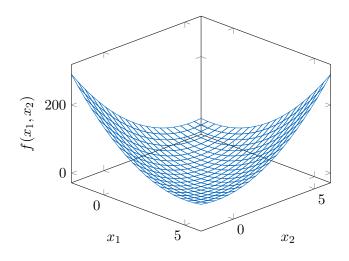
CK0031/CK0248: AP-02-II (24 de novembro de 2017)

Questão 01. You are given the objective function $f(x_1, x_2) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$ (see figure)¹. You are requested to find its minimiser \mathbf{x}^* using a descent-direction method.



Let $\mathbf{x}^{(0)} = (0,0)'$ be the initial solution and let $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha \mathbf{d}$ (k = 0, 1, ...) be the general structure of line-search methods, with \mathbf{d} the search direction and $\alpha = 1$ the fixed step-length.

 \sim (20%) Calculate expressions for the gradient vector $\nabla f(\mathbf{x})$ and the Hessian matrix $\nabla^2 f(\mathbf{x})$

 \sim (40%) Calculate the first 3 iterates ($\mathbf{x}^{(k)}$ and $f[\mathbf{x}^{(k)}]$, k = 1, 2, 3) using the gradient method

$$\mathbf{d} = -\nabla f \left[\mathbf{x}^{(k)} \right]$$

 \sim (40%) Calculate the first 3 iterates ($\mathbf{x}^{(k)}$ and $f[\mathbf{x}^{(k)}]$, k = 1, 2, 3) using the Newton method²

$$\mathbf{d} = -\left[\nabla^2 f\left[\mathbf{x}^{(k)}\right]\right]^{-1} \nabla f\left[\mathbf{x}^{(k)}\right]$$

 $^2 {\rm For}$ calculating the inverse of a 2×2 matrix A

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, then $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

 $⁽a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca.$