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Graphical models

Belief networks represent independence statements
between the variables in a probabilistic model

• BNs are one way to unite probability
and graphical representation

Many others exist, all under the wide heading of ‘graphical models’

• Each has specific strengths and weaknesses

Whilst not a strict separation, graphical models fall into two classes

• Those useful for modelling

• Those useful for inference

We will survey some of the most popular models from each class
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Graphical models (cont.)

Graphical Models (GMs) depict independence/dependence relations

• GM classes are particular unions of graph and probability constructs

• The class details the form of independence assumptions represented

Remark

GMs are useful since they provide a framework for studying a
wide class of probabilistic models and associated algorithms

• They help to clarify modelling assumptions and provide a unified
framework under which inference algorithms can be related
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Graphical models (cont.)

All forms of GM have a limited ability to graphically
express conditional (in)dependence statements

• BNs are useful for modelling ancestral conditional independence

• Other types are more suited to representing different assumptions

We focus on Markov networks, chain graphs and factor graphs

• There are many more
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Graphical models (cont.)

We describe the problem environment using a probabilistic model

• Reasoning corresponds to performing probabilistic inference

This is a two-part process:

1 Modelling

2 Inference

Graphical models

UFC/DC
AI (CK0031)

2016.2

Graphical models

Markov networks

Markov properties

Markov random fields

Hammersley-Clifford
theorem

Conditional independence
using Markov networks

Lattice models

Chain graphical models

Factor graphs

Conditional independence

Expressiveness of
graphical models

Graphical models (cont.)

• Modelling: After identifying all potentially relevant variables of a
problem environment, we describe how these variables can interact

Remark

Structure assumptions as to the form of the joint probability distribution
of all variables (typically, assumptions of independence of variables)

• Each class of graphical model corresponds to
a factorisation property of the joint distribution

Graphical models

UFC/DC
AI (CK0031)

2016.2

Graphical models

Markov networks

Markov properties

Markov random fields

Hammersley-Clifford
theorem

Conditional independence
using Markov networks

Lattice models

Chain graphical models

Factor graphs

Conditional independence

Expressiveness of
graphical models

Graphical models (cont.)

• Inference: Once the basic assumptions as to how variables interact
with each other is formed (i.e. the probabilistic model is built) all
questions are answered by performing inference on the distribution

Remark

This can be a computationally non-trivial step so that coupling GMs
with accurate inference algorithms is central to graphical modelling
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Graphical models (cont.)

Whilst not a strict separation, GMs tend to fall into two broad classes

• Those useful in modelling

• Those useful in representing inference algorithms

For modelling: Belief networks, Markov networks, chain graphs
and influence diagrams are some of the most popular

For inference: One ‘compiles’ a model into a suitable
GM for which an algorithm can be readily applied

• Such inference GMs include factor graphs and junction trees
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Markov networks

Belief networks correspond to a special kind of factorisation of the joint
probability distribution in which each of the factors is itself a distribution

An alternative factorisation is given by

p(a, b, c) =
1

Z
φ(a, b)φ(b, c) (1)

φ(a, b) and φ(b, c) are potentials and Z is a constant
called partition function which ensures normalisation

Z =
∑

a,b,c

φ(a, b)φ(b, c) (2)
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Markov networks (cont.)

Definition

Potentials and joint potentials

A potential is a nonnegative function of variable x , φ(x) ≥ 0, and a joint
potential is a nonnegative function φ(x1, . . . , xn) of a set of variables

A distribution is a special case of a potential satisfying normalisation
∑

x

φ(x) = 1

This holds for continuous variables (summation replaced by integration)

• We use the convention that the ordering of the variables
in the potential is not relevant (as for the distribution)

• Joint variables simply index an element of the potential table
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Markov networks (cont.)

Definition

Markov network: For a set of variables X = {x1, . . . , xn}, a Markov net
is defined as a product of potentials on subsets of the variables Xc ⊆ X

p(x1, . . . , xn) =
1

Z

C∏

c=1

φc(Xc) (3)

The constant Z ensures the distribution is normalised

Graphically this is represented by an undirected graph G

• {Xc}Cc=1 being the maximal cliques of G
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Markov networks (cont.)

x1

x2

x3

x4

φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x4, x1)/Za

x1

x2

x3

x4

φ(x1, x2, x3, x4)/Zb
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Markov networks (cont.)

x1

x2

x3

x4

x5

x6

φ(x1, x2, x4)φ(x2, x3, x4)

φ(x3, x5)φ(x3, x6)/Zc
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Markov networks (cont.)

