
Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation
(CK0031/CK0248)

Francesco Corona

Department of Computer Science
Federal University of Ceará, Fortaleza

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Numerical optimisation

Minimisation (maximisation)

 Find a global or local minimum (maximum) of some objective function

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Numerical optimisation (cont.)

Definition

Let f : Rn → R with n ≥ 1 be a cost or an objective function

The unconstrained optimisation problem

 min
x∈Rn

f (x) (1)

The constrained optimisation problem

 min
x∈Ω⊂Rn

f (x) (2)

Ω is a closed subset determined by equality and inequality constraints

• They are dictated by the nature of the problem to solve

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Numerical optimisation (cont.)

Example

Find the optimal allocation of i = 1, . . . ,n bounded resources xi

 Bounded resources means limited resources

The constraints express these limits in terms of inequalities

0 ≤ xi ≤ Ci , with Ci some given constants

The set Ω =
{
x = (x1, . . . , xn) : 0 ≤ xi ≤ Ci , i = 1, . . . , n

}

• A subset of Rn determined by such constraints

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Numerical optimisation (cont.)

For some problems, Ω is characterised by explicit conditions

 Equality constraints
h(x) = 0

 Inequality constraints
h(x) ≤ 0

h : Rn → Rm with m ≤ n indicates some given function of x

• h ≤ 0 is hi (x) ≤ 0, for i = 1, . . . ,m

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Numerical optimisation (cont.)

Definition

Let f be a continuous function and let Ω be a connected set

A constrained optimisation problem is a non-linear programming problem

Convex programming

 f is a convex function and h has convex components

Linear programming

 f and h are linear

Quadratic programming

 f is quadratic and h is linear

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Numerical optimisation (cont.)

Remark

Computing the maximum of function f is equivalent to computing the min-
imum of function g = −f

 We shall only consider minimisation algorithms

Definition

The minimum value of some given objective function is interesting

The point at which such minimum is achieved is more interesting

 Such point is called minimiser

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Numerical optimisation (cont.)

We consider the numerical solutions of optimisation problems

Ideal situation: A function with an unique global minimiser

• There are often several (local) minimisers

−2
0

2−2

0

2
0

2,000

x1
x2

f (x) = f (x1, x2)

−2
0

2−2

0

2
0.2

0.4

x1
x2

f (x) = f (x1, x2)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Numerical optimisation (cont.)

The meaning of minimising an objective function

We are interested in finding either a (good) local or the global minimiser

Definition

Point x∗ is a global minimiser of f

 if f (x∗) ≤ f (x), ∀x ∈ Rn

Point x∗ is a local minimiser of f

 if there is a Br (x∗) ⊂ Rn , a ball centred in x∗ and radius r > 0, such
that f (x∗) ≤ f (x), ∀x ∈ Br (x∗)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Definition

Let f be differentiable in Rn with first and second derivatives

Let gradient vector of f at point x ∈ Rn be the smbol

∇f (x) =
(∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T
(3)

Let Hessian matrix of f at point x ∈ Rn be the symbol

H(x) = (hij)
n
i,j=1, with hij =

∂2f (x)

∂xj∂xi
(4)

In general, it will be assumed that problem functions are smooth

• Continuous and continuously (Frétchet) differentiable, C1

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

For f (x) at any point x there is a vector of first derivatives

• Gradient vector

∂f /∂x1
∂f /∂x2

...
∂f /∂xn

x

= ∇f (x) (5)

∇ is the gradient operator
(

∂/∂x1, ∂/∂x2, · · · , ∂/∂xn
)T

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Let f (x) be twice-differentiable, C2

There is a matrix of second partial derivatives

• Hessian matrix

∂2f

∂x1∂x1

∂2f

∂x1∂x2
· · ·

∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x2∂x2
· · ·

∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f

∂xn∂x2
· · ·

∂2f

∂xn∂xn

x

= H(x) = ∇
2f (x) (6)

The (i , j)-th element of the Hessian matrix, ∂2f /(∂xi∂xj)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Example

Rosenbrock’s function

f (x) = 100(x2 − x2
1)

2 + (1 − x1)
2

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x
2

x
∗

x
∗

The global minimum is at x∗ = (1, 1), and variation around x∗ is low

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

A test-function for optimisation methods

f (x) = f (x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2

• ∂f /∂x1 = −400x1(x2 − x2
1)− 2(1 − x1)

• ∂f /∂x2 = 200(x2 − x2
1)

∇f (x) =

∂f

∂x1
∂f

∂x2

x

=

[
−400x1(x2 − x2

1)− 2(1− x1)
200(x2 − x2

1)

]

x

(7)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

f (x) = f (x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2

• ∂f /∂x1 = −400x1(x2 − x2
1)− 2(1 − x1)

• ∂f /∂x2 = 200(x2 − x2
1)

• ∂2f /(∂x1∂x1) = 1200x2
1 − 400x2 + 2

• ∂2f /(∂x1∂x2) = −400x1

• ∂2f /(∂x2∂x1) = −400x1

• ∂2f /(∂x2∂x2) = 200

∇
2f (x) =

∂2f

∂x1∂x1

∂2f

∂x1x2
∂2f

∂x2∂x1

∂2f

∂x2x2

x

=

[
1200x2

1 − 400x2 + 2 −400x1
−400x1 200

]

x

(8)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

In general, ∇f and ∇2f will and vary from point to point

At x′ = (0, 0)T

∇f (x) =

[
−400x1(x2 − x2

1) − 2(1 − x1)
200(x2 − x2

1)

]

x

=

[
−2
0

]

x=(0,0)T

∇
2f (x) =

[
1200x2

1 − 400x2 + 2 −400x1
−400x1 200

]

x

=

[
2 0
0 200

]

x=(0,0)T

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

The idea of a line is also important

Definition

We can define the line as the set of points

x
[
= x(α)

]
= x′ + αd, for all α

x′ is some fixed point along the line

• It corresponds to α = 0

d is the direction of the line

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Example

Let the fixed point x′ be the point (2, 2)

Let the direction d be (3, 1)

 Draw the line x = x′ + αd, for all α

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

We can determine expressions for the derivatives of f along any line x(α)

 Based on definitions of line, gradient vector and hessian matrix

By the chain rule of derivation

d

dα

{
·
[
x(α)

]}
=

∑

i

dxi (α)

dα

∂

∂xi

{
·
[
x(α)

]}
=

∑

i

di
∂

∂xi

{
·
[
x(α)

]}

= dT
∇
{
·
[
x(α)

]}

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

The slope of f
{
= f

[
x(α)

]}
along the line at any point x(α)

df

dα
= dT

∇f = ∇f Td

This is the directional derivative of f with respect to d

• ∇f is calculated at x(α)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

The curvature along the line at any point x(α)

d2f

dα2
=

d

dα

(df

dα

)

= dT
∇(∇f Td) = dT

∇
2f d

This is the second-order directional derivative of f

• ∇f and ∇
2f are calculated at x(α)

Let G = ∇2f , then Gd is a vector

(Gd)i =
∑

j

Gij dj

dTGd is the scalar product of d and Gd

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Example

Rosenbrock’s function

f (x) = 100(x2 − x2
1)

2 + (1− x1)
2

∇f (x) =

[

x − 400x1(x2 − x2
1)− 2(1 − x1)

200(x2 − x2
1)

]

x

∇
2f (x) =

[
1200x2

1 − 400x2 + 2 −400x1
−400x1 200

]

x

We consider point x′ = (0, 0)T

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x
2

x
∗

x
∗

The slope along the line with direction d = (1, 0)T

dT
∇f (x′) =

[
1 0

]
[
−2
0

]

= −2

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

The curvature along the line with direction s = (1, 0)T

dTGd =
[
1 0

]
[
2 0
0 200

] [
1
0

]

︸ ︷︷ ︸
[

2 0
]T

= 2

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Definition

Let f ∈ C2(Rn) (all first and second derivatives exist and are continuous)

Then, H(x) is symmetric for every x ∈ Rn

Definition

A point x∗ is called a stationary or critical point for f if ∇f (x∗) = 0

A point such that ∇f (x∗) 6= 0 is called a regular point

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Remark

A function f over Rn does not necessarily admit a minimiser

• Also, should this point exist it is not necessarily unique

Example

• f (x) = x1 + 3x2 is unbounded in R2

• f (x) = sin (x1) sin (x2) · · · sin (xn) admits an infinite number of minimis-
ers and maximisers in Rn , both local and global

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Definition

Function f : Ω ⊆ Rn → R is convex in Ω if

f
[
αx+ (1− α)y

]
≤ αf (x) + (1− α)f (y), ∀x,y ∈ Ω (9)

for all α ∈ [0, 1]

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Definition

Function f is Lipschitz in Ω if

||f (x)− f (y)|| ≤ L||x− y||, ∀x,y ∈ Ω (10)

for some constant L > 0

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Proposition

Optimality conditions

Let x∗ ∈ Rn and r > 0 exists such that f ∈ C1(Br (x∗))

• If x∗ is a minimiser for f (local or global), then ∇f (x∗) = 0

• Also, if f ∈ C2(Br (x∗)), H(x∗) is positive semidefinite (PSD)

Let x∗ ∈ Rn and r > 0 exists such that f ∈ C2(Br (x∗))

• If ∇f (x∗) = 0 and H(x∗) is positive definite (PD) for all x ∈ Br (x∗),
then x∗ is a local minimiser of f

• If f ∈ C1(Rn) is convex in Rn and ∇f (x∗) = 0, then x∗ is a global
minimiser for f

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Definition

A symmetric real matrix A ∈ Rn×n is positive definite (PD) if

∀x ∈ R
n with x 6= 0, xTAx > 0

A symmetric real matrix A ∈ Rn×n is positive semidefinite (PSD) if

∀x ∈ R
n with x 6= 0, xTAx ≥ 0

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Most methods for numerical optimisation are of iterative type

• They can be classified into two main categories

It depends on whether they use derivatives of the cost function

Derivative-free methods

• They explore the local behaviour of a cost function

• Direct comparison between function values

Methods using derivatives

• They use information on the local behaviour of the cost

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Unconstrained optimisation (cont.)

Methods based on derivatives are expected faster convergence

Remark

It can be shown that given x ∈ dom(f), if ∇f (x) exists and it is not null,
then the largest increase of f from x is along the gradient vector

Conversely, the largest decrease is along the opposite direction

Among them, the two most important classes of techniques

 Line-search methods

 Trust-region methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method
Numerical optimisation

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method

Let f : Rn → R with n ≥ 1 be of class C2(Rn)

We know how to compute its first and second order partial derivatives

We apply Newton’s method to solve a system of nonlinear equation

∇f (x) = 0

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Remark

Newton’s method

Consider the problem of finding the zero of some f : [a, b] ⊂ R → R

 Find α ∈ [a, b] such that f (α) = 0

We know the equation of the tangent to function f (x) at some point x (k)

y(x) = f
[
x (k)

]
+ f ′

[
x (k)

][
x − x (k)

]

We can solve for some point x = x (k+1), such that y
[
x (k+1)

]
= 0

x (k+1) = x (k) −
f
[
x (k)

]

f ′
[
x (k)

]

All this, for k = 0, 1, 2, . . . and f ′
[
x (k)

]
6= 0

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Sequence {x(k)} is the Newton’s method for finding the zero of a function

0 0.5 1 1.5 2

0

2

4

6

8

xx(0)x(1)(

x 2))(2))2) xxx((3)

f

αα

ig 3. P ate g

i ale x 0 p a f e f x = x+ ex 10 + x2
−

I l seg o c
(ll)

agg s
i a (h
sta)
x, f x)) nel p to x k è

y x = f(x k) + f ′ x k)(x− x k).

