

The Newton method

Let $f : \mathbb{R}^n \to \mathbb{R}$ with $n \ge 1$ be of class $\mathcal{C}^2(\mathbb{R}^n)$

The Newton method (cont.)

We know how to compute its first and second order partial derivatives

We apply Newton's method to solve a system of nonlinear equation

 $\nabla f(\mathbf{x}) = \mathbf{0}$

optimisation UFC/DC CK0031/CK0248 2018.2

Unconstrained

optimisation Newton method

Line-search Descent directions Step-length α_k Newton directions Quasi-Newton directions Gradient and conjugate-gradient

Trust-region

Nonlinear east-squares Gauss-Newton Levenberg-Marquardt

Derivative-free Golden section and quadratic interpolation Nelder and Mead

Unconstrained optimisation

UFC/DC CK0031/CK0248 2018.2

Unconstrained

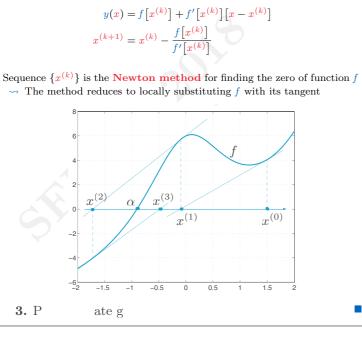
Newton method

Descent directions Step-length α_k Newton directions Quasi-Newton directions Gradient and conjugate-gradient directions