Definition

Gibbs distribution: A Markov net with strictly positive clique potentials

Definition

Pairwise Markov network: A Markov net in which the graph contains
cliques of size 2 only and potentials defined on each link between vars
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Markov networks (cont.)

MNs are defined as products on maximal cliques of an undirected graph

• Some authors use the term to refer to maximal-cliques also

x1

x2 x3

x4

The maximal cliques are {x1, x2, x3} and
{x2, x3, x4} so that the graph describes a
distribution p(x1, x2, x3, x4)

p(x1, x2, x3, x4) = φ(x1, x2, x3)φ(x2, x3, x4)/Z

In a pairwise MN though potentials are assumed to be over two-cliques,

giving p(x1, x2, x3, x4) =
1

Z
φ(x1, x2)φ(x1, x3)φ(x2, x3)φ(x2, x4)φ(x3, x4)
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Markov networks (cont.)

Example

The Boltzmann machine (distribution)

A Boltzmann machine is a MN on binary variables, dom(xi ) = {0, 1}

p(x) =
1

Z (w,b)
exp

(∑

i<j

wijxixj +
∑

i

bixi

︸ ︷︷ ︸

Hamiltonian

)

(4)

• The graphical model is an undirected graph
with a link between nodes i and j for wij ̸= 0

Edge interactions are weights wij and node potentials are biases bi

This model has been studied as a basic model of distributed memory

For all but specially constrained W, the graph is multiply connected

• Inference is typically intractable
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Markov networks (cont.)

A B

C

P(A,B ,C) =
1

Z
φAC (A,C)φBC (B,C)

with
1

Z
=

∑

A,B,C

φAC (A,C)φBC (B,C)
(5)
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Markov networks (cont.)

Definition

Properties of Markov networks

A B

C

→ A B

Marginalising over C makes A and B (graphically) dependent
In general p(A,B) ̸= p(A)p(B)

A B

C

→ A B

Conditioning on C makes A and B independent A ⊥⊥ B|C
p(A,B|C) = p(A|C)p(B|C)
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Markov properties

We consider somehow informally the properties of Markov networks

We use this graph to show conditional independence properties

1

2

3

4

5

6

7
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Markov properties (cont.)

Let φ(1, 2, 3) ≡ φ(x1, x2, x3), p(1) ≡ p(x1), p(2, 3) ≡ p(x2, x3), . . . , etc.

• We divide by potentials and to ensure
it is well defined we assume them positive

• For positive potentials, the next local, pairwise
and global Markov properties are all equivalent
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Markov properties (cont.)

Definition

Separation

A subset S separates a subset A from a subset B, for disjoint A and B,
if every path from any member of A to any member of B passes thru S

• If there are no paths from a member of A to
a member of B then A is separated from B

If S = ∅, provided no path exists from A to B, A and B are separated
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Markov properties (cont.)

Definition 2.1

Global Markov property

For disjoint sets of variables (A,B,S) where
S separates A from B in G, then A ⊥⊥ B|S
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As an example, of the global Markov property consider the following

Example

1

2

3

4

5

6

7

Are 1 and 7 independent,
given 4? Is 1 ⊥⊥ 7|4?

p(1, 7|4) ∝
∑

2,3,5,6

p(1, 2, 3, 4, 5, 6, 7)

=
∑

2,3,5,6

φ(1, 2, 3)φ(2, 3, 4)φ(4, 5, 6)φ(5, 6, 7)

=
{∑

2,3

φ(1, 2, 3)φ(2, 3, 4)
}{∑

5,6

φ(4, 5, 6)φ(5, 6, 7)
}

⇒ p(1|4)p(7|4)

This can be inferred as all paths from node 1 to 7 pass necessarily thru 4

Graphical models

UFC/DC
AI (CK0031)

2016.2

Graphical models

Markov networks

Markov properties

Markov random fields

Hammersley-Clifford
theorem

Conditional independence
using Markov networks

Lattice models

Chain graphical models

Factor graphs

Conditional independence

Expressiveness of
graphical models

Markov properties (cont.)

