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Constrained optimisation

Two strategies for solving constrained minimisation problems

The penalty method

• Problems with both equality and inequality constraints

The augmented Lagrangian method

• Problems with equality constraints only

The two methods allow the solution of relatively simple problems

• Basic tools for more robust and complex algorithms
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Constrained optimisation (cont.)

Definition

Let f : Rn → R with n ≥ 1 be a cost or objective function

The constrained optimisation problem

min
x∈Ω⊂Rn

f (x) (1)

Ω is a closed subset determined by equality or inequality constraints

Given functions hi : Rn → R, for i = 1, . . . , p

 Ω =
{
x ∈ R

n : hi (x) = 0, for i = 1, . . . , p
}

(2)

Given functions gj : Rn → R, for j = 1, . . . , g

 Ω =
{
x ∈ R

n : gj (x) ≥ 0, for j = 1, . . . , q
}

(3)

p and q are natural numbers
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Constrained optimisation (cont.)

More generally,
min

x∈Ω⊂Rn
f (x) (4)

Ω a closed subset determined both equality and inequality constraints

Ω =
{
x ∈ R

n : hi (x) = 0 for i ∈ Ih and gj (x) ≥ 0 for j ∈ Ig
}

The two sets Ih and Ig

 In Equation (3), Ih = ∅

 In Equation (2), Ig = ∅

�
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Constrained optimisation (cont.)

Definition

The general constrained optimisation problem

min
x∈Rn

f (x)

subjected to

hi (x) = 0, for all i ∈ Ih

gj (x) ≥ 0, for all j ∈ Ig

(5)
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Constrained optimisation (cont.)

Suppose that f ∈ C1(Rn ) and that hi and gj are class C1(Rn ), for all i , j

Points x ∈ Ω that satisfy all the constraints are feasible points

 The closed subset Ω is the set of all feasible points
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Constrained optimisation (cont.)

Consider a point x∗ ∈ Ω ⊂ Rn such that

f (x∗) ≤ f (x), ∀x ∈ Ω (6)

Point x is said to be a global minimiser for the problem

Consider a point x∗ ∈ Ω ⊂ Rn such that

f (x∗) ≤ f (x), ∀x ∈ Br (x
∗) ∩ Ω (7)

• Br (x) ∈ Rn is a ball centred in x∗ and radius r > 0

Point x is said to be a local minimiser for the problem



Constrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Constrained
optimisation

The penalty method

The augmented

Lagrangian

Constrained optimisation (cont.)

A constraint is called active at x ∈ Ω if it is satisfied with equality

• Active constraints at x are all the hi and the gj such that gj (x) = 0
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Constrained optimisation (cont.)

Example

Consider the minimisation of function f (x) under equality constraint h1(x)

Let
f (x) = 3/5x2

1 + 1/2x1x2 − x2 + 3x1

Let
h1(x) = x2

1 + x2
2 − 1 = 0

Ω x1

x2

x
∗

• Contour lines of the cost f (x)

• Admissibility set Ω ∈ R2

• The global minimiser x∗

constrained to Ω
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Constrained optimisation (cont.)

Example

Minimise f (x) = 100(x2 − x2
1 )

2 + (1− x1)2, under inequality constraints

g1(x) = −34x1 − 30x2 + 19 ≥ 0

g2(x) = +10x1 − 05x2 + 11 ≥ 0

g3(x) = +03x1 + 22x2 + 08 ≥ 0

Ω

x1

x2

x
∗

• Contour lines of the cost f (x)

• Admissibility set Ω ∈ R2

• The global minimiser x∗

constrained to Ω

�
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Constrained optimisation (cont.)

Let Ω be a non-empty, bounded and closed set

Weierstrass guarantees existence of a maximum and a minimum for f in Ω

 The general constrained optimisation problem admits a solution



Constrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Constrained
optimisation

The penalty method

The augmented

Lagrangian

Constrained optimisation (cont.)

Definition

Recall the conditions for f : Ω ⊆ Rn → R to be strongly convex in Ω

f is strongly convex if ∃ρ > 0 such that ∀x,y ∈ Ω and ∀α ∈ [0, 1]

f
[
αx+ (1 − α)y

]
≤ αf (x) + (1− α)f (y)

︸ ︷︷ ︸

Convexity

−α(1 − α)ρ||x− y||2 (8)

Strong convexity reduces to the usual convexity when ρ = 0
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Constrained optimisation (cont.)

