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Belief networks

We make a first connection between probability and graph theory

• Belief networks introduce structure into a probabilistic model by
using graphs to represent independence assumptions among vars

• Probability operations (marginalisation and conditioning)
correspond to simple operations on the graph

• Details about the model can be ‘read’ from the graph

• There is a benefit in terms of computational efficiency
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Belief networks (cont.)

Belief networks cannot capture all possible relations among variables

• They are natural for representing ‘causal’ relations, and they belong
to the family of (probabilistic) graphical models we study further
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Benefits of structure

The many possible ways variables can interact is extremely large

• Without assumptions we are unlikely to make a useful model

• Independently specifying all entries of a table p(x1, . . . , xN) over
binary variables xi takes O(2N) space, and might be impractical

This grow is infeasible in many application areas where we need to deal
with distributions on potentially hundreds if not millions of variables

Structure is important for tractability of inferring quantities
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Benefits of structure (cont.)

Remark

Given a distribution on N binary variables, p(x1, . . . , xN), computing a
marginal p(xi ) requires summing over the 2N−1 states of the other vars

• Even on the most optimistically fast supercomputer this
would take too long, even for a N = 100 variable system
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Benefits of structure (cont.)

To render specification/inference in such systems tractable, the only way
with such distributions is to constrain the nature of variable interactions

• The idea is to specify which variables are independent of others, to
get a structured factorisation of the joint probability distribution

• For a distribution on a chain, p(x1, . . . , x100) =
∑99

i=1 φ(xi , xi+1),
computing a marginal p(x1) is fast

Belief networks are a valid framework for representing independence
assumptions and they play a (quasi) natural role as ‘causal ’ models
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Benefits of structure (cont.)

Belief networks (BN, or Bayes’ networks or Bayesian belief networks)
are a way to depict the independence assumptions in a distribution

• Their application domain is widespread, ranging from
expert reasoning under uncertainty to machine learning
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Modelling independencies

Example

One morning Tracey leaves her house and realises that her grass is wet

• Is it due to overnight rain or did she forget to turn off the sprinkler?

Next she notices that the grass of her neighbour, Jack, is also wet

• This explains away to some extent the possibility that her sprinkler
was left on, and she concludes that it has probably been raining

We can model the situation by defining the variables we wish to include

R ∈ {0, 1} :R = 1 It has been raining (R = 0, otherwise)

S ∈ {0, 1} :S = 1 Tracey’ sprinkler was on (S = 0, otherwise)

J ∈ {0, 1} :J = 1 Jack’s grass is wet (J = 0, otherwise)

T ∈ {0, 1} :T = 1 Tracey’s grass is wet (T = 0, otherwise)
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Modelling independencies (cont.)

A model of Tracey’s world corresponds to p(T , J,R,S), a distribution
on the joint set of variables of interest (the order of which is irrelevant)

Since each of the variables can take one of two states, it would appear
that we have to specify the values for each of the 24 = 16 states

• p(T = 1, J = 0,R = 0,S = 1) = 0.057

• . . .

This is not truly true, there are normalisation conditions for probabilities
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Modelling independencies (cont.)

How many states need to be specified? Consider the decomposition ...

Without loss of generality and repeatedly using the
definition of conditional probability, we may write

p(T , J,R,S) = p(T |J ,R,S)p(J,R,S)

= P(T |J ,R,S)p(J|R,S)p(R,S)

= P(T |J ,R,S)p(J|R,S)p(R|S)p(S)

(1)

The joint distro as a product of conditional distros
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Modelling independencies (cont.)

p(T , J,R,S) = P(T |J ,R,S)p(J|R,S)p(R|S)p(S)

The first term p(T |J,R,S) requires us to specify 23 = 8 values

• p(T = 1|J,R,S) for the 8 joint states of (J,R,S)

• p(T = 0|J,R,S) = 1− p(T = 1|J ,R,S), by normalisation

• p(J = 1|R ,S) for the 4 joint states of (R,S)

• p(J = 0|R ,S) = 1− p(J = 1|R,S), by normalisation

• · · ·

Similarly, 2 + 1 values for the other factors, a total of 15
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Modelling independencies (cont.)

Remark

In general, for a distribution on n binary variables,
we need to specify 2n − 1 values in the range [0, 1]

The important point: The number of values that need to be specified, in
general, scales exponentially with the number of variables in the model

• This is impractical, in general, and motivates simplifications
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Modelling independencies - Conditional independence

The modeller often knows constraints on the system

Example

We may assume that ...

... Tracey’s grass (T ) is wet only depends directly on whether or not
it has been raining (R) and whether or not her sprinkler (S) was on

• That is, we make a conditional independence assumption

p(T |J,R,S) = p(T |✁J,R, S) (2)

• Similarly, assume that Jack’s grass (J) is wet is influenced
only directly by whether or not it has been raining (R),

p(J|R,S) = p(J|R, ✁S) (3)

• Moreover, assume the rain (R) is not
directly influenced by the sprinkler (S)

p(R|S) = p(R|✁S) (4)

Belief networks

UFC/DC
AI (CK0031)

2016.2

Benefits of structure

Modelling independencies

Reducing specifications

Uncertain and
unreliable evidence

Uncertain evidence

Unreliable evidence

Belief networks

Conditional independence

The impact of collisions

Path manipulations

d-Separation

Graphical and distributional
in/dependence

Markov equivalence in BNs

Expressibility of BNs

Causality

Simpson’s paradox

The do-calculus

Influence diagrams and
do-calculus

Modelling independencies - Conditional independence
(cont.)

p(T , J,R, S) = p(T |R,S)p(J|R)p(R)p(S) (5)

This reduces to 4 + 2 + 1 + 1 = 8 the number of values to be specified

• A saving over the 15 values in the case where no
conditional independencies had been assumed
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Modelling independencies - Conditional independence
(cont.)

