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Probability theory

A key concept in the field of data science is that of uncertainty

• through noise on measurements

• through the finite size of data

Probability theory provides a consistent framework for the
quantification and manipulation of uncertainty and forms one of the
central foundations of PRML
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Probability theory (cont.)

We have two boxes, one red and one blue, and in the red box we have 2
apples and 6 oranges, and in the blue box we have 3 apples and 1 orange

We randomly select one box and
from that box we randomly pick
an item of fruit

• We check the fruit and
we replace it in its box

We repeat this process
many times

40% of the time we pick the red box
60% of the time we pick the blue box

• We are equally likely to select any piece of fruit from the box
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Probability theory (cont.)

The identity of the box that will be chosen is a random variable B

This random variable can take only two possible values

• either r, for red box or b, for blue box

The identity of the fruit that will be chosen is a random variable F

This random variable can take only two possible values

• either a, for apple or o, for orange
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Probability theory (cont.)

Definition

We define the probability of an event to be the fraction of times that
some event occurs out of the total number of trials, in the limit that
this number goes to infinity

Example

• The probability of selecting the red box is 4/10

• The probability of selecting the blue box is 6/10

We write these probabilities as p(B = r) = 4/10 and p(B = b) = 6/10

Note: By definition, probabilities must lie in the unit interval [0, 1]

• If events are mutually exclusive and if they include all possible
outcomes, then the probabilities for such events must sum to one
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Probability theory (cont.)

Example

We have defined our experiment and we can start asking questions ...

• What is the overall probability that the selection procedure
picks an apple?

• Given that we have chosen an orange, what is the probability
that the box we chose was the blue one?

• ...
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Probability theory (cont.)

We can answer questions such as these, and much more complex ones

But, we need first the two elementary rules of probability

• the sum rule and the product rule
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Probability theory (cont.)

To derive these rules, consider the slightly more general example

• Two random variables X and Y

}

}

ci

rjyj

xi

nij

We shall suppose that:

• X can take any of the
values xi , i = 1, . . . ,M

• Y can take any of the
values yj , j = 1, . . . , L

Here, M = 5 and L = 3

Consider a total of N trials in which we sample both variable X and Y

• Let nij be the number of such trials in which X = xi and Y = yj

• Let ci be the number of trials in which X takes the value xi
(irrespective of the value that Y takes)

• Let rj be the number of trials in which Y takes the value yj
(irrespective of the value that X takes)
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Probability theory (cont.)

The probability that X will take the value xi and Y will take the value
yj is written p(X = xi ,Y = yj )

It is the joint probability of X = xi and Y = yj

}

}

ci

rjyj

xi

nij

It is given by the number of points
falling in the cell (i , j) as a fraction
of the total number N of points

p(X = xi ,Y = yj ) =
nij
N

(1)

Implicitly, in the limit N → ∞
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Probability theory (cont.)

The probability that X takes the value xi irrespective of the value of Y is
p(X = xi ) and is the fraction of the total number of points in column i

p(X = xi ) =
ci

N
=

∑L
j=1 nij

N
=

L∑

j=1

nij

N
︸ ︷︷ ︸

p(X=xi ,Y=yj )

=
L∑

j=1

p(X = xi ,Y = yj )

(2)
p(X = xi ) is called the marginal probability because it is obtained
by marginalising, or summing out, the other variables (i.e., Y here)

}

}

ci

rjyj

xi

nij

Definition

The marginal probability sets us
for the Sum rule of probability

p(X = xi ) =
L∑

j=1

p(X = xi ,Y = yj )

(3)
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Probability theory (cont.)

If we consider only those instances for which X = xi , then the fraction
of such instances for which Y = yj is written p(Y = yj |X = xi )

• It is the conditional probability of Y = yj given X = xi

}

}

ci

rjyj

xi

nij

It is given by the fraction of points
in column i that fall in cell (i , j)

p(Y = yi |X = xi ) =
nij
ci

(4)

Definition

From Equation 1, 2 and 4, we derive the Product rule of probability

p(X = xi ,Y = yj ) =
nij

N
=

nij

ci
︸ ︷︷ ︸

p(Y=yj |X=xi )

ci

N
︸ ︷︷ ︸

p(X=xi )

= p(Y = yj |X = xi )p(X = xi )

(5)
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Probability theory (cont.)

Definition

The rules of probability

• sum rule
p(X ) =

∑

Y

p(X ,Y ) (6)

• product rule
p(X ,Y ) = p(Y |X )p(X ) (7)

To compact notation, p(⋆) denotes a distribution over a RV ⋆ 1

• p(X ,Y ) is a joint probability, the probability of X and Y

• p(Y |X ) is a conditional probability, the probability of Y given X

• p(X ) is a marginal probability, the probability of X

1p(⋆ = ·) or simply p(·) denotes the distribution evaluated for the particular value ·
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Probability theory (cont.)

Definition

From the product rule and the symmetry property p(X ,Y ) = p(Y ,X ),
we obtain the following relationship between conditional probabilities

p(Y |X ) =
p(X |Y )p(Y )

p(X )
(8)

It is the Bayes’ rule, plays a central role in reasoning under uncertainty

Using the sum rule, the denominator in Bayes’ theorem can be
expressed in terms of the quantities appearing in the numerator

p(X ) =
∑

Y

p(X |Y )p(Y ) (9)

The denominator is a normalisation constant that ensures that the
sum of the conditional probability p(Y |X ) over all values of Y is one
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Probability theory (cont.)

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)
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Probability theory (cont.)

Example

Returning to the example involving the boxes of fruit

The probability of selecting either red or blue boxes are

• p(B = r) = 4/10 and p(B = b) = 6/10

This satisfies p(B = r) + p(B = b) = 4/10 + 6/10 = 1

Now suppose that we pick a box at random, say the blue box

Then the probability of selecting an apple is just the fraction of
apples in the blue box which is 3/4, so p(F = a|B = b) = 3/4

Probabilistic
reasoning

UFC/DC
AI (CK0031)

2016.2

Probability theory

Expectations and
covariances

Bayesian probabilities

Reasoning under
uncertainty

Probabilistic modelling

Probabilistic reasoning

Prior, likelihood and
posterior

Probability theory (cont.)

We write all conditional probabilities for the type of fruit, given the box

p(F = a|B = r) = 1/4 (10)

p(F = o|B = r) = 3/4 (11)

p(F = a|B = b) = 3/4 (12)

p(F = o|B = b) = 1/4 (13)

Note that these probabilities are normalised

p(F = a|B = r) + p(F = o|B = r) = 1 (14)

p(F = a|B = b) + p(F = o|B = b) = 1 (15)
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Probability theory (cont.)

