UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (CK0031/CK0248)

Francesco Corona

Department of Computer Science Federal University of Ceará, Fortaleza

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation

Two strategies for solving constrained minimisation problems

The penalty method

• Problems with both equality and inequality constraints

The augmented Lagrangian method

• Problems with equality constraints only

The two methods allow the solution of relatively simple problems

• Basic tools for more robust and complex algorithms

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}$ with $n \ge 1$ be a cost or objective function

The constrained optimisation problem

$$\min_{\mathbf{x}\in\Omega\subset\mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

 Ω is a closed subset determined by equality or inequality constraints

Given functions $h_i : \mathbb{R}^n \to \mathbb{R}$, for $i = 1, \ldots, p$

Given functions $g_j : \mathbb{R}^n \to \mathbb{R}$, for $j = 1, \ldots, g$

$$\rightsquigarrow \quad \Omega = \left\{ \mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0, \text{ for } j = 1, \dots, q \right\}$$
(3)

p and q are natural numbers

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

More generally,

$$\min_{\mathbf{x}\in\Omega\subset\mathbb{R}^n}f(\mathbf{x})\tag{4}$$

 Ω a closed subset determined both equality and inequality constraints

$$\Omega = \left\{ \mathbf{x} \in \mathbb{R}^n : h_i(\mathbf{x}) = 0 \text{ for } i \in \mathcal{I}_h \text{ and } g_j(\mathbf{x}) \ge 0 \text{ for } j \in \mathcal{I}_g \right\}$$

The two sets \mathcal{I}_h and \mathcal{I}_g \rightsquigarrow In Equation (3), $\mathcal{I}_h = \emptyset$ \rightsquigarrow In Equation (2), $\mathcal{I}_g = \emptyset$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

The general constrained optimisation problem

 $\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ subjected \ to \\ h_i(\mathbf{x}) &= 0, \quad \text{for all } i \in \mathcal{I}_h \\ g_j(\mathbf{x}) &\geq 0, \quad \text{for all } j \in \mathcal{I}_g \end{aligned}$

(5)

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Suppose that $f \in \mathbb{C}^1(\mathbb{R}^n)$ and that h_i and g_j are class $\mathbb{C}^1(\mathbb{R}^n)$, for all i, j

Points $\mathbf{x} \in \Omega$ that satisfy all the constraints are feasible points \rightsquigarrow The closed subset Ω is the set of all feasible points

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Consider a point $\mathbf{x}^* \in \Omega \subset \mathbb{R}^n$ such that

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega$$
 (6)

Point \mathbf{x} is said to be a **global minimiser** for the problem

Consider a point $\mathbf{x}^* \in \Omega \subset \mathbb{R}^n$ such that

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in B_r(\mathbf{x}^*) \cap \Omega$$
 (7)

B_r(**x**) ∈ ℝⁿ is a ball centred in **x**^{*} and radius r > 0
 Point **x** is said to be a local minimiser for the problem

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

A constraint is called **active** at $\mathbf{x} \in \Omega$ if it is satisfied with equality

• Active constraints at **x** are all the h_i and the g_j such that $g_j(\mathbf{x}) = 0$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Example

Consider the minimisation of function $f(\mathbf{x})$ under equality constraint $h_1(\mathbf{x})$

Let

$$f(\mathbf{x}) = 3/5x_1^2 + 1/2x_1x_2 - x_2 + 3x_2$$

Let

$$h_1(\mathbf{x}) = x_1^2 + x_2^2 - 1 = 0$$

- Contour lines of the cost $f(\mathbf{x})$
- Admissibility set $\Omega \in \mathbb{R}^2$
- The global minimiser x^{*} constrained to Ω

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Example

Minimise $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$, under inequality constraints

$$g_1(\mathbf{x}) = -34x_1 - 30x_2 + 19 \ge 0$$

$$g_2(\mathbf{x}) = +10x_1 - 05x_2 + 11 \ge 0$$

$$g_3(\mathbf{x}) = +03x_1 + 22x_2 + 08 \ge 0$$

- Contour lines of the cost $f(\mathbf{x})$
- Admissibility set $\Omega \in \mathbb{R}^2$
- The global minimiser \mathbf{x}^* constrained to Ω