Proposition

Optimality conditions

Let Ω ⊂ Rn be a convex set

Let x∗ ∈ Ω be such that f ∈ C1
[
Br (x∗)

]

If x∗ is a local minimiser for the constrained minimisation problem, then

∇f (x∗)T (x− x∗) ≥ 0, ∀x ∈ Ω (9)

If f is convex in Ω and (9) is satisfied, then x∗ is a global minimiser

Suppose that we require Ω to be closed and f to be strongly convex

 It can be shown that the minimiser is unique
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There are many algorithms for solving constrained minimisation problems

Many search for the stationary points of the Lagrangian function

• The KKT or Karush-Kuhn-Tucker points

Definition

The Lagrangian function associated with problem min
x∈Ω

f (x)

L(x,λ,µ) = f (x)−
∑

i∈Ih

λihi (x)−
∑

j∈Ig

µj gj (x) (10)

λ and µ are Lagrangian multipliers

• λ = (λi ), for i ∈ Ih

• µ = (µi ), for j ∈ Ig

They are (weights) associated with the equality and inequality constraints
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Constrained optimisation (cont.)

Definition

Karush-Kuhn-Tucker conditions

A point x∗ is said to be a KKT point for L if there exist λ∗ and µ∗ such
that the triplet (x∗,λ∗,µ∗) satisfies the Karush-Kuhn-Tucker conditions

∇xL(x
∗,λ∗,µ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi (x

∗)−
∑

j∈Ig

µ∗
j ∇gj (x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

gi (x
∗) = 0, ∀j ∈ Ig

µ∗
j ≥ 0, ∀j ∈ Ig

µ∗
j gj (x

∗) = 0, ∀j ∈ Ig
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Constrained optimisation (cont.)

Let x be given point

Suppose that the gradients ∇hi (x) and ∇gj (x) associated with the active
constraints in x are linearly independent

The constraints satisfy the linear independence (constraint) qualifica-
tion (LI(C)Q) in x
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Constrained optimisation (cont.)

Theorem

First order KKT conditions

Let x∗ be a local minimum for the constrained problem

min
x∈Rn

f (x)

subjected to

hi (x) = 0,∀i ∈ Ih

gj (x) ≥ 0,∀j ∈ Ig

Let f , hi and gj be C1(Ω)

Let the constraints be LIQ in x∗

Then, there exist λ∗ and µ∗ such that (x∗,λ∗,µ∗) is a KKT point
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In the absence of inequality constraints, the Lagrangian takes the form

L(x,λ) = f (x)−
∑

i∈Ih

λ∗
i ∇hi (x

∗)

These KKT conditions are known as Lagrange (necessary) conditions

∇xL(x
∗,λ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi (x

∗) = 0

hi (x
∗) = 0,∀i ∈ Ih

(11)
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Constrained optimisation (cont.)

Remark

Sufficient conditions for a KKT point to be a minimiser of f in Ω

 Knowledge about the Hessian of the Lagrangian is required

Alternatively, we need strict convexity hypothesis on f and the constraints
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In general, it is possible to reformulate a constrained optimisation problem

• As an unconstrained optimisation problem

The idea is to replace the original problem by a sequence of subproblems in
which the constraints are represented by terms added to the objective

 (Quadratic) Penalty function

 Augmented Lagrangian
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The penalty method

Consider solving the general constrained optimisation problem

min
x∈Rn

f (x)

subjected to

hi (x) = 0, ∀i ∈ Ih

gj (x) ≥ 0, ∀j ∈ Ig

We reformulate it as an unconstrained optimisation problem
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The penalty method

Definition

The modified penalty function, for a fixed penalty parameter α > 0

Pα(x) = f (x) +
α

2

∑

i∈Ih

h2
i (x) +

α

2

∑

j∈Ig

[

max {−gj (x), 0}
]2

(12)

The method adds a multiple of the square of the violation of each constraint

• Terms are zero when x does not violate the constrain

By making the coefficients larger, we penalise violations more severely

• This forces the minimiser closer to the feasible reagion
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The penalty method (cont.)

