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Numerical optimisation (cont.)

Let f : R™ — R with n > 1 be a cost or an objective function

The unconstrained optimisation problem

~  min /() (1)

The constrained optimisation problem

i 2
. @
Q is a closed subset determined by equality and inequality constraints

e They are dictated by the nature of the problem to solve
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Find the optimal allocation of ¢ = 1,...,n bounded resources z;
De 1 1i n
ceviih @ ~~ Bounded resources means limited resources
Ne on di 1
et The constraints express these limits in terms of inequalities
Gradien 1
o 0<z < C(C;, with C; some given constants
The set 2 = {x: (z1,...,2n) : 0 <z < Ci,izl,...,n}
Gauss-Newton e A subset of R" determined by such constraints
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For some problems, (2 is characterised by explicit conditions

Line-search
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~ Equality constraints

Newton directions

Quasi-Newton

~ Inequality constraints

I'rust-region
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le:

e h<O0ishi(x)<0,fori=1,...,m
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Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead



Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Numerical optimisation (cont.)

Let f be a continuous function and let Q2 be a connected set
A constrained optimisation problem is a non-linear programming problem
Convex programming

~ f is a convex function and h has convex components

Linear programming

~ f and h are linear

Quadratic programming

~~ f is quadratic and h is linear
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Numerical optimisation (cont.)

Computing the maximum of function f is equivalent to computing the min-
imum of function g = —f

~» We shall only consider minimisation algorithms

The minimum value of some given objective function is interesting

The point at which such minimum is achieved is more interesting

~ Such point is called minimiser
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Numerical optimisation (cont.)

We consider the numerical solutions of optimisation problems

Ideal situation: A function with an unique global minimiser

e There are often several (local) minimisers

F(x) = f(z1,22)

f(x) = f(z1,22)

17z
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Numerical optimisation (cont.)

The meaning of minimising an objective function

We are interested in finding either a (good) local or the global minimiser

Point x* is a global minimiser of f
i f(x*) < f(x), ¥x € R”

Point x* is a local minimiser of f

~ if there is a Br(x*) C R", a ball centred in x* and radius r > 0, such
that f(x*) < f(x), Vx € Br(x*)
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Unconstrained optimisation (cont.)

Let f be differentiable in R™ with first and second derivatives
Let gradient vector of f at point x € R™ be the smbol

0, 1s)
V560 = (50 es 52 69) 3)

Let Hesstan matriz of f at point x € R™ be the symbol

9%f (x)
0z;0x;

H(x) = (hij)}j=1, with hy =

In general, it will be assumed that problem functions are smooth

e Continuous and continuously (Frétchet) differentiable, C*
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Unconstrained optimisation (cont.)

For f(x) at any point x there is a vector of first derivatives
e Gradient vector

of |0z

of /02

. = Vf(x) (5)

X

T
V is the gradient operator (B/Bxl, 0/0x2,- -+, 8/895")
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Descent directions
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Newton directions
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Unconstrained optimisation (cont.)

Let f(x) be twice-differentiable, C2

There is a matrix of second partial derivatives

e Hessian matrix

[ 92f O3 f 92f
011011 0711072 o 0110y
0% f % f O%f
00011  Om2012 o Ox20xy =H(x) = V2f(x)
02f 0%f 02f
| 02,01  OxpOxo o Oxn0zn] «

The (i, j)-th element of the Hessian matrix, 6%f /(8z;01;)
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Rosenbrock’s function
Unconstrained 2\2 9
optimisation f(x) = 100(:132 _ :El) + (1 _ 1131)

Descent directions
Step-length o
Newton directions

Quasi-Newton

rections

2dient and

Golden section anc
quadratic

interpolation

Nelder and Mead

The global minimum is at x* = (1, 1), and variation around x* is low
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A test-function for optimisation methods

. F(x) = f(z1,22) = 100(z2 — 27)* + (1 — m1)?

Step-length

Newton directions
e o Of /01 = —400z1 (22 — 22) — 2(1 — m1)
o o Of /0x2 = 200(z2 — xlz)

Qu

of
— 8951 _ —400x1 ($2 — x12) — 2(]_ _ zl)
Gauss-Newton Vf(x) - Bf = 200(1:2 _ :1:12) i}
Nasqunras Oz2l

Golden section and

interpolation

Nelder and Mead
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Descent directions

dient and
-gradient

der and Mead

Unconstrained optimisation (cont.)

f(x) = f(z1,22) = 100(z2 — x12)2 +(1 - I1)2

o Of /011 = —400z1 (22 — 22) — 2(1 — m1)

o Of /012 = 200(22 — z3)

o 0%f/(011021) = 120022 — 40072 + 2

)
Ld 82f/(8x1 8%2) —400:121
Ld 82f/(8x2 8%1) —400:121
Ld 82f/(8x2 8%2) = 200
d%f
vi(x) = | Oadn
02011

92f
8({1):% ]%2

Ompmal x

120022 — 40022 + 2

—400z1

—400x;
200
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Unconstrained optimisation (cont.)

In general, Vf and V2f will and vary from point to point

At x' = (0,0)T

Vi)

V3f(x) =

[—400z1 (72 — 22) — 2(1 — m1)
200(z2 — z2) N

-2

L 0 L:(O,O)T

(120022 — 40022 +2 —400z1
—400z; 200

2 0

0 200} e (0.0)7
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Unconstrained optimisation (cont.)

The idea of a line is also important

We can define the line as the set of points
x[=x(a)] =x'+ad, for all o

x’ is some fized point along the line

e [t corresponds to a =0

d is the direction of the line
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optimisation
e Let the fixed point x’ be the point (2, 2)
irections. Let the direction d be (3,1)
Gradien 1
o ~ Draw the line x = x’ + ad, for all «
C 1 N T .




Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Unconstrained
optimisation

Descent directions
Step-length
Newton directions
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Unconstrained optimisation (cont.)

We can determine expressions for the derivatives of f along any line x(«)

~~ Based on definitions of line, gradient vector and hessian matrix

By the chain rule of derivation
dz; (a)

; { } Z da 81:
= dTV{ . [x(a)]}

= dig{- k(@)



Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Unconstrained
optimisation

Descent directions
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Newton directions

Quasi-Newton
directions

Gr
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directions

lient and
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Levenberg-

Marquardt

Golden section and
quadrz
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

The slope of f{ = f[x(a)] } along the line at any point x(c)

d
a _ dTvf=vfTd
da
This is the directional derivative of f with respect to d

e Vf is calculated at x(o)
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Descent directions
Step-length o

Newton directions

Quasi-Newton

directions

te-gradient
directions

Gauss-Newton

Levenberg-
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Golden section and
quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

The curvature along the line at any point x(«)

d2f_ d df _aT T _ AT 2
@’E(E)’d v(viTd) =dTv%fd

This is the second-order directional derivative of f
e Vf and V2f are calculated at x(c)

Let G = V2f, then Gd is a vector

(Gd); =) Gyd;
j

dT Gd is the scalar product of d and Gd
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Descent direction Rosenbrock’s function

F(x) = 100(z2 — a7)? + (1 — 21)°

_ [x — 400z (z2 — 22) — 2(1 — 21)
: ” Vi) = |: 200(z2 — z2) .
9 _ [120022 — 40022 +2 —400z;
Vi) = [ —400z; 200 |,

We consider point x’ = (0,0)7
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Descent directions
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Newton directions

Quasi-Newton
directions
Gradient and
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directions
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s-Newton
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Unconstrained optimisation (cont.)

The slope along the line with direction d = (1,0)7
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Newton method

Line-search

Descent directiona The curvature along the line with direction s = (1,0)7
Step-length oy

Newton directions

Quasi-Newton dTad = [1 0] 2 0 1 —9

directions

0 200]| |0

conjugate

directions [2 0} T

rust-region

Nonlinear
les

G

t-squares

Newton

Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead



Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Let f € C2(R™) (all first and second derivatives ewist and are continuous)

Then, H(x) is symmetric for every x € R™

A point x* is called a stationary or critical point for f if Vf(x*) =0

A point such that Vf(x*) # 0 is called a regular point
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T _

A function f over R™ does not necessarily admit a minimiser

Breziecit; alowton e Also, should this point exist it is not necessarily unique

Gradient an
rections _
rection

e f(x) = z1 + 3z2 is unbounded in R2
o f(x)=sin(x1)sin(22)---sin(z,) admits an infinite number of minimis-
' ers and maximisers in R™, both local and global




Unconstrainea UNcCONstrained optimisation (cont.)

optimisation

UFC/DC
CKO0031/CK0248
2017.2

Unconstrained
optimisation

Function f : Q CR” — R is convex in Q if
flox+ (1 - a)y] <af(x) + (1 -a)f(y), Vx,y€eQ 9)

for all « € [0,1]
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‘\ \ ‘\‘ " : ‘ Function f is Lipschitz in Q if

S e If ) = fOI < Llx—yll, vx,y€Q (10)
for some constant L > 0

C 155-Ne T
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Unconstrained optimisation (cont.)

Optimality conditions

Let x* € R" and r > 0 exists such that f € C'(Br(x*))
o If x* is a minimiser for f (local or global), then Vf(x*) =0
o Also, if f € C%(Br(x*)), H(x*) is positive semidefinite (PSD)

Let x* € R" and r > 0 exists such that f € C*(By(x*))
o If Vf(x*) =0 and H(x*) is positive definite (PD) for all x € By(x*),
then x* is a local minimiser of f
o If f € C1(R") is convex in R™ and Vf(x*) = 0, then x* is a global
minimiser for f
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Unconstrained optimisation (cont.)

A symmetric real matric A € R"*™ is positive definite (PD) if

Vx € R” withx #0, xTAx >0

A symmetric real matriz A € R"X™ is positive semidefinite (PSD) if

Vx € R” withx #0, xTAx >0
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Descent directions
Step-length
Newton directions

Quasi-Newton

directions

conjuga:
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Most methods for numerical optimisation are of iterative type
e They can be classified into two main categories

It depends on whether they use derivatives of the cost function

Derivative-free methods
e They explore the local behaviour of a cost function

e Direct comparison between function values

Methods using derivatives

e They use information on the local behaviour of the cost
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Unconstrained optimisation (cont.)

Methods based on derivatives are expected faster convergence

It can be shown that given X € dom(f), if Vf(X) exists and it is not null,
then the largest increase of f from X is along the gradient vector

Conversely, the largest decrease is along the opposite direction

Among them, the two most important classes of techniques
~+ Line-search methods

~+ Trust-region methods
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Newton method

Let f : R* — R with n > 1 be of class C2(R")

Descent directions
Step-length o . . . .
Neien disasions We know how to compute its first and second order partial derivatives

Quasi-Newton

directions

Gradient and

gradient

We apply Newton’s method to solve a system of nonlinear equation

conjuga
directions

Vi(x)=0

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead
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The Newton method (cont.)