We can represent these conditional independencies graphically

p(T , J,R, S) = p(T |R,S)p(J|R)p(R)p(S)

J

R

T

S

Each node in the graph represents
a variable in the joint distribution

Variables which feed in (parents) to
another variable (children) represent
which variables are to the right of
the conditioning bar

To complete the model, we need to specify the 8 values of each CPT
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p(T , J,R, S) = p(T |R,S)p(J|R)p(R)p(S)

J

R

T

S

Let prior probabilities for R and S be

• p(R = 1) = 0.2

• p(S = 1) = 0.1

We set the remaining probabilities to

• p(J = 1|R = 1) = 1.0

• p(J = 1|R = 0) = 0.2 ⊗

• p(T = 1|R = 1,S = 0) = 1.0

• p(T = 1|R = 1,S = 1) = 1.0

• p(T = 1|R = 0,S = 1) = 0.9 ⊙

• p(T = 1|R = 0,S = 0) = 0.0

⊗ Jack’s grass is wet due to unknown effects, other than rain

⊙ There is a small chance that even though the sprinkler
was left on, it did not wet the grass noticeably
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Modelling independencies - Inference

p(T , J,R, S) = p(T |R,S)p(J|R)p(R)p(S)

We made a model of the environment, let us calculate the probability
that the sprinkler was on overnight, given that Tracey’s grass is wet

p(S = 1|T = 1)

p(S = 1|T = 1) =
p(S = 1,T = 1)

p(T = 1)
=

∑

J,R p(T = 1, J ,R,S = 1)
∑

J,R,S p(T = 1, J,R,S)

=

∑

J,R p(J|R)p(T = 1|R ,S = 1)p(R)p(S = 1)
∑

J,R,S p(J|R)p(T = 1|R,S)p(R)p(S)

=

∑

R p(T = 1|R,S = 1)p(R)p(S = 1)
∑

R,S p(T = 1|R, S)p(R)p(S)

(6)
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Modelling independencies - Inference (cont.)

p(S = 1|T = 1) =
(0.9 · 0.8 · 0.1) + (1 · 0.2 · 0.1)

0.9 · 0.8 · 0.1 + 1 · 0.2 · 0.1 + 0 · 0.8 · 0.9 + 1 · 0.2 · 0.9

= 0.3382

The (posterior) belief that the sprinkler is on increases above the prior
probability p(S = 1) = 0.1, due to the evidence that the grass is wet
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Modelling independencies - Inference (cont.)

Remark

Note that the summation over J in the numerator is unity since, for any
function f (R), a summation of the form

∑

J p(J|R)f (R) equals f (R)

• This follows from the definition that a distribution p(J|R)
must sum to one, and the fact that f (R) does not depend on J

• A similar effect occurs for the summation over J in the denominator
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Modelling independencies - Inference (cont.)

p(T , J,R, S) = p(T |R,S)p(J|R)p(R)p(S)

Let us calculate the probability that Tracey’s sprinkler was on overnight,
given that her and Jack’s grass are wet

p(S = 1|T = 1, J = 1)

We use conditional probability again:

p(S = 1|T = 1, J = 1) =
p(S = 1,T = 1, J = 1)

p(T = 1, J = 1)

=

∑

R p(T = 1, J = 1,R,S = 1)
∑

R,S p(T = 1, J = 1,R,S)

=

∑

R p(J = 1|R)p(T = 1|R,S = 1)p(R)p(S)
∑

R,S p(J = 1|R)p(T = 1)p(R)p(S)

(7)
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Modelling independencies - Inference (cont.)

p(S = 1|T = 1, J = 1) =
0.0344

0.2144
= 0.1604

Probability that the sprinkler is on, given extra evidence (Jack’s wet
grass), is lower than it is given only that Tracey’s grass is wet (0.34)

• This occurs since the fact that Jack’s grass is also wet increases the
chance that the rain has played a role in making Tracey’s grass wet
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Modelling independencies (cont.)

Example

Sally comes home to find that the burglar alarm is sounding (A = 1)

• Has she been burgled (B = 1), or was it an earthquake (E = 1)?

Soon, she finds that the radio broadcasts an earthquake alert (R = 1)

Using Bayes’ rule, we can write

p(B,E ,A,R) = p(A|B,E ,R)p(R|B ,E)p(E |B)p(B) (8)

However, the alarm is surely not directly influenced by radio reports

P(A|B,E ,R) = p(A|B ,E ,✚R)

and we can other conditional independence assumptions such that

p(B,E ,A,R) = p(A|B ,E)p(R|✚B ,E)P(E |✚B)p(B) (9)
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Modelling independencies (cont.)

p(B,E ,A,R) = p(A|B ,E)p(R|E )P(E)p(B)

Graphical representation of the factorised joint and CPT specification

B

A

E

R

p(B = 1) = 0.01

p(E = 1) = 0.000001

A = 1 B E
(Alarm is on) (Burglar) (Earthquake)

0.9999 1 1

0.99 1 0

0.99 0 1

0.0001 0 0

R = 1 E
(Earthquake alert) (Earthquake)

1 1

0 0

The tables and graphical structure fully specify the distribution
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Modelling independencies (cont.)

What happens when we observe evidence?

• Initial evidence: The alarm is sounding

p(B = 1|A = 1) =

∑

E ,R p(B = 1,E ,A = 1,R)
∑

B,E,R p(B,E ,A = 1,R)

=

∑

E ,R p(A = 1|B = 1,E)p(B = 1)p(E)p(R|E)
∑

B,E ,R p(A = 1|B ,E)p(B)p(E)p(R|E)

≃ 0.99
(10)

• Additional evidence: The earthquake alarm is broadcasted
and a similar calculation gives p(B = 1|A = 1,R = 1) ≃ 0.01
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Modelling independencies (cont.)

Remark

Causal intuitions: BNs, as defined, express independence statements

• In expressing these independencies it can be useful, though
potentially misleading, to think of ‘what causes what’

The ordering of variables is used to reflect our intuition on root causes
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Reducing specifications

Consider a discrete variable y with discrete parental variables x1, . . . , xn

x1 x2 x3 x4 x5

y

Formally, the structure of the graph
implies nothing about the form of
the parameterisation of the table

p(y |x1, . . . , xn)

If all variables are binary, 25 = 32
states to specify p(y |x1, . . . , xn)
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Reducing specifications (cont.)

Remark

If each parent xi has dim(xi ) states and there is no constraint on the
table, then p(y |x1, . . . , xn) contains (dim(y)− 1)

∏

i dim(xi ) entries

• If stored explicitly for each state, a potentially huge storage

An alternative is to constrain the table to a simpler parametric form
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Reducing specifications (cont.)

Divorcing parents: One might write a decomposition in which
only a limited number of parental interactions are required

x1 x2 x3 x4 x5

z1 z2

y

Assuming all variables are binary,
23 + 22 + 22 = 16 states require
specification, 25 = 32 states in
the unconstrained case

p(y |x1, . . . , xn) =
∑

z1,z2

p(y |z1, z2)p(z1|x1, x2, x3)p(z2|x4, x5) (11)
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Reducing specifications (cont.)

Logical gates: Another technique to constrain
tables uses simple classes of conditional tables

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

y

Use a logical OR gate on binary zi

p(y |z1, . . . , z5) =
{

1 if at least one zi = 1

0 otherwise
(12)

We can make table p(y |x1, . . . , x5)
by including terms p(zi = 1|xi )

• When each xi is binary there are 2 + 2 + 2 + 2 + 2 = 10
quantities that are required for specifying p(y |x)
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Reducing specifications (cont.)