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Let Ω be a non-empty, bounded and closed set

Weierstrass guarantees existence of a maximum and a minimum for f in Ω \rightsquigarrow The general constrained optimisation problem admits a solution

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

Recall the conditions for $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ to be strongly convex in Ω

f is strongly convex if $\exists \rho > 0$ such that $\forall \mathbf{x}, \mathbf{y} \in \Omega$ and $\forall \alpha \in [0, 1]$

$$\underbrace{f\left[\alpha \mathbf{x} + (1-\alpha)\mathbf{y}\right] \le \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y})}_{Convertiu} - \alpha(1-\alpha)\rho||\mathbf{x} - \mathbf{y}||^2 \qquad (8)$$

Strong convexity reduces to the usual convexity when $\rho = 0$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Optimality conditions

Let $\Omega \subset \mathbb{R}^n$ be a convex set

Let $\mathbf{x}^* \in \Omega$ be such that $f \in \mathbb{C}^1[B_r(\mathbf{x}^*)]$

If \mathbf{x}^* is a local minimiser for the constrained minimisation problem, then

$$\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \forall \mathbf{x} \in \Omega$$
(9)

If f is convex in Ω and (9) is satisfied, then \mathbf{x}^* is a global minimiser Suppose that we require Ω to be closed and f to be strongly convex \rightsquigarrow It can be shown that the minimiser is unique

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

There are many algorithms for solving constrained minimisation problems Many search for the stationary points of the Lagrangian function

• The KKT or Karush-Kuhn-Tucker points

Definition

The Lagrangian function associated with problem $\min_{\mathbf{x}\in\Omega} f(\mathbf{x})$

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x}) - \sum_{j \in \mathcal{I}_g} \mu_j g_j(\mathbf{x})$$
(10)

 λ and μ are Lagrangian multipliers

- $\lambda = (\lambda_i)$, for $i \in \mathcal{I}_h$
- $\boldsymbol{\mu} = (\mu_i), \text{ for } j \in \mathcal{I}_g$

They are (weights) associated with the equality and inequality constraints

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

Karush-Kuhn-Tucker conditions

A point \mathbf{x}^* is said to be a KKT point for \mathcal{L} if there exist $\boldsymbol{\lambda}^*$ and $\boldsymbol{\mu}^*$ such that the triplet $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ satisfies the Karush-Kuhn-Tucker conditions

$$\begin{aligned} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) &= \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) - \sum_{j \in \mathcal{I}_g} \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0} \\ h_i(\mathbf{x}^*) &= 0, \quad \forall i \in \mathcal{I}_h \\ g_i(\mathbf{x}^*) &= 0, \quad \forall j \in \mathcal{I}_g \\ \mu_j^* &\geq 0, \quad \forall j \in \mathcal{I}_g \\ \mu_j^* g_j(\mathbf{x}^*) &= 0, \quad \forall j \in \mathcal{I}_g \end{aligned}$$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Let \mathbf{x} be given point

Suppose that the gradients $\nabla h_i(\mathbf{x})$ and $\nabla g_j(\mathbf{x})$ associated with the active constraints in \mathbf{x} are linearly independent

The constraints satisfy the linear independence (constraint) qualification (LI(C)Q) in ${\bf x}$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

First order KKT conditions

 $\Gamma heorem$

Let \mathbf{x}^* be a local minimum for the constrained problem

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ subjected \ to \\ h_i(\mathbf{x}) &= 0, \forall i \in \mathcal{I}_h \\ g_j(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_g \end{split}$$

Let f, h_i and g_j be $\mathbb{C}^1(\Omega)$

Let the constraints be LIQ in \mathbf{x}^*

Then, there exist λ^* and μ^* such that $(\mathbf{x}^*, \lambda^*, \mu^*)$ is a KKT point

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

In the absence of inequality constraints, the Lagrangian takes the form

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*)$$

These KKT conditions are known as Lagrange (necessary) conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \forall i \in \mathcal{I}_h$$
(11)

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

Remark

Sufficient conditions for a KKT point to be a minimiser of f in Ω \rightsquigarrow Knowledge about the Hessian of the Lagrangian is required

Alternatively, we need strict convexity hypothesis on f and the constraints

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

Constrained optimisation (cont.)