Newton’s method
Consider the problem of finding the zero of some f : [a,b] CR — R

~» Find « € [a, b] such that f(a) =0

We know the equation of the tangent to function f(z) at some point z(*)

y(z) = f[x(k')] +f [I(k)} [z — x(k)]
We can solve for some point z = x(k'Jrl), such that y[:c““*”] =0

L) — (k) _ f[z(k)]
Heny

All this, for £ =0,1,2,... and f'[z(®] #0
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2017.2 Sequence {x(")} is the Newton’s method for finding the zero of a function
Unconstrained 8 . . . . . .

optimisation
Newton method

Line-search
Descent directions
Step-length
Newton directions

Quasi-Newton
directions

iradient and
-gradient

conjugate
directions

Trust-region

Nonlinear
les

squares

G s-Newton
Levenberg-
Marquardt
6 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Derivative-free 2 45 -1 -05 0 05 1 15 2
Golden section and
quadratic
interpolation
Nelder and Mead ~~ The method reduces to locally substituting f with its tangent
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Consider now a set of nonlinear equations
Newton method

fi(z, @, 20) =
Descent directions

Step-length oy f2($17 X2y v ey zn) =

Newton directions

0
0

Quasi-Newton
directions

CeniRERCERts fu(z1, 22, ... 10) =0

For the sake of compactness, we re-write the system in vector form
o Let f=(fi,...,fa)7

Gauss-Newton o Let x = (xl7 o l'n)T
Levenberg-

Marquardt — f(X) =0

Golden section and

quadratic

interpolation

Nelder and Mead
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Newton method

f(x)=0
Descent directions
Step-length oy, . .
Newton directions We want solve the system of nonlinear equation
et ~» We can extend Newton’s method
Gradien
conjuga
directions
Replace first derivative of function f with Jacobian Jg of function f
of;
Gauss-Newton ~ (Jf)ij = o with L,7=1,...,n

7

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead
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fl($l7"'7$j7"'7$n):0

Newton method

Descent directions fi(mh ey Ty ey mn) =0

Step-length o
Newton directions

Quasi-Newton

directions
Gradient and fn($17"'7$j7"‘7$n) =0

conjugate-gradient
directions

The corresponding Jacobian matrix

o R on]

Jr(x) = Oxy Oz Ozp,
Golden section and . . .

quadratic

o O Ofn

Nelder and Mead - - Py _
oxy  Ox2 O0xp |
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The Newton method (cont.)

Given this notation, the multivariable Newton’s method! follows

Let x(0) € R™ be an initial solution
For k=0,1,2,..., until connvergence
Solve Jg¢ [x(k)}éx(k) = —f[x(k)}
Set  xFHD) = x(#) 4 5x(k)

At each iteration, a linear system with matrix J¢ [x(k)] must be solved

1gtt1) — o) _ p[a®] /5 [2)], 6 — (1) g0 p e = _pe ()
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f(x) =Vf(x)=0
Newton method e The Jacobian Jg [x(®)] of the system is the Hessian matrix H(x) of f

ot i e (computed at the generic iteration point x(k))

e e A Giwven x(0) ¢ R", for k=0,1,2,..., until convergence

Solve H[x(k)] ox(®) = — Vf [x(k)]
—— —_———
Jge {x(k)] f{x(k)] (11)

Set x* D = x(B) 4 5x(k)

A suitable stopping test

||x(/€+1) _ x(k) H <ege, &> 0is the tolerance
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2 % [ROOT,RES,ITER]=SNWT(F_FUN,J_FUN,X_0,TOL,IMX) Calculate
Unconstrained 3 % vector ROOT, the zero of a nonlinear system defined in
i % F_FUN with Jacobian J_FUN, from initial point X_O
Newton method 5 %

6 % RES is residual in ROOT and ITER is number of iterations

7 % F_FUN e J_FUN are external functions (as M-files)

optimisation

Line-search
Descent directions
Step-length oy
Newton directions o iter=0; x=x_0; err=1+tol;

Quasi-Newton

directions 11 while err >= tol & iter < imx

Gradient and 12 J = J_fun (X) ]

conjugate-gradient

directions 17 F = F_fun(x);

T 11 deltax = -J\F; %(Matlab/0Octave backslash operator)
15 x = x + deltax;

inﬂ““”‘ 16 err = norm(deltax); iter = 1+iter;

east-squares
17 end

Gauss-Newton

) 1z res = norm(F_fun(x));
Levenberg-
Marquardt 19

20 if (iter==imx & err > tol)

Derivative-free 2
Golden section ana | 21 disp(’ [Out by KMAX]’);
quadratic 22 else
interpolation K
23 dis >[0ut by TOL]’ 5
Nelder and Mead pC L y 17005
24 end
.

25 return
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1 function F = F_fun(x)
Unconstrained 2> F(1,1) = F_1(x_1,x_2,...); % Add your own expression
@pmERiEn 3 F(2,1) = F_2(x_1,x_2,...); % Add your own expression
Newton method 1 oo
Line- " 5 F(N,1) = F_N(x_1,x_2,...); % Add your own expression
Descent directions L’
Step-length oy, 7 return
Newton directions
S e | function J = J_fun(x)

Pt o) 2 J(,1) = dF_1 / dx_1; % Add your own expression
: 1gate-gradient 3 J(1,2) = dF_1 / dx_2; % Add your own expression
directions

4 ..
Trust-region B
Nonlinear o J(2,1) = dF_2 / dx_1; % Add your own expression
least-squares 7 J(2,2) = dF_2 / dx_2; % Add your own expression
Gauss-Newton 8 P
Levenberg- 9
Marquard:

e 0o J(N,1) = dF_N / dx_1; % Add your own expression
Derivative-free 11 J(N,2) = dF_N / dx_2; % Add your own expression
Golden section and )
quadratic 2 ct
interpolation 13

Nelder and Mead 14 return



Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2017.2

Newton method

The Newton method (cont.)

Consider the nonlinear system of equations

fi(zr, z2) = I12 +x22 =1l

. ™ 3
fo(z1, 22) = sm(5x1) +z3 =0

The system has two solutions
e = (0.47,—0.88) and ~ (—0.47,0.88)
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Newton method

Descent directions

The Newton method (cont.)

fi(zr, z2) = I12 +x22 =1

. ™ 3
fo(z1, 22) = sm(Ezl) +33 =0

Step-length o
Newton directions I function F=F_fun(x)
Quasi-Newton 2 hpi = 0.5%pij;

directions

Gradient and
conjugate-gradient

directions

return

F(1,1) = x(1)°2 + x(2)°2 = 1;
I F(2,1) = sin(pih*x(1)) + x(2)°3 = 0;

| function J=J_fun(x)

Gauss-Newton 2 hpi = 0.5%pi;
ST e ;o J(1,1) = 2*%x(1);
arquardt

o J(1,2) = 2%x(2);

5 J(2,1) = hpi*cos(hpi*x(1));

Gold

quadratic

sction and

7 return

interpolation

Nelder and Mead

6 J(2,2) = 3*x(2)°2;



Unconstrammea L€ Newton method (cont.)

optimisation

UFC/DC
CKO0031/CK0248
2017.2

Unconstrained

optimisation

Newton method

Suppose we start the solution from point x(® = (1,1)7

Line-search

Descent directions
ot Let € = 0.00001 be the user-defined tolerance

Newton directions

Quasi-Newton

T 1 x_0=[1;1]; % Initial solution
3ra 2 tol=1le-5; % Tolerance
R " 3 imx=20; % Iteration

]

TR 5 [x,res,iter] = sNWT(QF_fun,@J_fun,x_0,tol,imx);
Nonlinear
I

G

t-squares

Newton -

Levenberg-
Marquardt

Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead
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Newton method

Descent direction:
Step-length a
Newton directions

Quasi-Newton

interpolation

Nelder and Mead

The Newton method (cont.)

f(x) =2/5—1/10(5z2 + 522 + 3120 — 11 — 2x2)e[_ (o3 +23)]

7

.. {75
o
7]

N,
1%

W

TN

We want to approximate the global minimum x* ~ (—0.63, —0.70)
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Newton method

Descent directions
Step-length
Newton directions

Quasi-Newton
directions

Gradient and
conjugate-gradient
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Netwon’s method with a tolerance ¢ = 102
Let x(© = (-0.9,-0.9)
~ After 5 iterations the method converges to x=[-0.63058;-0.70074]

Let x(©) = (—1.0,-1.0)
~ After 400 iterations the stopping criterion is still not fulfilled
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Newton method

Descent directions
Step-length
Newton directions

Quasi-Newton
directions
Gradient and

conjugate-gradient
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Moreover, Newton’s method may converge to any stationary point

e (a point that is not necessarily to a minimiser)

With x(©) = (40.5, —0.5)
~~ After 5 iterations the method converges to the saddle point
e x=[0.80659; -0.54010]
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The Newton method (cont.)

A necessary condition for convergence of Newton’s method

o x(9 should be sufficiently close to the minimiser x*

The local convergence property of the method
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Newton method

The Newton method (cont.)

General convergence criterium for the Newton’s method

If f € C2(R™) with stationary point x*
~ Positive definite Hessian H(x*)

~ Lipschitz continuous components of H(x) in a neighbourhood of x*

Then, for x(?) sufficiently close to x*, it converges (quadratically) to x*
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Newton method

Descent directions
Step-length
Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

In spite of a simple implementation, the method is demanding for large n

~~ It requires the analytic expression of the derivatives
~~ The computation of both gradient and Hessian of f

o (Gradient and Hessian at each iteration)

Let alone that x(°) has to be chosen near enough x*
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Newton method

Step-length o A valid approach to design efficient and robust minimisation algorithms
Newton di 1

Quasi-Newton ~» Combine locally with globally convergent methods

Global convergence guarantees convergence to a stationary point
e (not necessarily a global minimiser)
e For all x(©) ¢ R”




Line-search methods

Numerical optimisation
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Line-search
Descent directions
Step-length
Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

Line-search methods

Line-search or descent methods are iterative methods
Suppose that f € C2(R™) and that it is bounded from below

For every step & > 0, let x(¥+1) be the next point of the minimising sequence

Point x(*+1) is determined from

~ Point x* and vector d(¥)

Vector d(¥) itself depends on
~» The gradient Vf [x(k)] of f
~+ A step-length parameter oy € R
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Line-search

De

Line-search methods (cont.)

The formulation of the method

Let x(9) € R" be an initial minimiser
Find direction d*) € R"

Compute step-length oy € R

Set x(k+1) = x(¥) 4 o, d(k)
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Line-search

Line-search methods (cont.)

Vector d%) must be a descent direction

A descent direction satisfies the following conditions
dPvix®] <o, FVvfxP]#£0 )

d® =0, ifvi[x®]=0

o Vf [x(k)] gives the direction of max positive growth of f from x(¥)
o APV [x(k)] is the directional derivative of f along d(*)

First condition ensures moves in a direction opposite to the gradient

~~ The iterates move towards a minimiser
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Unconstrained
optimisation

Newton method

Line-search
Descent directions
Step-length
Newton directions

Quasi-Newton
directions

Gradient and
conjugate-gradient
directions

I'rust-region
Nonlinear
least-squares
Gauss-Newton
Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Line-search methods (cont.)

Contour lines of function f(x) and its gradient vector evaluated at x(¥)

o d(*) is a suitable descent direction

4

]

Optimal value o € R guarantees max variation of f along d(¥)

e Once d*) is determined
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UFC/DC «ay, can be computed by solving a one-dimensional minimisation problem
CK0031/CK0248 . . i
2017.2 o Minimise the restriction of f(x) along d(F)
e . Xffi)n is the minimiser along d(*)
optimisation
Newton method
045 —

Line-search s "K’:}’::‘%&‘
Descent directions SRR _

. 035, SR 0

Step-length oy \\\\\\\\\\“\\“““ !