Consider the situation in which the constraints are not satisfied at x

• The sums quantify how far point x is from the feasibility set Ω

• A large α heavily penalises such a violation
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The penalty method (cont.)

Example

Consider the minimisation of function f (x) under equality constraint h1(x)

Let
f (x) = x1 + x2

Let
h1(x) = x2

1 + x2
2 − 2 = 0

Consider the quadratic penalty function

Pα = (x1 + x2) +
α

2
(x2

1 + x2
2 − 2)2

The minimiser is (−1,−1)′
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The penalty method (cont.)

The plot of the contour of the penalty function for α = 1

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

There is a local minimiser near (0.3, 0.3)′
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The penalty method (cont.)

The plot of the contour of the penalty function for α = 10

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Points outside the feasible region suffer a much greater penalty
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The penalty method (cont.)

If x∗ is a solution to the constrained problem, x∗ is a minimiser of P

Conversely, under some regularity hypothesis for f , hi and gi ,

lim
α→∞

x∗(α) = x∗,

x∗(α) denotes the minimiser of Pα(x)

As α >> 1, x∗(α) is a good approximation of x∗
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The penalty method (cont.)

Not advised (instability) to minimise Pα(x) directly for large values of α

Rather, consider an increasing and unbounded sequence of parameters
{
αk

}

• For each αk , calculate an approximation x(k) of the solution x∗(αk )
to the unconstrained optimisation problem min

x∈Rn
Pαk (x)

x(k) = arg min
x∈Rn

Pαk (x)

• At step k , αk+1 is a chosen as a function of αk (say, αk+1 = δαk , for

δ ∈ [1.5, 2]) and x(k) is used to initialise the minimisation at step k +1
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The penalty method (cont.)

In the first iterations there is no reason to believe that the solution to
min
x∈Rn

Pαk (x) should resemble the correct solution to the original problem

• This supports the idea of searching for an inexact solution to
min
x∈Rn

Pαk (x) that differs from the exact one, x(k), a small εk
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The penalty method (cont.)

Given α0, (typically, α0 = 1), given ε0 (typically ε0 = 1/10), given ε > 0,

given x
(0)
0 ∈ Rn and given λ

(0)
0 ∈ Rp , for k = 0, 1, . . . until convergence

Pseudo-code

Compute an approximated solution to min
x∈Rn

Pαk (x)

x(k) = arg min
x∈Rn

Pαk (x)

(Using the initial point x
(0)
0 and tolerance εk )

If
∣
∣
∣
∣∇xLA

[
x(k),λ(k), αk

]∣
∣
∣
∣ ≤ ε

Set x∗ = x(k) (convergence)
else

Choose αk+1 > αk

Choose εk+1 < εk

Set x
(k+1)
0 = x(k)

Endif

The extra tolerance ε is used to assess the gradient of Pαk at x(k)
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The penalty method (cont.)

1 % PENALTY Constrained optimisation with penalty function

2 % [X,ERR,K]= PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_0,TOL ,...
3 % KMAX ,KMAXD ,TYP)

4 % Approximate a minimiser of the cost function F
5 % under constraints H=0 and G>=0
6 %

7 % X0 is initial point , TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations

9 % GRAD_F, GRAD_H, and GRAD_G are the gradients of F, H, and G
10 % H and G, GRAD_H and GRAD_G can be initialised to []
11 %

12 % For TYP=0 solution by FMINSEARCH M-function
13 %

14 % For TYP >0 solution by a DESCENT METHOD
15 % KMAXD is maximum number of iterations

16 % TYP is the choice of descent directions
17 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
18 % [X,ERR,K]= PFUNCTION(F,GRAD_F ,H,GRAD_H,G,GRAD_G,X_0,TOL ,...

19 % KMAX ,KMAXD ,TYP,HESS_FUN )
20 % For TYP=1 HESS_FUN is the function handle associated

21 % For TYP=2 HESS_FUN is a suitable approx. of Hessian at k=0
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The penalty method (cont.)