In general, it is possible to reformulate a constrained optimisation problem

• As an unconstrained optimisation problem

The idea is to replace the original problem by a sequence of subproblems in which the constraints are represented by terms added to the objective

- → (Quadratic) Penalty function
- \rightsquigarrow Augmented Lagrangian

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method Constrained optimisation

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method

Consider solving the general constrained optimisation problem

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ & \text{subjected to} \\ h_i(\mathbf{x}) = 0, \quad \forall i \in \mathcal{I}_h \\ g_j(\mathbf{x}) \geq 0, \quad \forall j \in \mathcal{I}_g \end{split}$$

We reformulate it as an unconstrained optimisation problem

$\begin{array}{c} {\bf Constrained} \\ {\bf optimisation} \end{array}$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method

Definitio

The modified penalty function, for a fixed penalty parameter $\alpha > 0$

$$\mathcal{P}_{\alpha}(\mathbf{x}) = f(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_h} h_i^2(\mathbf{x}) + \frac{\alpha}{2} \sum_{j \in \mathcal{I}_g} \left[\max\left\{-g_j(\mathbf{x}), 0\right\} \right]^2$$
(12)

The method adds a multiple of the square of the violation of each constraint

• Terms are zero when **x** does not violate the constrain

By making the coefficients larger, we penalise violations more severely

• This forces the minimiser closer to the feasible reagion

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

Consider the situation in which the constraints are not satisfied at ${\bf x}$

- The sums quantify how far point ${\bf x}$ is from the feasibility set Ω
- A large α heavily penalises such a violation

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

Example

Consider the minimisation of function $f(\mathbf{x})$ under equality constraint $h_1(\mathbf{x})$ Let

$$f(\mathbf{x}) = x_1 + x_2$$

Let

$$h_1(\mathbf{x}) = x_1^2 + x_2^2 - 2 = 0$$

Consider the quadratic penalty function

$$\mathcal{P}_{lpha} = (x_1 + x_2) + rac{lpha}{2}(x_1^2 + x_2^2 - 2)^2$$

The minimiser is (-1, -1)'

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

The plot of the contour of the penalty function for $\alpha = 1$

There is a local minimiser near (0.3, 0.3)'

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

The plot of the contour of the penalty function for $\alpha=10$

Points outside the feasible region suffer a much greater penalty

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

If \mathbf{x}^* is a solution to the constrained problem, \mathbf{x}^* is a minimiser of \mathcal{P} Conversely, under some regularity hypothesis for f, h_i and g_i ,

 $\lim_{\alpha \to \infty} \mathbf{x}^*(\alpha) = \mathbf{x}^*,$

 $\mathbf{x}^*(\alpha)$ denotes the minimiser of $\mathcal{P}_{\alpha}(\mathbf{x})$

As $\alpha >> 1$, $\mathbf{x}^*(\alpha)$ is a good approximation of \mathbf{x}^*

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

Not advised (instability) to minimise $\mathcal{P}_{\alpha}(\mathbf{x})$ directly for large values of α Rather, consider an increasing and unbounded sequence of parameters $\{\alpha_k\}$

• For each α_k , calculate an approximation $\mathbf{x}^{(k)}$ of the solution $\mathbf{x}^*(\alpha_k)$ to the unconstrained optimisation problem $\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$

$$\mathbf{x}^{(k)} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$$

• At step k, α_{k+1} is a chosen as a function of α_k (say, $\alpha_{k+1} = \delta \alpha_k$, for $\delta \in [1.5, 2]$) and $\mathbf{x}^{(k)}$ is used to initialise the minimisation at step k + 1

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

In the first iterations there is no reason to believe that the solution to $\min_{\mathbf{x}\in\mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$ should resemble the correct solution to the original problem

• This supports the idea of searching for an inexact solution to $\min_{\mathbf{x}\in\mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$ that differs from the exact one, $\mathbf{x}^{(k)}$, a small ε_k

 $\begin{array}{c} {\bf Constrained} \\ {\bf optimisation} \end{array}$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