S o x k 1 tale che y(x k 1) = 0, i

x k 1 = x k −
f((x k)

f ′((x k))
k, k ≥ 0

p ché f ′(x k) """ . L
lori x k d d ale x . Il metodo cos
com metodo di Newton ed eq le a calcol e l e o
localmente a f l e (

I , lupp f di Tayl
g to x k troviamo

f(x k 1) = f(x k) + δ
k f ′ x k) + O((δ k

dove δ k = x k 1 − x k . ndo che f x k 1) s
rando il te ne O((δ k)2) ss o ri a e x k 1 i
c

.
E

l e, f(x) = a1x + a0.

 The method reduces to locally substituting f with its tangent

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Consider now a set of nonlinear equations

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0

For the sake of compactness, we re-write the system in vector form

• Let f ≡ (f1, . . . , fn)T

• Let x ≡ (x1, . . . , xn)T

 f(x) = 0

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

f(x) = 0

We want solve the system of nonlinear equation

 We can extend Newton’s method

Replace first derivative of function f with Jacobian Jf of function f

 (Jf)ij ≡
∂fi

∂xj
, with i , j = 1, . . . ,n

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Consider the general system of nonlinear equations f(x) = 0

f1(x1, . . . , xj , . . . , xn) = 0

...

fi (x1, . . . , xj , . . . , xn) = 0

...

fn(x1, . . . , xj , . . . , xn) = 0

The corresponding Jacobian matrix

Jf (x) =

∂f1

∂x1

∂f1

∂x2
· · ·

∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · ·

∂f2

∂xn
...

...
. . .

...
∂fn

∂x1

∂fn

∂x2
· · ·

∂fn

∂xn

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Given this notation, the multivariable Newton’s method1 follows

Pseudo-code

Let x(0) ∈ Rn be an initial solution

For k = 0, 1, 2, . . . , until connvergence

Solve Jf

[
x(k)

]
δx(k) = −f

[
x(k)

]

Set x(k+1) = x(k) + δx(k)

At each iteration, a linear system with matrix Jf

[
x(k)

]
must be solved

1x(k+1) = x(k) − f
[

x(k)]/f ′
[

x(k)], δ
(k)
x = x(k+1) − x(k), f ′[x(k)]δ

(k)
x = −f [x(k)]

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

f(x) = ∇f (x) = 0

• The Jacobian Jf

[
x(k)

]
of the system is the Hessian matrix H(x) of f

• (computed at the generic iteration point x(k))

Pseudo-code

Given x(0) ∈ Rn , for k = 0, 1, 2, . . . , until convergence

Solve H
[
x(k)

]

︸ ︷︷ ︸

Jf

[
x(k)

]

δx(k) = −∇f
[
x(k)

]

︸ ︷︷ ︸

f

[
x(k)

]

Set x(k+1) = x(k) + δx(k)

(11)

A suitable stopping test

∣
∣
∣
∣x(k+1) − x(k)

∣
∣
∣
∣ ≤ ε, ε > 0 is the tolerance

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

1 function [x,res,iter] = sNWT(F_fun ,J_fun ,x_0,tol,imx)
2 % [ROOT ,RES,ITER]=SNWT(F_FUN ,J_FUN ,X_0,TOL,IMX) Calculate

3 % vector ROOT , the zero of a nonlinear system defined in
4 % F_FUN with Jacobian J_FUN , from initial point X_0

5 %
6 % RES is residual in ROOT and ITER is number of iterations

7 % F_FUN e J_FUN are external functions (as M-files)
8

9 iter=0; x=x_0; err=1+tol;

10

11 while err >= tol & iter < imx

12 J = J_fun(x);
13 F = F_fun(x);
14 deltax = -J\F; %(Matlab /Octave backslash operator)

15 x = x + deltax;
16 err = norm(deltax); iter = 1+iter;

17 end
18 res = norm(F_fun(x));

19

20 if(iter==imx & err > tol)
21 disp(’[Out by KMAX]’);

22 else
23 disp(’[Out by TOL]’));

24 end
25 return

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

1 function F = F_fun(x)

2 F(1,1) = F_1(x_1,x_2 ,...); % Add your own expression
3 F(2,1) = F_2(x_1,x_2 ,...); % Add your own expression

4 ...
5 F(N,1) = F_N(x_1,x_2 ,...); % Add your own expression

6

7 return

1 function J = J_fun(x)
2 J(1,1) = dF_1 / dx_1; % Add your own expression

3 J(1,2) = dF_1 / dx_2; % Add your own expression
4 ...

5

6 J(2,1) = dF_2 / dx_1; % Add your own expression

7 J(2,2) = dF_2 / dx_2; % Add your own expression
8 ...
9

10 J(N,1) = dF_N / dx_1; % Add your own expression
11 J(N,2) = dF_N / dx_2; % Add your own expression

12 ...
13

14 return

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Example

Consider the nonlinear system of equations

f1(x1, x2) = x2
1 + x2

2 = 1

f2(x1, x2) = sin (
π

2
x1) + x3

2 = 0

−2
0

2−2

0

20

5

x1
x2

f 1
(x

)
=

f 1
(x

1
,x

2
)

−2
0

2−2

0

2−5

0

5

x1
x2

f 2
(x

)
=

f 2
(x

1
,x

2
)

The system has two solutions

• ≈ (0.47,−0.88) and ≈ (−0.47, 0.88)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

f1(x1, x2) = x2
1 + x2

2 = 1

f2(x1, x2) = sin (
π

2
x1) + x3

2 = 0

1 function F=F_fun(x)
2 hpi = 0.5*pi;

3 F(1,1) = x(1)^2 + x(2)^2 = 1;
4 F(2,1) = sin(pih*x(1)) + x(2)^3 = 0;
5 return

1 function J=J_fun(x)
2 hpi = 0.5*pi;
3 J(1,1) = 2*x(1);

4 J(1,2) = 2*x(2);
5 J(2,1) = hpi*cos(hpi*x(1));

6 J(2,2) = 3*x(2)^2;
7 return

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Suppose we start the solution from point x(0) = (1, 1)T

Let ε = 0.00001 be the user-defined tolerance

1 x_0=[1;1]; % Initial solution
2 tol=1e-5; % Tolerance

3 imx=20; % Iteration
4

5 [x,res ,iter] = sNWT(@F_fun,@J_fun ,x_0 ,tol ,imx);

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Example

f (x) = 2/5 − 1/10(5x2
1 + 5x2

2 + 3x1x2 − x1 − 2x2)e

[
−
(
x2
1+x2

2

)]

−2
0

2−2

0

2
0.2

0.4

x1
x2

f
(x

)
=

f
(x

1
,x

2
)

We want to approximate the global minimum x∗ ≈ (−0.63,−0.70)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Netwon’s method with a tolerance ε = 10−5

Let x(0) = (−0.9,−0.9)

 After 5 iterations the method converges to x=[-0.63058;-0.70074]

Let x(0) = (−1.0,−1.0)

 After 400 iterations the stopping criterion is still not fulfilled

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Moreover, Newton’s method may converge to any stationary point

• (a point that is not necessarily to a minimiser)

With x(0) = (+0.5,−0.5)

 After 5 iterations the method converges to the saddle point

• x=[0.80659; -0.54010]

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Remark

A necessary condition for convergence of Newton’s method

• x(0) should be sufficiently close to the minimiser x∗

The local convergence property of the method

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Remark

General convergence criterium for the Newton’s method

If f ∈ C2(Rn) with stationary point x∗

 Positive definite Hessian H(x∗)

 Lipschitz continuous components of H(x) in a neighbourhood of x∗

Then, for x(0) sufficiently close to x∗, it converges (quadratically) to x∗

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

In spite of a simple implementation, the method is demanding for large n

 It requires the analytic expression of the derivatives

 The computation of both gradient and Hessian of f

• (Gradient and Hessian at each iteration)

Let alone that x(0) has to be chosen near enough x∗

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Newton method (cont.)

Remark

A valid approach to design efficient and robust minimisation algorithms

 Combine locally with globally convergent methods

Global convergence guarantees convergence to a stationary point

• (not necessarily a global minimiser)

• For all x(0) ∈ Rn

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Line-search methods
Numerical optimisation

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Line-search methods

Line-search or descent methods are iterative methods

Suppose that f ∈ C2(Rn) and that it is bounded from below

For every step k ≥ 0, let x(k+1) be the next point of the minimising sequence

Point x(k+1) is determined from

 Point xk and vector d(k)

Vector d(k) itself depends on

 The gradient ∇f
[
x(k)

]
of f

 A step-length parameter αk ∈ R

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Line-search methods (cont.)

The formulation of the method

Pseudo-code

Let x(0) ∈ Rn be an initial minimiser

Find direction d(k) ∈ Rn

Compute step-length αk ∈ R

Set x(k+1) = x(k) + αkd
(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Line-search methods (cont.)

Definition

Vector d(k) must be a descent direction

A descent direction satisfies the following conditions

d(k)
∇f

[
x(k)

]
< 0, if ∇f

[
x(k)

]
6= 0

d(k) = 0, if ∇f
[
x(k)

]
= 0

(12)

• ∇f
[
x(k)

]
gives the direction of max positive growth of f from x(k)

• d(k)
∇f

[
x(k)

]
is the directional derivative of f along d(k)

First condition ensures moves in a direction opposite to the gradient

 The iterates move towards a minimiser

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Line-search methods (cont.)

Contour lines of function f (x) and its gradient vector evaluated at x(k)

• d(k) is a suitable descent direction

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

∇f(x(k))

d
(k)

Optimal value αk ∈ R guarantees max variation of f along d(k)

• Once d(k) is determined

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Line-search methods (cont.)

