UFC/DC AI (CK0031) 2016.2

Constrained

The penalty method

The augmented Lagrangi

### **Constrained optimisation**

**Numerical optimisation** 

Francesco Corona

### Constrained optimisation

### Constrained ptimisation

UFC/DC AI (CK0031)

Constrained optimisation

The penalty method

### **Constrained optimisation**

Two strategies for solving constrained minimisation problems

- The penalty method: Problems with both equality and inequality constraints
- The augmented Lagrangian method: Problems with equality constraints only

The two methods allow the solution of simple problems and provide basic tools for more robust and complex algorithms

#### Constrained

UFC/DC AI (CK0031)

#### Constraine

The penalty method

The augmented Lagrangian

# Constrained optimisation Numerical optimisation

### Constrained optimisation

UFC/DC AI (CK0031)

Constrained

The penalty method
The augmented Lagrangian

### **Constrained optimisation (cont.)**

#### Definition

Let  $f: \mathbb{R}^n \to \mathbb{R}$  with  $n \ge 1$  be a cost or objective function

The constrained optimisation problem is

$$\min_{\mathbf{x} \in \Omega \subset \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

The closed subset  $\Omega$  is determined by either equality and inequality constraints that are dictated by the nature of the problem to solve

**1** Given functions  $h_i: \mathbb{R}^n \to \mathbb{R}$  for  $i = 1, \dots, p$ 

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n : h_i(\mathbf{x}) = 0, \text{ for } i = 1, \dots, p \}$$
 (2)

**2** Given functions  $g_i : \mathbb{R}^n \to \mathbb{R}$  for  $j = 1, \dots, g$ 

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \ge 0, \text{ for } j = 1, \dots, q \}$$
 (3)

p and q are natural numbers

UFC/DC AI (CK0031) 2016.2

#### Constrained

The penalty method The augmented Lagrangi

### **Constrained optimisation (cont.)**

### Definition

 $\min_{\mathbf{x}\in\Omega\subset\mathbb{R}^n}f(\mathbf{x})$ 

In general,  $\Omega$  is defined by both equality and inequality constraints

$$\Omega = \{\mathbf{x} \in \mathbb{R}^n o \mathbb{R} : h_i(\mathbf{x}) = 0 \text{ for } i \in \mathcal{I}_h, g_j(\mathbf{x}) \geq 0 \text{ for } j \in \mathcal{I}_g\}$$

The two sets  $\mathcal{I}_h$  and  $\mathcal{I}_g$  are st  $\mathcal{I}_h = \emptyset$  in Eq. 3 and  $\mathcal{I}_g = \emptyset$  in Eq. 2

#### Constrained optimisation

UFC/DC AI (CK0031)

### Constrained

The penalty method

The augmented Lagran

### Constrained optimisation (cont.)

We assume that  $f \in \mathbb{C}^1(\mathbb{R}^n)$ , and also  $h_i$  and  $g_i$  are  $\mathbb{C}^1(\mathbb{R}^n)$ ,  $\forall i,j$ 

- Points  $\mathbf{x} \in \Omega$  are said to be admissible as they fulfil all the constraints
- ullet  $\Omega$  is the set of all admissible points

### Constrained optimisation

UFC/DC AI (CK0031)

### Constraine

The penalty method

The augmented Lagrangia

### **Constrained optimisation (cont.)**

The constrained optimisation problem can thus be rewritten

#### Definition

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 subjected to

$$h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$$
  
 $g_i(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_g$ 

(4)

#### Constrained optimisation

UFC/DC AI (CK0031)

Constrained

The penalty method
The augmented Lagrangia

### Constrained optimisation (cont.)

A point  $\mathbf{x}^* \in \Omega \subset \mathbb{R}^n$  is a **global minimiser** for the problem if

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega$$
 (5)

A point  $\mathbf{x}^* \in \Omega \subset \mathbb{R}^n$  is a **local minimiser** for the problem if there is a ball  $B_r(\mathbf{x}) \in \mathbb{R}^n$  with radius r > 0 and centred in  $\mathbf{x}^*$  such that