We can now use the sum and product rules of probability
to evaluate the overall probability of choosing an apple 2

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
×

4

10
+

3

4
×

6

10
=

11

20
(16)

from which it follows (sum rule) that p(F = o) = 1− 11/20 = 9/20

2P(X ) =
∑

Y p(X ,Y ) with p(X ,Y ) = p(Y |X )p(X ) = p(Y ,X ) = p(X |Y )p(Y )
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Probability theory (cont.)

Suppose instead we are told that a piece of fruit has been selected and
it is an orange, and we would like to know which box it came from

We want the probability distribution over boxes
conditioned on the identity of the fruit (P(B|F ))

The probabilities in Eq. 10-13 give the probability distribution
over fruits conditioned on the identity of the box (P(F |B))

We need to reverse the conditional probability (Bayes’ rule)

p(B = r |F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
×

4

10
×

20

9
=

2

3
(17)

It follows (sum rule) that p(B = b|F = o) = 1− 2/3 = 1/3
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Probability theory (cont.)

We can provide an important interpretation of Bayes’ theorem

p(B|F ) =
p(F |B)p(B)

p(F )

• If we had been asked which box had been chosen before being told
the identity of the selected item of fruit, then the most complete
information we have available is provided by the probability p(B)

• We call this the prior probability because it is the probability
available before we observe the identity of the fruit

• Once we are told that the fruit is an orange, we can then use
Bayes’ theorem to compute the probability p(B|F )

• We call this the posterior probability because it is the probability
obtained after we have observed the identity of the fruit
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Probability theory (cont.)

p(B = r |F = o)
︸ ︷︷ ︸

2/3

=
p(F = o|B = r)

p(F = o)
p(B = r)
︸ ︷︷ ︸

4/10

The prior probability of selecting the red box is 4/10 (blue is more
probable), and once we observed that the selected fruit is an orange,
the posterior probability of the red box is 2/3 (red is more probable)
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Probability theory (cont.)

If the joint distribution of two variables factorises into the product of
the marginals, p(X ,Y ) = p(X )p(Y ), then X and Y are independent

p(X ,Y ) = p(Y |X )p(X )

From the product rule, p(Y |X ) = p(Y ), and so the conditional
distribution of Y given X is indeed independent of the X value

p(Y |X ) =
p(X |Y )p(Y )

p(X )
= P(Y ) ⇐= P(X |Y ) = P(X )
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Expectations and covariances
Probability theory
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Expectations and covariances

One operation involving probabilities is weighted averages of functions

• The average value of some function f (x) under a probability
distribution p(x) is called the expectation of f (x)

• It will be denoted by E[f ]

Definition

For a discrete distribution, the expectation of f (x) is given by the form

E[f ] =
∑

x

p(x)f (x) (18)

The average is weighted by the relative probabilities of the values of x
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Expectations and covariances (cont.)

In either case, given a finite number N of observations drawn from the
probability distribution or probability density p(x), then the expectation
of function f (x) can be approximated as a finite sum over these points

E[f ] ≃
1

N

N∑

n=1

f (xn) (19)

The approximation becomes exact in the limit N → ∞
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Expectations and covariances

Sometimes we consider expectations of functions of several variables

• We use a subscript to indicate which variable is being averaged over

Ex [f (x , y)] is the average of function f (x , y) wrt the distribution of x

• Ex [f (x , y)] =
∑

x p(x)f (x , y)

• Ex [f (x , y)] is a function of y

Definition

The conditional expectation wrt a conditional distribution

Ex [f |y ] =
∑

x

p(x |y)f (x) (20)
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Expectations and covariances (cont.)

Definition

The measure of how much variability there is in f (x) around its mean
value E[f (x)] is called the variance of f (x) and it is defined by

var[f ] = E

[(

f (x)− E[f (x)]
)2]

(21)

Expanding the square, we can show (⋆) that the variance can
also be written in terms of the expectations of f (x) and f (x)2

var[f ] = E[f (x)2]− E[f (x)]2 (22)

• The variance of the variable x itself (i.e., f (x) = x) is

var[x] = E[x2]− E[x]2 (23)
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Expectations and covariances (cont.)

Definition

For two random variables x and y , the extent to which x and y vary
together is called covariance and it is defined by

cov[x , y ] = Exy

[

(x − E[x])(y − E[y ])
]

= Exy [xy ]− E[x]E[y ]
(24)

If x and y are independent, then their covariance vanishes (⋆)

For two vectors of random variables x and y, the covariance is a matrix

cov[x, y] = Ex,y

[

(x− E[x])(yT − E[yT ])
]

= Ex,y[xy
T ]− E[x]E[yT ] (25)
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Bayesian probabilities

We viewed probabilities as frequencies of repeatable random events

• It is the frequentist interpretation of probability

We can view probabilities also as quantification of uncertainty

• It is the Bayesian interpretation of probability

Example

In the boxes of fruit the observation of the identity of the fruit provided
relevant information that altered the probability of the chosen box

• Bayes’s rule converted a prior probability (P(B = r) = 4/10) into a
posterior probability by incorporating evidence from observed data

p(B = r |F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

2

3
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Bayesian probabilities (cont.)

We can adopt this approach when making inference about quantities
such as the parameters w in a regression or classification example

• We first capture our assumptions about w, before observing
the data in the form of a prior probability p(w)

• The effect of the observed data D = {t1, . . . , tn} is expressed
through the conditional probability p(D|w)

• Then, we evaluate the uncertainty in w, after we observed D
in the form of the posterior probability p(w|D)

p(w|D) =
p(D|w)p(w)

p(D)
(26)

The quantity p(D|w) is evaluated for the observed D and can be viewed
as a function of the parameter(s) w, as such it is a likelihood function

• How probable D is for different settings of the parameters w
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Bayesian probabilities (cont.)

The likelihood function p(D|w) plays a fundamental role

• In a frequentist setting, w is considered as a fixed parameter,
whose value is determined by some form of estimator, and
error bars on such an estimate are obtained by considering
the distribution of possible data sets D

• In the Bayesian setting, there is only a single data set D (the one
that is actually observed), and the uncertainty in the parameters is
expressed through a probability distribution over w given that set

Remark

The likelihood p(D|w) is NOT a probability distribution
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Bayesian probabilities (cont.)

A widely used frequentist estimator is maximum likelihood, in which
w is set to the value that maximises the likelihood function p(D|w)

• This corresponds to choosing the value of w for which
the probability of the observed data set D is maximised

Definition

The negative log of the likelihood function is called an error function

• The negative logarithm is a monotonically decreasing function,
maximising the likelihood is equivalent to minimising the error
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Bayesian probabilities (cont.)