frust-region Nonlinear east-squares Gauss-Newton

Perivative-free Golden section and puadratic nterpolation

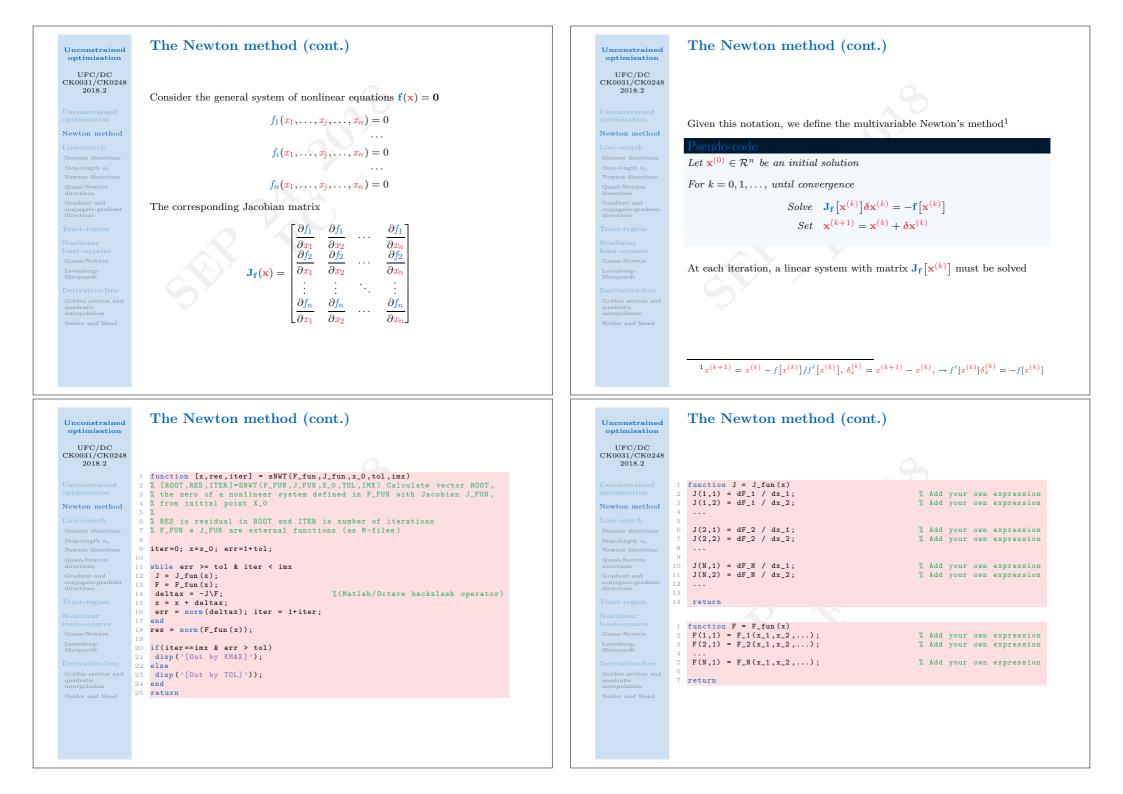
ig

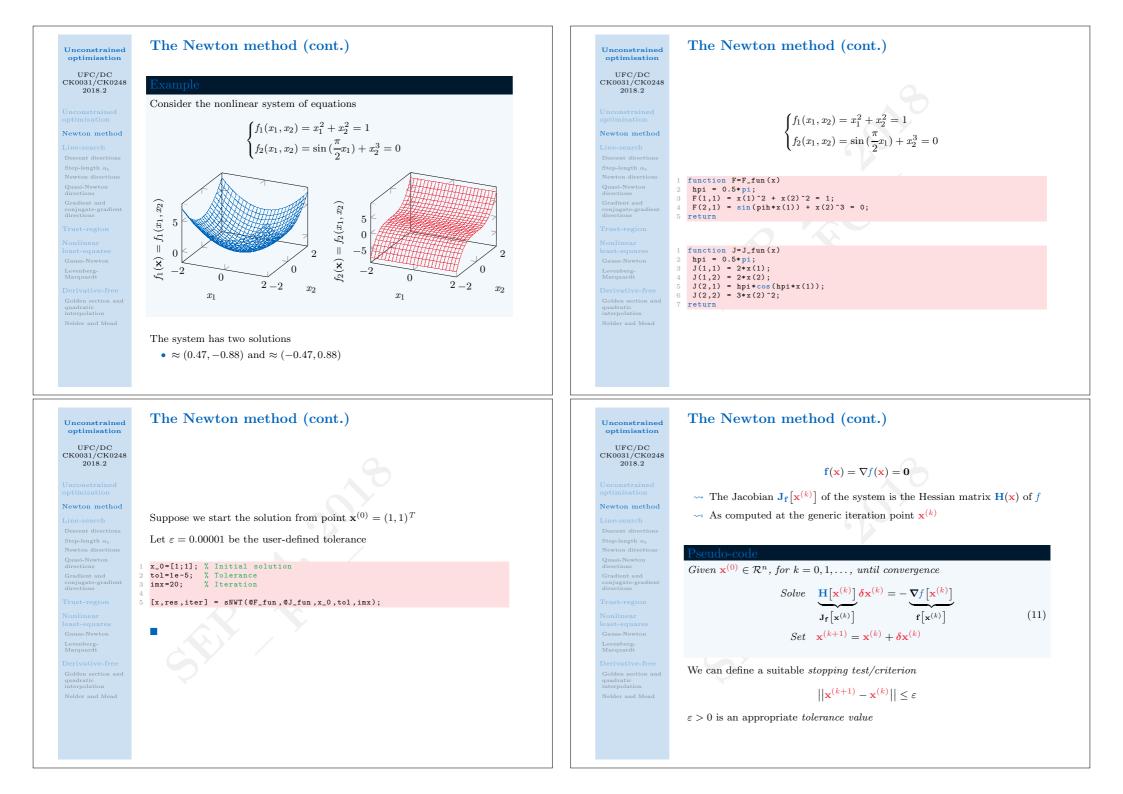


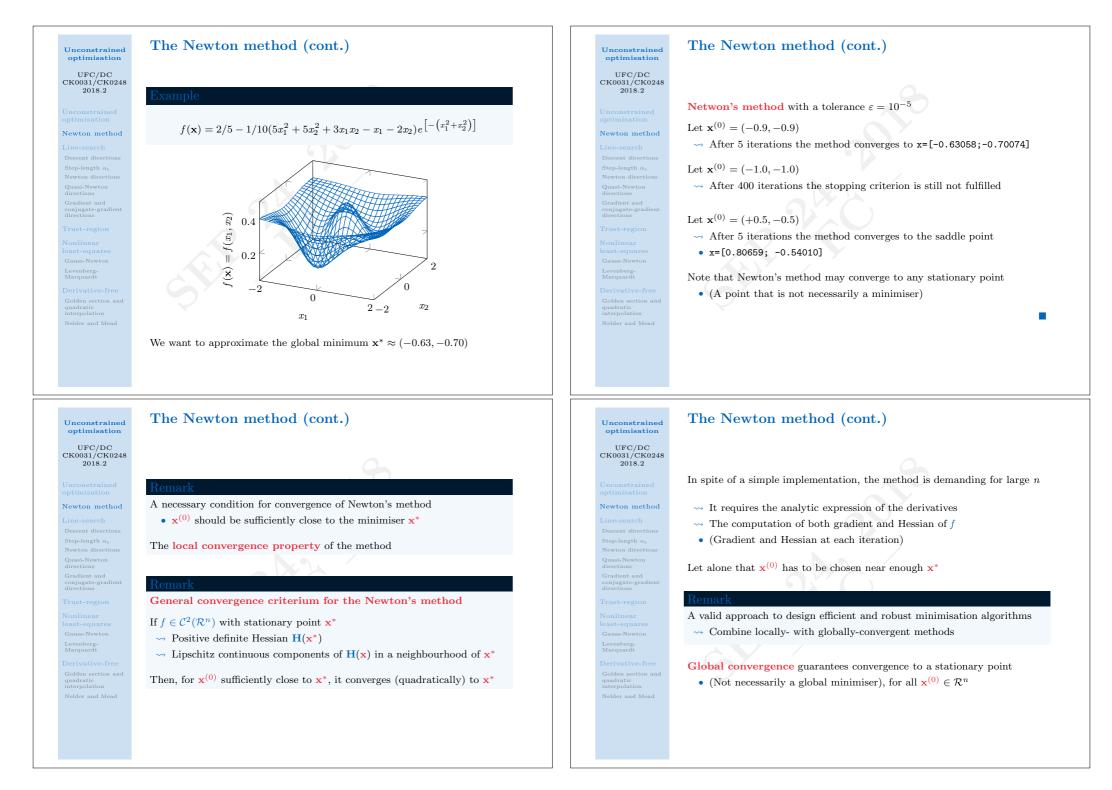
The Newton method (cont.) Unconstrained optimisation UFC/DC CK0031/CK0248 2018.2Newton's method Newton method Consider the problem of finding the zero of some $f : [a, b] \subset \mathcal{R} \to \mathcal{R}$ \rightsquigarrow Find $\alpha \in [a, b]$ such that $f(\alpha) = 0$ We know the equation of the tangent to function f(x) at some point $x^{(k)}$ $y(x) = f[x^{(k)}] + f'[x^{(k)}][x - x^{(k)}]$ We can solve for some point $x = x^{(k+1)}$, such that $y[x^{(k+1)}] = 0$ $x^{(k+1)} = x^{(k)} - \frac{f[x^{(k)}]}{f'[x^{(k)}]}$ All this, for $k = 0, 1, 2, \ldots$ and $f'[x^{(k)}] \neq 0$ The Newton method (cont.) Unconstrained optimisation UFC/DC CK0031/CK0248 Consider now a set of nonlinear equations 2018.2 $f_1(x_1, x_2, \ldots, x_n) = 0$ $f_2(x_1, x_2, \ldots, x_n) = 0$ Newton method $f_n(x_1, x_2, \ldots, x_n) = 0$ We re-write the system in vector form • Let $\mathbf{f} \equiv (f_1, \dots, f_n)^T$ • Let $\mathbf{x} \equiv (x_1, \dots, x_n)^T$ \rightarrow **f**(**x**) = **0** We want solve the system of nonlinear equation \rightarrow We can extend Newton's method