αk can be computed by solving a one-dimensional minimisation problem

• Minimise the restriction of f (x) along d(k)

• x
(k)
min is the minimiser along d(k)

−2

−1

0

1

2
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x1

x2

x
(k)

d
(k)

−∇f(x(k))

x
(k)

min

The computation of αk is quite involved (when f is not quadratic)

 There are alternative techniques that approximate αk well

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions
Line-search methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions

Newton’s directions

d(k) = −H−1
[
x(k)

]
∇f

[
x(k)

]
(13)

• Matrix H
[
x(k)

]
is the Hessian matrix at the k -th step

• Vector ∇f [x(k)
]
is the gradient vector at the k -th step

Quasi-Newton directions

d(k) = −H−1
k

∇f
[
x(k)

]
(14)

• Matrix Hk is an approximation of the true Hessian H
[
x(k)

]

• It is used when second derivatives are heavy to compute

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

Gradient directions
d(k) = −∇f

[
x(k)

]
(15)

• These are quasi-Newton directions, with Hk = I, ∀k ≥ 0

Conjugate-gradient directions

d(0) = −∇f
[
x(0)

]

d(k+1) = −∇f
[
x(k+1)

]
+ βkd

(k), k ≥ 0
(16)

• Coefficients βk can be chosen according to different criteria

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

For all k ≥ 0, gradient directions are valid descent directions

d(k)
∇f

[
x(k)

]
< 0, if ∇f

[
x(k)

]
6= 0

d(k) = 0, if ∇f
[
x(k)

]
= 0,

(17)

Conjugate-gradient directions are valid directions for some suitable βk

Newton’s and quasi-Newton’s directions can also be valid directions

• H
[
x(k)

]
and Hk need be positive definite matrices

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

Example

f (x) = 2/5− 1/10(5x2
1 + 5x2

2 + 3x1x2 − x1 − 2x2)e

[
−(x2

1+x2
2)
]

−2
0

2−2

0

2
0.2

0.4

x1
x2

f
(x

)
=

f
(x

1
,x

2
)

Two local minimisers, one local maximiser and two saddle points

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

We compare sequences
{
x(k)

}
from Newton’s and descent methods

• Various descent directions

• From x
(0)
1 and x

(0)
2

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

x
(0)
1 = (0.5,−0.5)

Newton

descent Newton

descent grad

descent GC−PR

descent GC−FR

descent quasi−Newton

Newton

descent Newton

descent grad,

quasi−Newton, GC

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
(0)

1

x
(0)

2

• Newton’s method converges rapidly towards the saddle point

• Newton’s directions take a first step identical to Newton’s

 Then collapse due to a non-positive definite matrix Hk

• Others converge with different speeds into a local minimum

• Fastest convergence by quasi-Newton’s directions

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

x
(0)
2 = (0.4, 0.5)

Newton

descent Newton

descent grad

descent GC−PR

descent GC−FR

descent quasi−Newton

Newton

descent Newton

descent grad,

quasi−Newton, GC

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
(0)

1

x
(0)

2

• Newton’s method diverges

• Newton’s directions converge to a local minimum

 Newton’s method and directions share the same first direction

• All others also converge to the same local minimiser

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent directions (cont.)

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk
Line-search methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk

Let d(k) be a descent direction

• How to set the step-length αk

The new iterate x(k+1) is (should be) the minimiser of f along d(k)

−2

−1

0

1

2
−2

−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x1

x2

x
(k)

d
(k)

−∇f(x(k))

x
(k)

min

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

The new iterate x(k+1) should be the minimiser of f along d(k)

Choose αk such that the minimisation is exact

αk = arg min
α∈R

f
[
x(k) + αd(k)

]

or

f
[
x(k) + αkd

(k)
]
= min

α∈R

f
[
x(k) + αd(k)

]

(18)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

A second-order Taylor expansion of f around x(k) yields

f
[
x(k) + αd(k)

]
= f

[
x(k)

]
+ αd(k)

∇f
[
x(k)

]
+

α2

2
d(k)T H

[
x(k)

]
d(k)

+ o(||αd(k)||2) (19)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Remark

Consider the special case in which f is a quadratic function

f (x) =
1

2
xTAx− xTb+ c

• A ∈ Rn×n symmetric and positive definite

• b ∈ Rn

• c ∈ R

The expansion is exact, the infinitesimal residual is null

f
[
x(k) + αd(k)

]
= f

[
x(k)

]
+ αd(k)∇f

[
x(k)

]
+

α2

2
d(k)T H

[
x(k)

]
d(k)

+
✘
✘
✘
✘
✘

o(||αd(k)||2)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

For every k ≥ 0, we have

f
[
x(k)

]
=

1

2
x(k)T Ax(k) − x(k)Tb+ c

∇f
[
x(k)

]
= Ax(k) − b = −r(k)

∇
2f

[
x(k)

]
= H

[
x(k)

]
= A

Differentiate f
[
x(k)+αd(k)

]
= f

[
x(k)

]
+αd(k)

∇f
[
x(k)

]
+
α2

2
d(k)T H

[
x(k)

]
d(k)

wrt α and set the derivative equal to zero to get minα∈R f [x(k) + αd(k)]

d

dαk

f
[
x(k) + αkx

(k)
]
= −d(k)T r(k) + αkd

(k)Ad(k) = 0

 αk =
d(k)T r(k)

d(k)T Ad(k)

(20)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Let d(k) be gradient directions, d(k) = −∇f (x(k)) = r(k)

 The gradient method for solving linear systems

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Let dk be conjugate-gradient directions, d(k+1) = −∇f
[
x(k+1)

]
+ βkd

(k)

Set,

βk =

[
Ad(k)

]T
r(k+1)

d(k)T Ad(k)
(21)

 The conjugate-gradient method for solving linear systems

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Let f be a non-quadratic function

The computation of the optimal αk requires an iterative method

 Numerical solution of minimisation along d(k)

Remark

 Demanding and often not worth it

 Stick with an approximation of αk

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

How to pick a good approximated value of αk?

Impose a condition to the new iterate x(k+1) = x(k) + αkd
(k)

 f
[
x(k+1)

]
< f

[
x(k)

]
(22)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Example

A natural strategy for setting αk

• Initially assign a large αk

• Then, reduce it iteratively

• Until, f
[
x(k+1)

]
< f

[
x(k)

]
is satisfied

The strategy does not guarantee a
{
xk

}
that converges to x∗

• Steps can be too long (go beyond the minimum)

• Steps can be too short (get infinitesiamal)

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

There exist alternative (better/reliable) criteria for αk > 0

 Wolfe’s conditions

Definition

Let αk be the step-length

αk is accepted if

f
[
x(k) + αkd

(k)
]
≤ f

[
x(k)

]
+ σαkd

(k)T
∇f

[
x(k)

]

d(k)T
∇f

[
x(k) + αkd

(k)
]
≥ δd(k)T

∇f
[
x(k)

]
(23)

The two additional parameters, constants σ and δ

• 0 < σ < δ < 1

d(k)∇f
[
x(k)

]
is the directional derivative of f along direction d(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

f
[
x(k) + αkd

(k)
]
≤ f

[
x(k)

]
+ σαkd

(k)T
∇f

[
x(k)

]

d(k)T
∇f

[
x(k) + αkd

(k)
]
≥ δd(k)T

∇f
[
x(k)

]

First condition (Armijo’s rule) inhibits too small variations of f

• With respect to step-length and directional derivative

Changes in f need be proportional to step-length and directional derivative

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

The terms in the first of the two Wolfe’s conditions, for σ = 0.2

f
[
x(k) + αkd

(k)
]
≤ f

[
x(k)

]
+ σαkd

(k)T
∇f

[
x(k)

]

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f(x(k) + αd
(k))

f(x(k)) + σα(d(k))T ∇f(x(k))

α

Condition is satisfied for α corresponding to the continuous line

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

f
[
x(k) + αkd

(k)
]
≤ f

[
x(k)

]
+ σαkd

(k)T
∇f

[
x(k)

]

d(k)T
∇f

[
x(k) + αkd

(k)
]
≥ δd(k)T

∇f
[
x(k)

]

Second condition states that the directional derivative of f at new point
x(k) + αkd

(k) should be δ times larger than it was at point x(k)

• Point x(k)+αkd
(k) is a valid candidate if f at such point decreases less

than it does at x(k) (closer to a minimiser)

This second condition prevents steps whose length would be too small

• Happens where f has a largely negative directional derivative

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Lines with slope δd(k)T ∇f
[
x(k)

]
in second condition, δ = 0.9

d(k)T
∇f

[
x(k) + αkd

(k)
]
≥ δd(k)T

∇f
[
x(k)

]

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

α

(d(k))T ∇f(x(k))

δ(d(k))T ∇f(x(k))

Condition is satisfied for α corresponding to the continuous line

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Wolfe’s conditions are jointly satisfied in the interval

0.23 ≤ α ≤ 0.41 or 0.62 ≤ α ≤ 0.77

Values of α ∈ [0.62, 0.77] are far from the minimiser of f along d(k)

• Also α where the directional derivative is large are accepted

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Definition

Wolfe’s strong conditions

f
[
x(k) + αkd

(k)
]
≤ f

[
x(k)

]
+ σαkd

(k)T
∇f

[
x(k)

]

∣
∣d(k)T

∇f
[
x(k) + αkd

(k)
]∣
∣ ≤ −δd(k)T

∇f
[
x(k)

]
(24)

This conditions are more restrictive (duh!)

• The first condition is unchanged

• The second one inhibits f from large variations about x(k) + αkd
(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Acceptable α must belong to small intervals around the minimisers

• (thick continuous arcs)

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

slope= ±δ(d(k))T ∇f(x(k))

f(x(k)) + σα(d(k))T ∇f(x(k))

α

• For σ = 0.2 and δ = 0.9

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

Remark

Suppose that f ∈ C2(Rn) is bounded from below in
{
x(k) + αd(k), α > 0

}

• Let d(k) be a descent direction at x(k)

It can be shown that for all σ and δ such that 0 < σ < δ < 1 there exist
non-empty intervals of αk that satisfy Wolfe’s weak and strong conditions

In practice2, σ is usually chosen to be very small (e.g., σ = 104)

Typical values for δ

• δ = 0.9 for Newton, quasi-Newton and gradient directions

• δ = 0.1 for conjugate-gradient directions

2J. Nocedal and S. Wrigth (2006): Numerical optimization.

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

A strategy for step-lengths αk that satisfy Wolfe’s conditions

Backtracking

• Start with α = 1

• Then reduce it by a given factor ρ (tipically, ρ ∈ [0.1, 0.5))

• Until, the first weak condition is satisfied

For x(k) and a direction d(k), for σ ∈ (0, 1) and ρ ∈ [0.1, 0.5)

Pseudo-code

Set α = 1
while f

[
x(k) + αd(k)

]
> f

[
x(k)

]
+ σαd(k)∇f

[
x(k)

]

α = ρα
end

Set αk = α

Second condition is never checked, as step-lengths are not small

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

1 function [x,alpha_k]=bTrack(fun ,x_k ,g_k ,d_k,varargin)

2 %BTRACK Backtracking with line search
3 % [X,ALPHA_K]=BTRACK(FUN,X_K,G_K ,D_K) x_{k+1}=x_k+alpha_k *d_k

4 % in the descent method, alpha_k by backtracking with
5 % sigma=1e-4 and rho=0.25

6 %
7 % [X,ALPHA_K]=BTRACK(FUN,X_K,G_K ,D_K,SIGMA ,RHO) sigma and rho
8 % can be inputed - sigma in (1e-4 ,0.1) and rho in (0.1 ,0.5)

9 %
10 % FUN is the function handle of the objective function

11 % X_K is element x_k, G_K is the gradient , D_K is d_k
12

13 if nargin == 4

14 sigma = 1.0e-4; rho = 1/4;
15 else

16 sigma = varargin {1}; rho = varargin {2};
17 end

18

19 minAlpha = 1.0e-5; % Smallest steplength
20 alpha_k = 1.0; f_k = fun(x_k);

21

22 k = 0; x = x_k + alpha_k *d_k;

23 while fun(x) > f_k+sigma*alpha_k *g_k ’*d_k & alpha_k > minAlpha
24 alpha_k = alpha_k *rho;
25 x = x_k + alpha_k *d_k; k = k+1;

26 end

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Step-length αk (cont.)