Given α_0 , (typically, $\alpha_0 = 1$), given ε_0 (typically $\varepsilon_0 = 1/10$), given $\overline{\varepsilon} > 0$, given $\mathbf{x}_0^{(0)} \in \mathbb{R}^n$ and given $\boldsymbol{\lambda}_0^{(0)} \in \mathbb{R}^p$, for $k = 0, 1, \ldots$ until convergence

Pseudo-code

Compute an approximated solution to $\min_{\mathbf{x}\in\mathbb{R}^n}\mathcal{P}_{\alpha_k}(\mathbf{x})$ $\mathbf{x}^{(k)} = \arg\min_{\mathbf{x}\in\mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$ (Using the initial point $\mathbf{x}_{0}^{(0)}$ and tolerance ε_{k}) If $||\nabla_{\mathbf{x}} \mathcal{L}_A[\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_k]|| \leq \overline{\varepsilon}$ Set $\mathbf{x}^* = \mathbf{x}^{(k)}$ (convergence) else Choose $\alpha_{k+1} > \alpha_k$ Choose $\varepsilon_{k+1} < \varepsilon_k$ Set $\mathbf{x}_{0}^{(k+1)} = \mathbf{x}^{(k)}$ Endif

The extra tolerance $\overline{\varepsilon}$ is used to assess the gradient of \mathcal{P}_{α_k} at $\mathbf{x}^{(k)}$

$\begin{array}{c} {\bf Constrained} \\ {\bf optimisation} \end{array}$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

```
% PENALTY Constrained optimisation with penalty function
  % [X.ERR.K]=PFUNCTION(F.GRAD F.H.GRAD H.G.GRAD G.X O.TOL....
2
3
  %
                         KMAX, KMAXD, TYP)
4
  %
    Approximate a minimiser of the cost function F
  %
    under constraints H=0 and G>=0
    XO is initial point, TOL is tolerance for stop check
    KMAX is the maximum number of iterations
8
  % GRAD_F, GRAD_H, and GRAD_G are the gradients of F, H, and G
  % H and G. GRAD H and GRAD G can be initialised to []
  %
  % For TYP=0 solution by FMINSEARCH M-function
  %
  % For TYP>O solution by a DESCENT METHOD
    KMAXD is maximum number of iterations
  %
  %
     TYP is the choice of descent directions
  %
     TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
  %
     [X,ERR,K]=PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_0,TOL,...
18
  %
19
                          KMAX, KMAXD, TYP, HESS_FUN)
20
  %
    For TYP=1 HESS FUN is the function handle associated
  %
     For TYP=2 HESS FUN is a suitable approx. of Hessian at k=0
```

```
UFC/DC
CK0031/CK0248
2017.2
```

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

```
function [x,err,k]=pFunction(f,grad_f,h,grad_h,g,grad_g,...
                                x_0,tol,kmax,kmaxd,typ,varargin)
  xk=x_0(:); mu_0=1.0;
  if typ==1; hess=varargin{1};
6
   elseif typ==2; hess=varargin{1};
   else: hess=[]: end
8
  if ~isempty(h), [nh,mh]=size(h(xk)); end
9
  if ~isempty(g), [ng,mg]=size(g(xk)); end
  err=1+tol; k=0; muk=mu_0; muk2=muk/2; told=0.1;
  while err>tol && k<kmax
   if typ==0
    options=optimset('TolX'.told):
    [x.err.kd]=fminsearch(@P.xk.options): err=norm(x-xk):
   else
18
    [x,err,kd]=dScent(@P,@grad_P,xk,told,kmaxd,typ,hess);
    err=norm(grad_P(x));
   end
   if kd<kmaxd; muk=10*muk; muk2=0.5*muk;</pre>
   else muk=1.5*muk; muk2=0.5*muk; end
   k=1+k; xk=x; told=max([tol,0.10*told]);
26
  end
```

```
UFC/DC
CK0031/CK0248
2017.2
```