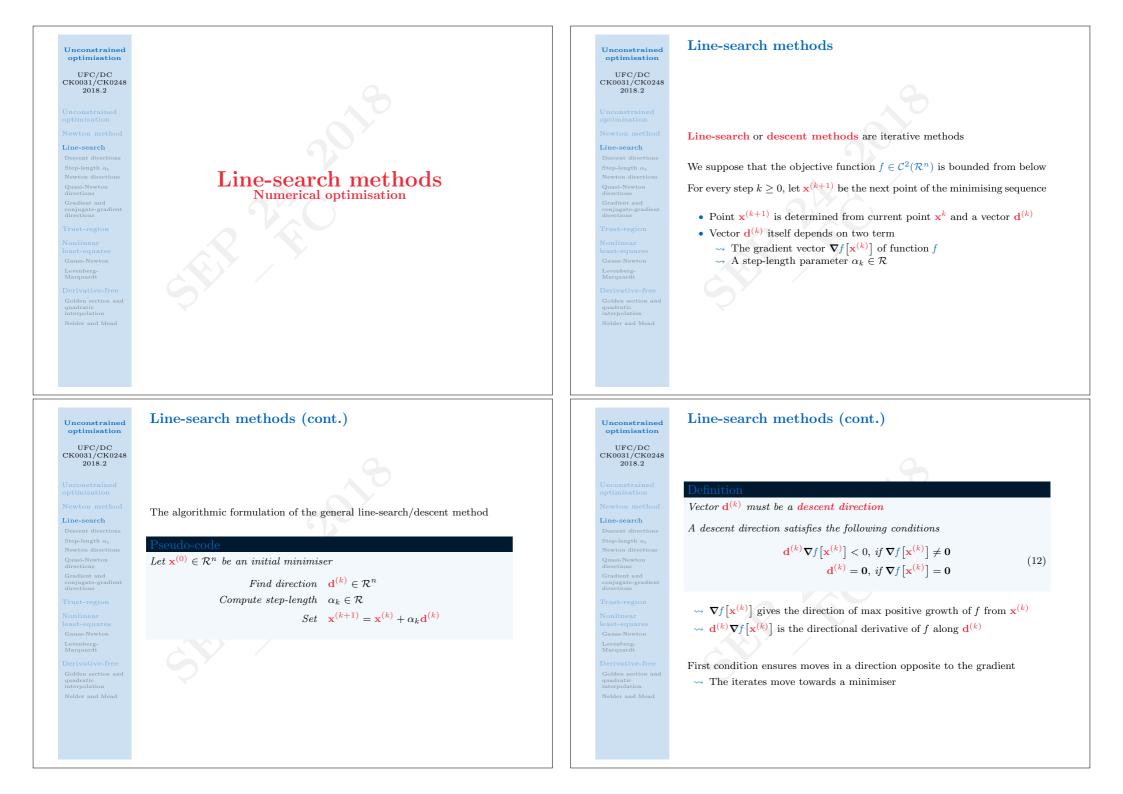
Replace first derivative of function f with Jacobian $\mathbf{J}_{\mathbf{f}}$ of function \mathbf{f}