Definition

Given a definition of likelihood, we state Bayes’ rule also in words

posterior ∝ likelihood× prior

p(w|D) =
p(D|w)p(w)

p(D)

(27)

All quantities are intended as functions of w and the denominator is a
normalisation constant ensuring that the posterior is a valid p(d/m)f

Integrating both sides of Bayes’ rule with respect to w, we can express
the denominator in terms of prior distribution and likelihood function

p(D) =

∫

p(D|w)p(w)dw (28)
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Probabilistic modelling

Variables will be denoted using either upper case X or lower case x

Sets of variables will be typically denoted by the calligraphic symbol

• For example, V = {a,B, c}

The domain of variable x is dom(x), it denotes the states x can take

Example

States will typically be represented using typewriter type fonts

• For a coin c , dom(c) = {heads, tails} and p(c = heads)
represents the probability that variable c is in state heads

The meaning of p(state) is often clear, without reference to a variable

• If we are discussing an experiment about a coin c , the meaning of
p(heads) is clear from context, being shorthand for p(c = heads)
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Probabilistic modelling (cont.)

When summing over a variable
∑

x f (x) all states of x are included

•

∑

x f (x) =
∑

s∈dom(x) f (x = s)

Given variable x , its domain dom(x) and a full specification of the
probability values for each of the states, p(x)

• We say that we have a distribution for x
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Probabilistic modelling (cont.)

For our purposes, events are expressions about random variables

• Two heads in 6 coin tosses

Two events are mutually exclusive if they cannot both be true

• Events Coin is heads and Coin is tails are mutually exclusive

Example

One can think of defining a new variable named by the event

• p(The coin is tails) can be interpreted as
p(The coin is tails = true)

We use p(x = tr) for the probability of event/variable x being in state
true and p(x = fa) for the probability of x being in state false
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Probabilistic modelling (cont.)

Definition

Rules of probability for discrete variables (1): Probability p(x = x) of
variable x being in state x is represented by a value between 0 and 1

• p(x = x) = 1 means that we are certain x is in state x

• p(x = x) = 0 means that we are certain x is NOT in state x

Values in [0, 1] represent the degree of certainty of state occupancy

Definition

Rules of probability for discrete variables (2): The summation of the
probability over all states is one:

∑

x∈dom(x)

p(x = x) = 1 (29)

Normalisation condition: Often written as
∑

x p(x) = 1
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Probabilistic modelling (cont.)

Definition

Rules of probability for discrete variables (3): x and y can interact

p(x = a or y = b) = p(x = a) + p(y = b)− p(x = a and y = b) (30)

Or, more generally we write

p(x or y) = p(x) + p(y)− p(x and y) (31)

We use p(x , y) for p(x and y)

• p(x , y) = p(y , x)

• p(x or y) = p(y or x)
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Probabilistic modelling (cont.)

Definition

Set notation: An alternative notation in terms of set theory is

p(x or y) ≡ p(x ∪ y)

p(x , y) ≡ p(x ∩ y)
(32a)
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Probabilistic modelling (cont.)

Definition

Marginals: Given a joint distribution p(x , y), the distribution of a
single variable is given by

p(x) =
∑

y

p(x , y) (33)

p(x) is termed a marginal of the joint probability distribution p(x, y)

Marginalisation: Process of computing a marginal from a joint distro

More generally, one has

p(x1, . . . , xi−1, xx+1, . . . , xn) =
∑

xi

p(x1, . . . , xn) (34)
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Probabilistic modelling (cont.)

Definition

Conditional probability/Bayes’ rule: The probability of some event x
conditioned on knowing some event y , or the probability of x given y

p(x |y) = p(x, y)
p(y)

(35)

If p(y) = 0, then p(x|y) is not defined

From this definition and p(x, y) = p(y , x), we arrive at the Bayes’ rule

p(x |y) =
p(y |x)p(x)

p(y)
(36)

Bayes’ rule trivially follows from the definition of conditional probability,
we can be loose in our language and use the terms as synonymous

• Bayes’ rule plays a central role in probabilistic reasoning

• It helps inverting probabilistic relations, p(y |x) ⇔ p(x|y)
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Probabilistic modelling (cont.)

Remark

Subjective probability

Probability is a contentious topic and we do not debate it here, apart
from pointing out that it is not necessarily the rules of probability that
are contentious, rather what interpretation we should place on them

If potential repetitions of an experiment can be envisaged, then the
frequentist definition of probability in which probabilities are defined
wrt a potentially infinite repetition of experiments makes sense

In coin tossing, the probability of heads might be interpreted as

• ‘If I were to repeat the experiment of flipping a coin (at ‘random’),
the limit of the number of heads that occurred over the number of
tosses is defined as the probability of a head occurring ’
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Probabilistic modelling (cont.)

A typical problem and scenario in an AI situation

Example

A film enthusiast joins a new online film service

Based on a few films a user likes/dislikes, the company tries to estimate
the probability that the user will like each of the 10K films in its offer

• If we define probability as a limiting case of infinite repetitions of
the same experiment, this wouldn’t make much sense in this case
(we cannot repeat the experiment)

• If we assume that the user behaves in a manner that is consistent
with other users, we should be able to exploit the large amount of
data from other users’ ratings to make a reasonable ‘guess’ as to
what this consumer likes
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Probabilistic modelling - Conditional probability

A degree of belief or Bayesian subjective interpretation
of probability sidesteps non-repeatability issues

• It is just a framework for manipulating real values
consistent with our intuition about probability
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Probabilistic modelling - Conditional probability

Conditional probability matches our intuition of uncertainty

Example

Imagine a circular dart board, split into 20 equal sections, labels 1− 20

• A dart thrower hits any one of the 20 sections uniformly at random

The probability that a dart occurs in any one of the 20 regions is simply

p(region i) = 1/20

Someone tells that the dart has not hit the 20-region and we want to
know what is the probability that the dart thrower has hit the 5-region?
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Probabilistic modelling - Conditional probability (cont.)

• Conditioned on this info, only regions 1 to 19 remain possible and
there is no preference for the thrower to hit any of these regions

• The probability is 1/19

p(region 5|not region 20) =
p(region 5, not region 20)

p(not region 20)

=
p(region 5)

p(not region 20)

=
1/20

19/20
= 1/19
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Probabilistic modelling - Conditional probability (cont.)