Newton directions 0.3 \QS\::S&:\\:\\\\“\““““““‘“"'QQ“\ R
Quasi-Newton 025 \\\\\\\\\\\\‘ 9%08.47 % \‘\

directions i \\\\5\\\\\\\

Gradient and NS \ ‘

conjugate-gradient =

directions 0.15
I'rust-region

Nonlinear 0.05

least-squares

Gauss-Newton
Levenberg-
Marquardt

Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

The computation of «y, is quite involved (when f is not quadratic)

~~ There are alternative techniques that approximate oy well



Descent directions

Line-search methods
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Descent directions

Step-length

Nelder and Mead

Descent directions

Newton’s directions

d® — _g—1 [x(k)]Vf [x(k)]

o Matrix H[x(*)] is the Hessian matrix at the k-th step
e Vector Vf[x(k)] is the gradient vector at the k-th step

Quasi-Newton directions

d® = —H_ 'vi[x®]

e Matrix Hy is an approximation of the true Hessian H[x(k)]

e It is used when second derivatives are heavy to compute

(13)

(14)
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Unconstrained
optimisation

Newton method

Line-search
Descent directions
Step-length
Newton directions

Quasi-Newton
directions

conjuga:

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

Gradient directions

d®) = —vf[x*] (15)
o These are quasi-Newton directions, with Hy =1, Vk >0

Conjugate-gradient directions

d©® = _vy [X(O)]

1
A+ = _vp[x*HD] 4 gd®, k>0 (16)

o Coefficients B can be chosen according to different criteria
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Descent directions
Step-length o
Newton directions
Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

For all £ > 0, gradient directions are valid descent directions

d®vfx®] <o, if vi[x®P]#£0

17
d® =0, if vf[x¥] =0, 4

Conjugate-gradient directions are valid directions for some suitable S

Newton’s and quasi-Newton’s directions can also be valid directions

o H[x(®] and Hj need be positive definite matrices
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f(x) =2/5—1/10(5z3 + 523 + 32120 — 1 — 212)6[*(1'12“22)]

Descent directions
Step-length a
Newton directions

Quasi-Newton

= f (@1, 22)

fx)

@idlom cosidion pov 2_9o T2
interpolation 1
Nelder and Mead

Two local minimisers, one local maximiser and two saddle points
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Unconstrained
optimisation
Newton method

Line-search

Descent directions

Step-length oy,
Nt dFsions We compare sequences {x(k)} from Newton’s and descent methods

Quasi-Newton

e Various descent directions
(0) (0)

e From x; 7 and x,
I'rust-region
Nonlinear
t-squares
G -Newton

Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead
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Descent directions
Step-length
Newton directions
Quasi-Newton
directions
Gradient and

conjugate-gradient

directions

Levenberg

Marquardt

n section anc

Nelder and Mead

Descent directions

x{? = (0.5,-0.5)

2

(cont.)

151

descent quasi-Newton

a— Newton

descent Newton

N0 \
2 descent grad,

quasi-Newton,; GC
descent grad x(U)
1

Newton

descent Newton
descent GC-PR

e Newton’s method converges rapidly towards the saddle point

e Newton’s directions take a first step identical to Newton’s

0 0.5 1 1.5

~» Then collapse due to a non-positive definite matrix Hy,

e Others converge with different speeds into a local minimum

e Fastest convergence by quasi-Newton’s directions




Unconstrainea D€ScCent directions (cont.)

optimisation
0
UFC/DC xg ) = (0.4,0.5)
CKO0031/CK0248
2017.2 2

a—— Newton

descent Newton

Descent directions 05
Step-length o U
X2

descent grad,
descent GC-FR quasi-Newton, GC b

0
descent grad xg )

Newton directions

Quasi-Newton oF
directions

Newton

Gauss-Newton -1.51 - descent quasi-Newton

Levent

descent Newton
descent GC-PR

2 I L I I L I I
-2 -15 -1 -0.5 0 0.5 1 1.5 2

Marquardt

e Newton’s method diverges

cillor vl ikl e Newton’s directions converge to a local minimum
~~ Newton’s method and directions share the same first direction

e All others also converge to the same local minimiser



Descent directions (cont.)




Step-length ay,

Line-search methods
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Unconstrained
optimisation
Newton method

Line-search

Descent directions
Step-length o
Newton directions

Quasi-Newton
directions

Gradient and
conjugate-gradient
directions

Trust-region

Nonlinear
least-sq

Gauss-Newton

Levenberg-

Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Step-length oy,

Let d(®) be a descent direction

e How to set the step-length «y,

The new iterate x(*+1) is (should be) the minimiser of f along d(*)

w9
WIS
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Descent directions
Step-length oy
Newton directions

Quasi-Newton

directions

directions

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

Step-length a; (cont.)

The new iterate x(*+1) should be the minimiser of f along da®
Choose ay, such that the minimisation is exact

«j, = arg min f[x(k) + ad(k)]
a€ER

or

f[x(k) + akd(k)] - Zunei%f[xw) + ad(k)]

(18)



Unconstrained Step'length ak (COl’lt.)

optimisation

UFC/DC
CKO0031/CK0248
2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions . .

Sten 12' s a' A second-order Taylor expansion of f around x(*) yields
length oy

Newton directions

Quasi-Newton

directions f[x(k) + ad(k)] — f[x(k)] + ad(k)Vf [x(k)] + izd(k)TH[x(k)]d(k)
3 2

Gradient and

jugate-gradient
directions

+o(llad® ) (19)

Nonlinear
least-squares

Ga Newton

Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead
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Descent direc

Step-length oy

Step-length oy, (cont.)

Consider the special case in which f is a quadratic function

1
flx) = 5xTAx —xTb+c¢
o A € R"*" symmetric and positive definite
e beR"

e ceR

The expansion is exact, the infinitesimal residual is null

2 .
Fx® + ad®] = f[x®] + ad®vf [x®)] + %du«)’ H[x("]a®

+ o(llad )
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For every k > 0, we have
0] = LT Axc(k) _ 50T
f[x ] = Ex Ax'\") —x b+c
Descent directions Vf [X(k)] — Ax(k) — b= —I'(k)

Step-length oy

v x®P] =H[x®] = A

dient and
-gradient

a?
Differentiate f [x(k)—i-ad(k)] f [x(k)] +ad® vy [x(k)] ?d(k)TH[x(k)]d(k)

wrt a and set the derivative equal to zero to get minaeuef[x(k) + ad(k)]

Tf[ )+ akx(k)] = —d®" k) 4 ard®Ad® =0
ay,

- 20
FIORNG)! (20)

d®) T Adk)

section and Q=

der and Mead
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Unconstrained
optimisation

Newton method

Line-search
Descent directions
Step-length o
Newton directions

Quasi-Newton
directions

Let d(®) be gradient directions, d(¥) = —Vf(x(*)) = ¢(¥)

~~ The gradient method for solving linear systems

Gradient and
conjugate-gradient
directions

I'rust-region
Nonlinear
least-squares
Gauss-Newton
Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead
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Let d* be conjugate-gradient directions, dk+1) = —vf [x(k+1)] + Bd )
Descent directions
Step-length a; Set,
[Ad®] T
T AT Ad®

conjugate-gradient

(21)

~~ The conjugate-gradient method for solving linear systems

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead
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Descent direc n

Step-length oy
Newton dire 1

Quasi-Newton
rection

Gradient an
njugate-gradient

rection

Step-length oy, (cont.)

Let f be a non-quadratic function

The computation of the optimal oy, requires an iterative method

~~ Numerical solution of minimisation along d(*)

~~ Demanding and often not worth it

~ Stick with an approximation of ay,
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Unconstrained

optimisation
Newton method

Line-search
Descent directions

Step-length oy How to pick a good approximated value of ay?

Newton directions

Quasi-Newton

Impose a condition to the new iterate x(k+1) = x(®) + apd®

wf[x(k""l)] < f[x(k)] (22)

[rust-region

Nonlinear
les

G

t-squares

-Newton

Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead
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A natural strategy for setting ay
Descent direc
gtﬂplmg‘th o o Initially assign a large oy,
e Then, reduce it iteratively

e Until, f[x(k+1)] < f[x(k)] is satisfied

The strategy does not guarantee a {xk’ } that converges to x*
e Steps can be too long (go beyond the minimum)

e Steps can be too short (get infinitesiamal)
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Descent direc

Step-length oy

Step-length oy, (cont.)

There exist alternative (better/reliable) criteria for ay > 0

~» Wolfe’s conditions

Let ay, be the step-length
ay, s accepted if

F[x® + a,d®] < f[x<k>]+mkd<k> Vi [x®)]

(23)
FIORR Vf[x *) + apd )] sa®’ Vf[x ]

The two additional parameters, constants o and §

e 0<o<i<1

d® vy [x(k)] is the directional derwative of f along direction d(F)
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Descent directions

Step-length oy

Nelder and Mead

Step-length a; (cont.)

f[x(k) T akd(k)] < f[x(k)] + crakd(k)TVf [x(’c)]
d® v [x®) 4 ad®] > 6d® " v [x9)]

First condition (Armijo’s rule) inhibits too small variations of f

o With respect to step-length and directional derivative

Changes in f need be proportional to step-length and directional derivative



Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Descent directions

Step-length oy

gradient

Gauss-Newton
Levenberg-
Marquardt

Golden sect and
qus

interpolation
Nelder and Mead

Step-length a; (cont.)

The terms in the first of the two Wolfe’s conditions, for o = 0.2
FIx®) 4 0 d®] < f[xB] + sard®’ v [x®)]

0.5

0.45(

PR 4 oa@t)T v px(R))

0.4
0.35
0.3
0.25
0.2
0.15

0.1

0‘050 0.2 0.4 0.6 0.8 1

Condition is satisfied for a corresponding to the continuous line
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>rpolation

Nelder and Mead

Step-length oy, (cont.)

f[ (k)—i-akd ] f[ (k)]—i—aakd(k) Vf[ ]
d® v [x®) 4 ad®] > 6d® " v [x®)]

Second condition states that the directional derivative of f at new point
x) 4+ apd®) should be § times larger than it was at point x(¥)

o Point x(*) + a;d(® is a valid candidate if f at such point decreases less
than it does at x(*) (closer to a minimiser)

This second condition prevents steps whose length would be too small

e Happens where f has a largely negative directional derivative
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Descent directions
Step-length oy
Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

Step-length a; (cont.)

Lines with slope 5d(k)TVf [x(k)] in second condition, § = 0.9

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.05
0

Condition is satisfied for o corresponding to the continuous line

d® v [x®) 4 ad®] > sd® " vf[x®)]

s(@FNHT v f(x(k))
—

N (d(k))va(x(k))
TREY o8 o8

(07
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BT CRC AR Wolfe’s conditions are jointly satisfied in the interval
Step-length a;

Jevton e 0.23<a <041 or 062 < a<0.77

Quasi-Newton
directions
Gradient and

conjugate-gradient

Bratione Values of a € [0.62,0.77] are far from the minimiser of f along d(*)

e Also a where the directional derivative is large are accepted

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead
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Descent direc

Step-length oy

Step-length oy, (cont.)