Pseudocode

An algorithm for independence

The separation property implies an algorithm for deciding A ⊥⊥ B|S

• We simply remove all links that neighbour the set of variables S

• If there is no path from any member of A to any member of B,
then A ⊥⊥ B|S is true
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Markov properties (cont.)

For positive potentials, the so-called local Markov property holds:

p(x |X\x) = p(x|ne(x)) (6)

When conditioned on its neighbours, x is independent of others

The pairwise Markov property holds for non-adjacent vertices x and y

x ⊥⊥ y |X\{x , y} (7)
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Markov random fields

A Markov random field (MRF) is a set of conditional distributions

• one for each ‘indexed’ location

Definition

Markov random field

A MRF is defined by a set of distributions p(xi |ne(xi )), i ∈ {1, . . . , n}
indexes the distributions and ne(xi ) are the neighbours of variable xi

• Namely, ne(xi ) is the subset of variables x1, . . . , xn
that the distribution of variable xi depends on

• The term Markov indicates that
this is a proper subset of variables

A distribution is a MRF with respect to an undirected graph G if

p(xi |x\i ) = p(xi |ne(xi )) (8)

ne(xi ) are neighbours of xi according to the undirected graph G

• Notation \i is shorthand for the set of all variables
X excluding variable xi (X\xi , in set notation)
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Hammersley-Clifford theorem

An undirected graph G specifies a set of independence statements

• How to find the most general functional form of the
distribution that satisfies the independence statements

Example

A trivial example is graph x1 − x2 − x3 from which x1 ⊥⊥ x3|x2

• From this we must have p(x1|x2, x3) = p(x1|x2)

p(x1, x2, x3) = p(x1|x2, x3)p(x2, x3) = p(x1|x2)p(x2, x3)

= φ12(x1, x2)φ23(x2, x3)
(9)

More generally, for any decomposable graph G1, we can start at the
edge and work inwards to reveal that the functional form must be a
product of potentials on the cliques of G

1Triangulated (Decomposable) Graph: An undirected graph is triangulated if every
loop of length 4 or more has a chord. An equivalent term is that the graph is chordal.
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Hammersley-Clifford theorem (cont.)

Start with x1 and its local Markov statement x1 ⊥⊥ x4, x5, x6, x7|x2, x3

1

2

3

4

5

6

7

p(x1, . . . , x7) =

p(x1|x2, x3,✚x4,✚x5,✚x6,✚x7)

p(x2, x3, x4, x5, x6, x7)
(10)

Consider x1 eliminated and move to the neighbours of x1, x2 and x3

From graph, x1, x2 and x3 are independent of x5, x6 and x7 given x4

p(x1, x2, x3|x4, x5, x6, x7) = p(x1, x2, x3|x4) (11)
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Hammersley-Clifford theorem (cont.)

p(x1, x2, x3|x4, x5, x6, x7) = p(x1, x2, x3|x4)

By summing both sides over x1, p(x2, x3|x4, x5, x6, x7) = p(x2, x3|x4) thus

p(x2, x3, x4, x5, x6, x7) = p(x2, x3|x4, x5, x6, x7)p(x4, x5, x6, x7)

= p(x2, x3|x4)p(x4, x5, x6, x7)

and
p(x1, . . . , x7) = p(x1|x2, x3)p(x2, x3|x4)p(x4, x5, x6, x7)
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Hammersley-Clifford theorem (cont.)

We eliminated x2 and x3 and we move to their neighbour(s), namely x4

1

2

3

4

5

6

7

p(x1, . . . , x7) = p(x1|x2, x3)p(x2, x3|x4)p(x4|x5, x6)p(x5, x6|x7)p(x7)
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Hammersley-Clifford theorem (cont.)

The pattern shows that Markov conditions mean that the distribution is
expressible as a product of potentials defined on the cliques of the graph

• G ⇐⇒ F where F is a factorisation into clique potentials on G

The converse is easily shown: That is, given a factorisation F into
clique potentials, the Markov conditions on G are implied

Hence G ⇐⇒ F and it is clear that for any decomposable G, this always
holds since we can always work inwards from the edges of the graph
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Hammersley-Clifford theorem (cont.)