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in B_r(\mathbf{x}^*) \cap \Omega$$
 (6)

UFC/DC AI (CK0031)

### **Constrained optimisation (cont.)**

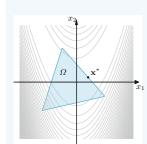
A constraint is **active** at  $\mathbf{x} \in \Omega$  if it is satisfied with equality at  $\mathbf{x}$ 

• According to this definition, active constraints at x are all the  $h_i$  as well as those  $g_i$  such that  $g_i(\mathbf{x}) = 0$ 

UFC/DC AI (CK0031)

### **Constrained optimisation (cont.)**

Minimise  $f(\mathbf{x})$  with  $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$ , under the following inequality constraints



$$g_1(\mathbf{x}) = -34x_1 - 30x_2 + 19 \ge 0$$

$$g_2(\mathbf{x}) = +10x_1 - 05x_2 + 11 \ge 0$$
  
 $g_3(\mathbf{x}) = +03x_1 + 22x_2 + 08 \ge 0$ 

• Contour lines of the cost 
$$f(\mathbf{x})$$

- Admissibility set  $\Omega \in \mathbb{R}^2$
- The global minimiser **x**\* constrained to  $\Omega$

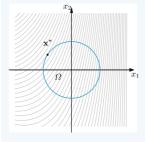
### Constrained optimisation

UFC/DC AI (CK0031)

### Constrained optimisation (cont.)

Consider the following constrained optimisation problems

Minimise  $f(\mathbf{x})$  with  $f(\mathbf{x}) = \frac{3}{5}x_1^2 + \frac{1}{2}x_1x_2 - x_2 + 3x_1$ , under the equality constraint  $h_1(\mathbf{x}) = x_1^2 + x_2^2 - 1 = 0$ 



- Contour lines of the cost f(x)
- Admissibility set  $\Omega \in \mathbb{R}^2$
- The global minimiser x\* constrained to  $\Omega$

UFC/DC AI (CK0031)

### **Constrained optimisation (cont.)**

If  $\Omega$  is a non-empty, bounded and closed set, Weierstrass theorem guarantees the existence of a maximum and a minimum for f in  $\Omega$ 

• Consequently, problem in Definition 4 admits a solution

UFC/DC AI (CK0031)

#### Constrained

The penalty method

### **Constrained optimisation (cont.)**

### Definition

We recall that a function  $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$  is strongly convex in  $\Omega$  if there exists a  $\rho > 0$  such that  $\forall \mathbf{x}, \mathbf{y} \in \Omega$  and  $\forall \alpha \in [0, 1]$ , we have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - \alpha(1 - \alpha)\rho||\mathbf{x} - \mathbf{y}||^2$$
 (7)

This reduces to the usual definition of convexity when ho=0

#### Constrained optimisation

UFC/DC AI (CK0031)

### Constrained

The penalty method

### **Constrained optimisation (cont.)**

Many algos for solving constrained minimisation problems can be related to the search of the stationary points of the Lagrangian function (the so-called KKT or Karush-Kuhn-Tucker points)

### Definition

The Lagrangian function associated with problem  $\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$  is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x}) - \sum_{j \in \mathcal{I}_g} \mu_j g_j(\mathbf{x})$$
(9)

where  $\lambda = (\lambda_i)$  for  $i \in \mathcal{I}_h$  and  $\mu = (\mu_i)$  for  $j \in \mathcal{I}_g$  are Lagrangian multipliers associated with the equality and inequality constraints

### Constrained optimisation

UFC/DC AI (CK0031)

### Constraine

The penalty method
The augmented Lagrangia

### Constrained optimisation (cont.)

### **Proposition**

### **Optimality conditions**

Let  $\Omega \subset \mathbb{R}^n$  be a convex set,  $\mathbf{x}^* \in \Omega$  be such that  $f \in \mathbb{C}^1(B_r(\mathbf{x}^*))$ 