Remark

The graph can be used to represent any noisy logical state, such as the
noisy OR or noisy AND, where the number of parameters required to
specify the noisy gate is linear in the number of parents

The noisy-OR is particularly common in disease-symptom networks
in which many diseases x can give rise to the same symptom y

Provided that at least one of the diseases is present,
the probability that the symptom will be present is high
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Uncertain and unreliable evidence

We now make a distinction between two types of evidence

• Evidence that is uncertain

• Evidence that is unreliable
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Uncertain evidence

In soft or uncertain evidence, evidence is in more than one state, with
the strength of our belief about each state being given by probabilities

• If x has states dom(x) = {red, blue, green}, then
vector (0.6, 0.1, 0.3) represents the belief in the states

In hard evidence, we are certain that a variable is a particular state

• All the probability mass is in one vector component (0, 0, 1)
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Uncertain evidence (cont.)

Performing inference with soft-evidence is straightforward (Bayes’ rule)

• For model p(x , y), consider some soft evidence ỹ about variable y ,
we wish to know the effect this has on variable x , p(x |ỹ)

• Compute p(x |ỹ), under the assumption that p(x |y , ỹ) = p(x |y)

p(x |ỹ) =
∑

y

p(x , y |ỹ) =
∑

y

p(x |y , ỹ)p(y |ỹ)

=
∑

y

p(x |y)p(y |ỹ) (13)

p(y = i|ỹ) is the probability of y in state i under soft-evidence

• This is a generalisation of hard-evidence in which vector
p(y |ỹ) has all zeros except for single component
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Uncertain evidence (cont.)

The procedure in which we define the model conditioned on evidence,
and then average over the distribution of the evidence is Jeffrey’s rule

x y
In the BN we use a dashed circle
to represent that a variable is in
a soft-evidence state
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Uncertain evidence (cont.)

Example

Soft-evidence: We can revisit the burglar scenario by imagining
that we are only 70% sure we heard the burglar alarm sounding

For this binary variable case, we represent soft-evidence for states (1, 0)

Ã = (0.7, 0.3)

What is the probability of a burglar under the soft-evidence?

p(B = 1|Ã) =
∑

A

p(B = 1|A)p(A|Ã)

= p(B = 1|A = 1)× 0.7 + p(B = 1|A = 0)× 0.3

≃ 0.6930

(14)

p(B = 1|A = 1) ≃ 0.99 and p(B = 1|A = 0) ≃ 0.0001 from Bayes’ rule

• This is lower than 0.99, the probability of having
been burgled when we are sure we heard the alarm
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Uncertain evidence - Holmes, Watson and Mrs Gibbon

An entertaining example with an environment containing four variables

Example

B ∈ {tr, fa} : B = tr Holmes’ house has been Burgled

A ∈ {tr, fa} : A = tr Holmes’ house Alarm went off

W ∈ {tr, fa} : W = tr Watson heard the alarm

G ∈ {tr, fa} : G = tr Mrs Gibbon heard the alarm

B A

G

W

The BN and a factorisation of the
joint probability for this scenario

p(B,A,G ,W ) =

p(A|B)p(B)p(W |A)p(G |A) (15)

Watson states (100% sure) that he heard the alarm sounding, whereas
Mrs Gibbon is a little deaf and cannot be sure she heard it (80% sure)
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From Jeffrey’s rule, we can use the original model equation
to compute the model conditioned on the evidence

p(B = tr|W = tr,G) =
p(B = tr,W = tr,G)

p(W = tr,G)

=

∑

A p(G |A)p(W = tr|A)p(A|B = tr)p(B = tr)
∑

B,A p(G |A)p(W = tr)p(A|B)p(B)
(16)

B A

G

W

and then we can use soft evidence

P(G |G̃) =

{

0.8 G = tr

0.2 G = fa
(17)

p(B = tr|W = tr, G̃) =p(B = br|W = tr,G = tr)p(G = tr|G̃ )+

p(B = tr|W = br,G = fa)p(G = fa|G̃ )
(18)

A full calculation requires us to numerically specify all terms in Eq. 15
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Unreliable evidence

Example

Holmes telephones Mrs Gibbon and realises that he does not trust her
evidence and his interpretation is that if the alarm sounded it was 80%
probable to have resulted in Mrs Gibbon stating that she heard it

• If the alarm did not sound, there is a 20% chance
that Mrs Gibbon would have stated she heard it

This is not like Mrs Gibbon being 80% sure herself that she heard the
alarm (soft-evidence, whose effect is calculations containing p(G |A))
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Unreliable evidence (cont.)

Holmes will discard all of this and replace it with his own interpretation

• He can do that by replacing p(G |A) by virtual evidence

p(G |A)→ p(H|A), where p(H|A) =

{

0.8 A = tr

0.2 A = fa
(19)

Here the state H is arbitrary and fixed and it is used to modify the joint

p(B,A, H,W ) = p(A|B)p(B)p(W |A)p(H|A) (20)
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Unreliable evidence (cont.)

The effect of Holmes’ judgement when computing p(B = tr|W = tr, H)
counts 4 times more in favour of the alarm sounding than not

• The value of the table entries are irrelevant up to normalisation

• Any constants can be absorbed into the proportionality constant

p(H|A) is not a distribution over A, and so no normalisation is required

Remark

This form of evidence is called likelihood evidence
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Uncertain and unreliable evidence

To demonstrate how to combine such effects as unreliable and uncertain
evidence, consider the situation in which Mrs Gibbon is uncertain in her
evidence and Holmes feels that Watson’s evidence is unreliable

B A

G

H

Holmes wishes to use
its own interpretation

We first deal with unreliable evidence:

p(A,B,W ,G)→ p(B,A, H,G) = p(B)p(A|B)p(G |A)p(H|A) (21)

We use Jeffrey’s rule to compute a model conditioned on evidence

p(B,A|H,G) =
p(B)p(A|B)p(G |A)p(H|A)

∑

A,B p(B)p(A|B)p(G |A)p(H|A)
(22)
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Uncertain and unreliable evidence (cont.)