The Hammersley-Clifford theorem is a stronger result and it shows that
this factorisation property holds for any undirected graph, provided that
the potentials are positive

• An informal argument can be made by considering an example
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Hammersley-Clifford theorem (cont.)

Example

Consider the four-cycle x1 − x2 − x3 − x4 − x1

x1

x2

x3

x4

The theorem states that for positive potentials φ, the Markov conditions
implied by the graph mean that the distribution must be of the form

p(x1, x2, x3, x4) = φ12(x1x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1) (12)

It can be shown that for any distribution of this form x1 ⊥⊥ x3|x2, x4
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Hammersley-Clifford theorem (cont.)

Consider including an additional term that links x1 to a
variable not a member of the cliques that x1 inhabits

• That is we include a term φ13(x1, x3)

Our aim is to show that a distribution of the form

p(x1, x2, x3, x4) =

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)φ13(x1, x3) (13)

cannot satisfy the Markov property x1 ⊥⊥ x3|x2, x4
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Hammersley-Clifford theorem (cont.)

p(x1, x2, x3, x4) =

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)φ13(x1, x3)
∑

x1
φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)φ13(x1, x3)

=

φ12(x1, x2)φ41(x4, x1)φ13(x1, x3)
∑

x1
φ12(x1, x2)φ41(x4, x1)φ13(x1, x3)

(14)

If we assume that potential φ13(x1, x3) is weakly dependent on x1 and x3,

φ13(x1, x3) = 1 + εψ(x1, x3), with ε << 1 (15)
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Hammersley-Clifford theorem (cont.)

p(x1|x2, x3, x4) =
φ12(x1, x2)φ41(x4, x1)

∑

x1
φ12(x1, x2)φ41(x4, x1)

(1 + εψ(x1, x3))

(

1 + ε

∑

x1
φ12(x1, x2)φ41(x4, x1)ψ(x1, x3)
∑

x1
φ12(x1, x2)φ41(x4, x1)

︸ ︷︷ ︸

f

)−1
(16)

By expanding (1 + εf )−1 = 1− εf +O(ε2) and retaining only terms
that are first order in ε, we obtain

p(x1|x2, x3, x4) =
φ12(x1, x2)φ41(x4, x1)

∑

x1
φ12(x1, x2)φ41(x4, x1)

(

1 + ε
[

ψ(x1, x3)−

∑

x1
φ12(x1, x2)φ41(x4, x1)ψ(x1, x3)
∑

x1
φ12(x1, x2)φ41(x4, x1)

])−1

+O(ε2) (17)
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Hammersley-Clifford theorem (cont.)

p(x1|x2, x3, x4) =
φ12(x1, x2)φ41(x4, x1)

∑

x1
φ12(x1, x2)φ41(x4, x1)

(

1 + ε
[

ψ(x1, x3)−

∑

x1
φ12(x1, x2)φ41(x4, x1)ψ(x1, x3)
∑

x1
φ12(x1, x2)φ41(x4, x1)

])−1

+O(ε2) (18)

• The first factor is independent of x3 as required by the Markov
condition, for ε ̸= 0 the second term varies as a function of x3

The reason is that one can always find a function ψ(x1, x3) for which

ψ(x1, x3) ̸=

∑

x1
ψ12(x1, x2)φ41(x4, x1)ψ(x1, x3)
∑

x1
φ12(x1, x2)φ41(x4, x1)

(19)

since the term ψ(x1, x3) on the left is functionally dependent
on x1 whereas the term on the right is not a function of x1

• Hence, the only way to ensure that the Markov condition holds
is if ε = 0 for which there is no connection between x1 and x3
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Hammersley-Clifford theorem (cont.)

The Hammersley-Clifford theorem also helps resolve other questions

• When a set of positive local conditional distributions p(xi |pa(xi))
does ever form a consistent joint distribution p(x1, . . . , xn)?