If  $\mathbf{x}^*$  is a local minimiser for the constrained minimisation problem,

then, 
$$\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \ge 0$$
,  $\forall \mathbf{x} \in \Omega$  (8)

If f is convex in  $\Omega$  and (8) is satisfied, then  $\mathbf{x}^*$  is a global minimiser

Under the additional requirement for  $\Omega$  to be closed and for f to be strongly convex, it can be shown that the minimiser is unique

### Constrained

UFC/DC AI (CK0031)

### Constrained optimisation

The penalty method
The augmented Lagrangian

### **Constrained optimisation (cont.)**

### Definition

#### Karush-Kuhn-Tucker conditions

Point  $\mathbf{x}^*$  is a KKT point for  $\mathcal{L}$  if there exist  $\lambda^*$  and  $\mu^*$  such that the triplet  $(\mathbf{x}^*, \lambda^*, \mu^*)$  satisfies the following conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) - \sum_{j \in \mathcal{I}_g} \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{I}_h$$

$$g_i(\mathbf{x}^*) = 0, \quad \forall j \in \mathcal{I}_g$$

$$\mu_j^* \ge 0, \quad \forall j \in \mathcal{I}_g$$

$$\mu_J^* g_j(\mathbf{x}^*) = 0, \quad \forall j \in \mathcal{I}_g$$

UFC/DC AI (CK0031)

#### Constrained

The penalty method

### Constrained optimisation (cont.)

### Definition

For a  $\mathbf{x}$ , constraints satisfy a linear independence (constraint) qualification (LI(C)Q) in  $\mathbf{x}^*$ , if the gradients  $\nabla h_i(\mathbf{x})$  and  $\nabla g_j(\mathbf{x})$  associated with the active constraints in  $\mathbf{x}$  are linearly independent

#### Constrained optimisation

UFC/DC AI (CK0031)

### Constrained

The penalty metho

**Constrained optimisation (cont.)** 

Note that in the absence of inequality constraints, the Lagrangian function takes the form  $\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_b} \lambda_i^* \nabla h_i(\mathbf{x}^*)$ 

• The KKT conditions are Lagrange (necessary) conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \forall i \in \mathcal{I}_h$$
(10)

### Remark

Sufficient conditions for a KKT point to be a minimiser of f in  $\Omega$  require knowledge about the Hessian of the Lagrangian or, alternatively, strict convexity hypothesis on f and the constraints

### Constrained optimisation

UFC/DC AI (CK0031)

#### Constraine optimisation

The penalty method

The augmented Lagrangia

### Constrained optimisation (cont.)

#### $\mathsf{Theorem}$

#### First order KKT conditions

If  $\mathbf{x}^*$  is a local minimum for the constrained problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 subjected to

$$h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$$

$$g_j(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_g$$

if f,  $h_i$  and  $g_j$  are  $\mathbb{C}^1(\Omega)$ , if the constraints are LIQ in  $\mathbf{x}^*$ , then there exist  $\lambda^*$  and  $\mu^*$  such that  $(\mathbf{x}^*, \lambda^*, \mu^*)$  is a KKT point

As a consequence, local minima must be searched among KKT points and among points that do not satisfy LICQ conditions

### Constrained

UFC/DC AI (CK0031)

### Constrained optimisation

The penalty method The augmented Lagrangi

### **Constrained optimisation (cont.)**

In general, it is possible to reformulate a constrained optimisation problem in the form of an unconstrained optimisation problem

- Penalty function
- Augmented Lagrangian

Constrained optimisation

UFC/DC
AI (CK0031)

Constrained

The penalty method

The augmented Lagrangi

# The penalty method Constrained optimisation

### Constrained

UFC/DC AI (CK0031)

Constrained

The penalty method

# The penalty method (cont.)

If  $\mathbf{x}^*$  is a solution, clearly  $\mathbf{x}^*$  must also be a minimiser of  $\mathcal P$ 

Conversely, under some regularity hypothesis for f,  $h_i$  and  $g_i$ ,

$$\lim_{\alpha \to \infty} \mathbf{x}^*(\alpha) = \mathbf{x}^*,$$

in which  $\mathbf{x}^*(\alpha)$  denotes a minimiser of  $\mathcal{P}_{\alpha}(\mathbf{x})$ 