Remark

A point to clarify is that p(A = a|B = b) should NOT be interpreted as

• ‘Given the event B = b has occurred, p(A = a|B = b)
is the probability of the event A = a occurring ’

As, in most contexts, no such explicit temporal causality can be implied

The correct interpretation should be: ‘p(A = a|B = b) is the probability
of A being in state a under the constraint that B is in state b’

Probabilistic
reasoning

UFC/DC
AI (CK0031)

2016.2

Probability theory

Expectations and
covariances

Bayesian probabilities

Reasoning under
uncertainty

Probabilistic modelling

Probabilistic reasoning

Prior, likelihood and
posterior

Probabilistic modelling - Conditional probability (cont.)

The relation between the conditional p(A = a|B = b) and
the joint p(A = a,B = b) is just a normalisation constant

• p(A = a,B = b) is not a distribution in A

• In other words,
∑

a
p(A = a,B = b) ̸= 1

To make it a distribution we need to divide:

p(A = a,B = b)
∑

a
p(A = a,B = b)

which, when summed over a does sum to 1

This is just the definition of p(A = a|B = b)
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Probabilistic modelling - Conditional probability (cont.)

Definition

Independence: Variables x and y are independent if knowing the state
(or value) of one variable gives no extra info about the other variable

p(x, y) = p(x)p(y) (37)

For p(x) ̸= 0 and p(y) ̸= 0, the independence of x and y is equivalent to

p(x|y) = p(x) ⇐⇒ p(y |x) = p(y) (38)

If p(x |y) = p(x) for all states of x and y , then x and y are independent

If for some constant k and some positive functions f (·) and g(·)

p(x , y) = kf (x)g(y) (39)

then we say that x and y are independent and we write x ⊥⊥ y
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Probabilistic modelling - Conditional probability (cont.)

Example

Let x denote the day of the week in which females are born and let y be
the day in which males are born, dom(x) = dom(y) = {M, T, . . . , S}

• It is reasonable to expect that x is independent of y

We randomly select a woman from the phone book (Alice) and find out
that she was born on a Tuesday and we randomly select a male (Bob)

• Before phoning Bob and asking him, what does knowing
Alice’s birth day add to which day we think Bob is born on?

Under the independence assumption, the answer is nothing
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Probabilistic modelling - Conditional probability (cont.)

This doesn’t mean that the distribution of Bob’s birthday is uniform

• It means that knowing when Alice was born doesn’t provide any
extra information than we already knew about Bob’s birthday

p(y |x) = p(y)

It is known that the distribution of birth days p(y) and p(x) are
non-uniform (fewer babies are born on weekends, statistically)

• Although nothing suggests that x and y are independent
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Probabilistic modelling - Conditional probability (cont.)

Sometimes the concept of independence is perhaps a little strange

Example

Consider binary variables (domains consist of 2 states) x and y and
define the distribution st x and y are always both in a certain state

p(x = a, y = 1) = 1

p(x = a, y = 2) = 0

p(x = b, y = 2) = 1

p(x = b, y = 1) = 0

Are x and y dependent?
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Probabilistic modelling - Conditional probability (cont.)

Since p(x = a) = 1, p(x = b) = 0, p(y = 1) = 1, p(y = 2) = 0

• p(x)p(y) = p(x, y) for all states of x and y

• x and y are thus independent

This may seem strange, as we know that the relation between x and y
is such that they are always in the same joint state and yet independent

Since the distribution is concentrated in a single joint state, knowing
the state of x tells nothing more about the state of y and viceversa

This potential confusion comes from using the term ‘independent’

• This may suggest that there is no relations between objects
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Probabilistic modelling - Conditional probability (cont.)

Remark

To get statistical independence, ask whether or not knowing the state
of y tells something more than we knew before about the state of x

• ‘knew before’ means working with the joint distribution p(x , y),
to figure out what we can know about x , or equivalently p(x)
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Probabilistic modelling - Conditional probability (cont.)

Definition

Conditional independence: Sets of variables X and Y are said to be
independent of each other if, given all states of X , Y and Z, we have

p(X ,Y|Z) = p(X|Z)p(Y|Z), (40)

provided that we know the state of set Z , and we write X ⊥⊥ Y|Z

If the conditioning set is empty, we may also write X ⊥⊥ Y for X ⊥⊥ Y|∅

• X is (conditionally) independent of Y

If X and Y are not conditionally independent ⇒ conditionally dependent

X⊤⊤Y|Z (41)

Similarly, X⊤⊤Y|∅ can be written as X⊤⊤Y
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Probabilistic modelling - Conditional probability (cont.)

Intuitively, if x is conditionally independent of y given z this means that

• given z , y contains no additional information about x , and similarly

• given z , knowing x does not tell anything more about y



Probabilistic
reasoning

UFC/DC
AI (CK0031)

2016.2

Probability theory

Expectations and
covariances

Bayesian probabilities

Reasoning under
uncertainty

Probabilistic modelling

Probabilistic reasoning

Prior, likelihood and
posterior

Probabilistic modelling - Conditional probability (cont.)

Remark

X⊤⊤Y|Z =⇒ X ′⊤⊤Y ′|Z , for X ′ ⊆ X and Y ′ ⊆ Y
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Probability refresher - Conditional probability (cont.)

Remark

Independence implications: Tempting to think that if ‘a is independent
of b’ and ‘b is independent of c’, then ‘a must be independent of c’

{a ⊥⊥ b, b ⊥⊥ c} =⇒ a ⊥⊥ c (42)

However, this does NOT follow

Consider a distribution of the form

p(a, b, c) = p(b)p(a, c) (43)

From this
p(a, b) =

∑

c

p(a, b, c) = p(b)
∑

c

p(a, b) (44)

p(a, b) is a function of b multiplied by a function of a

• so that a and b are independent

Similarly, one can show that b and c are independent and that a is not
necessarily independent of c (distribution p(a, c) can be set arbitrarily)
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Probabilistic modelling - Conditional probability (cont.)

Remark

Similarly, it is tempting to think that if ‘a and b are dependent’,
and ‘b and c are dependent’, then ‘a and c must be dependent’

{a⊤⊤b, b⊤⊤c} =⇒ a⊤⊤c (45)

However, this also does NOT follow (⋆)

Remark

Finally, note that conditional independence x ⊥⊥ y |z
does not imply marginal independence x ⊥⊥ y (⋆)
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Probabilistic modelling - Probability tables

Based on populations 60776238, 5116900 and 2980700 of countries
(CNT ) England (E), Scotland (S) and Wales (W), a priori probability
that a randomly selected person from the combined three countries
would live in England, Scotland or Wales is 0.88, 0.08 and 0.04

⎛

⎝

p(CNT = E)
p(CNT = S)
p(CNT = W)

⎞

⎠ =

⎛

⎝

0.88
0.08
0.04

⎞

⎠ (46)

whose component values sum to 1 and the ordering is arbitrary

For simplicity, assume that only three mother tongues (MT ) exist:

• English (Eng)

• Scottish (Scot)

• Welsh (Wel)

with conditional probabilities p(MT |CNT ) by residence E, S and W
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Probability modelling - Probability tables (cont.)

p(MT = Eng|CNT = E) = 0.95

p(MT = Scot|CNT = E) = 0.04

p(MT = Wel|CNT = E) = 0.01

p(MT = Eng|CNT = S) = 0.70

p(MT = Scot|CNT = S) = 0.30

p(MT = Wel|CNT = S) = 0.00

p(MT = Eng|CNT = W) = 0.60

p(MT = Scot|CNT = W) = 0.00

p(MT = Wel|CNT = W) = 0.40
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Probability modelling - Probability tables (cont.)