Wolfe’s strong conditions

FIx® + ard®] < f[x®] + cord® v [x(®]

- - (24)
[d® 7 f [x®) 4 a,d®]| < —5d®) " wf[x®)]

This conditions are more restrictive (duh!)

e The first condition is unchanged

e The second one inhibits f from large variations about x(®) + a;,d(*)
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CHOOSICI0228 Acceptable o must belong to small intervals around the minimisers
o (thick continuous arcs)
0.5
451 1
045 F0)) 4 oa@®)T v pk)

Descent directions o 4

Step-length a; )

Newton directions 035

Quasi-Newton

. 0.3
c gradient
« 0.25
0.2
‘ 0.15
Gauss-Newton
et 0.1 clope £6@)T k) 1
0.05 ‘ ‘ ‘ ‘
Golden section and 0 0.2 0.4 0.6 0.8 1

interpolation

Nelder and Mead

e Forc =0.2and § =0.9



Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Descent direc

Step-length oy

Step-length oy, (cont.)

Suppose that f € C2(R™) is bounded from below in {x(k) +ad® o> 0}

o Let d(®) be a descent direction at x(*)

It can be shown that for all o and ¢ such that 0 < o < § < 1 there exist
non-empty intervals of oy, that satisfy Wolfe’s weak and strong conditions

In practice?, o is usually chosen to be very small (e.g., o = 104)

Typical values for §
e 6 = 0.9 for Newton, quasi-Newton and gradient directions

e 6 = 0.1 for conjugate-gradient directions

2J. Nocedal and S. Wrigth (2006): Numerical optimization.



Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Descent direc

Step-length oy

Step-length oy, (cont.)

A strategy for step-lengths «ay that satisfy Wolfe’s conditions

Backtracking
e Start with a =1
e Then reduce it by a given factor p (tipically, p € [0.1,0.5))

e Until, the first weak condition is satisfied

For x(*) and a direction d(¥), for o € (0,1) and p € [0.1,0.5)

Seta=1
while f[x®) + ad®] > f[x®)] + cad® V[ [x(*)]
a = pa
end
Set o, = «

Second condition is never checked, as step-lengths are not small
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Newton method

Line-search
Descent directions
Step-length o

Newton directions

Quasi-Newton
directions

ss-Newton
Levenberg-
Marquardt
Derivative-free
Golden section and
quadratic
interpolation
Nelder and Mead

Step-length oy, (cont.)

function [x,alpha_k]=bTrack(fun,x_k,g_k,d_k,varargin)

%BTRACK Backtracking with line search

% [X,ALPHA_K]=BTRACK(FUN,X_K,G_K,D_K) x_{k+1}=x_k+alpha_k*d_k
% in the descent method, alpha_k by backtracking with

% sigma=le-4 and rho=0.25

% [X,ALPHA_K]=BTRACK(FUN,X_K,G_K,D_K,SIGMA,RHO) sigma and rho
% can be inputed - sigma in (l1e-4,0.1) and rho in (0.1,0.5)

% FUN is the function handle of the objective function

% X_K is element x_k, G_K is the gradient, D_K is d_k
if nargin == 4
sigma = 1.0e-4; rho = 1/4;
else
sigma = varargin {1}; rho = varargin {2};
end
minAlpha = 1.0e-5; 7 Smallest steplength
alpha_k = 1.0; f_k = fun(x_k);

k = 0; x = x_k + alpha_k*d_k;
while fun(x) > f_k+sigma*alpha_k*g_k’*d_k & alpha_k > minAlpha
alpha_k = alpha_k*rho;
x = x_k + alpha_k*d_k; k =
end

k+1;
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Step-length oy, (cont.)

The descent method with various descent directions

e oy is determined by backtracking

%DSCENT Descent method of minimisation

%[X,ERR, ITER]=DSCENT (FUN,GRAD_FUN,X_0,TOL,KMAX,TYP,HESS_FUN)
% Approximates the minimiser of FUN using descent directions
% Newton (TYP=1), BFGS (TYP=2), GRADIENT (TYP=3), and the

% CONJUGATE-GRADIENT method with

7 beta_k by Fletcher and Reeves (TYP=41)

% beta_k by Polak and Ribiere (TYP=42)

% beta_k by Hestenes and Stiefel (TYP=43)
P2
%

Step length is calculated using backtracking (bTrack.m)
% FUN, GRAD_FUN and HESS_FUN (TYP=1 only) are function handles
% for the objective, gradient and Hessian matrix

% With TYP=2, HESS_FUN approximates the exact Hessian at X_O

% TOL is the stop check tolerance
% KMAX is the maximum number of iteration
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Step-length oy
Newton direction

Quasi-Newton

function [x,err,iter]=dScent (fun,grad_fun,x_0,tol,kmax,typ,
varargin)
if nargin>6; if typ==1; hess=varargin{1i};
elseif typ==2; H=varargin{1}; end; end

err=tol+1l; k=0; xk=x0(:); gk=grad(xk); dk=-gk; eps2=sqrt(eps);

while err>tol & k<kmax

if typ==1; H = hess_fun(xk); dk = -H\gk; % Newton
elseif typ==2; dk = -H\gk; % BFGS
elseif typ==3; dk = -gk; % Gradient
end

[xk1,alphak]=bTrack (fun,xk,gk,dk);
gkl=grad_fun (xk1);
if typ==
yk = gkl-gk; sk = xkl-xk; yks = yk’*sk;
if yks > eps2*norm(sk)*norm(yk)
Hs=Hx*sk; H=H+(yk*yk’)/yks-(Hs*Hs’)/(sk’*Hs);

end

elseif typ>=40 % CG upgrade
if typ==41; betak=(gkl’*gkl)/(gk’*gk); V)
elseif typ==42; betak=(gkl’*(gkl-gk))/(gk’*gk); yA
elseif typ==43; betak=(gkl’*(gkl-gk))/(dk’*(gkl-gk)); %
end

dk = -gkl + betak*dk;

end

xk = xk1; gk = gkl; k = 1 + k; xkt = xki;

for i=1:1length(xk1l); xkt(i) = max([abs(xk1(i)),1]); end
err = norm((gkl.*xkt)/max([abs(fun(xk1)) ,1]1),Inf);
end

x = xk; iter = k;

if (k==kmax & err>tol); disp(’[KMAX]’); end

% BFGS update
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Descent directions
Step-length o

Newton directions

interpolation

Nelder and Mead

Descent method with Newton’s directions

Let us consider a descent method with Newton’s directions

~~ Newton directions

d®) — _g-! [x(k)]Vf [x(k)]

Let step-lengths «y satisfy Wolfe’s conditions
~~ Wolfe step lengths ay,

F®) 4+ apd®)y < f[x(k)] + o-akd(k)'jvvf [x(k)]
d® ' wr[x®) 4+ apd®] > 6d® " v [x¥)

Let f € C%(R") bounded from below
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Descent method with Newton’s directions (cont.)

Find direction d®) ¢ R™
Compute step ai € R

Set x(k+1) = x(k) 4 o, 4(k)
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Descent directions
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Newton directions
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gradient

Gauss-Newton

Nelder and Mead

Descent method with Newton’s directions (cont.)

Suppose that the Hessian H[x(k)] is symmetric, for all £ > 0
~ (from the assumption on f)

Suppose that H[x(k)] is also positive definite (no uphill moves)

Let By = H[x(*)]

Suppose that IM > 0: K(By) = ||B||,||B; ||, < M, for all k > 0
o K(By) is the (one) spectral condition number of By,

e Uniform upper bound on the condition number

Then, Newton’s sequence {x(k)} converges to a stationary point x*

~ By letting ay, = 1 for k > k, the converge is quadratic
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Quasi-Newton

Descent method with Newton’s directions (cont.)

Let A € R"*"™ be a matriz

Consider the problem of finding a scalar X (complex or real) and a non-null
vector x € C" such that
Ax = \x

Any X that satisfy this equation is an eigenvalue of A

e x is the corresponding eigenvector

The spectral condition number of A is the quantity

)\’muw

K(A) =

)\min
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Descent method with Newton’s directions (cont.)

If Hessians are positive definite, x* cannot be a maximiser or saddle point

e The stationary point must necessarily be a minimiser

It can happen that H[x(k)] is not positive definite for some point x(*)
o d*) may not be a descent direction

e Wolfe’s conditions might become meaningless
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Descent method with Newton’s directions (cont.)

Hessian can transformed to make them positive definite

B, = H[x®] + E,

e E; is some suitable matrix (either diagonal or full)
e Ej is such that d(F) = —B,;1Vf [x(k)] is a descent direction
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Descent method with quasi-Newton

Let us consider a descent method with quasi-Newton directions

e Quasi-Newton directions
k -1 k
a® — -H; Vf[x( )]
~» Hj approximates the true Hessian H[x(k)]

Let step-lengths «y satisfy Wolfe’s conditions
~ Wolfe step lengths ay,

F&® 4 apd®) < f[x(k)] T aakd(k)TVf [x(k)]
d® ' wrx®) 4 apd®] > 6d® " v [x#)]

Let f € C2(R") bounded from below
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Descent method with quasi-Newton’s directions
(cont.)

Suppose we are given a symmetric and positive definite matrix Ho

~» How do we build matrices H;?

There exists a popular technique used for solving nonlinear systems

~» The recursive Broyden’s rank-one update



e Descent method with quasi-Newton’s directions

optimisation (Cont.)

UFC/DC
CKO0031/CK0248
2017.2

Matrices Hy, are required the satisfy certain conditions

e They must satisfy the secant condition

Hjqq [x(k+1) _ x(k)] =Vf [X(k+1)] -Vt [xk]

Descent directions

Step-length o

Newton directions

Quasi-Newton

et e They must be symmetric, as H(x)

Gradi

SR e They must be positive definite, d(¥) are descent

e They must satisfy

i [|[Hy — H(x*)]d®)||
1im =
k00 [|d®)]|

Gauss-Newton

This ensures that Hj is a good approximation of H[x*] along the
descent direction d(*) and guarantees a super-linear rate of convergence

Nelder and Mead
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directions
Gradient an

Descent method with quasi-Newton’s directions
(cont.)

A strategy by Broyden, Fletcher, Goldfarb and Shanno (BFGS)

y®y®T  Hs® 50 HT
xOTgk) T H, sk

Hk+1 =H; + (25)

o s(b) = (k1) _ (%)

° yk =Vf [x(k+1)] - Vf [x(k)]
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Descent method with quasi-Newton’s directions
(cont.)

BFGS is a descent method, with quasi-Newton d(*) and Wolfe’s ays

s d®) = —H,;lVf[x(’“)]

F&® 4 apd®) < f[x(k)] T gakd(k)TVf {x(k')]
d® " vrx®) 4 apd®] > 6d® " v [x®)]

Let x(©) be an initial solution
Find direction d¥) € R"
Compute step length oy € R

Set x(k+1) = x(F) ¢ o, d(*¥)
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Descent method with quasi-Newton’s directions
(cont.)

Let xO be an initial solution

Let Hg € R"™ "™ be a suitable symmetric and positive definite matriz

~ Hp € R"*™ approzimates H[x(o)]
Solve Hyd® = —Vf[x()]
Compute ay, that satisfies Wolfe’s conditions
Set
xFHD) — 5 (B) 4 o d®)
s(k) — x(k+1) _ (k)
y® = vr {x(/ﬂl)] - Vf [x(k)]

y®y®"  Hs®s® HT

C te H =H = — =
ompute Hy 1 k-l-x(k)js(k) s(k’)lHks(’“)
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Descent method with quasi-Newton’s directions
(cont.)