Each local conditional distribution p(xi |pa(xi )) corresponds to a factor
on the set of variables {xi |pa(xi)}, so we must include it in the joint

The MN can form a joint distribution consistent with the local
conditional distributions iff p(x1, . . . , xn) factorises according to

p(x1, . . . , xn) =
1

Z
exp

(

−
∑

c

Vc(Xc)
)

(20)

The sum is over all cliques and Vc(Xc) is a real function
defined over all the variables in the clique indexed by c
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Hammersley-Clifford theorem (cont.)

p(x1, . . . , xn) =
1

Z
exp

(

−
∑

c

Vc(Xc)
)

The equation is equivalent to
∏

c φ(Xc), namely a Markov network

• On positive cliques potentials

The graph over which the cliques are defined is an undirected graph

• This graph is constructed by taking each local conditional
distribution p(xi |pa(xi)) and drawing a clique on {xi , pa(xi )}

This is then repeated over all the local conditional distributions
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x1

x3 x4

(a)

x2

x3 x4

(b)

x1

x3 x4

(c)

x2

x3 x4

(d)

Local conditional distributions: No distribution is implied for the parents

• In (a) we are given the conditional p(x4|x1, x3): One should not
read from graph that we imply x1 and x3 are marginally independent
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Hammersley-Clifford theorem (cont.)

The Markov network consistent with the local distributions

x1 x2

x3 x4

(e)

If the local distributions are positive, b Hammersley-Clifford theorem

• then the only joint distribution that can be consistent with the
local distributions must be Gibbs with structure given by (e)
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Hammersley-Clifford theorem (cont.)

Remark

The HC theorem does not mean that, given a set of conditional
distributions, we can always form a consistent joint distribution
from them, rather it states what the functional form of a joint
distribution has to be for the conditionals to be consistent with it
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Markov networks
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Conditional independence using Markov networks

For X , Y and Z each being a collection of variables, we discussed an
algorithm to determine if X ⊥⊥ Y|Z in the case of belief networks

Remark

‘For every x ∈ X and y ∈ Y , check every path U between x and y, a

path U is said to be blocked if there is a node w on U such that either :

• w is a collider and neither w nor any of its descendants is in Z

• w is not a collider on U and w is in Z

If all such paths are blocked, then X and Y are d-separated by Z

If the sets X and Y are d-separated by Z, then they are independent
conditional on Z in all distributions such a graph can represent

We can now highlight an alternative and more general method

• Both directed and undirected graphs
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Conditional independence using MNs (cont.)

Pseudocode

Ascertaining independence in Markov and belief networks

For MNs only the final separation criterion needs to be applied

• Ancestral graph: Identify the ancestors A of nodes X ∪Y ∪Z but
remove all other nodes which are not in A together with any edge
in or out of such nodes

• Moralisation: Add a link between any two remaining nodes which
have a common child, but are not already connected by an arrow,
then remove remaining arrowheads

• Separation: Remove links neighbouring Z and in the undirected
graph so constructed, look for a path which joins a node in X to
one in Y , then if there is no such path deduce that X ⊥⊥ Y|Z
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a b

c d

e f g

i

j k

h

(a)
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Conditional independence using MNs (cont.)

a b

c d

e f

i

(b)

a b

c d

e f

i

(c)
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Conditional independence using MNs (cont.)

The ancestral step in the procedure for belief networks is intuitive

• Given a set of nodes X and their ancestors A, the remaining nodes
D for a contribution to the distribution of form p(D|X ,A)p(X ,A)

• Summing over D has the effect of removing these vars from DAG
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Lattice models

Undirected models have a history in different branches of science

• Especially statistical mechanics on lattices and models in visual
processing that encourage neighbours to be in the same states

Consider the model in which our desire is that states of binary variables
{xi}9i=1 on a lattice should prefer neighbours to be in the same state

x1 x2 x3

x4 x5 x6

x7 x8 x9

p(x1, . . . , x9) =
1

Z

∏

i∼j

φi j (xi , xj ) (21)

i ∼ j denotes sets of indices where j are
neighbours of i in the undirected graph
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Ising models

A set of potentials that encourages neighbours to have the same state is

φi j (xi , xj ) = exp
(

−
1

2T
(xi − xj )

2
)

, with xi ∈ {−1,+1} (22)

This corresponds to a well-known model for the physics of magnetic
systems, the Ising model, which consists of ‘mini-magnets’ which prefer
to be aligned in the same state, depending on the temperature T

• High T : Variables behave independently,
so that no global magnetisation appears

• Low T : Preference for neighbours to become
aligned, generating a strong macro-magnet
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Ising models (cont.)