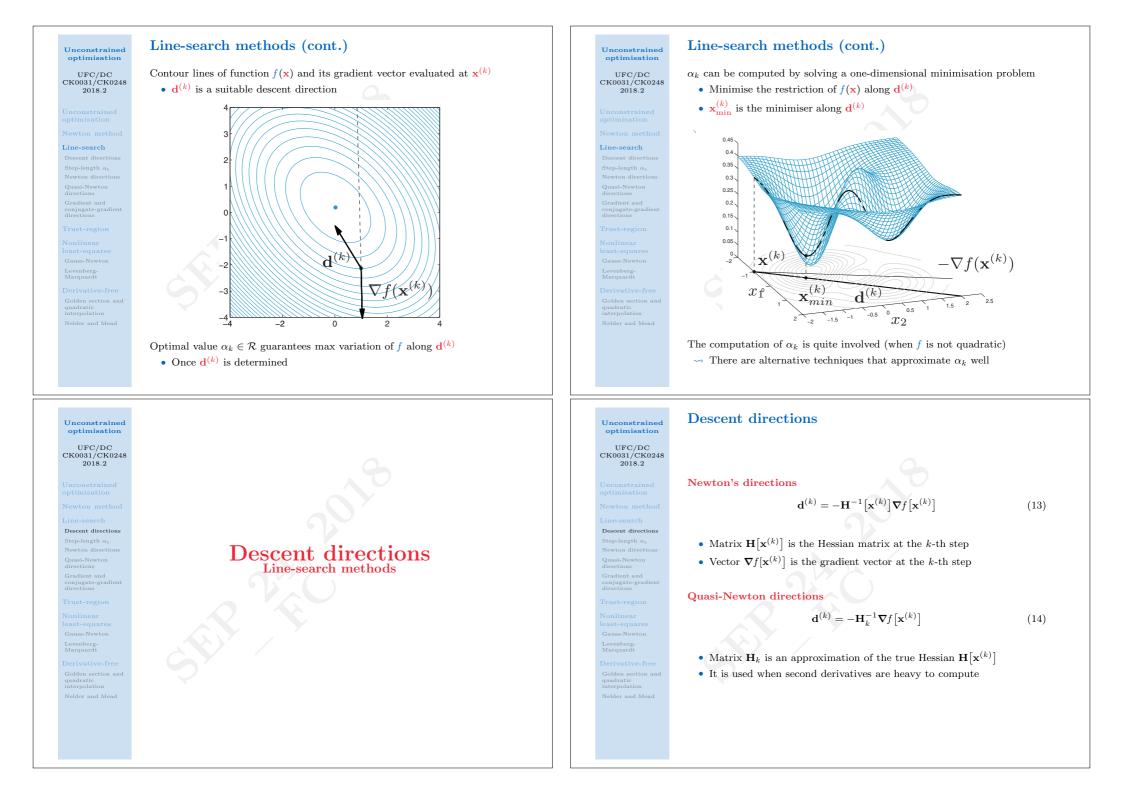
$$\rightsquigarrow$$
 $(\mathbf{J_f})_{ij} \equiv \frac{\partial f_i}{\partial x_j}$, with $i, j = 1, \dots, n$

