Matrícula (First-name Last-name) CK0031/

ne) CK0031/CK0248: Homework 01

Exercise 1. Consider the following four four-dimensional vectors $\{\mathbf{x}_i\}_{i=1}^4$ (with $\mathbf{x}_i \in \mathcal{R}^4$)

$$\mathbf{x}_{1} = \begin{bmatrix} +0.5377 \\ +0.3188 \\ +3.5784 \\ +0.7254 \end{bmatrix}; \quad \mathbf{x}_{2} = \begin{bmatrix} -2.2588 \\ -0.4336 \\ -1.3499 \\ +0.7147 \end{bmatrix}; \quad \mathbf{x}_{3} = \begin{bmatrix} -2.2588 \\ -0.4336 \\ -1.3499 \\ +0.7147 \end{bmatrix}; \quad \mathbf{x}_{4} \begin{bmatrix} +0.8622 \\ +0.3426 \\ +3.0349 \\ -0.2050 \end{bmatrix}.$$

For all $i, j \in \{1, 2, 3, 4\}$, write code to compute and store

- 1. The vector \mathbf{l}_1 of all L_1 vector norms, $[\mathbf{l}_1]_i = \|\mathbf{x}_i\|_1$
- 2. The vector \mathbf{l}_2 of all L_2 vector norms, $[\mathbf{l}_2]_i = \|\mathbf{x}_i\|_2$
- 3. The matrices Δ_i of all pairwise differences, $[\Delta_i]_j = \mathbf{x}_i \mathbf{x}_j$
- 4. The matrices Σ_i of all pairwise summations, $[\Sigma_i]_j = \mathbf{x}_i + \mathbf{x}_j$
- 5. The matrix **K** of all pairwise inner products, $[\mathbf{K}]_{ij} = \mathbf{x}_i \cdot \mathbf{x}_j$
- 6. The matrix **D** of all pairwise vector distances, $[\mathbf{D}]_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|_2$

Let $\mathbf{x}_i^{(k)} = \mathbf{x}_i$ for k = 1 and for all $i \in \{1, 2, 3, 4\}$. Write code to compute and store

1.
$$\mathbf{x}_{i}^{(k+1)} = \mathbf{x}_{i}^{(k)} + \frac{1}{k} \mathbf{x}_{i}^{(k)}$$
, for $k = 1, 2, \dots \rightarrow$

2.
$$\mathbf{x}_{i}^{(k+1)} = \mathbf{x}_{i}^{(k)} - \frac{1}{k}\mathbf{x}_{i}^{(k)}$$
, for $k = 1, 2, \dots$

Iterate until k is such that $\|\mathbf{x}_i^{(k)} - \mathbf{x}_i^{(k-1)}\|_2 \le \varepsilon$ or k = 10K, for some choice of ε .