The descent method with various descent directions

• αk is determined by backtracking

1 %DSCENT Descent method of minimisation

2 %[X,ERR,ITER]=DSCENT(FUN,GRAD_FUN ,X_0,TOL,KMAX ,TYP,HESS_FUN)
3 % Approximates the minimiser of FUN using descent directions
4 % Newton (TYP=1), BFGS (TYP=2), GRADIENT (TYP=3), and the

5 % CONJUGATE -GRADIENT method with
6 % beta_k by Fletcher and Reeves (TYP=41)

7 % beta_k by Polak and Ribiere (TYP=42)
8 % beta_k by Hestenes and Stiefel (TYP=43)
9 %

10 % Step length is calculated using backtracking (bTrack.m)
11 %

12 % FUN, GRAD_FUN and HESS_FUN (TYP=1 only) are function handles
13 % for the objective , gradient and Hessian matrix

14 % With TYP=2, HESS_FUN approximates the exact Hessian at X_0
15 %
16 % TOL is the stop check tolerance

17 % KMAX is the maximum number of iteration

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

1 function [x,err,iter]= dScent(fun ,grad_fun ,x_0,tol,kmax ,typ,
varargin)

2 if nargin >6; if typ==1; hess=varargin {1};
3 elseif typ==2; H=varargin {1}; end; end

4

5 err=tol+1; k=0; xk=x0(:); gk=grad(xk); dk=-gk; eps2=sqrt(eps);

6

7 while err >tol & k<kmax
8 if typ==1; H = hess_fun (xk); dk = -H\gk; % Newton

9 elseif typ==2; dk = -H\gk; % BFGS
10 elseif typ==3; dk = -gk; % Gradient

11 end
12 [xk1 ,alphak]=bTrack(fun,xk,gk,dk);
13 gk1=grad_fun (xk1);

14 if typ==2 % BFGS update
15 yk = gk1-gk; sk = xk1-xk; yks = yk ’*sk;

16 if yks > eps2*norm(sk)*norm(yk)
17 Hs=H*sk; H=H+(yk*yk ’)/yks -(Hs*Hs ’)/(sk ’*Hs);

18 end
19 elseif typ >=40 % CG upgrade
20 if typ==41; betak=(gk1 ’*gk1)/(gk ’*gk); % FR

21 elseif typ==42; betak=(gk1 ’*(gk1 -gk))/(gk ’*gk); % PR
22 elseif typ==43; betak=(gk1 ’*(gk1 -gk))/(dk ’*(gk1-gk)); % HS

23 end
24 dk = -gk1 + betak*dk;
25 end

26 xk = xk1; gk = gk1; k = 1 + k; xkt = xk1;
27 for i=1:length(xk1); xkt(i) = max([abs(xk1(i)) ,1]); end

28 err = norm((gk1.*xkt)/max([abs(fun(xk1)) ,1]),Inf);
29 end

30 x = xk; iter = k;
31 if (k==kmax & err>tol); disp(’[KMAX]’); end

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method

with Newton’s directions
Line-search methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with Newton’s directions

Let us consider a descent method with Newton’s directions

 Newton directions

d(k) = −H−1
[
x(k)

]
∇f

[
x(k)

]

Let step-lengths αk satisfy Wolfe’s conditions

 Wolfe step lengths αk

f (x(k) + αkd
(k)) ≤ f

[
x(k)

]
+ σαkd

(k)T
∇f

[
x(k)

]

d(k)T
∇f

[
x(k) + αkd

(k)
]
≥ δd(k)T

∇f
[
x(k)

]

Let f ∈ C2(Rn) bounded from below

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with Newton’s directions (cont.)

Pseudo-code

Find direction d(k) ∈ Rn

Compute step αk ∈ R

Set x(k+1) = x(k) + αkd
(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with Newton’s directions (cont.)

Suppose that the Hessian H
[
x(k)

]
is symmetric, for all k ≥ 0

 (from the assumption on f)

Suppose that H
[
x(k)

]
is also positive definite (no uphill moves)

Let Bk = H
[
x(k)

]

Suppose that ∃M > 0 : K (Bk) =
∣
∣
∣
∣Bk

∣
∣
∣
∣
2

∣
∣
∣
∣B−1

k

∣
∣
∣
∣
2
≤ M , for all k ≥ 0

• K (Bk) is the (one) spectral condition number of Bk

• Uniform upper bound on the condition number

Then, Newton’s sequence
{
x(k)

}
converges to a stationary point x∗

 By letting αk = 1 for k ≥ k , the converge is quadratic

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with Newton’s directions (cont.)

Definition

Let A ∈ Rn×n be a matrix

Consider the problem of finding a scalar λ (complex or real) and a non-null
vector x ∈ Cn such that

Ax = λx

Any λ that satisfy this equation is an eigenvalue of A

• x is the corresponding eigenvector

The spectral condition number of A is the quantity

K (A) =
λmax

λmin

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with Newton’s directions (cont.)

Remark

If Hessians are positive definite, x∗ cannot be a maximiser or saddle point

• The stationary point must necessarily be a minimiser

It can happen that H
[
x(k)

]
is not positive definite for some point x(k)

• d(k) may not be a descent direction

• Wolfe’s conditions might become meaningless

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with Newton’s directions (cont.)

Hessian can transformed to make them positive definite

Bk = H
[
x(k)

]
+Ek

• Ek is some suitable matrix (either diagonal or full)

• Ek is such that d(k) = −B−1
k

∇f
[
x(k)

]
is a descent direction

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with

quasi-Newton’s directions
Line-search methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton

Let us consider a descent method with quasi-Newton directions

• Quasi-Newton directions

d(k) = −H−1
k

∇f
[
x(k)

]

 Hk approximates the true Hessian H
[
x(k)

]

Let step-lengths αk satisfy Wolfe’s conditions

 Wolfe step lengths αk

f (x(k) + αkd
(k)) ≤ f

[
x(k)

]
+ σαkd

(k)T
∇f

[
x(k)

]

d(k)T
∇f

[
x(k) + αkd

(k)
]
≥ δd(k)T

∇f
[
x(k)

]

Let f ∈ C2(Rn) bounded from below

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

Suppose we are given a symmetric and positive definite matrix H0

 How do we build matrices Hk?

There exists a popular technique used for solving nonlinear systems

 The recursive Broyden’s rank-one update

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

Matrices Hk are required the satisfy certain conditions

• They must satisfy the secant condition

Hk+1

[
x(k+1) − x(k)

]
= ∇f

[
x(k+1)

]
−∇f

[
xk

]

• They must be symmetric, as H(x)

• They must be positive definite, d(k) are descent

• They must satisfy

lim
k→∞

∣
∣
∣
∣
[
Hk −H(x∗)

]
d(k)

∣
∣
∣
∣

∣
∣
∣
∣d(k)

∣
∣
∣
∣

= 0

This ensures that Hk is a good approximation of H
[
x∗

]
along the

descent direction d(k) and guarantees a super-linear rate of convergence

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

Definition

A strategy by Broyden, Fletcher, Goldfarb and Shanno (BFGS)

Hk+1 = Hk +
y(k)y(k)T

x(k)T s(k)
−

Hk s
(k)s(k)

T
HT

k

s(k)
T
Hks(k)

(25)

• s(k) = x(k+1) − x(k)

• yk = ∇f
[
x(k+1)

]
−∇f

[
x(k)

]

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

Matrices Hk+1 are symmetric and positive definite under condition

y(k)T s(s) > 0

It is satisfied when step lengths αk are either weak or strong Wolfe

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

BFGS is a descent method, with quasi-Newton d(k) and Wolfe’s αk s

 d(k) = −H−1
k

∇f
[
x(k)

]

f (x(k) + αkd
(k)) ≤ f

[
x(k)

]
+ σαkd

(k)T
∇f

[
x(k)

]

d(k)T
∇f

[
x(k) + αkd

(k)
]
≥ δd(k)T

∇f
[
x(k)

]

Pseudo-code

Let x(0) be an initial solution

Find direction d(k) ∈ Rn

Compute step length αk ∈ R

Set x(k+1) = x(k) + αkd
(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

Pseudo-code

Let x(0) be an initial solution

Let H0 ∈ Rn×n be a suitable symmetric and positive definite matrix

 H0 ∈ Rn×n approximates H
[
x(0)

]

Solve Hkd
(k) = −∇f

[
x(k)

]

Compute αk that satisfies Wolfe’s conditions

Set

x(k+1) = x(k) + αkd
(k)

s(k) = x(k+1) − x(k)

y(k) = ∇f
[
x(k+1)

]
−∇f

[
x(k)

]

Compute Hk+1 = Hk +
y(k)y(k)T

x(k)T s(k)
−

Hk s
(k)s(k)

T
HT

k

s(k)
T
Hk s(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

Remark

The cost of calculating d(k) is O(n3), at every iteration k ≥ 0

• Can be reduced to O(n2) by using recursive QR on Hk

Setting H0 = I gives faster convergence to x∗

 Some experimental evidence, only

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

Example

Rosenbrock’s function

f (x) = (1− x1)
2 + 100(x2 − x2

1)
2

Let ε = 10−6 be the tolerance

1 x_0 = [+1.2; -1.0];

2

3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;

4

5 options = optimset (’LargeScale’,’off’); % Switches to BFGS
6 [xstar ,fval ,exitflag ,output] = fminunc (fun ,x_0,options)

Convergence after 24 iterations and 93 function evaluations

We did not input an expression for evaluating the gradient

• It was, silently, approximated

• (finite difference methods)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

We can define and input the analytical gradient

1 x_0 = [+1.2; -1.0];

2

3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;

4 grad_fun = @(x)[-400*(x(2)-x(1)^2)*x(1) -2*(1-x(1)); ...
5 +200*(x(2)-x(1)^2)];
6

7 options = optimset (’LargeScale’,’off’,’GradObj ’,’on’);
8 [xstar ,fval ,exitflag ,output] = fminunc ({fun,grad_fun },...

9 x_0,options)

Convergence after 25 iterations and 32 function evaluations

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with quasi-Newton’s directions
(cont.)

Remark

In Octave, BFGS is implemented by the M-command bfgsmin

• M-command fminunc implements a different method

• (A trust-region method)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Descent method with gradient

and conjugate-gradient

directions
Line-search methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Gradient and conjugate-gradient directions

Let us first consider the general descent method

Pseudo-code

Find direction d(k) ∈ Rn

Compute step αk ∈ R

Set x(k+1) = x(k) + αkd
(k)

The gradient (descent) directions

d(k) = −∇f (x(k))

If f ∈ C2(Rn) is bounded from below and step lengths αk are Wolfe

 This method converges (linearly) to a stationary point

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Gradient and conjugate-gradient directions (cont.)

Let us now consider conjugate directions

d(0) = −∇f (x(0))

d(k+1) = −∇f (x(k+1))− βkd
(k), k ≥ 0

There are several options for setting βk

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Gradient or conjugate-gradient directions (cont.)