⎛

⎝

p(Eng|E) p(Eng|S) p(Eng|W)
p(Scot|E) p(Scot|S) p(Scot|W)
p(Wel|E) p(Wel|S) p(Wel|W)

⎞

⎠ =

⎛

⎝

0.95 0.70 0.60
0.04 0.30 0.00
0.01 0.00 0.40

⎞

⎠
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Probabilistic modelling - Probability tables (cont.)

We can form a joint distribution p(CNT ,MT ) = p(MT |CNT )p(CNT )

⎛

⎝

p(Eng, E) p(Eng, S) p(Eng, W)
p(Scot, E) p(Scot, S) p(Scot, W)
p(Wel, E) p(Wel, S) p(Wel, W)

⎞

⎠

We can also write it in the form of a 3× 3 matrix

• Columns indexed by country

• Rows indexed by mother tongue

⎛

⎝

0.95× 0.88 0.70 × 0.08 0.60× 0.04
0.04× 0.88 0.30 × 0.08 0.00× 0.04
0.01× 0.88 0.00 × 0.08 0.40× 0.04

⎞

⎠ =

⎛

⎝

0.8360 0.056 0.024
0.0352 0.024 0.000
0.0088 0.000 0.016

⎞

⎠
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Probabilistic modelling - Probability tables (cont.)

Remark

The joint distribution contains all the information about the model
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Probabilistic modelling - Probability tables (cont.)

p(CNT ,MT ) =

⎛

⎝

0.8360 0.0560 0.0240
0.0352 0.0240 0.0000
0.0088 0.0000 0.0160

⎞

⎠

• By summing the columns, we have the marginal p(CNT ),

p(CNT ) =
∑

MT∈dom(MT)

p(CNT ,MT )

⎛

⎝

p(CNT = E)
p(CNT = S)
p(CNT = W)

⎞

⎠ =

⎛

⎝

0.8352 + 0.0352 + 0.0088 = 0.88
0.0352 + 0.0240 + 0.0000 = 0.08
0.0088 + 0.0000 + 0.0160 = 0.04

⎞

⎠ (47)

• By summing the rows, we have the marginal p(MT ),

p(MT) =
∑

CNT∈dom(CNT)

p(CNT ,MT )

⎛

⎝

p(MT = Eng)
p(MT = Scot)
p(MT = Wel)

⎞

⎠ =

⎛

⎝

0.8360 + 0.0560 + 0.0240 = 0.916
0.0352 + 0.0240 + 0.0000 = 0.059
0.0088 + 0.0000 + 0.0160 = 0.025

⎞

⎠ (48)
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Probabilistic modelling - Probability tables (cont.)

One can infer the conditional p(CNT |MT ) ∝ p(MT |CNT )p(CNT )

p(CNT |MT ) =

⎛

⎝

0.913 0.061 0.026
0.590 0.410 0.000
0.360 0.000 0.640

⎞

⎠

The p(CNT |MT ) by dividing entries of p(CNT ,MT ) by their rowsum
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Probabilistic modelling - Probability tables (cont.)

For joint distributions over a larger set of variables {xi}Di=1 with each
variable xi taking Ki states, the table describing the joint distro is an
array with

∏D
i=1 Ki entries

• Explicitly storing tables requires space exponential in the number
of variables (rapidly becomes impractical for a large number D)

Remark

A probability distribution assigns a value to each of the joint states of
variables, p(T , J,R, S) is equivalent to p(J,S ,R,T ) or any reordering

• in each case, the joint setting of variables
is a different index to the same probability
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Probability reasoning
Reasoning under uncertainty
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Probabilistic reasoning

The central paradigm of probabilistic reasoning is to identify all relevant
variables x1, . . . , xN in the environment, and make a probabilistic model

p(x1, . . . , xN)

• Reasoning (or inference) is performed by introducing evidence
that sets variables in known states, and subsequently computing
probabilities of interest, conditioned on this evidence

The rules of probability, combined with Bayes’ rule make for a complete
reasoning system, one which includes deductive logic as a special case

We now discuss some examples in which the number of variables is still
very small, and soon we discuss reasoning in networks of many variables

• There, a graphical notation will play a central role
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Probabilistic reasoning (cont.)

Example

Hamburgers and the KJ disease: Consider this (factious) scenario

• Doctors found that people with Kreuzfel-Jacob disease (KJ) almost
inevitably ate hamburgers p(Hamburger eater = tr|KJ = tr) = 0.9

The probability of a person having KJ is very low p(KJ = tr) =
1

100K

Assuming eating hamburgers is spread p(Hamburger eater = tr) = 0.5,
what is the probability that a hamburger eater will have KJ disease?

p(KJ|Hamburger eater) =
p(Hamburger eater, KJ)

p(Hamburger eater)

=
p(Hamburger eater|KJ)p(KJ)

p(Hamburger eater)

=
9/10× 1/100K

1/2
= 1.8× 10−5

(49)

If p(Hamburger eater) = 0.001, p(KJ|Hamburger eater) ≈ 1/100
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Example

Inspector Clouseau: Inspector Clouseau arrives at the scene of a crime

• The victim lies dead near the possible murder weapon, a knife
(K , such that dom(K) = {knife used, knife not used})

The butler (B) and the maid (M) are the inspector’s main suspects
(B and M, st dom(B) = dom(M) = {murderer, not murderer})

Prior beliefs that they are the murderer quantifies as follows

p(B = murderer) = 0.6

p(M = murderer) = 0.2

These beliefs are independent (p(B)p(M) = p(B,M)) and it is still
possible that both the butler and the maid killed the victim or neither

p(K = knife used|B = not murderer,M = not murderer) = 0.3

p(K = knife used|B = not murderer,M = murderer) = 0.2

p(K = knife used|B = murderer,M = not murderer) = 0.6

p(K = knife used|B = murderer,M = murderer) = 0.1

In addition, p(K ,B ,M) = p(K |B,M)p(B)p(M)
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Probabilistic reasoning (cont.)