The cost of calculating d(®) is O(n3), at every iteration k > 0
e Can be reduced to O(n?) by using recursive QR on Hy,

Setting Ho = I gives faster convergence to x*

~~ Some experimental evidence, only
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Descent method with quasi-Newton’s directions
(cont.)

Rosenbrock’s function
f(x) =1 —21)% +100(z2 — z?)?2

Let € = 10~% be the tolerance

x_0

[+1.2; -1.01;
fun = @(x) (1-x(1))"2 + 100*(x(2)-x(1)"2)"2;

options = optimset (’LargeScale’,’off’); % Switches to BFGS
[xstar ,fval ,exitflag,output] = fminunc (fun,x_0,options)

Convergence after 24 iterations and 93 function evaluations

We did not input an expression for evaluating the gradient
e It was, silently, approximated

o (finite difference methods)
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We can define and input the analytical gradient

Descent directions

SHETRLREED & x_0 = [+1.2; -1.0]1;

Newton directions

Quasi-Newton

directions fun = @(x) (1-x(1))"2 + 100*x(x(2)-x(1)"2)"2;

Gradient and grad_fun = @(x) [-400*(x(2)-x(1)"2)*x(1)-2*%(1-x(1));
i +200% (x(2)-x (1) "2)1;

options = optimset (’LargeScale’,’off’,’Grad0bj’,’on’);
[xstar ,fval ,exitflag,output] = fminunc ({fun,grad_fun},...
x_0,options)
Gauss-Newton

Levenberg-
Marquardt

Convergence after 25 iterations and 32 function evaluations

Golden section and
quadratic
interpolation

Nelder and Mead
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Descent direction
QuasiTNeWton
??re?tléx‘s ; In Octave, BFGS is implemented by the M-command bfgsmin

e M-command fminunc implements a different method

direction

e (A trust-region method)




Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2017.2

Unconstrained
optimisation
Newton method

Line-search

scent directions

-length ay
Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Trust-r

Nonlinear

least-squares
Gauss-Newton
Levenberg-
Marquardt

Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Descent method with gradient
and conjugate-gradient
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Line-search methods
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Gra
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Gradient and conjugate-gradient directions

Let us first consider the general descent method

Find direction d®) € R
Compute step ai € R

Set x(:+1) = x(*) 1 o, d(*)

The gradient (descent) directions

d®) = —vr(x*)

If f € C2(R™) is bounded from below and step lengths oy, are Wolfe

~» This method converges (linearly) to a stationary point
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Descent directions . . . .
ot Let us now consider conjugate directions
Newton directions

Quasi-Newton d(o)

directions

—Vf(x(o))

Gradient and k41 k41 k
Sl (N d-+D — —Vf(x( + )) _ ,Bkd( )7 E>0
directions

[rust-region There are several options for setting Sy,

Nonlinear

least-squares

Ga -Newton

Levenberg-

Marquardt

Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead
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Gradient or conjugate-gradient directions (cont.)

~ Fletcher-Reeves

NS

5FR — _
ST
~ Polak-Ribiere (-Polyak)

_ \i [x(k)] T{Vf [X(k)] vy [X(k—l)] }
|| V£ [xE-D]|]?

PR
Bk -

~~» Hestenes-Stiefel

HS _ _Vf [x(k)] T{Vf [x(k)] T Vf[x(kfl)]}

T AT <) - Vi)

(26)

(27)

(28)
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Descont diee " _

Suppose true the condition that f is quadratic and strictly convex

e Then, all the aforementioned options are equivalent
Gradient and
conjugate-gradient

directions {Ad(k)] T p(k+1)
T dWTAd®




Trust-region methods

Numerical optimisation
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Trust-region methods

Line search methods are designed to set first the descent direction da®
e Then, they determine the step-length ay
These steps are performed at each k-th step

Trust-region methods simultaneously choose direction and step length

This is done by building a ball of radius 8 centred at x(¥)
e The ball is the trust region, at iteration k

‘Within the ball, a quadratic approximation fk of f is computed
e The new x(*+1) is the minimiser of fk in the trust region
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Descent directions
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Newton directions

Quasi-Newton
directions
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conjugate-gradient

directions

Trust-region

Gauss-Newton

Levenberg-

Marquardt

Convergence history and quadratic approximation fk at step k =8

Golden section and
quadratic
interpolation

Nelder and Mea
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To compute fk, we start with some trust radius §; > 0
e Determine a second-order Taylor expansion of f about x(F)
7 0 #7] 4 L7 n
Descent directions fk:(s) = f[x ] =+ SVf [X ] -+ ES HkS, Vs € R (29)

Step-length o

H,, is either the Hessian of f at x(*) or a suitable approximation

= o We then compute the solution s()
s = argmin  fi(s) (30)
sER™:|[s|| <4y

Trust-region

~ At this stage, we also compute the quantity

- Pk = A [s(k)] — }k(o) (31)

Gauss-Newton

Nelder and Mead
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Trust-region methods (cont.)

Ji[s®] — fe(0)

Pk =

A comparison between variation of f and variation of fj

~~ From point x(F) to point x(%) + s(®)

If pi is about one, the approximation is considered to e good



Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Descent directions
Step-length o
Newton directions

Quasi-Newton

directions

Gradient and
conjugate-gradient

directions

Trust-region

Gauss-Newton

Levenberg-

Marquardt

:n section and

ation

and Mead

Trust-region methods (cont.)

If pj is approximately one, we accept s*) and move on to next iteration
~~ We set x(k+1) = x(k) + S(k)

o (however, if the minimiser of fi lie on the boundary of the trust
region, we extend the latter before proceeding to next iteration)

If pi is either negative or positive (and much smaller than one)
~~ We reduce the ball’s size and calculate a new s(¥)
s® = argmin  fi(s)
seR™:|[s||<dy

If py, is much larger than one, we accept s(®) and keep the trust region

~~ Then we move to the next iteration
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Trust-region methods (cont.)

Consider the situation in which second derivatives of f are available

‘We could set Hy to be equal to the Hessian

e (or a variant, if not positive definite)

Otherwise, Hy can be built recursively
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Trust-region methods (cont.)

Let Hy be symmetric positive definite and let ||H,:1Vf [x(k)] || < 6k
e Then, sb) = HIZIVf [x(k)] is a minimiser

e It is within the trust region

Otherwise, the minimiser of fk lies outside the trust region
~~ We must solve the minimisation of fk
e Constrained to the d;-ball at x(¥)
Ji(s)

min
seR™:||s||=6y

This is a constrained optimisation problem

~» We can use the Lagrange multipliers

(32)
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At each iteration k, we look for the minimiser of the Lagrangian function

L(s,2) = fi(s) + 1/2A(sTs — &%)

Descent directions

Step-length o

To be optimised with respect to both s and the regularisation term A

We search for a vector s(*) and a scalar A(*) > 0 satisfying the system

gradient

Trust-region [Hk + )\(k)I:IS(k) = _Vf [X(k)]
[H; +2P1] is PSD (33)
[[s®]| — 65 =0

Nelder and Mead
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From [Hj +AMI]s(®) = —vf[x(M)], we compute s(*) = s(*¥) [x(¥)]
Stop-length a, We substitute it in |[s(¥)|| — 6, =0
Newton directions

Quasi-Newton 1 1
0] — S
S = o] [[s® BT 6
directions

Trust-region

The non-linear equation in A is equivalent to system (33)

e It can be solved using Newton’s method

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead
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Trust-region methods (cont.)

For some given \g, set g(k) = Vf [x(k)}

For 1=0,1,... (typically, less than 5 iterations are needed)
Compute st = [Hy + Agk)I]_lg(k)
Evaluate <p[)\gk)] = 1/||s§k) || = 1/6x
Evaluate ¢’ [)\gk)]

Compute )‘gi)l = )\Ek) - @Agk)/go/ P\Ek)]
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Vector sgk) is obtained by Cholesky factorisation of [Hk + AEMI]
e Provided that matrix B*) = Hj, 4+ )\Ek)l is positive definite

o If B(*) is symmetric (definition of Hy), its eigenvalues are all real

Usually, a regularised matrix ng) + BI is used instead of B(F)

e (8 should be larger than the negative eigenvalue of B(¥) of largest
modulus
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rection

Trust-region

Trust-region methods (cont.)

Cholesky factorisation
Let A € R™™"™ be a symmetric and positive definite matriz
A=RTR

R is upper triangular with positive elements on the diagonal



Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2017.2

Trust region methods (cont.)

For g(¥) = Vf [x(k)} and for some given Jy,

Solve Hys = —g(k) (means s = _Hk—lg(k))

IstH < 0 and Hj, is positive definite
Set s(F) =g
else
Let 31 be the negative eigenvalue of Hy with largest modulus
Set AP = 28|
For1=0,1,...
Compute R: RTR = H, + )\Ek)l
Solve RTRs = g(k), R7q=s
2 |Isll = ok

k k
Update A%, = X%+ (|1s]1/]1al]) o

+1

Set s(k) =g
endif
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Trust-region methods (cont.)

For a fast convergence, a good radius dj, is truly fundamental

The criterion for accepting a solution s(*) is based on a comparison

o The variation of f and that of its quadratic approximation fj,

As x*®) moves to x(*) 4+ s(*)

Fx® 450 — f[x®)]
fi[s®] — fi(0)

Pk =

o s s accepted, the ball is enlarged if the minimum is on the boundary

If pr =~ 0or pp <O

o s(F) is not accepted and the ball is diminished
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Trust-region

Gauss-Newton
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Marquardt
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Trust-region methods (cont.)

Let x( be an initial solution
Let the initial radius of the ball be d € (0,8) with maximum radius § > 0

Let {m, n2, 'yl,'yz} be the four real parameters for updating the ball
e 0<m<m<l1
e 0< 11 <1<y

Let 0 < pu < m1 be the real parameter for accepting a solution
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Trust-region methods (cont.)

Then, for £k =0,1,... until convergence

Compute f[x(k)], \%i [x(k)] and Hy,

Solve min (s
sER":||s||2<6

Compute py

If pp > 1

Set x(@+1) — x (k) 4 g(k)
else

Set x(k+l) = x(k)

endif

If pp <m
Set 01 = 716k
elseif m < pr, < m2
Set dp+1 = Ok,
elseif p, > n2 and |[s(F)|| = &
Set 0j4+1 = min{y26s, 5}
endif
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Choice of parameters?