 Fletcher-Reeves

βFR
k = −

∣
∣
∣
∣∇f

[
x(k)

]∣
∣
∣
∣2

∣
∣
∣
∣∇f

[
x(k−1)

]∣
∣
∣
∣2

(26)

 Polak-Ribière (-Polyak)

βPR
k = −

∇f
[
x(k)

]T{
∇f

[
x(k)

]
−∇f

[
x(k−1)

]}

∣
∣
∣
∣∇f

[
x(k−1)

]∣
∣
∣
∣2

(27)

 Hestenes-Stiefel

βHS
k = −

∇f
[
x(k)

]T{
∇f

[
x(k)

]T −∇f
[
x(k−1)

]}

d(k−1)T
{
∇f

[
x(k)

]
−∇f

[
x(k−1)

]} (28)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Gradient and conjugate-gradient directions (cont.)

Remark

Suppose true the condition that f is quadratic and strictly convex

Then, all the aforementioned options are equivalent

 βk =

[
Ad(k)

]T
r(k+1)

d(k)T Ad(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods
Numerical optimisation

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods

Line search methods are designed to set first the descent direction d(k)

• Then, they determine the step-length αk

These steps are performed at each k -th step

Trust-region methods simultaneously choose direction and step length

This is done by building a ball of radius δk centred at x(k)

• The ball is the trust region, at iteration k

Within the ball, a quadratic approximation f̃k of f is computed

• The new x(k+1) is the minimiser of f̃k in the trust region

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Example

−2
−1.5

−1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

x
(k)

x
(0)

x
∗

x1

x2
−2

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

2.5

3

x
(k)

x1

x2

x
(k+1)

Convergence history and quadratic approximation f̃k at step k = 8

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

To compute f̃k , we start with some trust radius δk > 0

• Determine a second-order Taylor expansion of f about x(k)

f̃k (s) = f
[
x(k)

]
+ s∇f

[
x(k)

]
+

1

2
sTHk s, ∀s ∈ R

n (29)

Hk is either the Hessian of f at x(k) or a suitable approximation

• We then compute the solution s(k)

s(k) = arg min
s∈Rn :||s||≤δk

f̃k (s) (30)

 At this stage, we also compute the quantity

ρk =
f
[
x(k) + s(k)

]
− f

[
x(k)

]

f̃k
[
s(k)

]
− f̃k (0)

(31)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

ρk =
f
[
x(k) + s(k)

]
− f

[
x(k)

]

f̃k
[
s(k)

]
− f̃k (0)

A comparison between variation of f and variation of f̃k

 From point x(k) to point x(k) + s(k)

If ρk is about one, the approximation is considered to e good

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

If ρk is approximately one, we accept s(k) and move on to next iteration

 We set x(k+1) = x(k) + s(k)

• (however, if the minimiser of f̃k lie on the boundary of the trust
region, we extend the latter before proceeding to next iteration)

If ρk is either negative or positive (and much smaller than one)

 We reduce the ball’s size and calculate a new s(k)

s(k) = arg min
s∈Rn :||s||≤δk

f̃k (s)

If ρk is much larger than one, we accept s(k) and keep the trust region

 Then we move to the next iteration

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Remark

Consider the situation in which second derivatives of f are available

We could set Hk to be equal to the Hessian

• (or a variant, if not positive definite)

Otherwise, Hk can be built recursively

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Let Hk be symmetric positive definite and let
∣
∣
∣
∣H−1

k
∇f

[
x(k)

]∣
∣
∣
∣ ≤ δk

• Then, s(k) = H−1
k

∇f
[
x(k)

]
is a minimiser

• It is within the trust region

Otherwise, the minimiser of f̃k lies outside the trust region

 We must solve the minimisation of f̃k

• Constrained to the δk -ball at x(k)

min
s∈Rn :||s||=δk

f̃k (s) (32)

This is a constrained optimisation problem

 We can use the Lagrange multipliers

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

At each iteration k , we look for the minimiser of the Lagrangian function

L(s, λ) = f̃k (s) + 1/2λ(sT s− δk)

To be optimised with respect to both s and the regularisation term λ

We search for a vector s(k) and a scalar λ(k) > 0 satisfying the system

[
Hk + λ(k)I

]
s(k) = −∇f

[
x(k)

]

[
Hk + λ(k)I

]
is PSD

∣
∣
∣
∣s(k)

∣
∣
∣
∣ − δk = 0

(33)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

From
[
Hk + λ(k)I

]
s(k) = −∇f

[
x(k)

]
, we compute s(k) = s(k)

[
λ(k)

]

We substitute it in ||s(k)|| − δk = 0

 ϕ
[
λ(k)

]
=

1
∣
∣
∣
∣s(k)

[
λ(k)

]∣
∣
∣
∣
−

1

δk
= 0

The non-linear equation in λ is equivalent to system (33)

• It can be solved using Newton’s method

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

For some given λ0, set g(k) = ∇f
[
x(k)

]

Pseudo-code

For l = 0, 1, . . . (typically, less than 5 iterations are needed)

Compute s
(k)
l

= −
[
Hk + λ

(k)
l

I
]−1

g(k)

Evaluate ϕ
[
λ
(k)
l

]
= 1/

∣
∣
∣
∣s

(k)
l

∣
∣
∣
∣ − 1/δk

Evaluate ϕ′
[
λ
(k)
l

]

Compute λ
(k)
l+1 = λ

(k)
l

− ϕλ
(k)
l

/ϕ′
[
λ
(k)
l

]

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Vector s
(k)
l

is obtained by Cholesky factorisation of
[
Hk + λ

(k)
l

I
]

• Provided that matrix B(k) = Hk + λ
(k)
l

I is positive definite

• If B(k) is symmetric (definition of Hk), its eigenvalues are all real

Remark

Usually, a regularised matrix B
(k)
l

+ βI is used instead of B(k)

• β should be larger than the negative eigenvalue of B(k) of largest
modulus

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Definition

Cholesky factorisation

Let A ∈ Rn×n be a symmetric and positive definite matrix

A = RTR

R is upper triangular with positive elements on the diagonal

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust region methods (cont.)

For g(k) = ∇f
[
x(k)

]
and for some given δk

Pseudo-code

Solve Hk s = −g(k) (means s = −H−1
k

g(k))

If
∣
∣
∣
∣s
∣
∣
∣
∣ ≤ δk and Hk is positive definite

Set s(k) = s
else

Let β1 be the negative eigenvalue of Hk with largest modulus

Set λ
(k)
0 = 2

∣
∣β1

∣
∣

For l = 0, 1, . . .

Compute R : RTR = Hk + λ
(k)
l

I

Solve RTRs = g(k), RTq = s

Update λ
(k)
l+1 = λ

(k)
l

+
(
||s||/||q||

)2 ||s|| − δk

δk
Set s(k) = s

endif

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

For a fast convergence, a good radius δk is truly fundamental

The criterion for accepting a solution s(k) is based on a comparison

• The variation of f and that of its quadratic approximation f̃k

Remark

As x(k) moves to x(k) + s(k)

ρk =
f
[
x(k) + s(k)

]
− f

[
x(k)

]

f̃k
[
s(k)

]
− f̃k (0)

If ρk ≈ 1

• s(k) is accepted, the ball is enlarged if the minimum is on the boundary

If ρk ≈ 0 or ρk < 0

• s(k) is not accepted and the ball is diminished

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Let x(0) be an initial solution

Let the initial radius of the ball be δ0 ∈ (0, δ̂) with maximum radius δ̂ > 0

Let
{
η1, η2, γ1, γ2

}
be the four real parameters for updating the ball

• 0 < η1 < η2 < 1

• 0 < γ1 < 1 < γ2

Let 0 ≤ µ ≤ η1 be the real parameter for accepting a solution

...

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Then, for k = 0, 1, . . . until convergence

Pseudo-code

Compute f
[
x(k)

]
, ∇f

[
x(k)

]
and Hk

Solve min
s∈Rn :||s||2≤δk

f̃k (s)

Compute ρk

If ρk > µ
Set x(x+1) = x(k) + s(k)

else
Set x(k+1) = x(k)

endif

If ρk < η1
Set δk+1 = γ1δk

elseif η1 ≤ ρk ≤ η2
Set δk+1 = δk

elseif ρk > η2 and ||s(k)|| = δk
Set δk+1 = min{γ2δk , δ̂}

endif

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Choice of parameters3

 η1 = 1/4

 η2 = 3/4

 γ1 = 1/4

 γ2 = 8/4

• By choosing µ = 0, we accept any step yielding a decrease of f

• By choosing µ > 0, we accept steps for which the variation of f is at
least µ times the variation of its quadratic model f̃k

3J. Nocedal and S. Wrigth (2006): Numerical optimization.

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

1 %TREGION Trust region optimisation method
2 %[X,ERR,ITER]=TREGION (FUN,GRAD_FUN ,X_0,DELTA_0 , ...

3 % TOL,KMAX ,TYP,HESS_FUN)
4 % Approximates the minimiser of FUN with gradient GRAD_FUN

5 %
6 % If TYP=1 Hessian is inputed as HESS_FUN
7 % If TYP NE 1 Hessian is rank -one approximated

8 %
9 % FUN and GRAD_FUN (and HESS_FUN) are function handles

10 % X_0 is the initial point
11 % TOL is stop check tolerance
12 % DELTA_0 is initial radius of trust ball

13 % KMAX are maximum number of iterations

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

1 function [x,err,iter]= tRegion (fun ,grad_fun ,x_0,delta_0 , ...
2 tol ,kmax ,typ,hess_fun)

3

4 delta = delta_0 ; err = 1 + tol; k = 0; mu = 0.1; delta_m = 5;

5 eta_1 = 0.25; eta_2 = 0.75; gamma_1 = 0.25; gamma_2 = 2.00;
6

7 xk = x_0(:); gk = grad_fun (xk); eps2 = sqrt(eps);
8 if typ==1; Hk=hess_fun (xk); else; Hk=eye(length(xk)); end
9

10 while err > tol & k < kmax
11 [s]=trust_one(Hk,gk,delta);

12 rho=(fun(xk+s)-fun(xk))/(s’*gk+1/2*s’*Hk*s);
13 if rho > mu; xk1 = xk + s; else; xk1 = xk; end
14 if rho < eta_1; delta = gamma_1 *delta;

15 elseif rho > eta_2 & abs(norm(s)-delta) < sqrt(eps)
16 delta=min([gamma_2 *delta ,delta_m]);

17 end
18 gk1 = grad_fun (xk1);

19 err = norm((gk1.*xk1)/max([abs(fun(xk1)) ,1]),Inf);
20 if typ == 1; xk = xk1; gk = gk1; Hk = hess_fun (xk); % Newton
21 else % quasi -Newton

22 gk1 = grad(xk1); yk = gk1-gk; sk=xk1 -xk; yks = yk ’*sk;
23 if yks > eps_2*norm(sk)*norm(yk)

24 Hs = Hk*sk; Hk = Hk+(yk*yk ’)/yks -(Hs*Hs ’)/(sk ’*Hs);
25 end
26 xk = xk1; gk = gk1;

27 end
28 k=k+1;

29 end
30

31 x = xk; iter = k;
32 if (k==kmax & err>tol); disp(’Accuracy not met [KMAX]’); end

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

1 function [s] = trust_one (Hk ,gk,delta)
2 maxiter =5;
3

4 s = -Hk\gk; d = eigs(Hk ,1,’sa’); % 1st smallest algebraic
evalue

5

6 if norm(s) > delta | d<0
7 lambda = abs(2*d); I = eye(size(Hk));

8 for l=1:maxiter
9 R = chol(lambda*I+Hk);

10 s = -R\(R’\gk); q = R’\s;
11 lambda = lambda +(s’*s)/(q’*q)*(norm(s)-delta)/delta;

12 if lambda < -d
13 lambda = abs(2*lambda);
14 end

15 end
16 end

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Example

Approximate the minimiser of function

f (x1, x2) = 7/5 +
x1 + 2x2 + 2x1x2 − 5x2

1 − 5x2
2

[
5 exp (x2

1 + x2
2)

]

Use the trust-region method

A local maximum, a saddle point and two local minima

• The local minima are near (−1.0,+0.2) and (+0.3,−0.9)

• The second minimum is the global one

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust region methods (cont.)