Assuming that the knife is the murder weapon (K = tr), what is the
probability that the butler is the murderer, p(B = murderer|K = tr)?

• b = dom(B), for the two states of B

• m = dom(M), for the two states of M

p(B|K ) =
∑

M∈m

p(B,M|K ) =
∑

M∈m

p(B,M,K)

p(K)
=

1

p(K)

∑

M∈m

p(B,M,K)

=
1

∑

B∈b
M∈m

p(K |B ,M)p(B,M)

∑

M∈m

p(K |B,M)p(B,M)

=
1

∑

B∈b p(B)
∑

M∈m p(K |B ,M)p(M)
p(B)

∑

M∈m

p(K |B ,M)p(M)

(50)

where we used the fact that in our model p(B,M) = p(B)p(M)
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Probabilistic reasoning(cont.)

Plugging in the values we have that p(B = murderer|K = knife used)

=

6

10

( 2

10
×

1

10
+

8

10
×

6

10

)

6

10

( 2

10
×

1

10
+

8

10
×

6

10

)

+
4

10

( 2

10
×

2

10
+

8

10
×

3

10

)

=
300

412
≃ 0.73

(51)

Knowing it was the knife strengthens our belief that the butler did it
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Remark

The role of p(K = knife used) in the example can cause confusion

p(K = knife used) =
∑

B∈b

p(B)
∑

M∈m

p(K = knife used|B ,M)p(M)

= 0.412
(52)

But surely also p(K = knife used) = 1, since this is given

Quantity p(K = knife used) relates to the prior probability the model
assigns to the knife being used (in the absence of any other info)

Clearly, if we know that the knife is used then the posterior is

p(K = knife used|K = knife used) =

p(K = knife used,K = knife used)

p(K = knife used)
=

p(K = knife used)

p(K = knife used)
= 1 (53)
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Probabilistic reasoning (cont.)

Example

Who’s in the bathroom? A household of 3 perosons: Alice, Bob, Cecil

Cecil wants to go to the bathroom but finds it occupied so he goes to
Alice’s room, he sees she is there and (knowing that only either Bob or
Alice can be in the bathroom), he infers that Bob must be occupying it

To arrive at the same conclusion mathematically, define the events
⎧

⎪⎨

⎪
⎩

A : Alice is in her bedroom

B : Bob is in his bedroom

O : Bathroom is occupied

(54)
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Probabilistic reasoning (cont.)

We encode the information that if either Alice or Bob are not in their
bedrooms, then they must be in the bathroom (both may be there) as

p(O = tr|A = fa,B) = 1

p(O = tr|B = fa,A) = 1
(55)

• The first term expresses that the bathroom is occupied (O = tr)
if Alice is not in her bedroom (A = fa), wherever Bob is (B)

• The second term expresses that the bathroom is occupied (O = tr)
if Bob is not in his bedroom (B = fa), wherever Alice is (A)
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Probabilistic reasoning (cont.)

p(B = fa|O = tr,A = tr) =

p(B = fa,O = tr,A = tr)

p(O = tr,A = tr)
=

p(O = tr|A = tr,B = fa
︸ ︷︷ ︸

1

)p(A = tr,B = fa)

p(O = tr,A = tr)
(56)

p(O = tr,A = tr) =

p(O = tr|A = tr,B = fa)
︸ ︷︷ ︸

1

p(A = tr,B = fa)+

p(O = tr|A = tr,B = tr)
︸ ︷︷ ︸

0

p(A = tr,B = tr) (57)

• p(O = tr|A = tr,B = fa) = 1: If Alice is in her room and Bob is
not, the bathroom must be occupied

• p(O = tr|A = tr,B = tr) = 0: If both Alice and Bob are in their
rooms, the bathroom cannot be occupied
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Probabilistic reasoning (cont.)

p(B = fa|O = tr,A = tr) =
p(A = tr,A = fa)

p(A = tr,B = fa)
= 1 (58)

Remark

The example is interesting since we are not required to make
a full probabilistic model, we don’t need to specify p(A,B))

• The situation is common in limiting situations of probabilities
being either 0 or 1, corresponding to traditional logic systems
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Probabilistic reasoning (cont.)

Example

Aristotle - Modus Ponens: According to logic, statements ‘All apples
are fruit‘ and ‘All fruits grow on trees’ lead to ‘All apples grow on trees’

This kind of reasoning is a form of transitivity

From the statements A ⇒ F and F ⇒ T we can infer A ⇒ T

This may be reduced to probabilistic reasoning

• ‘All apples are fruits’ corresponds to p(F = tr|A = tr) = 1

• ‘All fruits grow on trees’ corresponds to p(T = tr|F = tr) = 1

We want to show that this implies one of the two

• p(T = tr|A = tr) = 1, ‘All apples grow on trees’

• p(T = fa|A = tr) = 0, ‘All apples do not grow on non-trees’

Assuming that p(A = tr) > 0, these are equivalent to

• p(T = fa,A = tr) = 0

Probabilistic
reasoning

UFC/DC
AI (CK0031)

2016.2

Probability theory

Expectations and
covariances

Bayesian probabilities

Reasoning under
uncertainty

Probabilistic modelling

Probabilistic reasoning

Prior, likelihood and
posterior

Probabilistic reasoning (cont.)

p(T = fa,A = tr) =

p(T = fa,A = tr,F = tr) + p(T = fa,A = tr,F = fa) (59)

We need to show that both terms on the right-hand side are zero

•

p(T = fa,A = tr,F = tr) ≤
p(T = fa,F = tr) = p(T = fa|F = tr)p(F = tr) = 0, (60)

since p(T = fa|F = tr) = 1− p(T = tr|F = tr) = 1− 1 = 0

•

p(T = fa,A = tr,F = fa) ≤
p(A = tr,F = fa) = p(F = fa|A = tr)p(A = tr)) = 0, (61)

where again, by assumption p(F = fa|A = tr) = 0
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Probabilistic reasoning (cont.)

Example

Aristotle - Inverse Modus Ponens: According to logic, statement ‘If A
is true then B is true’ leads to deduce that ‘If B is false then A is false’

We show how this can be represented by using probabilistic reasoning

• p(B = tr|A = tr) = 1, corresponds to ‘If A is true then B is true’

We may infer

p(A = fa|B = fa) = 1− p(A = tr|B = fa) =

1−
p(B = fa|A = tr)p(A = tr)

p(B = fa|A = tr)p(A = tr) + p(B = fa|A = fa)p(A = fa)
= 1

(62)

It follows since p(B = fa|A = tr) = 1− p(B = br|A = tr) = 1− 1 = 0
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Probabilistic reasoning (cont.)