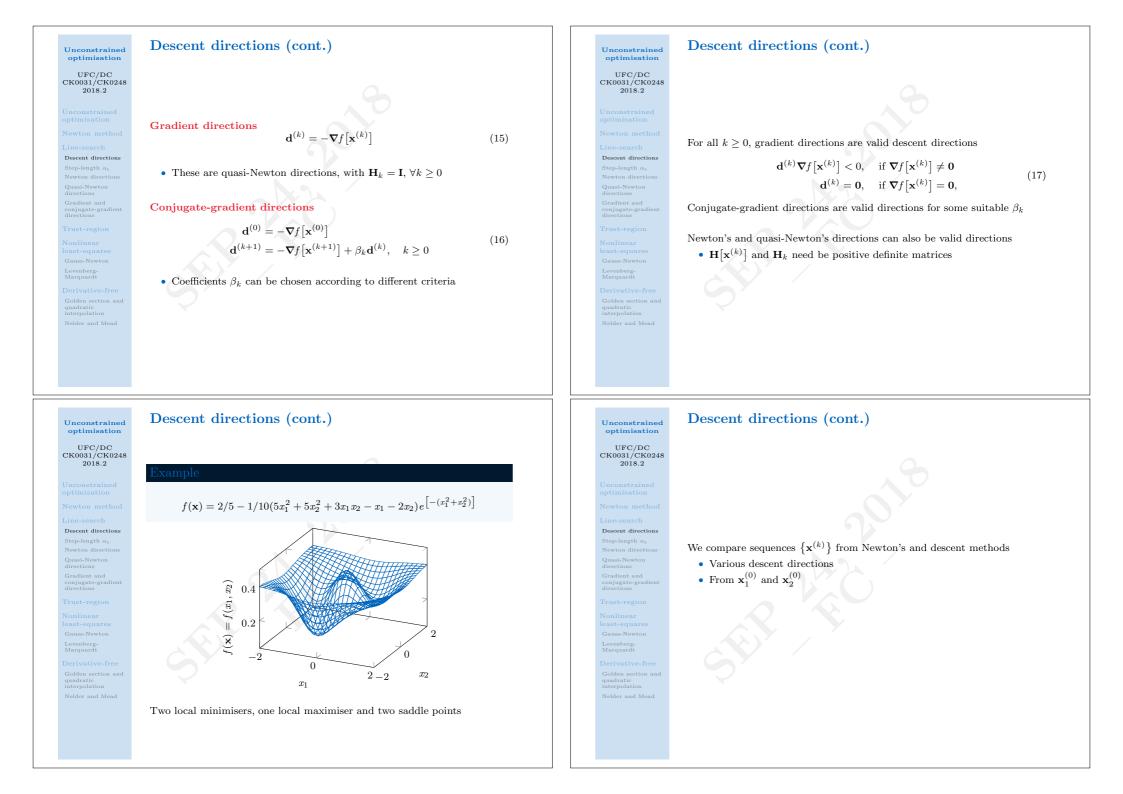


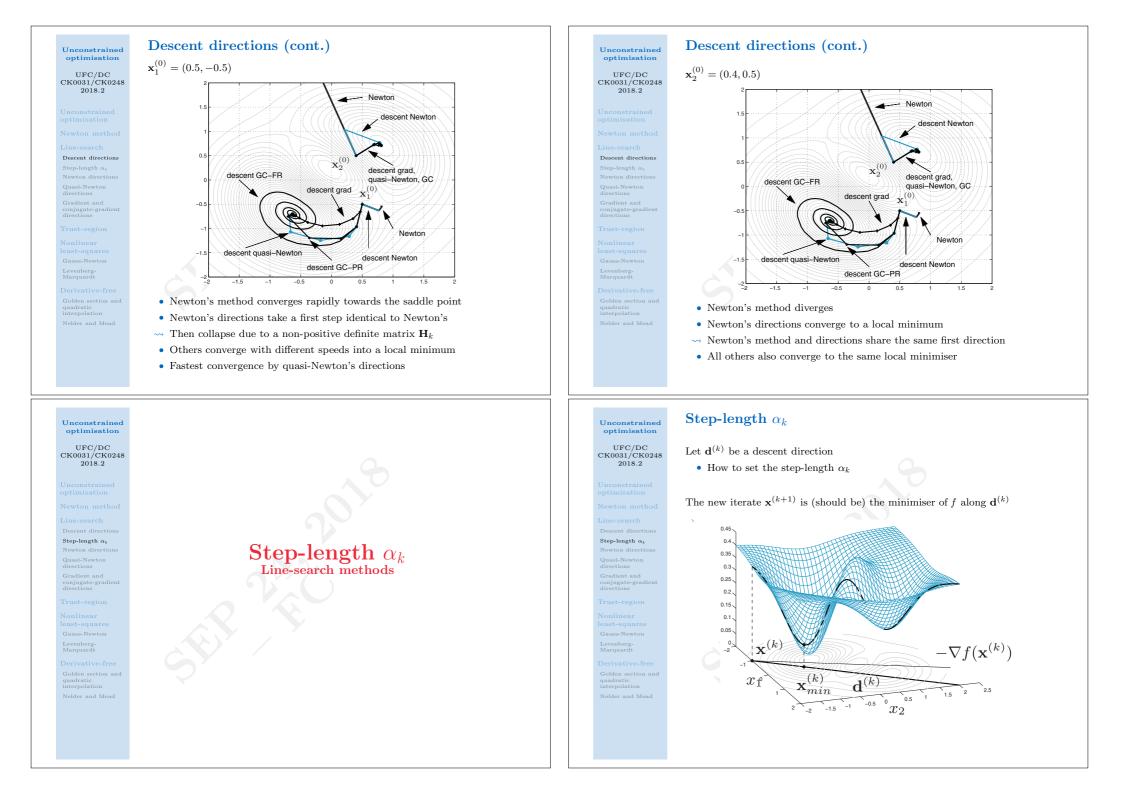












Step-length α_k (cont.)

UFC/DC CK0031/CK0248 2018.2

Unconstrained

optimisation

Step-length α_k

The new iterate $\mathbf{x}^{(k+1)}$ should be the minimiser of f along $\mathbf{d}^{(k)}$

or $f[\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}] = \min_{\alpha \in \mathbb{R}} f[\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}]$

Consider the special case in which f is a quadratic function

• $\mathbf{A} \in \mathbb{R}^{n \times n}$ symmetric and positive definite

The expansion is exact, the infinitesimal residual is null

 $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} - \mathbf{x}^T \mathbf{b} + c$

 $f[\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}] = f[\mathbf{x}^{(k)}] + \alpha \mathbf{d}^{(k)} \nabla f[\mathbf{x}^{(k)}] + \frac{\alpha^2}{2} \mathbf{d}^{(k)^T} \mathbf{H}[\mathbf{x}^{(k)}] \mathbf{d}^{(k)}$

 $\alpha_k = \arg\min_{\alpha \in \mathbb{R}} f\left[\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}\right]$

Choose α_k such that the minimisation is exact

(18)

 $+ o(||\alpha \mathbf{d}^{(k)}||^2)$

Step-length α_k (cont.)