1 fun = @(x) (x(1)+2*x(2)+2*x(1)*x(2) -5*x(1)^2-5*x(2)^2) / ...
2 (5*exp(x(1)^2+x(2)^2)) + 7.5;

3

4 grad_fun = @(x) [(1 + 2*x(2) -10*x(1) -2*x(1)*(x(1)+2*x(2) + ...
5 2*x(1)*x(2) -5*x(1)^2-5*x(2)^2)) / ...

6 (5*exp(x(1)^2+x (2)^2));
7 (2 + 2*x(1) -10*x(2) -2*x(2)*(x(1)+2*x(2) + ...

8 2*x(1)*x(2) -5*x(1)^2-5*x(2)^2)) / ...
9 (5*exp(x(1)^2+x(2)^2))];

10

11 delta_0 = 0.5; x_0 = [0.0;0.5];
12 tol = 1e-5; kmax = 100; imax=5;

13 typ = 2;
14

15 [x,er,it]=tRegion (fun,grad_fun ,x_0 ,delta_0 ,tol,kmax ,typ,imax)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Trust-region, approximated Hesse matrix

 24 iterations, x∗ ≈ (+0.28,−0.90)

−2
−1.5

−1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

x
(0)

x
∗

x1

x2

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Trust-region, exact Hessian

 12 iterations

−2
−1.5

−1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

x
(k)

x
(0)

x
∗

x1

x2

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust region methods (cont.)

Example

Rosenbrock’s function

f (x) = 100(x2 − x2
1)

2 + (1 − x1)
2

1 fun = @(x) (1-x(1))^2+100*(x(2)-x(1)^2)^2;
2 grad_fun = @(x)[-400*(x(2)-x(1)^2)*x(1) -2*(1-x(1)); ...

3 200*(x(2)-x(1)^2)];
4

5 x_0=[+1.2; -1.0];

6

7 options = optimset (’LargeScale’,’on’); % Trust -region

8 options = optimset (’GradObj ’,’on’); % Gradient
9

10 [x,fval ,exitflag ,output]= fminunc ({fun ,grad_fun },x_0,options)

Trust-region (Matlab)

 8 iterations, 9 function evaluations

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Trust-region methods (cont.)

Remark

The M-command fminunc in Octave implements the trust region method

• With approximated Hessians Hk , computed with BFGS

Hk+1 = Hk +
y(k)y(k)T

x(k)T s(k)
−

Hk s
(k)s(k)

T
HT

k

s(k)
T
Hks(k)

The option ’LargeScale’ is not used

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Non-linear least-squares
Numerical optimisation

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Non-linear least-squares

The least-squares method is often used for approximating either func-
tions f (x) or sets of data

{
(xk , yk), k = 0, . . . ,K

}
by some function f̃

• Often f̃ depends linearly on a set of coefficients
{
aj , j = 1, . . . ,m

}

Example

f̃ (x |{aj }mj=0) = a0 + a1x + a2x
2 + · · ·+ amxm

The coefficients
{
aj
}m

j=0
are unknown

They must be determined from data

{
(xk , yk), k = 0, . . . ,K

}

 min
{aj ,j=1,...,m}

K∑

k=0

[

yk − f̃ (xk |{aj })
︸ ︷︷ ︸

a0+a1xk+a2x
2
k
+···+amxm

k

]2

This problem is called a least-squares problem

The problem becomes nonlinear when f̃ non-linearly depends on
{
aj
}

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Non-linear least-squares (cont.)

Definition

Let R(x) =
[
r1(x), . . . , rn (x)

]T
with ri : Rm → R be some smooth function

We want to find

min
x∈Rm

f (x), with f (x) =
1

2

n∑

i=1

r2i (x) =
1

2

∣
∣
∣
∣R(x)

∣
∣
∣
∣2 (34)

We assume that n ≥ m

If functions ri (x) are non-linear, then function f (x) may not be convex

 Thus, f (x) may have multiple stationary points

We can use Newton, descent directions and trust-region methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Non-linear least-squares (cont.)

Consider the special form of f

We have assembled the components ri (x) into a residual vector

R(x) =
[
r1(x), . . . , rn (x)

]T

Because of this, we compactly rewrote the objective function

f (x) =
1

2

∣
∣
∣
∣R(x)

∣
∣
∣
∣2

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Non-linear least-squares (cont.)

The derivatives of f (x) can be expressed in terms of the Jacobian of R

 Partial derivatives of ri (x) with respect to xj

JR(x) =
[∂ri

∂xj

]

j=1,...,m
i=1,...,m

=

[∂r1

∂x1

∂r1

∂x2
· · ·

∂r1

∂xm

]

[∂r2

∂x1

∂r2

∂x2
· · ·

∂r2

∂xm

]

...
...

. . .
...

[∂rn

∂x1

∂rn

∂x2
· · ·

∂rn

∂xm

]

=

∇r1(x)T

∇r2(x)T

...
∇rn(x)T

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Non-linear least-squares (cont.)

Gradient and Hessian of the cost function can be compactly written

∇f (x) =
n∑

i=1

ri(x)∇ri (x) = JR(x)TR(x)

∇
2f (x) = JR(x)TJR(x) +

n∑

i=1

ri (x)∇ri (x) = JR(x)TJR(x) + S(x)

(35)

 The second derivatives of R cannot be calculated from the Jacobian

Slj (x) =
n∑

i=1

∂2ri

∂xl∂xj
(x)ri (x), for l , j = 1, . . . ,m

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Non-linear least-squares (cont.)

Calculation of the Hesse matrix can be heavy when m and n are large

• This is mostly due to matrix S(x)

In some cases, S(x) is less influent than JR(x)TJR(x)

 It could be approximated or neglected

 It simplifies the construction of H(x)

We discuss two methods devoted to handling such cases

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Gauss-Newton method
Nonlinear least-squares

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method

The Gauss-Newton method is a variant of the Newton method

Given x(0) ∈ Rn , for k = 0, 1, . . . until convergence

Pseudo-code

Solve H
[
x(k)

]
δx(k) = −∇f

[
x(k)

]

Set x(k+1) = x(k) + δx(k)

The Hessian H(x) is approximated by neglecting S(x)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Given x(0) ∈ Rm and for k = 0, 1, . . . until the convergence

Pseudo-code

Solve
{
JR(xk)TJR

[
x(k)

]}
δx(k) = −JR

[
x(k)

]T
R
[
x(k)

]

Set x(k+1) = x(k) + δx(k)

The system in the first equation may have infinitely many solutions

If JR

[
x(k)

]
is not full rank

 Stagnation

 Non-convergence

 Convergence to a non-stationary point

If JR

[
x(k)

]
is full rank, the linear system has form ATAx∗ = ATb

• It can be solved by using QR or SVD factorisations of JR(x)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

1 function [x,err,iter]= nllsGauNewtn(r,jr,x_0,tol,kmax ,varargin)

2 %NLLSGAUNEW Nonlinear least -squares with Gauss -Newton method
3 % [X,ERR,ITER]= NLLSGAUNEW(R,JR,X_0,TOL,KMAX)

4 % R and JR: Function handles for objective R and its Jacobian
5 % X_0 is the initial solution
6 % TOL is the stop check tolerance

7 % KMAX is the max number of iterations
8

9 err = 1 + tol; k = 0;
10 xk = x_0(:);

11

12 rk = r(xk,varargin {:}); jrk = jr(xk,varargin {:});
13

14 while err > tol & k < kmax
15 [Q,R] = qr(jrk ,0); dk = -R\(Q’*rk);

16 xk1 = xk + dk;
17 rk1 = r(xk1,varargin {:});
18 jrk1 = jr(xk1,varargin {:});

19

20 k = 1 + k; err = norm(xk1 - xk);

21 xk = xk1; rk = rk1; jrk = jrk1;
22 end

23

24 x = xk; iter = k;
25

26 if (k==kmax & err > tol)
27 disp(’nllsGauNewtn stopped w\o reaching accuracy [KMAX]’);

28 end

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Remark

Neglecting S(x(k)) at step k amounts to approximating R(x)

The first-order Taylor expansion of R(x) at x∗

R̃k (x) = R
[
x(k)

]
+ JR

[
x(k)

][
x− x(k)

]
(36)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Convergence of the method is not always guaranteed

• It depends on f and initial solution

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Let x∗ be a stationary point for f (x)

Let JR(x) be full rank in a suitable neighbourhood of x∗

Then,

If S(x∗) = 0 (if R(x) is linear or R(x∗) = 0)

1 The Gauss-Newton method is locally quadratically convergent

2 It coincides with the Newton’s method

If ||S(x∗)||2 is small compared to the smallest positive eigenvalue of

JR(x∗)TJR(x∗)

1 (e.g., when R(x) is mildly non-linear or its residual R(x∗) is small)

2 Gauss-Newton converges linearly

If ||S(x)||2 is large compared to the smallest positive eigenvalue of

JR(x∗)TJR(x∗)

1 Gauss-Newton may not converge, even if x(0) is very close to x∗

2 (e.g., when R(x) is strongly non-linear or its residual R(x∗) is large)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Remark

Line-search can be used in combination with Gauss-Newton

• Replace x(k+1) = x(k) + δx(k) with x(k+1) = x(k) + αkδx
(k)

• Computation of step-lengths αk is as per usual

If JR(x(k)) is full rank, matrix JR(x(k))TJR(x(k)) is symmetric and PD

• δx(k) is a descent direction for f (x)

Under suitable assumptions on f (x), we get the globally convergent method

 Damped Gauss-Newton method

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Example

Compress an audio signal to a set of parameters

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

The signal intensity is modelled as a sum of m Gaussian functions

fk (t |ak , σk) =
1

√

2πσ2
k

exp
[

−
(t − ak)

2

2σ2
k

]