# Constrained optimisation UFC/DC AI (CK0031)

Constrained optimisation

### The penalty method

A strategy for solving a general constrained optimisation problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 subjected to

$$h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$$

$$g_j(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_g$$

is to reformulate it as a new unconstrained optimisation problem

#### Definition

$$\mathcal{P}_{\alpha}(\mathbf{x}) = f(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_h} h_i^2(\mathbf{x}) + \frac{\alpha}{2} \sum_{j \in \mathcal{I}_g} \left( \max \left\{ -g_j(\mathbf{x}), 0 \right\} \right)^2 \quad (11)$$

a modified penalty function, for a penalty parameter  $\alpha > 0$ 

- When the constraints are not satisfied at  $\mathbf{x}$ , the sums quantify how far point  $\mathbf{x}$  is from the admissibility set  $\Omega$
- A large  $\alpha$  heavily penalises such a violation

# Constrained optimisation UFC/DC

AI (CK0031) 2016.2

ptimisation
The penalty method

### The penalty method (cont.)

Due to numerical instability, it is not advised to minimise  $\mathcal{P}_{\alpha}(\mathbf{x})$  directly for a large value of  $\alpha$ 

- Rather, consider an increasing and unbounded series of parameters  $\{\alpha_k\}$
- For each  $\alpha_k$ , calculate an approximation  $\mathbf{x}^{(k)}$  of the solution  $\mathbf{x}^*(\alpha_k)$  of  $\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$

$$\mathbf{x}^{(k)} = rg \min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{lpha_k}(\mathbf{x})$$

with an unconstrained optimisation method

• At each step k,  $\alpha_{k+1}$  is a chosen as a function of  $\alpha_k$  (e.g.,  $\alpha_{k+1} = \delta \alpha_k$ , for  $\delta \in [1.5, 2]$ ) and  $\mathbf{x}^{(k)}$  is used as initial point for solving the minimisation at step k+1

### Constrained

UFC/DC AI (CK0031)

The penalty method

### The penalty method (cont.)

In the first iterations there is no reason to believe that the solution to min  $\mathcal{P}_{\alpha_k}(\mathbf{x})$  should resemble the solution to the original problem

• This supports the idea of searching for an inexact solution to min  $\mathcal{P}_{\alpha_k}(\mathbf{x})$  that differs from the exact one,  $\mathbf{x}^{(k)}$ , a small  $\varepsilon_k$ 

### UFC/DC

AI (CK0031)

The penalty method

### The penalty method (cont.)

```
1 % PENALTY Constrained optimisation with penalty function
2 % [X,ERR,K] = PFUNCTION(F, GRAD_F, H, GRAD_H, G, GRAD_G, X_O, TOL, ...
                        KMAX, KMAXD, TYP)
4 % Approximate a minimiser of the cost function F
5 % under constraints H=0 and G>=0
7 % XO is initial point. TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F, GRAD_H, and GRAD_G are the gradients of F, H, and G
10 % H and G, GRAD_H and GRAD_G can be initialised to []
12 % For TYP=0 solution by FMINSEARCH M-function
13 %
14 % For TYP>O solution by a DESCENT METHOD
15 % KMAXD is maximum number of iterations
16 % TYP is the choice of descent directions
    TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
    [X, ERR, K] = PFUNCTION(F, GRAD_F, H, GRAD_H, G, GRAD_G, X_O, TOL, ...
                          KMAX, KMAXD, TYP, HESS_FUN)
20 % For TYP=1 HESS_FUN is the function handle associated
21 % For TYP=2 HESS_FUN is a suitable approx. of Hessian at k=0
```

### Constrained optimisation

UFC/DC AI (CK0031)

