequence $\mathbf{x}^{(k)}$ converges to the KKT point for the Lagrangian $\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x})$

UFC/DC AI (CK0031) 2016.2

Constraine

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

Initial $lpha_0$ and $oldsymbol{\lambda}^{(0)}$ are set arbitrarily and new values are given by

- Coefficient α_{k+1} is obtained from α_k , such that $\alpha_{k+1} > \alpha_k$
- To set $\lambda^{(k+1)}$, compute the gradient of the augmented Lagrangian wrt $\mathbf{x} \nabla_{\mathbf{x}} \mathcal{L}_{\mathcal{A}}(\mathbf{x}, \lambda^{(k)}, \alpha_k)$ and set it to zero

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

$$\nabla_{\mathbf{x}} \mathcal{L}_{A}(\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k}) = \nabla f(\mathbf{x}^{(k)}) - \sum_{i \in \mathcal{I}_{h}} \left(\lambda_{i}^{(k)} - \alpha_{k} h_{i}(\mathbf{x}^{(k)}) \right) \nabla h_{i}(\mathbf{x}^{(k)})$$

We identify $\lambda_i^{(k)}$, by comparison with optimality condition

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$
$$h_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{I}_h$$

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

The comparison yields $\lambda_i^{(k)} - \alpha_k h_i(\mathbf{x}^{(k)}) \simeq \lambda_i^*$ and we define

$$\lambda_i^{(k+1)} = \lambda_i^{(k)} - \mu_k h_i(\mathbf{x}^{(k)})$$
 (14)

We identify $\mathbf{x}^{(k+1)}$ by solving with k replaced by k+1

$$\mathbf{x}^k = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg min}} \ \mathcal{L}_A(\mathbf{x}, \boldsymbol{\lambda}^k, \alpha_k)$$

```
Constrained optimisation
```

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty meth

The augmented Lagrangian

The augmented Lagrangian (cont.)

• Given α_0 , (typically, $\alpha_0=1$), ε_0 (typically $\varepsilon_0=1/10$), $\overline{\varepsilon}>0$, $\mathbf{x}_0^{(0)}\in\mathbb{R}^n$ and $\boldsymbol{\lambda}_0^{(0)}\in\mathbb{R}^p$ for $k=0,1,\ldots$ until convergence

Pseudocode

```
Compute an approx. solution \mathbf{x}^{(k)} = \arg\min \mathcal{L}_A(\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k),
by using initial point \mathbf{x}_0^{(0)} and a tolerance \varepsilon_k
If ||\nabla_{\mathbf{x}}\mathcal{L}_{\Delta}(\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k})|| < \overline{\varepsilon}
      Set \mathbf{x}^* = \mathbf{x}^{(k)} (convergence)
else
      Compute \lambda_i^{(k+1)} = \lambda_i^{(k)} - \mu_k h_i(\mathbf{x}^{(k)})
       Choose \alpha_{k+1} > \alpha_k
       Choose \varepsilon_{k+1} < \varepsilon_k
      Set \mathbf{x}_{0}^{(k+1)} = \mathbf{x}^{(k)}
Endif
```

UFC/DC AI (CK0031) 2016.2

Constraine

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

The implementation of the algorithm is given in the following

• Except for lambda_0 that contains the initial vector $\lambda^{(0)}$ of Lagrange multipliers, all other inputs and outputs have been already explained for pFunction, dScent and others

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

```
The augmented Lagrangian (cont.)
```

```
1 % ALGRNG Constrained optimisation with augmented Lagrangian
2 % [X,ERR,K]=ALGRNG(F,GRAD_F,H,GRAD_H,X_O,LAMBDA_O,...
3 % TOL,KMAX,KMAXD,TYP)
4 % Approximate a minimiser of the cost function F
5 % under equality constraints H=0
6 %
7 % X_O is initial point, TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F and GRAD_H are the gradients of F and H
10 %
11 % For TYP=O solution by FMINSEARCH M-function
12 % FOR TYP>O solution by a DESCENT METHOD
13 % KMAXD is maximum number of iterations
14 % TYP is the choice of descent directions
15 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
```

UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

```
function [x,err,k]=aLgrng(f,grad_f,h,grad_h,x_0,lambda_0,...
                             tol, kmax, kmaxd, typ, varargin)
  mu_0=1.0;
  if typ==1; hess=varargin{1};
   elseif typ==2; hess=varargin{1};
   else; hess=[]; end
  err=1+tol+1; k=0; xk=x_0(:); lambdak=lambda_0(:);
  if "isempty(h); [nh,mh]=size(h(xk)); end
  muk=mu 0: muk2=muk/2: told=0.1:
  while err>tol && k<kmax
   if tvp==0
    options = optimset ('TolX', told);
    [x,err,kd]=fminsearch(@L,xk,options); err=norm(x-xk);
   else
    [x,err,kd]=descent(@L,@grad_L,xk,told,kmaxd,typ,hess);
    err=norm(grad_L(x));
   end
24
   lambdak=lambdak-muk*h(x):
   if kd<kmaxd; muk=10*muk; muk2=0.5*muk;
26
   else muk=1.5*muk; muk2=0.5*muk; end
28
   k=1+k; xk=x; told=max([tol,0.10*told]);
```

```
Constrained optimisation
```

UFC/DC AI (CK0031) 2016.2

Constraine

The penalty method

The augmented Lagrangian

```
The augmented Lagrangian (cont.)
```

```
function y=L(x) % This function is nested inside aLgrng

y=fun(x);
if ~isempty(h)
y=y-sum(lambdak'*h(x))+muk2*sum((h(x)).^2);
end

function y=grad_L(x) % This function is nested inside aLgrng

y=grad_fun(x);
if ~isempty(h)
y=y+grad_h(x)*(muk*h(x)-lambdak);
end
```

```
Constrained optimisation
```

UFC/DC AI (CK0031) 2016.2

Constraine

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

Example

```
fun = @(x) 0.6*x(1).^2 + 0.5*x(2).*x(1) - x(2) + 3*x(1);
grad_fun = @(x) [1.2*x(1) + 0.5*x(2) + 3; 0.5*x(1) - 1];

h = @(x) x(1).^2 + x(2).^2 - 1;
grad_h = @(x) [2*x(1); 2*x(2)];

x_0 = [1.2,0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;
p=1; % The number of equality constraints
lambda_0 = rand(p,1); typ=2; hess=eye(2);

[xmin,err,k] = aLagrange(fun,grad_fun,h,grad_h,x_0,...
lambda_0,tol,kmax,kmax,typ,hess)
```

As stopping criterion, we have set the tolerance to be 10^{-5} and we opted for an associated unconstrained minimisation problem by quasi-Newton descent directions (with typ=2 and hess=eye(2))