1 function [x,err,k]= pFunction(f,grad_f ,h,grad_h ,g,grad_g ,...
2 x_0 ,tol ,kmax ,kmaxd ,typ,varargin )

3

4 xk=x_0(:); mu_0=1.0;

5

6 if typ==1; hess=varargin {1};
7 elseif typ==2; hess=varargin {1};

8 else; hess=[]; end
9 if ~isempty (h), [nh,mh]=size(h(xk)); end

10 if ~isempty (g), [ng,mg]=size(g(xk)); end
11

12 err=1+tol; k=0; muk=mu_0; muk2=muk/2; told=0.1;

13

14 while err >tol && k<kmax

15 if typ==0
16 options =optimset (’TolX’,told);

17 [x,err ,kd]= fminsearch(@P,xk ,options ); err=norm(x-xk);
18 else
19 [x,err ,kd]=dScent(@P,@grad_P ,xk,told ,kmaxd ,typ,hess);

20 err=norm(grad_P(x));
21 end

22

23 if kd<kmaxd; muk=10*muk; muk2 =0.5*muk;

24 else muk=1.5* muk; muk2=0.5* muk; end
25

26 k=1+k; xk=x; told=max([tol ,0.10* told]);

27 end
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The penalty method (cont.)

1 function y=P(x) % This function is nested inside pFunction
2

3 y=fun(x);
4 if ~isempty (h); y=y+muk2*sum((h(x)).^2); end
5 if ~isempty (g); G=g(x);

6 for j=1:ng
7 y=y+muk2*max([-G(j) ,0])^2;

8 end
9 end

1 function y=grad_P(x) % This function is nested in pFunction

2

3 y=grad_fun (x);

4 if ~isempty (h), y=y+muk*grad_h(x)*h(x); end
5 if ~isempty (g), G=g(x); Gg=grad_g(x);
6 for j=1:ng

7 if G(j)<0
8 y=y+muk*Gg(:,j)*G(j);

9 end
10 end
11 end
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The augmented Lagrangian

Consider minimisation problems with equality constraints (Ig = ∅)

min
x∈Rn

f (x)

subjected to

hi (x) = 0,∀i ∈ Ih

gj (x) ≥ 0,∀j ∈ Ig

Definition

For a suitable coefficient α > 0, we define the augmented Lagrangian

LA(x,λ, α) = f (x)−
∑

i∈Ih

λihi (x) + α/2
∑

i∈Ih

h2
i (x) (13)

The augmented Laplacian method is an iterative method
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Initial α0 and λ(0) are set arbitrarily

We build a sequence of parameters µk → ∞

αk → ∞ is st {(x(k),λ(k))} converges to a KKT point for the Lagrangian

L(x,λ) = f (x)−
∑

i∈Ih

λihi (x)

At the k -th iteration, for a given αk and for a given λ(k), we compute

x(k) = arg min
x∈Rn

LA

[
x,λ(k), αk

]
(14)



Constrained

optimisation

UFC/DC
CK0031/CK0248

2017.2

Constrained
optimisation

The penalty method

The augmented

Lagrangian

The augmented Lagrangian (cont.)

We obtain the multipliers λ(k+1) from the gradient of the augmented La-
grangian with respect x and we set it to be equal to zero

∇xLA

[
x(k),λ(k), αk

]
= ∇f

[
x(k)

]
−

∑

i∈Ih

{

λ
(k)
i − αkhi

[
x(k)

]}

∇hi
[
x(k)

]

By comparison with optimality condition

∇xL(x
∗,λ∗) = ∇f (x∗)−

∑

i∈Ih

λ∗
i ∇hi (x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

we identify λ
(k)
i as

λ
(k)
i − αkhi

[
x(k)

]
≃ λ∗

i
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The augmented Lagrangian (cont.)

We thus define,

λ
(k+1)
i = λ

(k)
i − αkhi

[
x(k)

]
(15)

We then get x(k+1) by solving with k replaced by k + 1

x(k) = arg min
x∈Rn

LA

[
x,λ(k), αk

]
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The augmented Lagrangian (cont.)