• $\mathbf{b} \in \mathbb{R}^n$ • $c \in \mathbb{R}$

optimisation UFC/DC CK0031/CK0248 2018.2

Unconstrained

Step-length α_k

Upconstrained
Displaying and
Step-length
$$\alpha_k$$
 (cont.)

 Step-length α_k (cont.)

 Step-length α_k (cont.)

 A second-order Taylor expansion of f around $\mathbf{x}^{(k)}$ yields

 Step-length α_k (cont.)

 Markon machine
internation
of directions
internation
internation

 Newton machine
internation
internation
internation

 Step-length α_k (cont.)

 Step-length α_k (cont.)

 Unconstrained
internation

 Dimension
internation

 Unconstrained
internation

 Step-length α_k (cont.)

 Unconstrained
internation

 Dimension
internation

 Step-length α_k (cont.)

 Step-length α_k (cont.)

 Dimension
internation

 Step-length α_k (cont.)

 Dimension

 Step-length α_k (cont.)

 Dimension

 Step-length α_k (cont.)

 Dimension

 Step-length α_k (cont.)

 Dimension

 Dimension

 Step-length α_k (cont.)

 Dimension

 Step-length α_k (cont.)

 Dimension

 Step-length α_k (cont.)

 Dimension

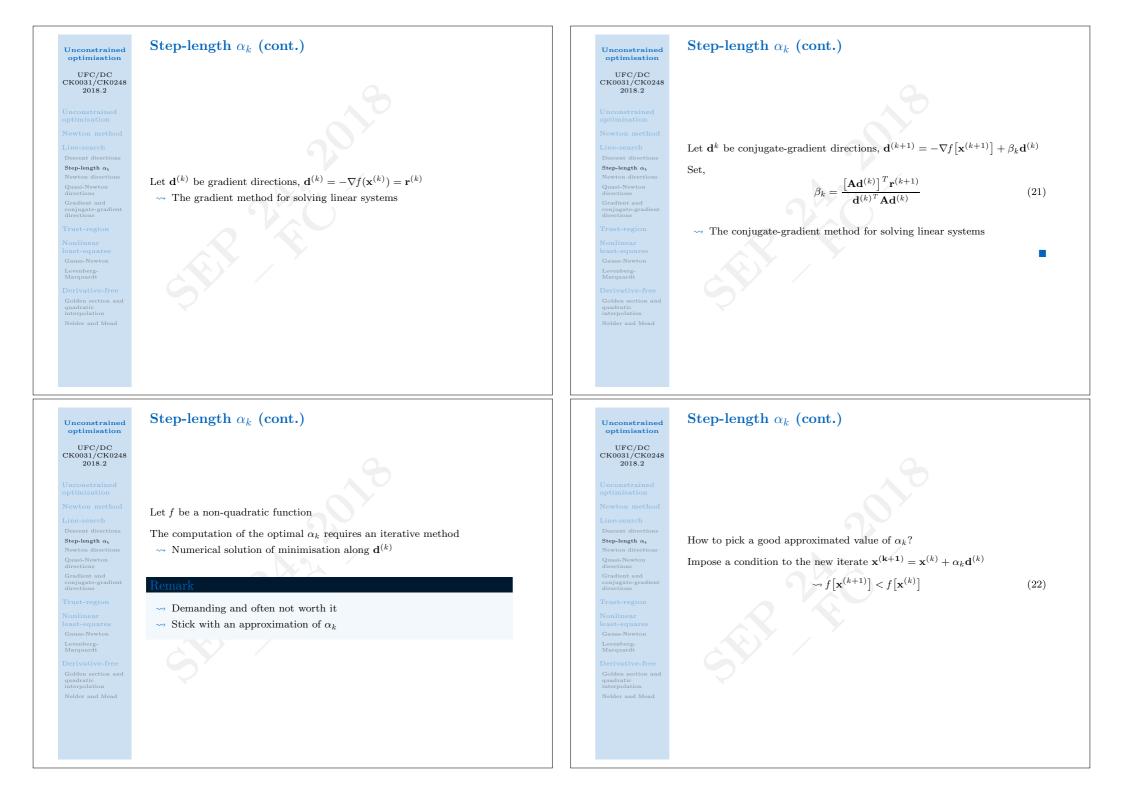
 Step-length α_k (cont.)