We include uncertain evidence G̃ to form the final model

p(B,A|H, G̃) =
∑

G

p(B,A|H,G)p(G |G̃ ) (23)

from which we may then compute the marginal p(B|H, G̃)

p(B|H, G̃) =
∑

A

p(B,A|H, G̃) (24)



Belief networks

UFC/DC
AI (CK0031)

2016.2

Benefits of structure

Modelling independencies

Reducing specifications

Uncertain and
unreliable evidence

Uncertain evidence

Unreliable evidence

Belief networks

Conditional independence

The impact of collisions

Path manipulations

d-Separation

Graphical and distributional
in/dependence

Markov equivalence in BNs

Expressibility of BNs

Causality

Simpson’s paradox

The do-calculus

Influence diagrams and
do-calculus

Belief networks
Belief networks

Belief networks

UFC/DC
AI (CK0031)

2016.2

Benefits of structure

Modelling independencies

Reducing specifications

Uncertain and
unreliable evidence

Uncertain evidence

Unreliable evidence

Belief networks

Conditional independence

The impact of collisions

Path manipulations

d-Separation

Graphical and distributional
in/dependence

Markov equivalence in BNs

Expressibility of BNs

Causality

Simpson’s paradox

The do-calculus

Influence diagrams and
do-calculus

Belief networks

Definition

Belief networks: A belief network is a distribution of form

p(x1, . . . , xD) =
D∏

i=1

p(xi |pa(xi ) (25)

where pa(xi ) represent the parental variables of variable xi

As directed graph, with an arrow pointing from parent to child,
a Bayesian BN corresponds to a Directed Acyclic Graph (DAG)

• The i-th node in the graph corresponds to factor p(xi |pa(xi ))
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Belief networks (cont.)

Remark

Graphs and distributions: A subtle point is whether a BN corresponds
to an instance of a distro requiring specification of the CPTs or not

• Or, whether or not it refers to any distribution
which is consistent with the graph structure

In this one, one can distinguish

• A BN distribution (with numerical specification)

• A BN graph (without numerical specification)

Important to clarify the scope of independence/dependence statements
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Belief networks (cont.)

Remark

In the grass and burglar cases, WE chose how to recursively use Bayes
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Belief networks (cont.)

p(x1, x2, x3, x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4)

= p(x3|x4, x1, x2)p(x4|x1, x2)p(x1|x2)p(x2)
(26)

The two choices are equivalently valid and the two associated graphs,
though different, represent the same independence assumptions

x1 x2 x3 x4

x3 x4 x1 x2

Both graphs represent
the same distribution

p(x1, . . . , x4)

Both graphs, the same
lack of independence
assumptions

To make independence
assumptions, the choice
of factorisation is crucial
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Belief networks (cont.)

The observation that any distribution may be written in the cascade
form suggests an algorithm for constructing a BN on vars x1, . . . , xn

1 write the n-node cascade graph, label the
nodes with the variables in any order

2 each successive independence statement
corresponds to deleting one of the edges
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Belief networks (cont.)

Definition

More formally, this corresponds to an ordering of the variables which,
without loss of generality, we may write as x1, . . . , xn, from Bayes’ rule

p(x1, . . . , xn) = p(x1|x2, . . . , xn)p(x2, . . . , xn)

= p(x1|x2, . . . , xn)p(x2|x3, . . . , xn)p(x3, . . . , xn)

= · · ·

= p(xn)
n−1
∑

i=1

p(xi |xi , . . . , xn)

(27)

The representation of any BN is thus a Direct Acyclic Graph (DAG)
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Belief networks (cont.)

Remark

Every probability distribution can be written as a Bayesian BN,
though it may correspond to a fully connected ‘cascade’ DAG

The role of a BN is that the structure of the DAG corresponds to a set
of conditional independence assumptions of variables on their ancestors

• Namely, which ancestral parental variables are sufficient to specify
each conditional probability table

• This does not mean that non-parental variables have no influence
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Belief networks (cont.)

Example

Consider the distribution p(x1|x2)p(x2|x3)p(x3) with DAG x1 ← x2 ← x3

• This does not imply p(x2|x1, x3) = p(x2|x3)

The DAG specifies conditional independence statements of variables
on their ancestors (which ancestors are direct ‘causes’ for the variable)

• The effects, given by the descendants of the variable,
will generally be dependent on the variable
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Belief networks (cont.)

Remark

Dependencies and Markov blanket: Consider a distribution on a set of
variables X and for a variable xi ∈ X and corresponding BN represented
by a DAG G , let MB(xi) be the variables in the Markov blanket of xi

• For any other variable y that is also not in the Markov
blanket of xi (y ∈ X )\{xi ∪MB(xi )} then xi ⊥⊥ y |MB(xi )

The Markov blanket of xi carries all information about xi

x1 x2 x3 x4 x5

z1 z2

y

MB(z1) = {x1, x2, x3, y , z2}

z1 ⊥⊥ x4|MB(z1)
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Belief networks (cont.)

The DAG corresponds to a statement of conditional independencies

• To complete the specification of the BN, we need to define all
the elements of the conditional probability tables p(xi |pa(xi ))

Once the structure is defined, the entries of the CPTs are expressed

For every possible state of the parental variables pa(xi ), a value for each
of the states of xi needs to be specified (except one, by normalisation)

• For a large number of parents, the specification is intractable

• Tables are usually parameterised in a low-dimensional manner
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Conditional independence (cont.)

A BN corresponds to sets of conditional independence assumptions

• It is not always immediately clear from the DAG whether a set of
variables is conditionally independent of a set of other variables

Example

p(x1, . . . , x4) = p(x1|x4)p(x2|x3, x4)p(x3)p(x4)

x1 x2 x3 x4

Are x1 and x2 independent,
given the state of x4?
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Conditional independence (cont.)

p(x1, x2|x4) =
1

p(x4)

∑

x3

p(x1, x2, x3, x4)

=
1

p(x4)

∑

x3

p(x1|x4)p(x2|x3, x4)p(x3)p(x4)

= p(x1|x4)
∑

x3

p(x2|x3, x4)p(x3)

(28)

p(x2|x4) =
1

p(x4)

∑

x1,x3

p(x1, x2, x3, x4)

=
1

p(x4)

∑

x1,x3

p(x1|x4)p(x2|x3, x4)p(x3)p(x4)

=
∑

x3

p(x2|x3, x4)p(x3)

(29)
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Conditional independence (cont.)

Combining the two results, we have P(x1, x2|x4) = p(x1|x4)p(x2|x4)

• Hence, variable x1 and x2 are independent conditioned on x4
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Conditional independence (cont.)

We would like to have a general algorithm that allows to avoid doing
such tedious manipulations by reading the results directly from a graph

Example

To help develop intuitions towards building such algorithm

• We consider the three variable distribution p(x1, x2, x3)

We can write the distribution in a total of six ways of type

p(x1, x2, x3) = p(xi1 |xi2 , xi3)p(xi2 |xi3 )p(xi3) (30)

where (i1, i2, i3) is any of the six permutations of (1, 2, 3)

Each factorisation produces a different DAG, all representing
the same distribution and none making independence statement

• If DAGs are cascades, no independence assumptions were made
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Conditional independence (cont.)