Remarkably, one can show a behaviour in a large 2-dimensional lattices

• Below the so-called Curie-temperature TC ≃ 2.27 for ±1 variables,
the systems admits a phase change in that a large fraction of the
variables become aligned

• above TC the variables remain unaligned, on average

0 0.5 1 1.5 2
0

0.5

1

T/Tc

M

Average alignment of variables

M =
1

N

∣
∣
∣

N
∑

i=1

xi

∣
∣
∣

Onsager magnetisation
As T decreases towards the critical
value TC , a phase transition occurs in
which a large fraction of the variables
become aligned in the same state
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Ising models (cont.)

Global coherence effects such as this that arise from weak local
constraints are present in systems that admit emergent behaviour

Similar local constraints are common in image denoising algos, under the
assumption that noise has no local spatial coherence, whilst ‘signal’ does

Graphical models

UFC/DC
AI (CK0031)

2016.2

Graphical models

Markov networks

Markov properties

Markov random fields

Hammersley-Clifford
theorem

Conditional independence
using Markov networks

Lattice models

Chain graphical models

Factor graphs

Conditional independence

Expressiveness of
graphical models

Ising models (cont.)

Example

Cleaning up images: Consider a binary image on pixels xi ∈ {-1, +1}
with i = 1, . . . ,D and observe a noisy version yi of each pixel xi in
which the state of yi ∈ {-1, +1} is opposite to xi with some probability

Clean up the observed dirt image Y and find most likely clean image X

• Filled nodes are observed noisy pixels

• Unshaded nodes are latent clean pixels

p(X ,Y) =
1

Z

[ D
∏

i=1

φ(xi , yi )
][∏

i∼j

ψ(xi , xj )
]

with

{

φ(xi , xj ) = exp (βxixj )

ψ(xi , xj ) = exp (αxixj )
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Ising models (cont.)

i ∼ j is the set of unobserved (latent) variables that are neighbours

• Potential φ(xi , yi ) encourages noisy and clean pixels
to be in the same state

• Potential ψ(xi , xj ) encourages neighbouring pixels
to be in the same state

To find the most likely clean image, we need to compute

arg max
X

p(X|Y) = arg max
X

p(X ,Y) (23)

It’s a difficult task, but can be approximated with iterative methods
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Ising models (cont.)

On the left is the clean image from which a noisy corrupted image Y is
formed in the middle and on the right the most likely restored image X

Parameter β can be set from knowledge of corruption probability pcorrupt

p(yi ̸= xi |xi ) = σ(−2β), so β = −
1

2
σ−1(pcorrupt)

Parameter α is more complex, since relating p(xi = xj ) to α is not easy

• (here we set α = 10)
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Chain graphical models

Chain graphs (CG) contain both directed and undirected links

a b

c d

To develop the intuition consider the graph

The terms we can unambiguously specify are p(a) and p(b), since there
is no mixed interaction of directed/undirected edges at a and b nodes

By probability, we must have

p(a, b, c, d) = p(a)p(b)p(c, d |a, b) (24)

From graph, we expect the interpretation to be

p(c, d |a, b) = φ(c, d)p(c|a)p(d |b) (25)
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Chain graphical models

To ensure normalisation and to retain generality, we interpret this as

p(c, d |a, b) = φ(c, d)p(c|a)pd |b)φ(a, b) (26)

with φ(a, b) ≡
(
∑

c,d φ(c, d)p(c|a)p(d |b)
)−1

We can interpret the CG as a DAG over the chain components
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Chain graphical models (cont.)

Definition

Chain component: Chain components of graph G are obtained by

1 Form a graph G′ with directed edges removed from G

2 Each connected component in G′ constitutes a component

Each chain component represents a distribution over the variables
of the component, conditioned on the parental components

The conditional distribution is itself a product over the cliques of the
undirected component and moralised parental components, including
also a factor to ensure normalisation over the chain component
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Chain graphical models (cont.)