The penalty method

### The penalty method (cont.)

• Given  $\alpha_0$ , (typically,  $\alpha_0 = 1$ ),  $\varepsilon_0$  (typically  $\varepsilon_0 = 1/10$ ),  $\overline{\varepsilon} > 0$ ,  $\mathbf{x}_0^{(0)} \in \mathbb{R}^n$  and  $\lambda_0^{(0)} \in \mathbb{R}^p$  for  $k = 0, 1, \ldots$  until convergence

```
Compute an approx. solution \mathbf{x}^{(k)} = \arg\min \mathcal{P}_{\alpha_k}(\mathbf{x}) to
\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x}), by using initial point \mathbf{x}_0^{(0)} and tolerance \varepsilon_k
If ||\nabla_{\mathbf{x}} \mathcal{L}_{A}(\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k})|| \leq \overline{\varepsilon}
       Set \mathbf{x}^* = \mathbf{x}^{(k)} (convergence)
        Choose \alpha_{k+1} > \alpha_k
        Choose \varepsilon_{k+1} < \varepsilon_k
       Set \mathbf{x}_{0}^{(k+1)} = \mathbf{x}^{(k)}
Endif
```

Note the extra tolerance  $\overline{\varepsilon}$  to assess the gradient of  $\mathcal{P}_{\alpha_k}$  at  $\mathbf{x}^{(k)}$ 

### optimisation

UFC/DC AI (CK0031)

### The penalty method (cont.)

```
function [x,err,k]=pFunction(f,grad_f,h,grad_h,g,grad_g,...
                               x_0, tol, kmax, kmaxd, typ, varargin)
4 xk=x_0(:); mu_0=1.0;
6 if typ==1; hess=varargin{1};
7 elseif typ==2; hess=varargin{1};
8 else; hess=[]; end
9 if ~isempty(h), [nh,mh]=size(h(xk)); end
if ~isempty(g), [ng,mg]=size(g(xk)); end
12 err=1+tol; k=0; muk=mu_0; muk2=muk/2; told=0.1;
14 while err>tol && k<kmax
options = optimset ('TolX', told);
[x,err,kd]=fminsearch(@P,xk,options); err=norm(x-xk);
   [x,err,kd]=dScent(@P,@grad_P,xk,told,kmaxd,typ,hess);
   err=norm(grad_P(x));
if kd<kmaxd; muk=10*muk; muk2=0.5*muk;</pre>
  else muk=1.5*muk; muk2=0.5*muk; end
26 k=1+k; xk=x; told=max([tol,0.10*told]);
```

### Constrained UFC/DC

AI (CK0031)

The penalty method

### The penalty method (cont.)

```
4 if ~isempty(h); y=y+muk2*sum((h(x)).^2); end
5 if ~isempty(g); G=g(x);
6 for j=1:ng
   y=y+muk2*max([-G(j),0])^2;
8 end
9 end
1 function y=grad_P(x) % This function is nested in pFunction
3 y=grad_fun(x);
4 if ~isempty(h), y=y+muk*grad_h(x)*h(x); end
if ~isempty(g), G=g(x); Gg=grad_g(x);
6 for j=1:ng
   if G(j)<0
    y=y+muk*Gg(:,j)*G(j);
10 end
11 end
```

1 function y=P(x) % This function is nested inside pFunction

UFC/DC AI (CK0031)

### The augmented Lagrangian

Consider minimisation problems with equality constraints ( $\mathcal{I}_{\varepsilon} = \emptyset$ )

 $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$  subjected to

$$h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$$

$$g_j(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_g$$

### Definition

For a suitable coefficient  $\alpha > 0$ , define the augmented Laplacian

$$\mathcal{L}_{A}(\mathbf{x}, \boldsymbol{\lambda}, \alpha) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_{h}} \lambda_{i} h_{i}(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_{h}} h_{i}^{2}(\mathbf{x})$$
(12)



UFC/DC AI (CK0031)

The augmented Lagrangian
Constrained optimisation

UFC/DC AI (CK0031)