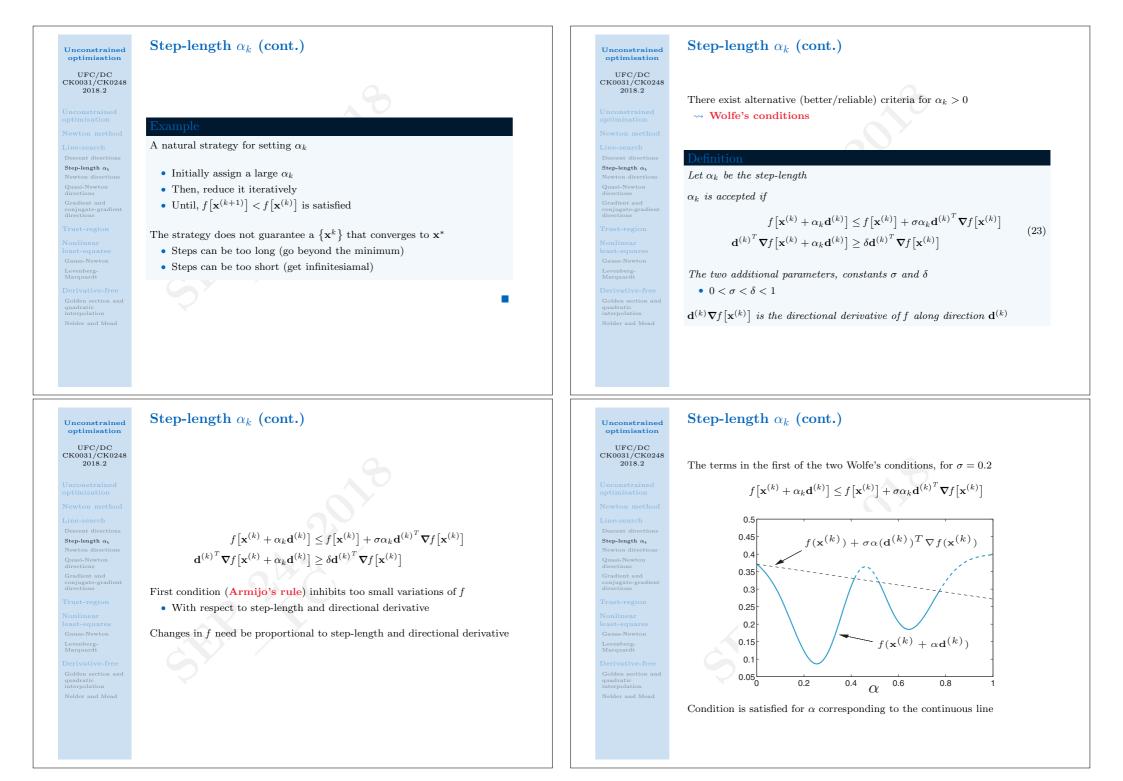
$$[\mathbf{x}^{(k)} + \alpha_k \mathbf{x}^{(k)}] = -\mathbf{d}^{(k)^T} \mathbf{r}^{(k)} + \alpha_k \mathbf{d}^{(k)} \mathbf{A} \mathbf{d}^{(k)} = 0$$

$$\rightsquigarrow \alpha_k = \frac{\mathbf{d}^{(k)^T} \mathbf{r}^{(k)}}{\mathbf{d}^{(k)^T} \mathbf{A} \mathbf{d}^{(k)}}$$
(20)

11

Cł





Step-length α_k (cont.)

Unconstrained

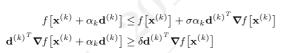
2018.2

Step-length α_k

Unconstrained optimisation UFC/DC CK0031/CK0248

2018.2

Step-length α_k



Second condition states that the directional derivative of f at new point $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ should be δ times larger than it was at point $\mathbf{x}^{(k)}$

• Point $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ is a valid candidate if f at such point decreases less than it does at $\mathbf{x}^{(k)}$ (closer to a minimiser)

This second condition prevents steps whose length would be too small • Happens where f has a largely negative directional derivative

Step-length α_k (cont.)

Wolfe's conditions are jointly satisfied in the interval $0.23 < \alpha < 0.41$ or $0.62 < \alpha < 0.77$

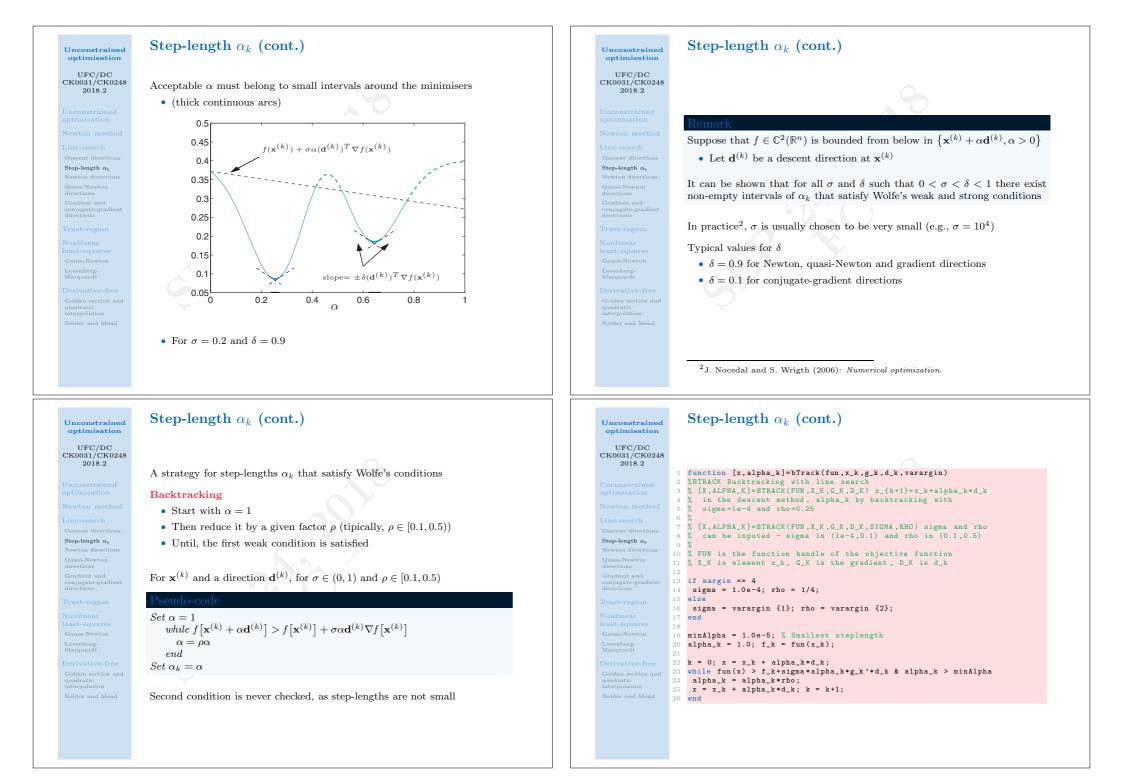
Values of $\alpha \in [0.62, 0.77]$ are far from the minimiser of f along $\mathbf{d}^{(k)}$