Constrained optimisation

The penalty method

The augmented Lagrangian

The penalty method (cont.)

```
1 function y=P(x) % This function is nested inside pFunction
2
3 y=fun(x);
4 if ~isempty(h); y=y+muk2*sum((h(x)).^2); end
5 if ~isempty(g); G=g(x);
6 for j=1:ng
7 y=y+muk2*max([-G(j),0])^2;
8 end
9 end
```

```
1 function y=grad_P(x) % This function is nested in pFunction
2
3 y=grad_fun(x);
4 if ~isempty(h), y=y+muk*grad_h(x)*h(x); end
5 if ~isempty(g), G=g(x); Gg=grad_g(x);
6 for j=1:ng
7 if G(j)<0
8 y=y+muk*Gg(:,j)*G(j);
9 end
0 end
1 end</pre>
```

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian Constrained optimisation

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian

Consider minimisation problems with equality constraints $(\mathcal{I}_g = \emptyset)$

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{subjected to} \\ h_i(\mathbf{x}) &= 0, \forall i \in \mathcal{I}_h \\ g_j(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_g \end{split}$$

Definition

For a suitable coefficient $\alpha > 0$, we define the augmented Lagrangian

$$\mathcal{L}_{A}(\mathbf{x}, \boldsymbol{\lambda}, \alpha) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_{h}} \lambda_{i} h_{i}(\mathbf{x}) + \alpha/2 \sum_{i \in \mathcal{I}_{h}} h_{i}^{2}(\mathbf{x})$$
(13)

The augmented Laplacian method is an iterative method

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

Initial α_0 and $\boldsymbol{\lambda}^{(0)}$ are set arbitrarily

We build a sequence of parameters $\mu_k \to \infty$

 $\alpha_k \to \infty$ is st $\{(\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)})\}$ converges to a KKT point for the Lagrangian

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x})$$

At the k-th iteration, for a given α_k and for a given $\lambda^{(k)}$, we compute

$$\mathbf{x}^{(k)} = \operatorname*{arg min}_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}_A[\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k]$$
(14)

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

We obtain the multipliers $\lambda^{(k+1)}$ from the gradient of the augmented Lagrangian with respect x and we set it to be equal to zero

$$\nabla_{\mathbf{x}} \mathcal{L}_A[\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_k] = \nabla f[\mathbf{x}^{(k)}] - \sum_{i \in \mathcal{I}_h} \left\{ \lambda_i^{(k)} - \alpha_k h_i[\mathbf{x}^{(k)}] \right\} \nabla h_i[\mathbf{x}^{(k)}]$$

By comparison with optimality condition

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$
$$h_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{I}_h$$

we identify $\lambda_i^{(k)}$ as

$$\lambda_i^{(k)} - \alpha_k h_i [\mathbf{x}^{(k)}] \simeq \lambda_i^*$$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

We thus define,

$$\lambda_i^{(k+1)} = \lambda_i^{(k)} - \alpha_k h_i \big[\mathbf{x}^{(k)} \big]$$
(15)

We then get $\mathbf{x}^{(k+1)}$ by solving with k replaced by k+1

$$\mathbf{x}^{(k)} = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}_A[\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k]$$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

Given α_0 (typically, $\alpha_0 = 1$), given ε_0 (typically $\varepsilon_0 = 1/10$), given $\overline{\varepsilon} > 0$, given $\mathbf{x}_0^{(0)} \in \mathbb{R}^n$ and given $\lambda_0^{(0)} \in \mathbb{R}^p$, for $k = 0, 1, \ldots$ until convergence

Pseudo-code

 $Compute \ an \ approximated \ solution$

$$\mathbf{x}^{(k)} = \arg\min_{\mathbf{x}\in\mathbb{R}^n} \mathcal{L}_A[\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k]$$

(Using the initial point $\mathbf{x}_{0}^{(0)}$ and tolerance ε_{k})

$$\begin{split} &If \left| \left| \nabla_{\mathbf{x}} \mathcal{L}_{A} \left[\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k} \right] \right| \right| \leq \overline{\varepsilon} \\ &Set \ \mathbf{x}^{*} = \mathbf{x}^{(k)} \ (convergence) \\ else \\ &Compute \ \lambda_{i}^{(k+1)} = \lambda_{i}^{(k)} - \mu_{k} h_{i} \left[\mathbf{x}^{(k)} \right] \\ &Choose \ \alpha_{k+1} > \alpha_{k} \\ &Choose \ \varepsilon_{k+1} < \varepsilon_{k} \\ &Set \ \mathbf{x}_{0}^{(k+1)} = \mathbf{x}^{(k)} \\ Endif \\ \end{split}$$