The chain components are identified by deleting the directed
edges and identifying the remaining connected components

a b

c d

(a)

a b

cd

(b)

• Case a) Chain components are (a), (b) and (c, d), which can
be written as a BN on the cluster variables in Case b)
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Chain graphical models (cont.)

a

b g

d c

e fh

(c)

aedfh

c

bg

(d)

• Case c) Chain components are (a, e, d , f , h), (b, g) and
(c), which has the cluster BN representation in Case d)
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Chain graphical models (cont.)

Definition

Chain graph distribution

The distribution associated with a chain graph G is found by first
identifying the chain components, τ and associated vars Xτ , then

p(x) =
∏

τ

p(Xτ |pa(Xτ ))

p(Xτ |pa(Xτ )) ∝
∏

d∈Dτ

p(xd |pa(xd))
∏

c∈Cτ

φ(Xc)
(27)

• Cτ denotes the union of the cliques in component τ with
φ being the associated functions defined on each clique

• Dτ is the set of variables in component τ that correspond
to directed terms p(xd |pa(xd))

The proportionality factor is determined by the usual constraint

• The distribution sums to 1



Graphical models

UFC/DC
AI (CK0031)

2016.2

Graphical models

Markov networks

Markov properties

Markov random fields

Hammersley-Clifford
theorem

Conditional independence
using Markov networks

Lattice models

Chain graphical models

Factor graphs

Conditional independence

Expressiveness of
graphical models

Chain graphical models (cont.)

• BNs are CGs in which the connected components are singletons

• MNs are CGs in which the chain components are simply
the connected components of the undirected graph

Remark

CGs can be useful as they are more telling of conditional independence
statements than either belief networks or Markov networks alone
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Chain graphical models (cont.)

Example

a b

c d

e f

Consider the chain graph above with chain component decomposition

p(a, b, c, d , e, f ) = p(a)p(b)p(c, d , e, f |a, b) (28)
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Chain graphical models (cont.)

p(a, b, c, d , e, f ) = p(a)p(b) p(c, d , e, f |a, b)
︸ ︷︷ ︸

p(c|a)φ(c,e)φ(e,f )φ(d,f )p(d|b)φ(a,b)

The normalisation requirement is given by the expression

φ(a, b) ≡
( ∑

c,d,e,f

p(c|a)φ(c, e)φ(e, f )φ(d , f )p(d |b)
)−1

(29)

The marginal p(c, d , e, f ) is given by the expression

φ(c, e)φ(e, f )φ(d , f )
∑

a,b

φ(a, b)p(a)p(b)p(c|a)p(d |b)

︸ ︷︷ ︸

φ(c,d)

(30)

Since the marginal of p(c, d , e, f ) is an undirected 4-cycle, no DAG
can express the conditional independence statements in p(c, d , e, f )

Similarly, no undirected distribution on the same skeleton could express
that a and b are independent (unconditionally, p(a, b) = p(a)p(b))
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Chain graphical models (cont.)

c d

e f

(a)

c d

e f

(b)
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Factor graphs

Factor graphs (FGs) are mainly used as part of inference algorithms

Definition

Factor graphs: Given a function

f (x1, . . . , xn) =
∏

i

ψi(Xi ), (31)

the factor graph has a node (represented by a square) for each factor
ψi and a variable node (represented by a circle) for each variable xj

• For each xj ∈ Xi an undirected link is
made between factor ψi and variable xj
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Factor graphs (cont.)

When used to represent a distribution of the following form

p(x1, . . . , xn) =
1

Z

∏

i

ψi (Xi) (32)

a normalisation constant Z =
∑

X

∏

i ψi (Xi) is assumed

• X represents all variables in the distribution
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Factor graphs (cont.)

Given a factor ψ(Xi) which is a conditional distribution p(xi |pa(xi ))

• We may use a directed links from parents to the factor node
and a directed link from the factor node to the child xi

• This has the same structure as an (undirected) FG but it
preserves the information that the factors are distributions
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Factor graphs (cont.)