~o = 1/4
Descent directions
e v o2 =3/4
Newton directions ~> ,Yl — 1/4
Quasi-Newton
directions e oyg = 8/4
Gradient and
conjugate-gradient
directions
Trstemasion e By choosing p = 0, we accept any step yielding a decrease of f

e By choosing p > 0, we accept steps for which the variation of f is at
least p times the variation of its quadratic model fj

Gauss-Newton

Levenberg-

Marquardt
Golden section and
quadratic

interpolation

Nelder and Mead

3J. Nocedal and S. Wrigth (2006): Numerical optimization.
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Unconstrained
optimisation

Newton method

t directions

Step-length oy
Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Trust-region

Nonlinear
squares

lea;
Gauss-Newton
Levenberg-
Marquardt

Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

%TREGION Trust region optimisation method
"A[X ERR, ITER]=TREGION (FUN, GRAD_FUN,X_O,DELTA_O,

S

)
)
%

TOL ,KMAX , TYP ,HESS_FUN)
Approximates the minimiser of FUN with gradient GRAD_FUN

If TYP=1 Hessian is inputed as HESS_FUN
If TYP NE 1 Hessian is rank-one approximated

FUN and GRAD_FUN (and HESS_FUN) are function handles
X_0 is the initial point

TOL is stop check tolerance

DELTA_O is initial radius of trust ball

KMAX are maximum number of iterations
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Gradient an
ynjugate-gradient
direction

Trust-region

function [x,err,iter]= tRegion(fun,grad_fun,x_0,delta_o0,
tol,kmax ,typ,hess_fun)

delta = delta_0; err = 1 + tol; k

= 0; mu = 0.1; delta_m = 5;
eta_l = 0.25; eta_2 = 0.75; gamma_1 =

0.25; gamma_2 = 2.00;

xk = x_0(:); gk = grad_fun(xk); eps2 = sqrt(eps);
if typ==1; Hk=hess_fun(xk); else; Hk=eye(length(xk)); end

while err > tol & k < kmax
[s]=trust_one(Hk,gk,delta);
rho=(fun(xk+s)-fun(xk))/(s’*gk+1/2%s’*xHk*s) ;
if rho > mu; xkl1 = xk + s; else; xkl1 = xk; end
if rho < eta_1; delta = gamma_1x*delta;
elseif rho > eta_2 & abs(norm(s)-delta) < sqrt(eps)
delta=min([gamma_2*delta,delta_m]) ;
end
gkl = grad_fun (xk1);
err = norm((gkl.*xkl)/max([abs(fun(xk1)) ,1]1),Inf);
if typ == 1; xk = xk1; gk = gkl; Hk = hess_fun(xk); 7 Newton
else % quasi-Newton
gkl = grad(xk1l); yk = gkl-gk; sk=xkl-xk; yks = yk’*sk;
if yks > eps_2*norm(sk)*norm(yk)
Hs = Hk#*sk; Hk = Hk+(yk*yk’)/yks-(Hs*Hs’)/(sk’*Hs);
end
xk = xk1; gk = gki;
end
k=k+1;
end

x = xk; iter = k;
if (k==kmax & err>tol); disp(’Accuracy not met [KMAX]’); end
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Descent directions
Step-length o
Newton directions
Quasi-Newtor
directions
Gradient and
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directions

Trust-region

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Trust-region methods (cont.)

function [s] =
maxiter=5;

trust_one (Hk,gk,delta)

s = -Hk\gk; d =

evalue

eigs(Hk,1,’sa’); % 1st smallest algebraic

if norm(s) > delta | d<O
lambda = abs(2*d); I =
for 1l=1:maxiter
R = chol(lambda*I+Hk) ;
s = -R\(R’\gk); q = R’\s;
lambda = lambda+(s’*s)/(q’*q)*(norm(s)-delta)/delta;
if lambda < -d
lambda = abs(2*lambda) ;
end
end
end

eye(size (Hk));
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Trust-region methods (cont.)

Approximate the minimiser of function

z1 + 222 + 22122 — 5x12 — 59622

flz,22) =7/5+ [5exp (22 + 22)]

Use the trust-region method

A local maximum, a saddle point and two local minima
e The local minima are near (—1.0,+40.2) and (+0.3, —0.9)

e The second minimum is the global one



Unconstrainea  LrUSt region methods (cont.)

optimisation

UFC/DC
CK0031/CK0248

2017.2

fun = @(x) (x(1)+2xx(2)+2xx(1)*x(2)-5*x(1)"2-5xx(2)"2) /
(5xexp(x (1) "2+x(2)"2)) + 7.5;

?i;;:??ﬁ“w grad_fun = @(x) [(1 + 2xx(2)-10*x (1) -2*x(1)*(x(1)+2*xx(2) +
2xx (1) *x (2) -5*x (1) "2-5%x(2) "2)) /
EresNErien (6xexp(x(1)~2+x (2)°2));

rection

(2 + 2%x(1) -10*x(2) -2*x (2) *(x (1) +2*xx (2) +
G Y 2xx (1) *x(2) -5*x (1) "2-5*x(2) "2)) /
Aroeioms (5xexp(x(1)"2+x(2)°2))1;

Trust-region

delta_0 = 0.5; x_0 = [
tol = 1e-5; kmax = 100
Gauss-Newton typ = 2;

0.0;0.5];

; imax=5;

Marquardt [x,er,it]=tRegion (fun,grad_fun,x_0,delta_0,tol,kmax,typ,imax)

Golden section anc
quadratic

interpolation

Nelder and Mead
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Trust-region, approximated Hesse matrix
Lrconsaied ~ 24 iterations, x* & (+0.28, —0.90)
optimisation
Newton method

Line-search
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Newton directions
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directions
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Trust-region methods (cont.)

Trust-region, exact Hessian

~ 12 iterations
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Rosenbrock’s function

f(x) =100(zz — )% + (1 — z1)?

e fun = @(x) (1-x(1))°"2+100*(x(2)-x(1)"2)"2;
grad_fun = @(x) [-400*(x(2)-x(1)"2)*x(1) -2*%(1-x(1));
S 200 (x(2)-x (1) "2)7;

rection

Trust-region x_0=[+1.2;-1.0];
options = optimset (’LargeScale’,’on’); % Trust-region
. options = optimset (’GradObj’,’on’); % Gradient

[x,fval,exitflag,output]l=fminunc ({fun,grad_funl},x_0,options)

quadratic Trust-region (Matlab)

Nelder and Meac ~» 8 iterations, 9 function evaluations
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Trust-region methods (cont.)

The M-command fminunc in Octave implements the trust region method
e With approximated Hessians Hj, computed with BFGS

y(k)y(k')T B Hks(k)s(k')THg

x(k)Ts(k) s(k)THks(k)

Hy1 =H, +

The option ’LargeScale’ is not used



Non-linear least-squares

Numerical optimisation




Unconstrained Non-linear least-squares

optimisation

UFC/DC
CK0031//CK0248 The least-squares method is often used for approximating either func-

20508 tions f(z) or sets of data {(zt,y;),k =0,..., K} by some function 7

e Often } depends linearly on a set of coefficients {aj,j =1,..., m}

f@l{a ) = a0 + a1z + a22® + -+ + amaz™

The coefficients {aj };rio are unknown

They must be determined from data

Nonlinear {(Ik, ye), k=0,..., K}

least-squares

et K _ 2
Solw- ey ]

ap+a1ap+agz? -t ama

~ min
{aj,j=1,...,m}

This problem is called a least-squares problem

The problem becomes nonlinear when f non-linearly depends on {aj}
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Nonlinear
least-squares

Non-linear least-squares (cont.)

Let R(x) = [r1(x), .., rn(x)] T with r; : R™ — R be some smooth function

We want to find

n

with, f(x) = %er(x) = %HR(X)H? (34)

i=1

Jmin, f(x),

We assume that n > m

If functions r;(x) are non-linear, then function f(x) may not be convex

~» Thus, f(x) may have multiple stationary points

‘We can use Newton, descent directions and trust-region methods
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Descent directions
Step-length
Newton directions

Quasi-Newton
directions

conjuga:

directions

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead

Non-linear least-squares (cont.)

Consider the special form of f

We have assembled the components r;(x) into a residual vector

R(x) = [m(x),...,m(x)]"

Because of this, we compactly rewrote the objective function

1
1) = | [RGo)| |



Unconstrainea INON-linear least-squares (cont.)

optimisation

UFC/DC
CKO0031/CK0248
2017.2

The derivatives of f(x) can be expressed in terms of the Jacobian of R

~ Partial derivatives of r;(x) with respect to ;

Descent directions

Step-length o

Newton directions [87*1 or ory :|
Quasi-Newton —_— —_— e
b eem— Oz 0w Azm Vi (x)T
Gradient and ory oro ory v ( )T

sradient - = ...
directions or; |:6 P P :| r2x

J (x) = = al 2 Tm =
R Ox;li
7 : : : .

Nonlinear : : . : T
least-squares |:87'n 87‘71 81"7L:| VTn (X)
Gauss-Newton - — ...
Levenberg- - 6I1 6I2 6I7" -
Marquards
Golden section and
quadratic

interpolation

Nelder and Mead
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Descent directions

Nonlinear
least-squares

interpolation

Nelder and Mead

Non-linear least-squares (cont.)

Gradient and Hessian of the cost function can be compactly written

n

Vi(x) = Z 7 (x)Vri(x) = Jr (%) TR(x)
=t (35)
) + Z ri(x)Vri(x)

V2f(x) =Jg(x)T =Jr(x)TIr(x) + S(x)

~~ The second derivatives of R cannot be calculated from the Jacobian

* 82 T
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Calculation of the Hesse matrix can be heavy when m and n are large

Descent directions . . .
,\WW:WH N e This is mostly due to matrix S(x)
Newton directions
Quasi-Newton In some cases, S(x) is less influent than Jg (x) 7 Jgr (x)
directions ’ R R
@t codl ~ It could be approximated or neglected
conjugate-gradient
directions . . .

‘ ~ It simplifies the construction of H(x)
Nonlinear

ieastieduarcs We discuss two methods devoted to handling such cases

Ga Newton

Levenberg-
Marquardt

Gold

quadratic

sction and

interpolation

Nelder and Mead



Gauss-Newton method

Nonlinear least-squares
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The Gauss-Newton method

The Gauss-Newton method is a variant of the Newton method

Given x(0 € R", for k =0,1,... until convergence

Solve H[x(k)]éx(k) =-Vf [x(k)]
Set x(F+1) = x(k) 4 §x (k)

The Hessian H(x) is approximated by neglecting S(x)
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2012 Given x(0 € R™ and for k = 0,1,... until the convergence

Solve {JR(xk)TJR[x(k)] }5x(k) = —JR[x(k)] TR[X(IC)}

Descont duection Set x(B+1) = x(*) 4 §x (k)

The system in the first equation may have infinitely many solutions

IfJr [x(k)] is not full rank
~~ Stagnation
~~ Non-convergence

~» Convergence to a non-stationary point

IfJgr [x(k)} is full rank, the linear system has form AT Ax* = ATb
e It can be solved by using QR or SVD factorisations of Jg (x)
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Step-length
Newton directions

Quasi-Newton

directions

directions

Gauss-Newton

Levenberg-
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Golden section and
quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

function [x,err,iter]=nllsGauNewtn(r,jr,x_0,tol,kmax,varargin)
%4NLLSGAUNEW Nonlinear least-squares with Gauss-Newton method

% [X,ERR,ITER]=NLLSGAUNEW(R,JR,X_0,TOL,6KMAX)

% R and JR: Function handles for objective R and its Jacobian
% X_0 is the initial solution

% TOL is the stop check tolerance

% KMAX is the max number of iterations

err = 1 + tol; k = 0;
xk = x_0(:);
rk = r(xk,varargin{:}); jrk = jr(xk,varargin{:});

while err > tol & k < kmax

[Q,R] = gr(jrk,0); dk = -R\(Q’*rk);
xk1 = xk + dk;

rkl = r(xkl,varargin{:});

jrkl = jr(xkl,varargin{:});

k =1 + k; err = norm(xkl - xk);

xk = xkl1; rk = rkl; jrk = jrkil;
end
x = xk; iter = k;

if (k==kmax & err > tol)
disp(’nllsGauNewtn stopped w\o reaching accuracy [KMAX]’);
end
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Neglecting S(x(k)) at step k amounts to approximating R(x)

The first-order Taylor expansion of R(x) at x*

Ry(x) = R[x(k)] +Jr [x(k)] [x — x(k)} (36)
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Unconstrained

optimisation
Newton method

Line-search
Descent directions
Step-length
Newton directions

Quasi-Newton
directions

Convergence of the method is not always guaranteed

e It depends on f and initial solution

Gradient and
conjugate-gradient
directions

I'rust-region

Nonlinear
leas

-squar

Gauss-Newton

Levenberg-

Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead
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interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Let x* be a stationary point for f(x)
Let Jr(x) be full rank in a suitable neighbourhood of x*
Then,

If S(x*) = 0 (if R(x) is linear or R(x*) = 0)
® The Gauss-Newton method is locally quadratically convergent

® It coincides with the Newton’s method

If ||S(x*)||2 is small compared to the smallest positive eigenvalue of
Jr(x*)TIR(x")
© (e.g., when R(x) is mildly non-linear or its residual R(x*) is small)
® Gauss-Newton converges linearly
If ||S(x)||2 is large compared to the smallest positive eigenvalue of
Ir(x*)TIr(x")

© Gauss-Newton may not converge, even if x(©) is very close to x*

® (e.g., when R(x) is strongly non-linear or its residual R(x*) is large)
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The Gauss-Newton method (cont.)