Example

Soft XOR gate: What about inputs A and B, knowing the output is 0?

A B A xor B

0 0 0
0 1 1
1 0 1
1 1 0

The ‘standard’ XOR gate

1 A and B were both 0

2 A and B were both 1

We do not know which state A is in, it could equally likely be 0 or 1

A ‘soft’ XOR gate stochastically outputs C = 1 depending on its inputs

A B p(C = 1|A,B)

0 0 0.10
0 1 0.99
1 0 0.80
1 1 0.25

Additionally, let A ⊥⊥ B and

• p(A = 1) = 0.65

• p(B = 1) = 0.77

What’s up with p(A = 1|C = 0)?
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Probabilistic reasoning (cont.)

p(A = 1,C = 0) =
∑

B

p(A = 1,B ,C = 0)

=
∑

B

p(C = 0|A = 1,B)p(A = 1)p(B)

=p(A = 1)p(C = 0|A = 1,B = 0)p(B = 0)+

p(A = 1)p(C = 0|A = 1,B = 1)p(B = 1)

=0.65× (0.2× 0.23 + 0.75× 0.77) = 0.405275

(63)

p(A = 0,C = 0) =
∑

B

p(A = 0,B ,C = 0)

=
∑

B

p(C = 0|A = 0,B)p(A = 0)p(B)

=p(A = 0)p(C = 0|A = 0,B = 0)p(B = 0)+

p(A = 1)p(C = 0|A = 0,B = 1)p(B = 1)

=0.35× (0.9× 0.23 + 0.01× 0.77) = 0.075145

(64)
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Probabilistic reasoning (cont.)

p(A = 1|C = 0) =
p(A = 1,C = 0)

p(A = 1,C = 0) + p(A = 0,C = 0)

=
0.405275

0.405275 + 0.075145

= 0.8436

(65)
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Probabilistic reasoning (cont.)

Example

Larry: Larry is typically late for school, but when his mother asks
whether or not he was late for school, he never admits to being late

If Larry is late, we denote this with L = late, otherwise, L = not late

The response Larry gives is denoted by RL and it is represented as

• p(RL = not late|L = not late) = 1

• p(RL = late|L = late) = 0

The remaining two values are determined by normalisation and are

• p(RL = late|L = not late) = 0;

• p(RL = not late|L = late) = 1

Given that RL = not late, what is the probability that Larry was late?

p(L = late|RL = not late)
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Probabilistic reasoning (cont.)

Using Bayes’ rule, we have

p(L = late|RL = not late) =
p(L = late,RL = not late)

p(RL = not late)

=
p(L = late,RL = not late)

p(L = late,RL = not late) + p(L = not late,RL = not late)
(66)

In the above, we recognise

p(L = late,RL = not late) =

p(RL = not late|L = late)
︸ ︷︷ ︸

1

p(L = late) (67)

p(L = not late,RL = not late) =

p(RL = not late|L = not late)
︸ ︷︷ ︸

1

p(L = not late) (68)
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Probabilistic reasoning (cont.)

p(L = late|RL = not late) =
p(L = late)

p(L = late) + p(L = not late)

= p(L = late)

(69)

The result is intuitive, Larry’s mother knows that he never admits to
being late, her belief about whether or not he was late is unchanged

• regardless of what Larry actually says

In the last step we used normalisation,
p(L = late) + p(L = not late) = 1

Probabilistic
reasoning

UFC/DC
AI (CK0031)

2016.2

Probability theory

Expectations and
covariances

Bayesian probabilities

Reasoning under
uncertainty

Probabilistic modelling

Probabilistic reasoning

Prior, likelihood and
posterior

Probabilistic reasoning (cont.)

Example

Larry the lair and his sister Sue: Unlike Larry, his sister Sue always
tells the truth to her mother as to whether or not Larry is late for school

p(RS = not late|L = not late) = 1

=⇒ p(RS = late|L = not late) = 0

p(RS = late|L = late) = 1

=⇒ p(RS = not late|L = late) = 0

We also assume that p(RS ,RL|L) = p(RS |L)p(RL|L) and then we write

p(RS ,RL, L) = p(RL|L)p(RS |L)p(L) (70)

Given RS = late and RL = not late, what the probability that he late?
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Probabilistic reasoning (cont.)

Using Bayes’ rule, we have

p(L = late|RL = nlate,RS = late) =

1

Z
p(RS = late|L = late)p(RL = nlate|L = late)p(L = late) (71)

where the normalisation term 1/Z is given by

1

Z
= p(RS = late|L = late)p(RL = nlate|L = late)p(L = late)

+ p(RS = late|L = nlate)p(RL = nlate|L = nlate)p(L = nlate)
(72)

Hence,

p(L = late|RL = not late,RS = late) =

1× 1× p(L = late)

1× 1× p(L = late) + 0× 1× p(L = not late)
= 1 (73)

Larry’s mother knows that Sue tells the truth, no matter what Larry says
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Probabilistic reasoning (cont.)

Example

Luke: Luke has been told he’s lucky and has won a prize in the lottery

• 5 prizes available: 10 (p1); 100 (p2); 1K (p3); 10K (p4); 1M (p5)

• p0 is the prior probability of winning no prize

• p0 + p1 + p2 + p3 + p4 + p5 = 1

Luke asks ‘Did I win 1M?!’, ‘I’m afraid not sir ’ answers the lottery guy

‘Did I win 10K?!’ asks Luke, ‘Again, I’m afraid not sir ’

What is the probability that Luke has won 1K?
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Probabilistic reasoning (cont.)

We denote W = 1 for the first prize (10), W = 2, . . . , 5 for the
remaining prices (100, 1K, 10K, 1M) and W = 0 for no prize (0)

p(W = 3|W ̸= 5,W ̸= 4,W ̸= 0) =
p(W = 3,W ̸= 5,W ̸= 4,W ̸= 0)

p(W ̸= 5,W ̸= 4,W ̸= 0)

=
p(W = 3)

p(W = 1 or W = 2 or W = 3)
︸ ︷︷ ︸

events are mutually exclusive

=
p3

p1 + p2 + p3
(74)

The results makes intuitive sense: Once removing the impossible states
of W , the probability to win 1K is proportional to its prior probability
(p3), with normalisation being the total set of possible probability left
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Prior, likelihood and posterior
Reasoning under uncertainty



Probabilistic
reasoning

UFC/DC
AI (CK0031)

2016.2

Probability theory

Expectations and
covariances

Bayesian probabilities

Reasoning under
uncertainty

Probabilistic modelling

Probabilistic reasoning

Prior, likelihood and
posterior

Prior, likelihood and posterior

Tell me something about variable Θ, given that i) I have observed data
D and ii) I have some knowledge of the data generating mechanism

Our interest is then the quantity

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
=

p(D|Θ)p(Θ)
∫

Θ
p(D|Θ)p(Θ)

(75)

From generative model p(D|Θ) of the dataset, and coupled with
a prior belief p(Θ) about which variable values are appropriate

• We can infer the posterior distribution p(Θ|D)
of the variables, in the light of the observed data
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Prior, likelihood and posterior (cont.)