, t ∈ [t0, tF], k = 1, . . . ,m

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

f
k
(t
;a

k
,
σ
k
)

a1 = 0, σ2
1 = 0.3

a2 = 0, σ2
2 = 3

a3 = 1, σ2
3 = 1.5

a4 = −2, σ2
4 = 0.2

Each peak or component is characterised by two coefficients

• The centre, ak

• The (square of the) spread, σ2
k

f (t |a,σ) =
m∑

k=1

fk (t ; ak , σk)
• a = [a1, · · · , ak]
• σ = [σ1, · · · , σk]

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Find a and σ that minimise the residual sum of squares

min
a,σ

n∑

i=1

[

f (ti |a,σ)− yi

]2

From recorded audio intensities yi at sampling times ti

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Generate n = 2000 time-intensity pairs (ti , yi)
n
i=1 with ti ∈ (0, 10)

 The sum of 5 Gaussian components

fk (t |ak , σk) =
1

√

2πσ2
k

exp
[

−
(t − ak)

2

2σ2
k

]

• Plus some little random noise

1 a = [2.3, 3.2, 4.8, 5.3, 6.6]; m = length(a);

2 sigma = [0.2, 0.3, 0.5, 0.2, 0.4];
3

4 gComp = @(t,a,sigma) exp(-((t-a)/(sigma*sqrt(2))).^2)/ ...
5 (sigma*sqrt(pi*2));

6

7 n = 2000; t = linspace (0,10,n)’; y = zeros(n,1);
8 for k=1:m

9 y = y + gComp(t,a(k),sigma(k));
10 end

11

12 y = y + 0.05* randn(n,1); % Little additive noise

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Solve the nonlinear least-squares problem of form

min
x∈Rm

Φ(x), with Φ(x) =
1

2

∣
∣
∣
∣R(x)

∣
∣
∣
∣2 =

1

2

n∑

i=1

r2i (x)

ri(x) = f (ti |a,σ)− yi =
∑m

k=1 fk (ti |ak , σk)− yi

We also have,

∂ri

∂ak
= fk (ti |ak , σk)

[ti − ak

σk

]

∂ri

∂σk

= fk (ti |ak , σk)
[(ti − ak)

2

σ3
k

−
1

2σk

]

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

Gauss-Newton

M-command nllsGauNewtn (22 iterations)

1 x_0 = [2.0,3.0,4.0 ,5.0,6.0 ,0.3,0.3,0.6 ,0.3,0.3];
2

3 tol = 3.0e-5;
4 kmax = 200;

5

6 [x,err ,iter]= nllsGauNew(@gmR ,@gmJR ,x_0 ,tol ,kmax ,t,y)
7

8 x_a = x(1:m);
9 x_sigma = x(m+1:end);

10

11 h = 1./(x_sigma *sqrt(2*pi));

12 w = 2*x_sigma *sqrt(log(4));

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

The Gauss-Newton method (cont.)

1 function [R]=gmR(x,t,y)
2

3 x = x(:); m = round (0.5* length(x));

4 a = x(1:m); sigma = x(m+1: end);
5

6 gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ...
7 /(sigma*sqrt(pi*2))];

8

9 n = length(t); R = zeros(n,1);
10 for k = 1:m; R = R + gauFun(t,a(k),sigma(k)); end

11 R = R - y;

1 function [Jr]=gmJR(x,t,y)
2 x = x(:); m = round (0.5* length(x));

3 a = x(1:m); sigma = x(m+1: end);
4

5 gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ...

6 /(sigma*sqrt(pi*2))];
7

8 n = length(t); JR = zeros(n,2*m); fk = zeros(n,m);
9 for k = 1:m; fk(:,k) = gauFun(t,a(k),sigma(k)); end

10 for k = 1:m; JR(:,k) = (fk(:,k).*(t-a(k))/sigma(k)^2)’; end
11 for k = 1:m
12 JR(:,k+m) = (fk(:,k).*((t-a(k)).^2/(k)^3-1/(2*sigma(k)))) ’;

13 end

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Levenberg-Marquardt
Nonlinear least-squares

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Levenberg-Marquardt

Levenberg-Marquardt is a trust-region method

min
x∈Rm

f (x), with f (x) =
1

2

∣
∣
∣
∣R(x)

∣
∣
∣
∣2 =

1

2

n∑

i=1

r2i (x)

We can use the general trust-region formulation

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Levenberg-Marquardt (cont.)

Pseudo-code

Compute f
[
x(k)

]
, ∇f

[
x(k)

]
and Hk

Solve min
||s||2≤δk

f̃k (s)

Compute ρk
If ρk > µ

Set x(x+1) = x(k) + s(k)

else
Set x(k+1) = x(k)

endif

If ρk < η1
Set δk+1 = γ1δk

elseif η1 ≤ ρk ≤ η2
Set δk+1 = δk

elseif ρk > η2 and ||s(k)|| = δk
Set δk+1 = min{γ2δk , δ̂}

endif

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Levenberg-Marquardt (cont.)

At each step k , we solve

min
s∈Rn :||s||≤δk

f̃k (s), with f̃k (s) =
1

2

∣
∣
∣
∣R

[
x(k)

]
+ JR

[
x(k)

]
s
∣
∣
∣
∣2 (37)

f̃k (x) is a quadratic approximation of f (x) about x(k)

 By approximating R(x) with its linear model

R̃k (x) = R
[
x(k)

]
+ JR

[
x(k)

][
x− x(k)

]

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Levenberg-Marquardt (cont.)

Often JR(x) is not full rank, yet the method is well-posed

The method is suited for minimisation problems with strong non-linearities
or large residuals f (x∗) = 1/2||R(x∗))||2 about the local minimiser x∗

Remark

Hessian approximations are those of the Gauss-Newton method

The two methods share the same local convergence properties

Convergence rates when Levenberg-Marquardt iterations do converge

• Convergence rate is quadratic, if residual is small at local minimiser

• Convergence rate is linear, otherwise

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Derivative-free methods
Unconstrained optimisation

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Derivative-free methods

We describe two simple numerical methods

• Minimisation of univariate real-valued functions

• Minimisation of multivariate real-valued functions

• (along a single direction)

We then describe the Nelder and Mead method

• Minimisation of functions of several variables

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section

and

quadratic interpolation
Derivative-free methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation

Let f : (a, b) → R be a continuous function with unique minimiser

x∗ ∈ (a, b)

Set I0 = (a, b), for k ≥ 0 generate a sequence of intervals Ik

Ik = (a(k) , b(k))

The intervals Ik are of decreasing length and each contains x∗

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

For any given k , the next interval Ik+1 can be determined

1) Let c(k), d(k) ∈ Ik with c(k) < d(k) be two points such that

b(k) − a(k)

d(k) − a(k)
=

d(k) − a(k)

b(k) − d(k)
= ϕ (38a)

b(k) − a(k)

b(k) − c(k)
=

b(k) − c(k)

c(k) − a(k)
= ϕ (38b)

Let ϕ be the golden ratio ϕ =
1 +

√
5

2
≃ 1.628

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

2) Using Equation 38a and 38b, we find point c(k) and point d(k)

c(k) = a(k) +
1

ϕ2
(b(k) − a(k)) (39a)

d(k) = a(k) +
1

ϕ
(b(k) − a(k)) (39b)

They are symmetrically placed about the mid-point of Ik

a(k) + b(k)

2
− c(k) = d(k) −

a(k) + b(k)

2
(40)

Remark

Replace c(k) and d(k) in Equation (40)

Divide by the common factor
b(k) − a(k)

ϕ2

Get the identity
ϕ2 − ϕ− 1 = 0

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

a(k) b(k)c(k) d(k)

b(k+1)a(k+1) c(k+1)

x∗

Lk ϕLk

Lk+1 ϕLk+1

x

y

f

The generic iteration of the golden-section method

• ϕ is the golden ratio, while Lk = c(k) − a(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Set a(0) = a and b(0) = b, the golden section method formulates as

Pseudo-code

For k = 0, 1, . . . until convergence

Compute c(k) and d(k) through Equation (39)

If f (c(k)) ≥ f (d(k))
set Ik+1 = (a(k+1) , b(k+1)) = (c(k), b(k))

else
set Ik+1 = (a(k+1) , b(k+1)) = (a(k) , d(k))

endif

It follows that

 If Ik+1 = (c(k), b(k)), then c(k+1) = d(k)

 If Ik+1 = (a(k) , d(k)), then d(k+1) = c(k)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

We need to set a stopping criterion

When the normalised size of the k -th interval is smaller than a tolerance ε

b(k+1) − a(k+1)

|c(k+1)|+ |d(k+1)|
< ε (41)

The mid-point of the last interval Ik+1 can be taken as solution

• This is an approximation of the minimiser x∗

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

By using Equation (38a) and (38b), yields the expression

|b(k+1) − a(k+1)| =
1

ϕ
|b(k) − a(k)| = · · · =

1

ϕk+1
|b(0) − a(0) | (42)

The golden-section method converges linearly with rate

ϕ−1 ≃ 0.618

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

1 function [xmin ,fmin ,iter]= gSection (fun ,a,b,tol,kmax ,varargin)
2 %GSECTION finds the minimum of a function
3 % XMIN=GSECTION (FUN,A,B,TOL,KMAX) approximates a min point of

4 % function FUN in [A,B] by using the golden section method
5 % If the search fails , an error message is returned

6 % FUN can be i) an inline function , ii) an anonymous function
7 % or iii) a function defined in a M-file

8 % XMIN=GSECTION (FUN,A,B,TOL,KMAX ,P1,P2 ,...) passes parameters
9 % P1, P2 ,... to function FUN(X,P1,P2 ,...)

10 % [XMIN ,FMIN ,ITER]= GSECTION (FUN ,...) returns the value of FUN

11 % at XMIN and number of iterations ITER done to find XMIN
12

13 phi = (1+sqrt(5))/2;
14 iphi(1) = inv(phi); iphi(2) = inv(1+phi);
15 c = iphi(2)*(b-a) + a; d = iphi(1)*(b-a) + a;

16 err = 1+tol; k = 0;
17

18 while err > tol & k < kmax
19 if(fun(c) >= fun(d))

20 a = c; c = d; d = iphi(1)*(b-a) + a;
21 else
22 b = d; d = c; c = iphi(2)*(b-a) + a;

23 end
24 k = 1 + k; err = abs(b-a)/(abs(c)+abs(d));

25 end
26

27 xmin = 0.5*(a+b); fmin = fun(xmin); iter = k;

28 if (iter == kmax & err > tol)
29 fprintf (’The method stopped after reaching the maximum number

30 of iterations , and without meeting the tolerance’);
31 end

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

• fun is either an anonymous or an inline function for function f

• a and b are endpoints of the search interval

• tol is the tolerance ε

• kmax is the maximum allowed number of iterations

• xmin contains the value of the minimiser

• fmin is the minimum value of f in (a, b)

• iter is the number of iterations carried out by the algorithm

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Example

Evolution of an isolated culture of 250 bacteria (Verhulst model)

f (t) =
2500

1 + 9e(−t/3)
, for t > 0

t denotes time (in days)

Find after how many days population growth rate is maximum

 Where (when?) does function g(t) = −f ′(t) has its minimum

g(t) = −7500
exp (t/3)

[
exp (t/3) + 9

]2

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Function g(t) admits a global minimiser in [6, 7]