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

The implementation of the algorithm

```
% ALGRNG Constrained optimisation with augmented Lagrangian
    [X, ERR, K] = ALGRNG(F, GRAD_F, H, GRAD_H, X_O, LAMBDA_O, \dots
 %
  %
                     TOL, KMAX, KMAXD, TYP)
     Approximate a minimiser of the cost function F
     under equality constraints H=0
    X_O is initial point, TOL is tolerance for stop check
   KMAX is the maximum number of iterations
8
   GRAD_F and GRAD_H are the gradients of F and H
 %
   For TYP=0 solution by FMINSEARCH M-function
 %
    FOR TYP>O solution by a DESCENT METHOD
 %
   KMAXD is maximum number of iterations
 % TYP is the choice of descent directions
 %
    TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
```

The augmented Lagrangian (cont.)

Constrained optimisation

UFC/DC

2017.2

The augmented

Lagrangian

```
function [x,err,k]=aLgrng(f,grad_f,h,grad_h,x_0,lambda_0,...
CK0031/CK0248
             2
                                           tol, kmax, kmaxd, typ, varargin)
               mu 0=1.0:
                if typ==1; hess=varargin{1};
                 elseif typ==2; hess=varargin{1};
                else; hess=[]; end
             8
                err=1+tol+1: k=0: xk=x 0(:): lambdak=lambda 0(:):
               if ~isempty(h); [nh,mh]=size(h(xk)); end
               muk=mu_0; muk2=muk/2; told=0.1;
                while err>tol && k<kmax
                 if typ==0
             18
                 options=optimset ('TolX'.told):
                  [x,err,kd]=fminsearch(@L,xk,options); err=norm(x-xk);
                 else
                  [x,err,kd]=descent(@L,@grad_L,xk,told,kmaxd,typ,hess);
                  err=norm(grad_L(x));
                 end
                lambdak=lambdak-muk*h(x);
                 if kd<kmaxd: muk=10*muk: muk2=0.5*muk:
                 else muk=1.5*muk; muk2=0.5*muk; end
             28
                k=1+k; xk=x; told=max([tol,0.10*told]);
```

```
The augmented Lagrangian (cont.)
 Constrained
optimisation
  UFC/DC
CK0031/CK0248
   2017.2
                function y=L(x) % This function is nested inside aLgrng
The augmented
              2
Lagrangian
               y=fun(x);
                if ~isempty(h)
                 y=y-sum(lambdak'*h(x))+muk2*sum((h(x)).^2);
                end
                function y=grad_L(x) % This function is nested inside aLgrng
                y=grad_fun(x);
                if ~isempty(h)
                 y=y+grad_h(x)*(muk*h(x)-lambdak);
                end
```

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

• lambda_0 contains the initial vector $\lambda^{(0)}$ of Lagrange multipliers Other inputs/outputs have been explained for pFunction, dScent, ...

UFC/DC CK0031/CK0248 2017.2

Constrained optimisation

The penalty method

The augmented Lagrangian

The augmented Lagrangian (cont.)

Example

```
1 fun = @(x) 0.6*x(1).^2 + 0.5*x(2).*x(1) - x(2) + 3*x(1);
2 grad_fun = @(x) [1.2*x(1) + 0.5*x(2) + 3; 0.5*x(1) - 1];
3 
4 h = @(x) x(1).^2 + x(2).^2 - 1;
5 grad_h = @(x) [2*x(1); 2*x(2)];
6 
7 x_0 = [1.2,0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;
8 p=1; % The number of equality constraints
9 lambda_0 = rand(p,1); typ=2; hess=eye(2);
10 
1 [xmin,err,k] = aLagrange(fun,grad_fun,h,grad_h,x_0,...
1 ambda_0,tol,kmax,kmax,typ,hess)
```

Stopping criterion: A tolerance set 10^{-5}

The unconstrained minimisation by quasi-Newton descent directions

• (with typ=2 and hess=eye(2))