The most probable a posteriori (MAP) setting maximises the posterior

Θ∗ = arg max
Θ

(p(Θ|D))

For a flat prior, p(Θ) being a constant (with Θ), the MAP solution is
equivalent to the maximum likelihood solution (the Θ that maximises
the likelihood p(D|Θ) of the model generating the observed data)
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Prior, likelihood and posterior (cont.)

The use of the generative model sits well with physical modelling

• We typically postulate how to generate observed phenomena,
assuming we know the model

One might postulate how to generate a time-series of displacements for
a swinging pendulum of unknown mass, length and dumping constant

• Using the generative model, and given only the displacements,
we could infer the unknown physical properties of the pendulum

Probabilistic
reasoning

UFC/DC
AI (CK0031)

2016.2

Probability theory

Expectations and
covariances

Bayesian probabilities

Reasoning under
uncertainty

Probabilistic modelling

Probabilistic reasoning

Prior, likelihood and
posterior

Prior, likelihood and posterior (cont.)

Example

Pendulum: Consider a pendulum, xt is the angular displacement at t

Assuming that measurements are independent, given the knowledge of
the problem parameter Θ, the likelihood of a sequence x1, . . . , xT is

p(x1, . . . , xT |Θ) =
T∏

t=1

p(xt |Θ) (76)

• If we assume that the model is correct and our measurement
of the displacement x is perfect, then the physical model is

xt = sin (Θt), (77)

where Θ is the unknown constants of the pendulum (
√

g/L,
g is the gravitational attraction and L the pendulum length)

• If we assume that we have a poor instrument to measure
the displacements, with some known variance σ2, then

xt = sin (Θt) + εt (78)

where εt is zero mean Gaussian noise with variance σ2
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Prior, likelihood and posterior (cont.)

Noisy observations of displacements x1, . . . , x100
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Prior, likelihood and posterior (cont.)

We can also consider a set of possible parameters Θ and place a prior
p(Θ) over them, expressing our prior belief (before even seeing the
measurements) in the appropriateness of the different values of Θ
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The prior belief on 5 possible values of Θ
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Prior, likelihood and posterior (cont.)

The posterior distribution is then given by

p(Θ|x1, . . . , xN) ∝ p(Θ)
T
∏

t=1

1
√
2πσ2

exp
(

−
1

2σ2
(xt − sin (Θt))

)

(79)

Despite noisy measurements, the posterior over the assumed values
of Θ becomes strongly peaked for a large number of measurements
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The posterior belief on Θ
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Two dice: Individual scores

Example

Two fair dice are rolled and someone tells that the sum of scores is 9

• What is the posterior distribution of the dice scores?

The score of die a is denoted by sa with dom(sa) = {1, 2, 3, 4, 5, 6} and
similarly for die b we denote sb and we let dom(sb) = {1, 2, 3, 4, 5, 6}

The three variables involved are then sa, sb and t = sa + sb, modelled by

p(t, sa, sb) = p(t|sa, sb)
︸ ︷︷ ︸

likelihood

p(sa, sb)
︸ ︷︷ ︸

prior

(80)
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Two dice: Individual scores (cont.)

• The prior p(sa, sb) is the joint probability of scores sa and sb without
knowing anything else, and assuming no dependency in the rolling

p(sa, sb) = p(sa)p(sb) (81)

Since dice are fair both p(sa) and p(sb) are uniform distributions

p(sa) = p(sb) = 1/6

• The likelihood p(t|sa, sb) states the total score t = sa + sb

p(t|sa, sb) = I[t = sa + sb ] (82)

Function I[A] is st I[A] = 1 if statement A is true, 0 otherwise
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Two dice: Individual scores (cont.)

p(sa)p(sb) sa = 1 sa = 2 sa = 3 sa = 4 sa = 5 sa = 6

sb = 1 1/36 1/36 1/36 1/36 1/36 1/36
sb = 2 1/36 1/36 1/36 1/36 1/36 1/36
sb = 3 1/36 1/36 1/36 1/36 1/36 1/36
sb = 4 1/36 1/36 1/36 1/36 1/36 1/36
sb = 5 1/36 1/36 1/36 1/36 1/36 1/36
sb = 6 1/36 1/36 1/36 1/36 1/36 1/36

p(t = 9|sa, sb) sa = 1 sa = 2 sa = 3 sa = 4 sa = 5 sa = 6

sb = 1 0 0 0 0 0 0
sb = 2 0 0 0 0 0 0
sb = 3 0 0 0 0 0 1
sb = 4 0 0 0 0 1 0
sb = 5 0 0 0 1 0 0
sb = 6 0 0 1 0 0 0
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Two dice: Individual scores (cont.)

Our complete model is explicitly defined using

p(t, sa, sb) = p(t = 9|sa, sb)p(sa)p(sb) (83)

sa = 1 sa = 2 sa = 3 sa = 4 sa = 5 sa = 6

sb = 1 0 0 0 0 0 0
sb = 2 0 0 0 0 0 0
sb = 3 0 0 0 0 0 1/36
sb = 4 0 0 0 0 1/36 0
sb = 5 0 0 0 1/36 0 0
sb = 6 0 0 1/36 0 0 0
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Two dice: Individual scores (cont.)

The posterior is given by

p(sa, sb|t = 9) =
p(t = 9|sa, sb)p(sa)p(sb)

p(t = 9)
(84)

sa = 1 sa = 2 sa = 3 sa = 4 sa = 5 sa = 6

sb = 1 0 0 0 0 0 0
sb = 2 0 0 0 0 0 0
sb = 3 0 0 0 0 0 1/4
sb = 4 0 0 0 0 1/4 0
sb = 5 0 0 0 1/4 0 0
sb = 6 0 0 1/4 0 0 0

p(t = 9) =
∑

sa,sb

p(t = 9|sa, sb)p(sa)p(sb) = 4× 1/36 = 1/9 (85)

The posterior is given by equal mass in only 4 non-zero elements