Minimal independence assumptions correspond to dropping any link

• Say, we drop the link between x1 and x2

x1

x3

x2

(a) x1 → x2/x2 → x1

x1

x3

x2

(b) x1 → x2/x2 → x1

x1

x3

x2

(c) x1 → x2

x1

x3

x2

(d) x2 → x1
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Conditional independence (cont.)

x1

x3

x2

(a)

x1

x3

x2

(b)

x1

x3

x2

(c)

x1

x3

x2

(d)

Are theses graphs equivalent in representing the same distribution?

p(x2|x3)p(x3|x1)p(x1)
︸ ︷︷ ︸

graph (c)

=
p(x2, x3)p(x3, x1)

p(x3)
= p(x1|x3)p(x2, x3)

= p(x1|x3)p(x3|x2)p(x2)
︸ ︷︷ ︸

graph (d)

= p(x1|x3)p(x2|x3)p(x3)
︸ ︷︷ ︸

graph (b)

(31)

DAGs (b), (c) and (d) represent the same conditional independence
assumptions (given x3, x1 and x2 are independent x1 ⊥⊥ x2|x3)

• DAG (a) is fundamentally different (p(x1, x2) = p(x1)p(x2)) and
there is no way to transform p(x3|x1, x2)p(x1)p(x2) into the others
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Conditional independence (cont.)

Remark

Graphical dependence: BNs (graphs) are good for encoding conditional
independence but they are not appropriate for encoding dependence

Graph a→ b may seem to encode a relation that a and b are dependent

• However, a specific numerical instance of a BN distribution
could be such that p(b|a) = p(b) for which we have a ⊥⊥ b

When a graph appears to show ‘graphical’ dependence there can be
instances of the distributions for which dependence does not follow
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Impact of collisions

Definition

Given a path P , a collider is a node c on P with
neighbours a and b on P such that a→ c ← b

d

b c

a

e

Variable d is a collider along path
a − b − d − c , but not along path
a − b − d − e

a b

c

e d

Variable d is a collider along path
a − d − e, but not along path
a − b − c − d
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Impact of collisions (cont.)

x

z

y

(a) z is a not collider

x

z

y

(b) z is a not collider

x

z

y

(c) z is a collider
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Impact of collisions (cont.)

In a general BN, how can we check if x ⊥⊥ y |z?

x

z

y

(a) x ⊥⊥ y|z

x

z

y

(b) x ⊥⊥ y|z

In these DAGs, x and y are independent given z

(a) Since p(x , y |z) = p(x|z)p(y |z)

(b) Since p(x , y |z) ∝ p(z|x)p(x)p(y |z)
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Impact of collisions (cont.)

x

z

y

(a) x⊤⊤y|z

In this DAG, x and y are graphically dependent given z

(c) Since p(x , y |z) ∝ p(z|x , y)p(x)p(y)
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x y

w

z

(a) x⊤⊤y|z

When we condition on z , x and y will be graphically dependent

p(x, y , |z) =
p(x , y , z)

p(z)
=

1

p(z)

∑

w

p(z |w)p(w |x , y)p(x)p(y)

̸= p(x |z)p(y |z)

The inequality holds due to the term p(w |x , y) and only in special
cases such as p(w |x , y) = const would x and y be independent

• w becomes dependent on the value of z , and since x and y are
conditionally dependent on w , are conditionally dependent on z
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Impact of collisions (cont.)

x

z

y

(a) x ⊥⊥ y|z

x

z

y

(b) x ⊥⊥ y|z

x

z

y

(c) x⊤⊤y|z

x y

w

z

(d) x⊤⊤y|z

• If there is a non-collider z , conditioned along the path between x
and y , then this path cannot induce dependence between x and y
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Impact of collisions (cont.)

x

z

y

(a) x ⊥⊥ y|z

x

z

y

(b) x ⊥⊥ y|z

x

z

y

(c) x⊤⊤y|z

x y

w

z

(d) x⊤⊤y|z

• If there is a path between x and y which contains a collider, and
this collider is not in the conditioned set and neither are any of its
descendants, then this path does not make x and y dependent
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Impact of collisions (cont.)

x

z

y

(a) x ⊥⊥ y|z

x

z

y

(b) x ⊥⊥ y|z

x

z

y

(c) x⊤⊤y|z

x y

w

z

(d) x⊤⊤y|z

• If there is path between x and y which contains no colliders and
no conditioning variables, then this path ‘d-connects’ x and y
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Impact of collisions (cont.)

d

b c

a

e

Variable d is a collider along the path
a − b − d − c but not along the path
a − b − d − c

• Is a ⊥⊥ e|b?

a and e are not d-connected (no colliders on the path between them)
and since there is a non-collider b which is in the conditioning set

• Hence, a and e are d-separated by b

a ⊥⊥ e|b
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Impact of collisions (cont.)

a b

c

e d

Variable d is a collider along the path
a − d − e but not along the path
a − b − c − d − e

• Is a ⊥⊥ e|c?

There are two paths between a and c
(a− b − c − d − e and a − d − e)

Path a − d − e is not blocked since, although d is a collider on this
path, and d is not in the conditioning set we have a descendant of
the collider d in the conditioning set, c
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Impact of collisions (cont.)

Consider A→ B ← C with A and C are (unconditionally) independent

A B

C

p(A,B,C) = p(C |A,B)p(A)p(B)

• Conditioning of B makes them
‘graphically’ dependent

From a ‘causal’ perspective, this
models the ‘causes’ A and B as a priori
independent, both determining effect C

Intuitively, whilst we believe the root causes are independent given the
value of the observation, this tells us something about the state of both
the causes coupling them and making them (generally) dependent
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Impact of collisions (cont.)

On the effect that conditioning/marginalisation
has on the graph of the remaining variables

Definition

Some properties of belief networks: It is useful to understand what
effect conditioning or marginalising a variable has on a belief network

• We state how these operations effect the remaining variables in the
graph and use this intuition to develop a more complete description
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Impact of collisions (cont.)

A B

C

→ A B

• Marginalising over C makes A and B independent

• A and B are conditionally independent p(A,B) = p(A)p(B)

• In the absence of any info about effect C , we retain this belief
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Impact of collisions (cont.)

A B

C

→ A B

Conditioning on C makes A and B (graphically) dependent

In general, p(A,B |C) ̸= p(A|C)p(B|C)

• Although the causes are a priori independent, knowing the effect
C , in general, tells us something about how the causes colluded
to bring about the effect observed
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Impact of collisions (cont.)

A B

C

D

→ A B

Conditioning on D, a descendent of collider C ,
makes A and B (graphically) dependent

In general, p(A,B |D) ̸= p(A|D)p(B|D)
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Impact of collisions (cont.)