Line-search can be used in combination with Gauss-Newton
e Replace x(b+1) = x(®) 4 §x(*) with x(F+1) = x(*¥) 4 akéx(k)

e Computation of step-lengths «j, is as per usual

If Jgr (x(®)) is full rank, matrix Jg (x(*))TJIg (x(¥)) is symmetric and PD

e 0x() is a descent direction for f(x)

Under suitable assumptions on f(x), we get the globally convergent method

~» Damped Gauss-Newton method
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Compress an audio signal to a set of parameters

25 T T T T T T T T T

Gauss-Newton

05 L L L L
0

e The signal intensity is modelled as a sum of m Gaussian functions

Nelder and Mead 1 t— arn 2
fi(tlag, 01) = ——=exp [— %], t € [to,trl,k=1,...,m
207,

2
2moy
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Descent directions E
Step-length oy éﬁ osl
Newton directions la/
Quasi-Newton ~
directions
Gradien o4r
conjuga
directions
02
-5 =
Gauss-Newton
Levenberg-
M Each peak or component is characterised by two coefficients
Golden section and e The Centre’ ak
quadratic o Th ( f th ) d 2
interpolation e (square of the) spread, o}

Nelder and Mead
e a=[a, - ,aq

f(tla,0) = > fult; ax,o%)

= e o=[o1, 0]
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The Gauss-Newton method (cont.)

Find a and o that minimise the residual sum of squares
n 2
min z; [f(tz'la, o) — yi]
-

From recorded audio intensities y; at sampling times ¢;
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The Gauss-Newton method (cont.)

Generate n = 2000 time-intensity pairs (t;, y;)]—, with ¢; € (0, 10)

~~ The sum of 5 Gaussian components

1 (t— ak)Q]

exp [~
\/ 27‘('0']% 20},

Ji(tlag, on) =

e Plus some little random noise

a = [2.3, 3.2, 4.8, 5.3, 6.6]; m = length(a);
sigma = [0.2, 0.3, 0.5, 0.2, 0.4];

gComp = @(t,a,sigma) exp(-((t-a)/(sigma*sqrt(2))).72)/
(sigma*sqrt (pi*2));

n = 2000; t = linspace(0,10,n)’; y = zeros(mn,1);
for k=1:m

y =y + gComp(t,a(k),sigma(k));

end

y =y + 0.05%randn(n,1); % Little additive noise
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Descent directions

interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Solve the nonlinear least-squares problem of form

xnelﬁzlfl" P(x), with &(x) = —| |R(x Z r2(x)

ri(x) = f(tila, o) — yi = 207 fi(tilag, ok) — ¥

We also have,

or; t; — ag
- t; )
Dar S (ti] ak Uk)[ o ]
or; (t; — ag)? 1
= fi.(ti| ak, A A
Bor S (ti] ak Uk)[ P 2crk]
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Gauss-Newton

M-command nllsGauNewtn (22 iterations)

Descent directions

N“!‘ | x.0 = [2.0,3.0,4.0,5.0,6.0,0.3,0.3,0.6,0.3,0.3];
Pt , tol = 3.0e-5;
Gradient and 1 kmax = 200;

conjugate-gradient
directions

6 [x,err,iter]=nllsGauNew(@gmR,@gmJR ,x_0,tol,kmax,t,y)

s x_a = x(1:m);

9 x_sigma = x(m+1l:end);

10

Ry 11 h = 1./(x_sigmaxsqrt(2xpi));
12w = 2*%x_sigma*sqrt(log(4));

Gauss-Newton

Gold

quadratic

sction and

interpolation

Nelder and Mead
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Gauss-Newton
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The Gauss-Newton method (cont.)

function [Rl=gmR(x,t,y)

x = x(:); m = round (0.5xlength(x));
a x(1:m); sigma = x(m+1: end );

gauFun = @(t,a,sigma) [exp(-((t-a)/(sigmax*sqrt(2)))."2)

/(sigma*sqrt(pi*2))];

zeros(n,1);

n = length(t); R =
= R + gauFun(t,a(k),sigma(k)); end

for k = 1:m; R
R =R -y;

function [Jrl=gmJR(x,t,y)
x = x(:); m = round (0.5xlength(x));
a = x(1:m); sigma = x(m+1: end);

gauFun = Q@(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2)))."2)

/(sigma*sqrt (pi*2))];

n = length(t); JR = zeros(mn,2*m); fk = zeros(m,m);
for = 1:m; fk(:,k) = gauFun(t,a(k),sigma(k)); end

for = 1:m

k
for k = 1:m; JR(:,k) = (fk(:,k).*(t-a(k))/sigma(k)"2)’;
k

end

JR(:,k+m) = (fk(:,k).*x((t-a(k))."2/(k)"3-1/(2*sigma(k))))’;

end



Levenberg-Marquardt
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Levenberg-Marquardt

Levenberg-Marquardt is a trust-region method

n

1
5 )

i=1

min f(x),

with f(x
xeR™ f(

*IIR x)|* =

We can use the general trust-region formulation
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Compute f[x(k')], \%i [x(k)] and Hy,

Solve  min fk s
[Isll2 <6k (®)
Compute py

If o >

Set x(w+1) = x(k) + s(k)
Sty else
e Set x(F+1) = x (k)

endif

If pr <m
Levenberg- Set 5k+1 = ’Ylék
Marquardt elseif m1 < pr <12
Set 5k+1 = 6k
elseif pp > n2 and Hs(k)H =5,
Set 8,41 = min{y20y, 8}
endif
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Levenberg-Marquardt (cont.)

At each step k, we solve

. - 1
i i . (k) ()1gl|2
seﬂ?"r:rll\lsr\llgék fr(s), with fi(s) 2||R[x ] +Jr [x ]s||

fr(x) is a quadratic approximation of f(x) about x(¥)
~ By approximating R(x) with its linear model

Ri(x) = R[x(k)] +Jr [x(k)] [x— x(k)]

(37)
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Levenberg-Marquardt (cont.)

Often Jr(x) is not full rank, yet the method is well-posed

The method is suited for minimisation problems with strong non-linearities
or large residuals f(x*) = 1/2||R(x*))||? about the local minimiser x*

Hessian approximations are those of the Gauss-Newton method
The two methods share the same local convergence properties

Convergence rates when Levenberg-Marquardt iterations do converge

e Convergence rate is quadratic, if residual is small at local minimiser

e Convergence rate is linear, otherwise



Derivative-free methods
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Derivative-free methods

We describe two simple numerical methods
e Minimisation of univariate real-valued functions
e Minimisation of multivariate real-valued functions

o (along a single direction)

We then describe the Nelder and Mead method

e Minimisation of functions of several variables
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Golden section and quadratic interpolation

Let f : (a,b) — R be a continuous function with unique minimiser

z* € (a,b)

Set In = (a, b), for k > 0 generate a sequence of intervals Ij,
I = (), 5

The intervals I} are of decreasing length and each contains z*
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For any given k, the next interval I can be determined

Descent directions

Step-length o

1) Let c(k), d® e I, with ¢®) < d®*) be two points such that

b8 _ g(B) gk _ gk
T a3 g ¥ (382)
pk) — (k) p(k) _ (k)
5 o)~ d ¥ (38b)
1+5
Let ¢ be the golden ratio ¢ = +2f ~ 1.628

Golden section and

quadratic
interpolation

Nelder and Mead
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Golden section and quadratic interpolation (cont.)

2) Using Equation 38a and 38b, we find point ¢®) and point d*)

1
B — (&) 4 E(b(k) —a®)) (39a)
dk) = o 4 l(b(k) —a®) (39b)
4
They are symmetrically placed about the mid-point of Iy
(k) (k) (k) (k)
%_ ) — g _ % (40)

Replace ¢(®) and d(¥) in Equation (40)

p(k) — (k)

Divide by the common factor —
@

Get the identity
P —p—-1=0
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Golden section and quadratic interpolation (cont.)

The generic iteration of the golden-section method

e ¢ is the golden ratio, while Ly = ¢(¥) — ¢(F)
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Set a(® = g and b(®) = b, the golden section method formulates as

For k=0,1,... until convergence
Compute c¢®) and d®) through Equation (39)

I f(e®) > f(d®)

set Iyq = (et p+1)y = (k) p(R))
o else

set Iyq = (a0 p(EHDY = (g(B) g(k))
endif

It follows that

o If Iy = (), () then c(b+1) = g(k)
Golden section and
quadratic - If Dop1 = (a<k),d(k)), then d(k+1) = (k)

interpolation

Nelder and Mead
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Golden section and quadratic interpolation (cont.)

We need to set a stopping criterion

When the normalised size of the k-th interval is smaller than a tolerance e
plk+1) _ 4 (k+1)

|C(k+1)| + |d(/€+1)| <e (41)

The mid-point of the last interval /41 can be taken as solution

e This is an approximation of the minimiser x*
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Golden section and quadratic interpolation (cont.)

By using Equation (38a) and (38b), yields the expression

1

[0+ — D] = Jp) — o) = oo = ——p© — 0O (12)
© ©

The golden-section method converges linearly with rate

0 1 ~0.618
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function [xmin,fmin,iter]=gSection(fun,a,b,tol,kmax,varargin)
%GSECTION finds the minimum of a function

% XMIN=GSECTION (FUN,A,B,TOL,KMAX) approximates a min point of
% function FUN in [A,B] by using the golden section method

% If the search fails, an error message is returned

% FUN can be i) an inline function, ii) an anonymous function
% or iii) a function defined in a M-file

% XMIN=GSECTION (FUN,A,B,TOL,KMAX,P1,P2,...) passes parameters
% P1, P2,... to function FUN(X,P1,P2,...)