Given α0 (typically, α0 = 1), given ε0 (typically ε0 = 1/10), given ε > 0,

given x
(0)
0 ∈ Rn and given λ

(0)
0 ∈ Rp , for k = 0, 1, . . . until convergence

Pseudo-code

Compute an approximated solution

x(k) = arg min
x∈Rn

LA

[
x,λ(k), αk

]

(Using the initial point x
(0)
0 and tolerance εk )

If
∣
∣
∣
∣∇xLA

[
x(k),λ(k), αk

]∣
∣
∣
∣ ≤ ε

Set x∗ = x(k) (convergence)
else

Compute λ
(k+1)
i = λ

(k)
i − µkhi

[
x(k)

]

Choose αk+1 > αk

Choose εk+1 < εk

Set x
(k+1)
0 = x(k)

Endif
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The augmented Lagrangian (cont.)

The implementation of the algorithm

1 % ALGRNG Constrained optimisation with augmented Lagrangian
2 % [X,ERR,K]=ALGRNG(F,GRAD_F,H,GRAD_H ,X_0,LAMBDA_0 ,...

3 % TOL,KMAX ,KMAXD ,TYP)
4 % Approximate a minimiser of the cost function F

5 % under equality constraints H=0
6 %

7 % X_0 is initial point , TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F and GRAD_H are the gradients of F and H

10 %
11 % For TYP=0 solution by FMINSEARCH M-function

12 % FOR TYP >0 solution by a DESCENT METHOD
13 % KMAXD is maximum number of iterations
14 % TYP is the choice of descent directions

15 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
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The augmented Lagrangian (cont.)

1 function [x,err,k]=aLgrng(f,grad_f ,h,grad_h ,x_0,lambda_0 ,...
2 tol ,kmax ,kmaxd ,typ,varargin )

3

4 mu_0=1.0;
5

6 if typ==1; hess=varargin {1};
7 elseif typ==2; hess=varargin {1};

8 else; hess=[]; end
9

10 err=1+tol+1; k=0; xk=x_0(:); lambdak =lambda_0 (:);
11

12 if ~isempty (h); [nh,mh]=size(h(xk)); end

13

14 muk=mu_0; muk2=muk/2; told =0.1;

15

16 while err >tol && k<kmax
17 if typ==0

18 options =optimset (’TolX’,told);
19 [x,err ,kd]= fminsearch(@L,xk ,options ); err=norm(x-xk);

20 else
21 [x,err ,kd]=descent (@L,@grad_L ,xk,told ,kmaxd ,typ,hess);

22 err=norm(grad_L(x));
23 end
24

25 lambdak =lambdak -muk*h(x);
26 if kd<kmaxd; muk=10*muk; muk2 =0.5*muk;

27 else muk=1.5* muk; muk2=0.5* muk; end
28

29 k=1+k; xk=x; told=max([tol ,0.10* told]);
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The augmented Lagrangian (cont.)

1 function y=L(x) % This function is nested inside aLgrng

2

3 y=fun(x);

4 if ~isempty (h)
5 y=y-sum(lambdak ’*h(x))+muk2*sum((h(x)).^2);
6 end

1 function y=grad_L(x) % This function is nested inside aLgrng
2

3 y=grad_fun (x);

4 if ~isempty (h)
5 y=y+grad_h(x)*(muk*h(x)-lambdak );

6 end
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The augmented Lagrangian (cont.)

• lambda_0 contains the initial vector λ(0) of Lagrange multipliers

Other inputs/outputs have been explained for pFunction, dScent, ...
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The augmented Lagrangian (cont.)

Example

1 fun = @(x) 0.6*x(1).^2 + 0.5*x(2).*x(1) - x(2) + 3*x(1);
2 grad_fun = @(x) [1.2*x(1) + 0.5*x(2) + 3; 0.5*x(1) - 1];
3

4 h = @(x) x(1).^2 + x(2).^2 - 1;
5 grad_h = @(x) [2*x(1); 2*x(2)];

6

7 x_0 = [1.2 ,0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;
8 p=1; % The number of equality constraints

9 lambda_0 = rand(p,1); typ=2; hess=eye(2);
10

11 [xmin ,err ,k] = aLagrange(fun ,grad_fun ,h,grad_h ,x_0 ,...
12 lambda_0 ,tol ,kmax ,kmax ,typ,hess)

Stopping criterion: A tolerance set 10−5

The unconstrained minimisation by quasi-Newton descent directions

• (with typ=2 and hess=eye(2))
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