P(A|,B,C) = p(A|C )p(B|C )p(C)

A B

C

Here there is a ‘cause’ C and independent ‘effects’ A and B
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Impact of collisions (cont.)

A B

C

→ A B

Marginalising over C makes A and B (graphically) dependent

In general, p(A,B) ̸= p(A)P(B)

Though we do not know the ‘cause’, the ‘effects’ will be dependent
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Impact of collisions (cont.)

A B

C

→ A B

Conditioning on C makes A and B independent

p(A,B|C) = p(A|C)p(B|C)

If you know ‘cause’ C , you know everything about
how each effect occurs, independent of the other effect

This is also true from reversing the arrow from A to C

• A would ‘cause’ C and then C would ‘cause’ B

Conditioning on C blocks the ability of A to influence B
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Impact of collisions (cont.)

A B

C

= A B

C

= A B

C

=

These graphs express the same conditional independence assumptions
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Graphical path manipulations for independence

We understand when x is independent of y , conditioned on z (x ⊥⊥ y |z)

• We need to look at each path between x and y

Colouring x as red, y as green and the conditioning node z as yellow

• We examine each path between x and y and
adjust the edges, following some intuitive results

After the manipulations, if there is no undirected path between
x and y , then x and y are independent, conditioned on z
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Graphical path manipulations for independence (cont.)

Remark

The graphical rules we define here differ from those provided earlier

• Earlier we considered the effect on the graph having eliminated
a variable (via conditioning or marginalisation)

• Now we consider rules for determining independence based on the
graphical representation in which the variables remain in the graph

Belief networks

UFC/DC
AI (CK0031)

2016.2

Benefits of structure

Modelling independencies

Reducing specifications

Uncertain and
unreliable evidence

Uncertain evidence

Unreliable evidence

Belief networks

Conditional independence

The impact of collisions

Path manipulations

d-Separation

Graphical and distributional
in/dependence

Markov equivalence in BNs

Expressibility of BNs

Causality

Simpson’s paradox

The do-calculus

Influence diagrams and
do-calculus

Graphical path manipulations for independence (cont.)

x y

z

u

⇒ x y

z

u

If z is a collider (bottom path), then we keep undirected
links between the neighbours of the collider
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Graphical path manipulations for independence (cont.)

x y

w

z

u

⇒

x y

w

z

u

If z is a descendant of a collider, this could induce dependence

• We retain the links, making them undirected
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Graphical path manipulations for independence (cont.)

x y

z

u

⇒ x y

z

u

If there is a collider not in the conditioning set (upper path),
then we cut the links to the collider variables

• Here, the upper path between x and y is blocked
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Graphical path manipulations for independence (cont.)

x y

z

u

⇒ x y

z

u

If there is a non-collider which is in the conditioning set (bottom path),
then we cut the link between the neighbours of this non-collider which
cannot induce dependence between x and y

• The bottom path is blocked
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Graphical path manipulations for independence (cont.)

x y

z

u

⇒ x y

z

u

Neither path contributes to dependence, hence x ⊥⊥ y |z

• Both paths are blocked
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Graphical path manipulations for independence (cont.)

x u

z

y

w

⇒

x u

z

y

w

Whilst z is a collider in the conditioning set,
w is a collider that is not in the conditioning set

This means that there is no path between x and y ,
and hence x and y are independent given z
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d-separation

The graphical description is intuitive and a formal treatment that is
amenable to implementation is straightforward to get from intuitions

• First, we define the DAG concepts of the d-separation and
d-connection that are central to determining conditional
independence in any BN with structure given by the DAG
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d-separation (cont.)

Definition

d-connection and d-separation

If G is a directed graph in which X , Y and Z are disjoint sets of
vertices, then X and Y are d-connected by Z in G iff there exists
an undirected path U between some vertex in X and some vertex
in Y, and no collider on U is in Z

X and Y are d-separated by Z in G iff not d-connected by Z in G
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d-separation (cont.)

One may also phrase this as ‘For every variable x ∈ X and y ∈ Y, check
every path U between x and y and a path U is said to be blocked if
there is a node w and U such that either :

• w is a collider and neither w nor any of its descendants is in Z

• w is not a collider on U and w is in Z

If all such paths are blocked then X and Y are d-separated by Z, and if
the variables sets X and Y they are independent conditional on Z in all
probability distributions such a graph can represent
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d-separation (cont.)

Remark

Bayes ball

The algorithm provides a linear time complexity algo which given a set
of nodes X and Z determines the set of nodes Y such that X ⊥⊥ Y|Z

• Y is called the set of irrelevant nodes for X given Z
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Graphical and distributional in/dependence

We have shown that X and Y d-separated by Z leads to X ⊥⊥ Y|Z
in all distributions consistent with the belief network structure

If we take any instance of a distribution P which factorises according
to the BN structure and then write down a list Lp of all conditional
independence statements that can be obtained from P

1 if X and Y are d-separated by Z , then list
Lp must contain the statement X ⊥⊥ Y|Z

2 List Lp could contain more statements
than those obtained from the graph
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Graphical and distributional in/dependence (cont.)

For the network graph p(a, b, c) = p(c|a, b)p(a)p(b) which is
representable by the DAG a→ c ← b, then a ⊥⊥ b is the only
graphical independence statement we can make

Consider a distribution consistent with p(a, b, c) = p(c|a, b)p(a)p(b)

For example, on binary variables dom(a) = dom(b) = dom(c) = {0, 1}

p[1](c = 1|a, b) = (a − b)2

p[1](a = 1) = 0.3

p[1](b = 1) = 0.4

then numerically we must have a ⊥⊥ b for this distribution p[1]

• L[1] contains only the statement a ⊥⊥ b
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Graphical and distributional in/dependence (cont.)

We can also consider the distribution

p[2](c = 1|a, b) = 0.5

p[2](a = 1) = 0.3

p[2](b = 1) = 0.4

Here, L[2] = {a ⊥⊥ b, a ⊥⊥ c, b ⊥⊥ c}

Belief networks

UFC/DC
AI (CK0031)

2016.2

Benefits of structure

Modelling independencies

Reducing specifications

Uncertain and
unreliable evidence

Uncertain evidence

Unreliable evidence

Belief networks

Conditional independence

The impact of collisions

Path manipulations

d-Separation

Graphical and distributional
in/dependence

Markov equivalence in BNs

Expressibility of BNs

Causality

Simpson’s paradox

The do-calculus

Influence diagrams and
do-calculus

Graphical and distributional in/dependence (cont.)

A question is whether or not d-connection similarly implies dependence

• That is, do all distributions P, consistent with the belief
network, possess the dependencies implied by the graph?