### The augmented Lagrangian (cont.)

The augmented Laplacian method is an iterative method that, at the k-th iteration and for a given  $\alpha_k$  and a given  $\lambda^{(k)}$  computes

$$\mathbf{x}^{(k)} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}_A(\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k)$$
 (13)

in such a way that the sequence  $\mathbf{x}^{(k)}$  converges to the KKT point for the Lagrangian  $\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i \in \mathcal{T}_k} \lambda_i h_i(\mathbf{x})$ 

## Constrained optimisation UFC/DC

AI (CK0031) 2016.2

optimisation

### The augmented Lagrangian (cont.)

Initial  $\alpha_0$  and  $\boldsymbol{\lambda}^{(0)}$  are set arbitrarily and new values are given by

- Coefficient  $\alpha_{k+1}$  is obtained from  $\alpha_k$ , such that  $\alpha_{k+1} > \alpha_k$
- To set  $\lambda^{(k+1)}$ , compute the gradient of the augmented Lagrangian wrt  $\mathbf{x} \nabla_{\mathbf{x}} \mathcal{L}_{A}(\mathbf{x}, \lambda^{(k)}, \alpha_{k})$  and set it to zero

#### onstrained otimisation

UFC/DC AI (CK0031)

Constrained

The penalty method

The augmented Lagrangian (cont.)

The comparison yields  $\lambda_i^{(k)} - \alpha_k h_i(\mathbf{x}^{(k)}) \simeq \lambda_i^*$  and we define

$$\lambda_i^{(k+1)} = \lambda_i^{(k)} - \mu_k h_i(\mathbf{x}^{(k)}) \tag{14}$$

We identify  $\mathbf{x}^{(k+1)}$  by solving with k replaced by k+1

$$\mathbf{x}^k = \operatorname*{arg\ min}_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}_{A}(\mathbf{x}, \boldsymbol{\lambda}^k, lpha_k)$$

### Constrained

UFC/DC AI (CK0031)

Constrained optimisation

The augmented Lagrangian (cont.)

$$\nabla_{\mathbf{x}} \mathcal{L}_{A}(\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k}) = \nabla f(\mathbf{x}^{(k)}) - \sum_{i \in \mathcal{I}_{h}} \left( \lambda_{i}^{(k)} - \alpha_{k} h_{i}(\mathbf{x}^{(k)}) \right) \nabla h_{i}(\mathbf{x}^{(k)})$$

We identify  $\lambda_i^{(k)}$ , by comparison with optimality condition

$$abla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 
abla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* 
abla h_i(\mathbf{x}^*) = \mathbf{0}, \quad \forall i \in \mathcal{I}_h$$

### Constrained optimisation

UFC/DC AI (CK0031)

Constrained optimisation

The augmented Lagrangian

### The augmented Lagrangian (cont.)

• Given  $\alpha_0$ , (typically,  $\alpha_0=1$ ),  $\varepsilon_0$  (typically  $\varepsilon_0=1/10$ ),  $\overline{\varepsilon}>0$ ,  $\mathbf{x}_0^{(0)}\in\mathbb{R}^n$  and  $\boldsymbol{\lambda}_0^{(0)}\in\mathbb{R}^p$  for  $k=0,1,\ldots$  until convergence

### Pseudocode

Compute an approx. solution  $\mathbf{x}^{(k)} = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg \ min}} \ \mathcal{L}_A(\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k),$ 

by using initial point  $\mathbf{x}_0^{(0)}$  and a tolerance  $\varepsilon_k$ 

If 
$$||\nabla_{\mathbf{x}}\mathcal{L}_{A}(\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k})|| \leq \overline{\varepsilon}$$
  
Set  $\mathbf{x}^{*} = \mathbf{x}^{(k)}$  (convergence)

else

Compute  $\lambda_i^{(k+1)} = \lambda_i^{(k)} - \mu_k h_i(\mathbf{x}^{(k)})$ 

Choose  $\alpha_{k+1} > \alpha_k$ 

Choose  $\varepsilon_{k+1} < \varepsilon_k$ 

Set  $\mathbf{x}_0^{(k+1)} = \mathbf{x}^{(k)}$ 

Endif

### Constrained UFC/DC AI (CK0031)

The penalty method

The augmented Lagrangian

### The augmented Lagrangian (cont.)

The implementation of the algorithm is given in the following

• Except for lambda\_0 that contains the initial vector  $\lambda^{(0)}$  of Lagrange multipliers, all other inputs and outputs have been already explained for pFunction, dScent and others