FGs are useful since they preserve more information about the form of
the distro than either a Bayes or a Markov network or chain graphs alone

a

bc

Consider the distribution

p(a, b, c) = φ(a, b)φ(a, c)φ(b, c) (33)

As a MN, this must have a single clique

• Though the graph could equally
represent some unfactored clique
potential φ(a, b, c)

The factorised structure in the clique is lost
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Factor graphs (cont.)

A FG more precisely conveys the form of
distribution equation φ(a, b)φ(b, c)φ(c, a)

a

bc

An unfactored clique potential φ(a, b, c)
is represented by this other FG depiction

a

bc

Remark

Different FGs can have the same MN since info regarding
the structure of the clique potential is lost in the MN
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Factor graphs (cont.)

For a BN, one can represent this using
a standard undirected FG, though more information about the
independence is preserved by using a directed FG

a

bc

a

bc
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Conditional independence in factor graphs

Conditional independence questions can be addressed using a rule
which works with directed, undirected and partially directed FGs

To determine whether two variables are independent given a set of
conditioned variables, consider all paths connecting the two variables

• If all paths are blocked, the variables are conditionally independent

A path is blocked if one or more of the following conditions is satisfied:

• One of the variables in the path is in the conditioning set

• One of the variables or factors in the path has two incoming
edges that are part of the path (variable or factor collider),
and neither the variable or factor nor any of its descendants
are in the conditioning set
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Expressiveness of graphical models

Directed distributions can be represented as undirected distributions

• One can associate each (normalised) factor
of the joint distribution with a potential

Example

Distribution p(a|b)p(b|c)p(c) can be factored as φ(a, b)φ(b, c), where

• φ(a, b) = p(a|b)

• φ(b, c) = p(b|c)p(c)

• Z = 1

Hence every BN can be represented as some MN by a
simple identification of the factors in the distributions
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Expressiveness of graphical models (cont.)

However, in general, the associated undirected graph (that is,
the moralised directed graph) will contain additional links

• Independence information can be lost

Example

• The MN of p(c|a, b)p(a)p(b) is a single clique φ(a, b, c)
from which one cannot graphically infer that a ⊥⊥ b
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Expressiveness of graphical models (cont.)

The converse question is whether every undirected model can
be represented by a BN with a readily derived link structure

a

b

c

d

In this case, there is no directed model
with the same link structure that can
express the (in)dependencies in the
undirected graph

Naturally, every probability distribution can be represented by some BN

• It may not necessarily have a simple structure

• It may not be a ‘fully connected’ cascade style graph
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Expressiveness of graphical models (cont.)

In this sense the DAG cannot always graphically represent the
independence properties that hold for the undirected distribution

Every DAG with the same structure as the undirected model must have
a situation where two arrows will point to a node, such as node d

• (otherwise one would have a cyclic graph)

a

b

c

d

Summing over the states of variable d will
leave a DAG on the variables a, b, c with

• no link between a and c

This cannot represent the undirected model since when
one marginalises over d this adds a link between a and c
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Expressiveness of graphical models (cont.)

Definition

Independence maps

A graph is an independence map (I-map) of a given distribution P if
every conditional independence statement that one can derive from the
graph G is true in the distribution P

X ⊥⊥ Y|ZG =⇒ X ⊥⊥ Y|ZP (34)

for all disjoint sets X , Y and Z

A graph is a dependence map (D-map) of a given distribution P if
every conditional independence statement that one can derive from
P is true on G

X ⊥⊥ Y|ZG ⇐= X ⊥⊥ Y|Zp (35)

for all disjoint sets X , Y and Z

Graphical models

UFC/DC
AI (CK0031)

2016.2

Graphical models

Markov networks

Markov properties

Markov random fields

Hammersley-Clifford
theorem

Conditional independence
using Markov networks

Lattice models

Chain graphical models

Factor graphs

Conditional independence

Expressiveness of
graphical models

Expressiveness of graphical models (cont.)

Definition

A graph G which is both an I-map and a D-map is called a perfect map

X ⊥⊥ Y|ZG ⇐⇒ X ⊥⊥ Y|ZP (36)

for all disjoint sets X , Y and Z

• The set of all conditional independence and dependence statements
expressible in the graph G are consistent with P, and vice versa