Consider the BN equation p(a, b, c) = p(c|a, b)p(a)p(b), a and b are
d-connected by c, so a and b are dependent, conditioned on c , graphlly

• For instance p[1], numerically a⊤⊤b|c, so the list of dependence
statements for p[1] contains the graphical dependence statement

• For instance p[2], list of dependence statements for p[2] is empty

Graphical dependence statements are not necessarily found
in all distributions consistent with the belief network
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Graphical and distributional in/dependence (cont.)

X and Y d-connected by Z does NOT lead to X⊤⊤Y|Z
in all distributions consistent with the belief network
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Graphical and distributional in/dependence (cont.)

Example

Variables t and f are d-connected by variable g

b g f

st

• Are the variables t and f unconditionally independent (t ⊥⊥ f |∅)?

There are two colliders, namely g and s, however, these are not in the
conditioning set (which is empty), hence t and f are d-separated and
therefore unconditionally independent

• What about t ⊥⊥ f |g?

There is a path between t and f for which all colliders are in the
conditioning set, hence t and f are d-connected by g and thus t
and f are graphically dependent conditioned on g
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Graphical and distributional in/dependence (cont.)

Example

Variables b and f are d-separated by variable u

b g f

st u

• Is {b, f } ⊥⊥ u|∅?

Since the conditioning set is empty and every path from either b or f
to u contains a collider, b and f are unconditionally independent of u
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Markov equivalence in BNs

We studied how to read conditional independence relations from a DAG

Happily, we can determine whether two DAGs represent the same set of
conditional independence statements by using a relatively simple rule

• Even when we don not know what they are!

Definition

Markov equivalence

Two graphs are Markov equivalent if they both represent
the same set of conditional independence statements

This definition holds for both directed and undirected graphs
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Markov equivalence in BNs (cont.)

Example

Consider the belief network with edges A→ C ← B

• The set of conditional independence statements is A ⊥⊥ B|∅

For the belief network with edges A→ C ← B and A→ B

• The set of conditional independence statements is empty

In this case, the two belief networks are not Markov equivalent
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Markov equivalence in BNs (cont.)

Pseudocode

Determining Markov equivalence

Define an immorality in a DAG as a configuration of three nodes A, B
and C st C is a child of both A and B , with A and B directly connected

Define the skeleton of a graph by removing the directions of the arrow

Two DAGS represent the same set of independence assumption (Markov
equivalence) iff they share the same skeleton and the same immoralities
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Markov equivalence in BNs (cont.)

x1

x3

x2

(e)

x1

x3

x2

(f)

x1

x3

x2

(g)

x1

x3

x2

(h)

(b), (c) and (d) are equivalent as they share the same skeleton with no
immoralities, (a) has an immorality and it is not equivalent to the others
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Expressibility of BNs

BNs fit with our intuitive notion of modelling ‘causal’ independencies

• Formally they cannot necessarily graphically represent
all the independence properties of a given distribution

h

t1

y1

t2

y2

The DAG can be used to represent two successive
experiments where t1 and t2 are two treatments
and y1 and y2 represent two outcomes of interest

• h: Underlying health status of the patient

The first treatment has no effect on the second
outcome hence there is no edge from y1 and y2
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Expressibility of BNs (cont.)

Now consider the implied independencies in the marginal distribution
p(t1, t2, y1, y2), obtained by marginalising the full distribution over h

• There is no DAG containing only the vertices t1, y1, t2, y2 which
represents the independence relations and does not imply some
other independence relation that is not implied in the figure
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Expressibility of BNs (cont.)

Consequently, any DAG on vertices t1, y1, t2 and y2 alone will either fail
to represent an independence relation of p(t1, y2, t2, y2), or will impose
some additional independence restriction that is not implied by the DAG

In general, p(t1, y1, t2, y2) = p(t1)p(t2)
∑

h p(y1|t1, h)p(y2|t2, h)p(h)
cannot be expressed as a product of functions on a limited set of vars

It is the case, however, that the conditional independence
conditions t1 ⊥⊥ (t2, y2), t2 ⊥⊥ (t1, y1) hold in p(t1, t2, y1, y2)

• They are there encoded in the form of the CPTs

• We cannot see this independence since it is not present
in the structure of the marginalised graph

• Though it can be inferred in a larger graph p(t1, t2, y1, y2, h)

Belief networks

UFC/DC
AI (CK0031)

2016.2

Benefits of structure

Modelling independencies

Reducing specifications

Uncertain and
unreliable evidence

Uncertain evidence

Unreliable evidence

Belief networks

Conditional independence

The impact of collisions

Path manipulations

d-Separation

Graphical and distributional
in/dependence

Markov equivalence in BNs

Expressibility of BNs

Causality

Simpson’s paradox

The do-calculus

Influence diagrams and
do-calculus

Expressibility of BNs (cont.)

For example, for the BN with link from y2 to y1, we have t1 ⊥⊥ t2|y2

• Not for p(t1, y1, t2, y2) = p(t1)p(t2)
∑

h p(y1|t1, h)p(y2|t2, h)p(h)

Similarly, for the BN with y1 → y2, the implied statement
t1 ⊥⊥ t2|y1 is also not true for that distribution
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Expressibility of BNs (cont.)

This example demonstrates that BNs cannot express all the conditional
independence statements that could be made on that set of variables

• The set of conditional independence statements can be
increased by considering additional variables however

This situation is rather general in the sense that graphical models
have limited expressibility in terms of independence statement
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Expressibility of BNs (cont.)

It is worth bearing in mind that BNs may not always be the most
appropriate framework to express one’s independence assumptions

• A natural consideration is to use a bi-directional
arrow when a variable is marginalised

h

t1

y1

t2

y2

t1

y1

t2

y2

One could depict the marginal distribution using a bi-directional edge
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Causality

Causality is a contentious topic and some pitfalls can occur

• This may give rise to erroneous inference

The word ‘’causal’ is contentious particularly in cases where
the data model contains no explicit temporal implication

• Here, formally only correlations or dependencies can be inferred

A distribution p(a,b) can be written and understood as either

• p(a|b)p(b): We might think that ‘b causes a’

• p(b|a)p(a): We might think that ‘a causes b’

A B

(a)

A B

(b)

Not very meaningful: Both forms represent the same distribution
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Causality (cont.)

Formally BNs only make independence statements not causal ones

• Nevertheless, it can be helpful to think about dependencies in
terms of causation, since our intuitive understanding is usually
framed in how one variable influences another
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Sympson’s paradox

We first discuss a classic conundrum that highlights potential pitfalls

• Simpson’s paradox: A warning tale in causal reasoning in BNs

Example

Consider a medical trial: Patient treatment and outcome are recovered

Two trials were conducted • One with 40 females

• One with 40 males

Males Recovered Not recovered Recovery rate

Given drugs 18 12 60%
Not given drugs 7 3 70%

Females Recovered Not recovered Recovery rate

Given drugs 2 8 20%
Not given drugs 9 21 30%

Does the drug cause increased recovery and can be recommended?
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Sympson’s paradox (cont.)