% [XMIN,FMIN,ITER]= GSECTION(FUN,...) returns the value of FUN
% at XMIN and number of iterations ITER done to find XMIN

phi = (1+sqrt(5))/2;

iphi(1) = inv(phi); iphi(2) = inv(1+phi);

¢ = iphi(2)*(b-a) + a; d = iphi(1)*(b-a) + a;
err = 1+tol; k = 0;

while err > tol & k < kmax
if (fun(c) >= fun(d))
a =c; c =d; d = iphi(1)*(b-a) + a;

else

b =d; d = c; c = iphi(2)*(b-a) + a;

end

k =1 + k; err = abs(b-a)/(abs(c)+abs(d));
end
xmin = 0.5%(a+b); fmin = fun(xmin); iter = k;
if (iter == kmax & err > tol)

fprintf (’The method stopped after reaching the maximum number
of iterations, and without meeting the tolerance’) ;
end
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Golden section and quadratic interpolation (cont.)

e fun is either an anonymous or an inline function for function f
e a and b are endpoints of the search interval
e tol is the tolerance e

e kmax is the maximum allowed number of iterations

e xmin contains the value of the minimiser
e fmin is the minimum value of f in (a, b)

e iter is the number of iterations carried out by the algorithm
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Evolution of an isolated culture of 250 bacteria (Verhulst model)

2500

:m, fort >0

f()

t denotes time (in days)

Find after how many days population growth rate is maximum

~+ Where (when?) does function g(¢t) = —f’(¢) has its minimum

S 5 — _7500—_ P (t/3)
9(®) [exp (t/3) -1-9]2

Golden section and
quadratic
interpolation

Nelder and N
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UFC/DC Function ¢(t) admits a global minimiser in [6, 7]
CK0031/CK0248
2017.2
g = @(t) [-(7500*exp(t/3)) / (exp(t/3)+9)°2];

a=0; b = 10;
tol = 1.0e-8; kmax = 100;

[tmin gmin,iter]= gSection(g,a,b,tol,kmax);

Golden section: 38 iterations, t* &~ 6.59 and g(t*) ~ —208

.
0 ‘ 0.4
0.3
Gauss-Newton T 100 §
o =7 0.2
ot gocon ond ~200 0.1 {
i o) [
0 5 10 0 10 20 30
t N. of iterations [k]
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The quadratic interpolation method is often used as alternative

Descent directions
Sicm-enin @ e Let f be a continuous and convex function
Newton directions . . .
U‘ \,Mm“ o Let z(0), z and z( be three distinct points

directions

e T We build a sequence of points z(*) with k > 3 such that

directions

o z(k*+1) is the vertex (and thus the minimiser) of the parabola p(k)

2
. pék) interpolates f at (node points) z(*), z(*=1) and z(+-2)
Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Nelder and Mead
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For k > 2, the order-2 Lagrange polynomial at such nodes
py" (a) =f [P+
f{x(k'*m’x(k*l)] [x _ I(k*Q)]_,_

F#D, oD 2] [z — gD [z — -]

—

Golden section and
quadratic
interpolation

Nelder and Mead
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Golden section and quadratic interpolation (cont.)

" (@) =f[a 2]+
o= 2] [z — ok-2]4
Fla®=2) 2= 58] [3 = o2 [ — o~ 1)]

In the order-2 Lagrange polynomial pék) for k > 2, consider the quantities

Tj — X4

Flazj, @] = flai, 3]

Ty — T

flai,z] =
(43)

flmiyzj, ] =

The Newton divided differences
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Consider n + 1 distinct points

n+1

{ [zi’ yz(%)] }n:O

There exists only one polynomial 11, € Py, of order n or smaller that in-
terpolates them

On(z) =y, Yi=0,...,n

I, is said to be the interpolating polynomial of f, if yi = f(z)

~ (for some continuous function f)

It 1s denoted by I, f

Golden section and
quadratic
interpolation

Nelder and Mead
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Golden section and quadratic interpolation (cont.)

Consider the components of the Lagrangian basis associated to nodes {z;}7_

n
T — T
pi(z)= [ —2% i=0,...,n

=0, T T W
They are polynomials such that {¢;} is the only basis of Py satisfying

1,ifi=j

vi(z) € Pn,pi(z;) = 0y = {0 otherwise
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The Lagrange polynomial is the interpolating polynomial IL,, (z)

Ha(z) = ) 4ii()
i=0

It is expressed in Lagrange form, or wrt the Lagrange basis

n n
Mo(z) = yei(@) =Y by =v, i=0,...,n
j=0 j=0

Golden section and
quadratic
interpolation

Nelder and Mead
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Golden section and quadratic interpolation (cont.)

By solving the first-order equation p’ék) [z(k+1)] =0, we get

k—2) o (k—
L) _ %{z(k_Q) 4D f[x( ), z( 1)] } (44)

Fe=2, 20D (0]

Next point in the sequence, by setting to zero the derivative of pék) (z)

‘We iterate until |z(k+1) — xk| < g, for some tolerance £ > 0
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- _05 | | | | | | | | |
Derivative-free 2 15 -1 -05 0 05 1 15 2 25 3
Golden section and

quadratic

interpolation

s o e The first step of the quadratic interpolation method
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Golden section and quadratic interpolation (cont.)

) = _7500M
a(t) [exp (t/3) -1-9]2

fminbnd combines golden section and parabolic interpolation

g = @(t) [-(7500%exp(t/3))/(exp(t/3)+9)"2];

o

.0; b = 10.0;
1.0e-8; kmax = 100;

o

a
to
optionsQ = optimset (’TolX’, 1.0e-8)

[tminQ , gminQ ,exitflagQ,outputQ] = fminbnd(g,a,b,optionsQ);
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Golden section and quadratic interpolation (cont.)

Quadratic interpolation

8 iterations, t* ~ 6.59 and f(t*) ~ —208
e optimset sets the tolerance value in structure optionsQ
e gminQ contains the evaluation of f at the minimiser tminQ
e exitflag(Q) indicates the termination state

e output@ has number of iterations and function evaluations
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Golden section and quadratic interpolation (cont.)

The golden section and the quadratic interpolation method
e They are genuinely one-dimensional techniques
e They can be used to solve multidimensional optimisation problems

e They need be restricted to search along one dimensional directions



Nelder and Mead

Derivative-free methods
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Lt

Nelder and Mead

Nelder and Mead

Let n > 1 and f : R — R be a continuous function

The n-simplex with n + 1 vertices x; € R™ for i =0,...,n
n n
S:{yG[R":y:Z)\ixi,with)\izo:Z)\i:I} (45)
i=0 i=0

Intrinsic assumption: Linearly independent vectors {(x; — x0)}l_q

S is a segment in R, it is a triangle in R? and a tetrahedron in R3
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Nelder and Mead (cont.)

The Nelder and Mead method is a derivative-free minimisation method
o It generates a sequence of simplices {S(k)}kzo in R™

The simplices either run after or circumscribe the minimiser x* € R"™ of f

The method uses simple operations

©® Evaluations of f at the simplices’ vertices

® Geometrical transformations (reflections, expansions, contractions)
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o At the k-th iteration, the ‘worst’ vertex of simplex S(F) is identified

Descent directions xg\f’)7 such that f[xg\j)] = max f[xgk)]

Step-length « 0<i<n

Newton directions

Pt ° xg\f[) is substituted with a new point at which f takes a smaller value
o e A N e The new point is got by reflecting/expanding/contracting the simplex
directions

along the line joining x%c[) and the centroid of the other vertices
® _ LN~

Gauss-Newton XC = E Z X,L

Levenberg- _i:O

Marquards i#M

interpolation

Nelder and Mead
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Nelder and Mead (cont.)

How to generate the initial simplex $(®)

We take a point X € R™ and a positive real number n

Then, we set
(0)

X, =X+mne;, withi=1,...,n

{ei} are the vectors of the standard basis in R™
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Nelder and Mead (cont.)

While k£ > 0 and until convergence, select the ‘worst’ vertex of S (%)

(k) _ (’c)]

X = max X
M Ogignf[ %

Then, replace it by a new point to form the new simplex §(k+1)

(46)
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Nelder and Mead (cont.)

The new point is chosen by firstly selecting

xin) = min f[x("]
1 n
- (47)
(k) _ (k)
Xy~ = max f[xi ]
and secondly by defining the centroid point
1 n
xh) = =37 W (48)
™ izo
i#=M

This is the centroid of hyperplane H(*) passing through vertices {x;}"_,
i£M
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Nelder and Mead (cont.)

(k)

Thirdly, compute reflection x5’ of xg\f[)

xgk) =(1- a)i(k) + axg\?)

The reflection coefficient a < 0 is typically set to be —1

(k

Point x¢ ) lies on the straight line joining points %(F) and x

o It is on the side of X(*) | far from x

with respect to hyperplane H (%)

(k)
M

(k)
M

(49)
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n = 2, the centroid is midpoint of edge of S (*) opposite to xg\];)
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Nelder and Mead (cont.)

We fourthly compare f [x‘(lk)] with f at the other vertices of the simplex
(k)

o Before accepting x,, ' as the new vertex

(k) (k)

We also try to move x5 on the straight line joining X(*) and X

To set the new simplex §(*k+1)

(1) Iff[ ] < f[xm ] (reflection produced a minimum), then
xi,k) =1 -~yx® + ’yx( ), with v < —14 (50)
e Then, lff[xA, ] < f[xm ] replace x s by x,(yk)
(k) (k)

e Otherwise, x),” is replaced by x¢

‘We then proceed by incrementing k by one

4Typically7 v= -2
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Descent directions

iradient and
ate-gradient

Nelder and Mead

o Then, iff[xgc)] > f[xg\f[)] define the vertices §(++1)

e Otherwise x

x() = (1 - g™ 4 px,  with 5> 08

(k)
M

Nelder and Mead (cont.)

(2) Iff[xgrlf)] < f[xgk)] < f[xﬂc)], then xg\];) is replaced by xP

k is incremented by one

(3) Iff[x;(tk)] < f[x‘(lk)] < f[xg\f[)], we compute

) _ L) 01

is replaced by xg

Then, we increment k

Swith typically B = 1/2

(51)

(52)
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Nelder and Mead (cont.)

(4) Iff[x&k)] > f[x%;)] , we compute
xg = (1—B)x™ 4+ 8x(¥) with 8> 0

. Iff[xgc)] > f[x%;)] define the vertices of §(*+1)

MO SO

7 2 m
e Otherwise we replace ngl) with xgk)

Then we increment k

(53)
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Nelder and Mead (cont.)

When the stopping criterion = max ngk) —x'P [loo < € is met
n

=0,

(k)

~» X, is retained as approximation of the minimiser

Convergence is guaranteed in very special cases only

Stagnation may occur, algorithm needs to be restarted
e The algorithm is nevertheless quite robust
e It is efficient for small dimensional problems

e Convergence rate depends on initial simplex
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Nelder and Mead (cont.)

The Rosenbrock function

flz1,22) = 100(22 — 27)2 4+ (1 — 21)?

The global minimum is at x* = (1, 1), and variation around x* is low
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The simplex method
The M-command is fminsearch
Descent directions x_0 = [-1.2,+1.0];
Step-length o
Newton directions fun = @(x) (1-x(1))"2 + 100*(x(2)-x(1)"2)"2;
Quasi-Newton
jx;ﬁx}nl xstar = fminsearch(fun,x_0)
conjugate-gradient
directions sErEmEe =
1.000022021783570 1.000042219751772
Gauss-Newton To obtain additional information on the minimum value of f

Levenberg-
Marquardt

[xstar ,fval ,exitflag,output] = fminsearch(fun,x_0)

Golden section and

quadratic

lation ]

Nelder and Mead

inter
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