1 g = @(t) [-(7500*exp(t/3)) / (exp(t/3)+9)^2];
2

3 a = 0; b = 10;

4 tol = 1.0e-8; kmax = 100;
5

6 [tmin gmin ,iter]= gSection (g,a,b,tol ,kmax);

Golden section: 38 iterations, t∗ ≈ 6.59 and g(t∗) ≈ −208

0 5 10

−200

−100

0
t∗

g(t∗)

t

g
(t
)

0 10 20 30

0.1

0.2

0.3

0.4

N. of iterations [k]

E
rr
o
r

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

The quadratic interpolation method is often used as alternative

• Let f be a continuous and convex function

• Let x (0), x (1) and x (2) be three distinct points

We build a sequence of points x (k) with k ≥ 3 such that

• x (k+1) is the vertex (and thus the minimiser) of the parabola p
(k)
2

• p
(k)
2 interpolates f at (node points) x (k), x (k−1) and x (k−2)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Definition

For k ≥ 2, the order-2 Lagrange polynomial at such nodes

p
(k)
2 (x) =f

[
x (k−2)

]
+

f
[
x (k−2), x (k−1)

][
x − x (k−2)

]
+

f
[
x (k−2), x (k−1), x (k)

][
x − x (k−2)

][
x − x (k−1)

]

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

p
(k)
2 (x) =f

[
x (k−2)

]
+

f
[
x (k−2), x (k−1)

][
x − x (k−2)

]
+

f
[
x (k−2), x (k−1), x (k)

][
x − x (k−2)

][
x − x (k−1)

]

In the order-2 Lagrange polynomial p
(k)
2 for k ≥ 2, consider the quantities

f
[
xi , xj

]
=

f (xj) − f (xi)

xj − xi

f
[
xi , xj , xk

]
=

f
[
xj , xl

]
− f

[
xi , xj

]

xl − xi

(43)

The Newton divided differences

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Theorem

Consider n + 1 distinct points

{[
xi , yi (xi)

]}n+1

n=0

There exists only one polynomial Πn ∈ Pn of order n or smaller that in-
terpolates them

Πn(xi) = yi , ∀i = 0, . . . ,n

Πn is said to be the interpolating polynomial of f , if yi = f (xi)

 (for some continuous function f)

It is denoted by Πn f

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Definition

Consider the components of the Lagrangian basis associated to nodes {xi}ni=0

ϕi(x) =
n∏

j=0,j 6=i

x − xj

xi − xj
, i = 0, . . . ,n

They are polynomials such that {ϕi} is the only basis of Pn satisfying

ϕi (x) ∈ Pn , ϕi (xj) = δij =

{

1, if i = j

0, otherwise

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Definition

The Lagrange polynomial is the interpolating polynomial Πn(x)

Πn(x) =
n∑

i=0

yiϕi (x)

It is expressed in Lagrange form, or wrt the Lagrange basis

Πn(xi) =
n∑

j=0

yjϕj (xi) =
n∑

j=0

yj δij = yi , i = 0, . . . , n

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

By solving the first-order equation p′(k)
2

[
x (k+1)

]
= 0, we get

x (k+1) =
1

2

{

x (k−2) + x (k−1) −
f
[
x (k−2), x (k−1)

]

f
[
x (k−2), x (k−1), x (k)

]

}

(44)

Next point in the sequence, by setting to zero the derivative of p
(k)
2 (x)

We iterate until
∣
∣x (k+1) − x k

∣
∣ < ε, for some tolerance ε > 0

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

x(0)

x(1)

x(2)

x(3)x∗

f(x)

p2(x)

The first step of the quadratic interpolation method

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Example

g(t) = −7500
exp (t/3)

[
exp (t/3) + 9

]2

fminbnd combines golden section and parabolic interpolation

1 g = @(t) [-(7500*exp(t/3))/(exp(t/3)+9)^2];
2

3 a = 0.0; b = 10.0;
4 tol = 1.0e-8; kmax = 100;

5

6 optionsQ = optimset (’TolX’, 1.0e-8)
7 [tminQ ,gminQ ,exitflagQ ,outputQ] = fminbnd (g,a,b,optionsQ);

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Quadratic interpolation

8 iterations, t∗ ≈ 6.59 and f (t∗) ≈ −208

• optimset sets the tolerance value in structure optionsQ

• qminQ contains the evaluation of f at the minimiser tminQ

• exitflagQ indicates the termination state

• outputQ has number of iterations and function evaluations

�

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

The golden section and the quadratic interpolation method

• They are genuinely one-dimensional techniques

• They can be used to solve multidimensional optimisation problems

• They need be restricted to search along one dimensional directions

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead
Derivative-free methods

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead

Let n > 1 and f : Rn → R be a continuous function

Definition

The n-simplex with n + 1 vertices xi ∈ Rn for i = 0, . . . ,n

S =
{

y ∈ R
n : y =

n∑

i=0

λixi ,with λi ≥ 0 :
n∑

i=0

λi = 1
}

(45)

Intrinsic assumption: Linearly independent vectors {(xi − x0)}ni=1

S is a segment in R, it is a triangle in R2 and a tetrahedron in R3

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

The Nelder and Mead method is a derivative-free minimisation method

• It generates a sequence of simplices {S (k)}k≥0 in Rn

The simplices either run after or circumscribe the minimiser x∗ ∈ Rn of f

The method uses simple operations

1 Evaluations of f at the simplices’ vertices

2 Geometrical transformations (reflections, expansions, contractions)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

• At the k -th iteration, the ‘worst’ vertex of simplex S (k) is identified

x
(k)
M

, such that f
[
x
(k)
M

]
= max

0≤i≤n
f
[
x
(k)
i

]

• x
(k)
M

is substituted with a new point at which f takes a smaller value

• The new point is got by reflecting/expanding/contracting the simplex

along the line joining x
(k)
M

and the centroid of the other vertices

x
(k)
c =

1

n

n∑

i=0
i 6=M

x
(k)
i

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

How to generate the initial simplex S (0)

We take a point x̃ ∈ Rn and a positive real number η

Then, we set

x
(0)
i = x̃+ ηei , with i = 1, . . . , n

{ei} are the vectors of the standard basis in Rn

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

While k ≥ 0 and until convergence, select the ‘worst’ vertex of S (k)

x
(k)
M

= max
0≤i≤n

f
[
x
(k)
i

]
(46)

Then, replace it by a new point to form the new simplex S (k+1)

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

The new point is chosen by firstly selecting

x
(k)
m = min

0≤i≤n
f
[
x
(k)
i

]

x
(k)
µ = max

a
f
[
x
(k)
i

]
(47)

and secondly by defining the centroid point

x(k) =
1

n

n∑

i=0
i 6=M

x
(k)
i (48)

This is the centroid of hyperplane H (k) passing through vertices {xi}ni=0
i 6=M

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

Thirdly, compute reflection x
(k)
α of x

(k)
M

with respect to hyperplane H (k)

x
(k)
α = (1− α)x(k) + αx

(α)
M

(49)

The reflection coefficient α < 0 is typically set to be −1

Point x
(k)
α lies on the straight line joining points x(k) and x

(k)
M

• It is on the side of x(k), far from x
(k)
M

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

x
(k)

M

x
(k)

x
(k)

α

x
(k)

γ

S
(k)

S
(k+1)

x
∗

n = 2, the centroid is midpoint of edge of S (k) opposite to x
(k)
M

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

We fourthly compare f
[
x
(k)
α

]
with f at the other vertices of the simplex

• Before accepting x
(k)
α as the new vertex

We also try to move x
(k)
α on the straight line joining x(k) and x

(k)
M

To set the new simplex S (k+1)

(1) If f
[
x
(k)
α

]
< f

[
x
(k)
m

]
(reflection produced a minimum), then

x
(k)
γ = (1 − γ)x(k) + γx

(k)
M

, with γ < −14 (50)

• Then, if f
[
x
(k)
γ

]
< f

[
x
(k)
m

]
, replace xM by x

(k)
γ

• Otherwise, x
(k)
M

is replaced by x
(k)
α

We then proceed by incrementing k by one

4Typically, γ = −2

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

(2) If f
[
x
(k)
m

]
≤ f

[
x
(k)
α

]
< f

[
x
(k)
µ

]
, then x

(k)
M

is replaced by x
(k)
α

k is incremented by one

(3) If f
[
x
(k)
µ

]
≤ f

[
x
(k)
α

]
< f

[
x
(k)
M

]
, we compute

x
(k)
β = (1− β)x(k) + βx

(k)
α , with β > 05 (51)

• Then, if f
[
x
(k)
β

]
> f

[
x
(k)
M

]
define the vertices S (k+1)

x
(k+1)
i =

1

2

[
x(k) + x

(k)
m

]
(52)

• Otherwise x
(k)
M

is replaced by xβ

Then, we increment k

5with typically β = 1/2

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

(4) If f
[
x
(k)
α

]
> f

[
x
(k)
M

]
, we compute

xβ = (1− β)x(k) + βx
(k)
M

, with β > 0 (53)

• If f
[
x
(k)
β

]
> f

[
x
(k)
M

]
define the vertices of S (k+1)

x
(k+1)
i =

1

2

[
x(k) + x

(k)
m

]

• Otherwise we replace x
(k)
M

with x
(k)
β

Then we increment k

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

When the stopping criterion max
i=0,...,n

||x(k)
i − x

(k)
m ||∞ < ε is met

 x
(k)
m is retained as approximation of the minimiser

Convergence is guaranteed in very special cases only

Stagnation may occur, algorithm needs to be restarted

• The algorithm is nevertheless quite robust

• It is efficient for small dimensional problems

• Convergence rate depends on initial simplex

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

Example

The Rosenbrock function

f (x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2

The global minimum is at x∗ = (1, 1), and variation around x∗ is low

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

1

1

1
0

1
0

1
0

1
0

5
0

5
0

5
0

5
0

1
0
0

100

1
0
0

1
0
0

1
0
0

2
0
0

2
0
0

2
0
0

5
0
0

5
0
0

5
0
0

1
0
0
0

1
0
0
0

1
5
0
0

1
5
0
0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x
2

x
∗

x
∗

Unconstrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Unconstrained
optimisation

Newton method

Line-search

Descent directions

Step-length αk

Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient
directions

Trust-region

Nonlinear
least-squares

Gauss-Newton

Levenberg-
Marquardt

Derivative-free

Golden section and

quadratic
interpolation

Nelder and Mead

Nelder and Mead (cont.)

The simplex method

The M-command is fminsearch

1 x_0 = [-1.2 ,+1.0];
2

3 fun = @(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;
4

5 xstar = fminsearch(fun,x_0)
6

7 xstar =

8 1.000022021783570 1.000042219751772

To obtain additional information on the minimum value of f

1

2 [xstar ,fval ,exitflag ,output] = fminsearch(fun,x_0)

�

	Unconstrained optimisation
	Newton method
	Line-search
	Descent directions
	Step-length k
	Newton directions
	Quasi-Newton directions
	Gradient and conjugate-gradient directions

	Trust-region
	Nonlinear least-squares
	Gauss-Newton
	Levenberg-Marquardt

	Derivative-free
	Golden section and quadratic interpolation
	Nelder and Mead