According to both the male and the female table, the answer is no

• Male: 60% vs 70%

• Female: 20% vs 30%

Ignoring gender information, we find that more people recovered when
given the drug than when not and we do not know what to do

Combined Recovered Not recovered Recovery rate

Given drugs 20 20 50%
Not given drugs 16 24 40%

The ‘paradox’ occurs because we ask a causal (interventional) question

• If we give someone the drug, what happens?

But, we perform an observational calculation and there is a difference
between ‘given that we see’ (observational evidence) and ‘given that
we do’ (interventional evidence)
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Sympson’s paradox (cont.)

We want to model a causal experiment in which we first intervene,
setting the drug state, and observe what effect this has on recovery

G

D R

A Gender-Drug-Recovery model with no
conditional independence assumption is

p(G ,D,R) = P(R|G ,D)p(D|G )p(G) (32)

If we intervene and give the drug, term p(D|G ) should play no role in
the experiment, as we decide to give drug or not independent of gender

• The term p(D|G) therefore needs to be replaced by
a term that reflects the set-up of the experiment
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Sympson’s paradox (cont.)

Atomic intervention: We set a single variable in a particular state

• We set D and we deal with a modified distribution

p̃(G ,R|D) = p(R|G ,D)p(G) (33)

• To denote an intervention, we use the symbol ||

p(R||G ,D) ≡ p̃(R|G ,D) =
p(R|G ,D)p(G)

∑

R p(R|G ,D)p(G)
= p(R|G ,D)

(34)
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Sympson’s paradox (cont.)

Remark

One can also consider here G as being interventional: Irrelevant here

Variable G has no parents, thus for any distribution conditional on G

• the prior factor p(G) will not be present

Using p(R||G ,D) ≡ p̃(R|G ,D) = p(R|G ,D)

For the males given the drug 60% recover, versus 70% recovery when
not given the drug

For the females given the drug 20% recover, versus 30% recovery when
not given the drug
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Sympson’s paradox (cont.)

p(R||D) ≡ p̃(R|D) =

∑

G p(R|G ,D)p(G)
∑

R,G p(R|G ,D)p(G)
=

∑

G

p(R|G ,D)p(G)

(35)

Using the post intervention distribution above

p(recovery|drug) = 0.6× 0.5 + 0.2× 0.5 = 0.4

p(recovery|no drug) = 0.7× 0.5 + 0.3× 0.5 = 0.5
(36)

We infer that the drug is overall not helpful, as we intuitively expected

• this is consistent with the results from both subpopulations
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Sympson’s paradox (cont.)

Thus, p(G ,D,R) = p(R|G ,D)p(G)p(D) means we choose either a
Male or Female patient and give drug or not independent of gender

• Hence, the absence of the term p(D|G ) from the joint distribution

One way to think about such model is to consider how to draw
a sample from the joint distribution of the random variables

• Often this should clarify the role of causality in the experiment

Remark

Observational calculation makes independence assumptions,
whereas interventional calculation does not

• This means that term p(D|G ) plays a role in the calculation

• It is equivalent to inferring with full distribution in Equation 32
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The do-calculus

In making causal inferences we have seen before that we must
adjust the model to reflect any causal experimental conditions

In setting any variable into a state, we need
to remove all parental links of that variable

• Pearl calls this the do operator, and contrasts observational (‘see’)
inference p(x |y) with causal (‘make’ or ‘do’) inference p(x |do(y))
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The do-calculus (cont.)

Definition

Pearl’s DO operator: Let all the variables X = XC ∪ XC be written in
terms of intervention variables XC and non-intervention variables XC

For a Bayes BN p(X ) =
∏

i p(Xi |pa(Xi ), inferring the effect of setting
variables Xc1 , . . . ,XcK (with ck ∈ C) in states xc1 , . . . , xcK is equivalent
to standard evidential inference in the post-intervention distribution

p(XC |do(Xc1 = xc1), . . . , do(XcK = xcK )) =
∏

j∈C

p(Xj |pa(Xj )) (37)

Any parental var in the intervention set is set to its intervention state
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The do-calculus (cont.)

For those variables for which we causally intervene and set in a state,
the corresponding terms p(Xci |pa(Xci ) are removed from the original BN

• The effect is to consider each intervention variable, cut connections
to its parents and set intervention variables to its intervention state

For those variables which are evidential but non-causal, the
corresponding factors are not removed from the distribution
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The do-calculus (cont.)

Interpretation: Post-intervention distributions agree with experiments in
which causal variables are first set and non-causal variables are observed

Remark

For a Belief network to have a causal interpretation, it means that the
ancestral order of the variables must correspond to the temporal order

• If we start with the variables that have no parents, these
must come first in time, with their children coming later

• Ancestral sampling from a causal BN corresponds to
the temporal evolution of the physical experiment
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Influence diagrams and do-calculus

Influence diagram: A way to modify a BN to represent intervention

• Append a parental decision variable FX to any variable
X on which an intervention can be made
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Influence diagrams and do-calculus (cont.)

Example

For the Simpson’s paradox example, we may use

p̃(D,G ,R,FD) = p(D|FD ,G)p(G)p(R|G ,D)p(FD) (38)

FD

G

D R

p(D|FD = ∅,G) ≡ p(D|pa(D))

p(D|FD = d,G) =

{

1 if D = d

0 otherwise

• If the decision variable FD is set to the empty state, the variable
D is determined by the standard observational term p(D|pa(D))

• If the decision variable FD is set to a state of D, the variable
puts all its probability in that single state of D = d
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Influence diagrams and do-calculus (cont.)

This has the effect of replacing the conditional probability term
by a unit factor and any instances of D set to the variable in its
interventional state (or, distribution of states, in some cases)

• A potential advantage of influence diagrams over do-calculus
is that conditional independence statements can be derived
using standard techniques for the augmented BN

• Additionally, for learning, standard techniques apply in which
decision variables are set to the condition under which each
data sample was collected (a causal or non-causal sample)
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Influence diagrams and do-calculus (cont.)

Remark

Learning the edge directions

In the absence of data from causal experiments, one should be justifiably
sceptical abut learning ‘causal’ networks, and might prefer a certain
direction of a link based on assumptions of the ‘simplicity’ of the CPTs

• The preference may come from physical intuition that, whilst root
causes may be uncertain, the relation from cause to effect is clear

• A measure of complexity of a CPT is required, such as entropy

Such heuristics can be numerically encoded and the edge
directions learned in an otherwise Markov equivalent graph