### Constrained UFC/DC AI (CK0031)

The penalty method

The augmented Lagrangian

```
1 function [x,err,k]=aLgrng(f,grad_f,h,grad_h,x_0,lambda_0,...
                             tol, kmax, kmaxd, typ, varargin)
```

The augmented Lagrangian (cont.)

```
4 \text{ mu}_0 = 1.0;
6 if typ==1; hess=varargin{1};
 7 elseif typ==2; hess=varargin{1};
 8 else; hess=[]; end
10 err=1+tol+1; k=0; xk=x_0(:); lambdak=lambda_0(:);
if ~isempty(h); [nh,mh]=size(h(xk)); end
14 muk=mu 0: muk2=muk/2: told=0.1:
16 while err>tol && k<kmax
17 if typ==0
options=optimset ('TolX',told);
[x,err,kd]=fminsearch(@L,xk,options); err=norm(x-xk);
[x,err,kd]=descent(@L,@grad_L,xk,told,kmaxd,typ,hess);
err=norm(grad_L(x));
25 lambdak=lambdak-muk*h(x);
if kd<kmaxd; muk=10*muk; muk2=0.5*muk;</pre>
else muk=1.5*muk; muk2=0.5*muk; end
29 k=1+k; xk=x; told=max([tol,0.10*told]);
```

### Constrained optimisation

UFC/DC AI (CK0031) 2016.2

### The augmented Lagrangian (cont.)

```
The augmented Lagrangian
             1 % ALGRNG Constrained optimisation with augmented Lagrangian
             2 % [X, ERR, K] = ALGRNG (F, GRAD_F, H, GRAD_H, X_O, LAMBDA_O, ...
                                 TOL, KMAX, KMAXD, TYP)
             4 % Approximate a minimiser of the cost function F
             5 % under equality constraints H=0
             7 % X_O is initial point, TOL is tolerance for stop check
            8 % KMAX is the maximum number of iterations
            9 % GRAD_F and GRAD_H are the gradients of F and H
            11 % For TYP=0 solution by FMINSEARCH M-function
            12 % FOR TYP>O solution by a DESCENT METHOD
            13 % KMAXD is maximum number of iterations
            14 % TYP is the choice of descent directions
            15 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
```

### optimisation

UFC/DC AI (CK0031)

### The augmented Lagrangian (cont.)

```
1 function y=L(x) % This function is nested inside aLgrng
3 y=fun(x);
4 if ~isempty(h)
y=y-sum(lambdak'*h(x))+muk2*sum((h(x)).^2);
1 function y=grad_L(x) % This function is nested inside aLgrng
3 y=grad_fun(x);
4 if "isempty(h)
5 y=y+grad_h(x)*(muk*h(x)-lambdak);
```

Constrained optimisation

UFC/DC

AI (CK0031)
2016.2

Constrained

The penalty method

The augmented Lagrangian

### The augmented Lagrangian (cont.)

p=1; % The number of equality constraints
plambda\_0 = rand(p,1); typ=2; hess=eye(2);

```
fun = @(x) 0.6*x(1).^2 + 0.5*x(2).*x(1) - x(2) + 3*x(1);
grad_fun = @(x) [1.2*x(1) + 0.5*x(2) + 3; 0.5*x(1) - 1];

h = @(x) x(1).^2 + x(2).^2 - 1;
grad_h = @(x) [2*x(1); 2*x(2)];

x_0 = [1.2,0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;
```

As stopping criterion, we have set the tolerance to be  $10^{-5}$  and we opted for an associated unconstrained minimisation problem by quasi-Newton descent directions (with typ=2 and hess=eye(2))

11 [xmin,err,k] = aLagrange(fun,grad\_fun,h,grad\_h,x\_0,...
12 lambda\_0,tol,kmax,kmax,typ,hess)