• Also α where the directional derivative is large are accepted

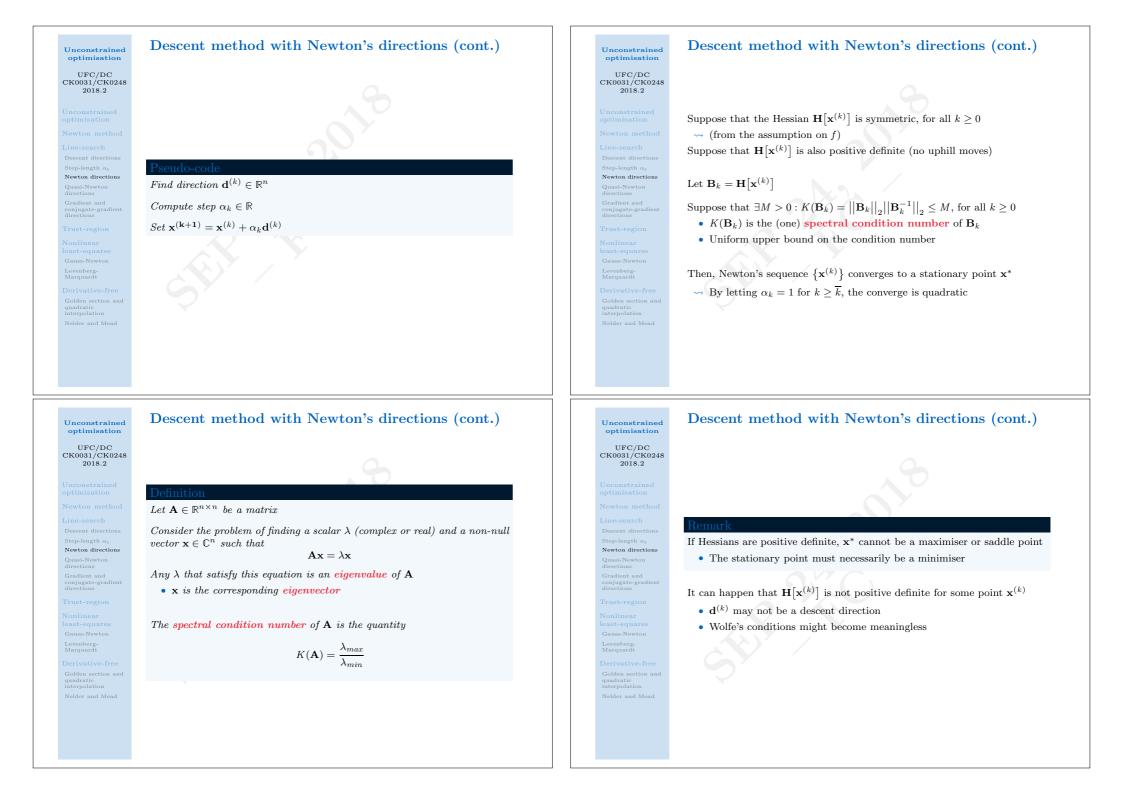
Step-length α_k (cont.) Unconstrained optimisation UFC/DC CK0031/CK0248 Lines with slope $\delta \mathbf{d}^{(k)^T} \nabla f[\mathbf{x}^{(k)}]$ in second condition, $\delta = 0.9$ 2018.2 $\mathbf{d}^{(k)^{T}} \nabla f[\mathbf{x}^{(k)} + \alpha_{k} \mathbf{d}^{(k)}] > \delta \mathbf{d}^{(k)^{T}} \nabla f[\mathbf{x}^{(k)}]$ $\delta(\mathbf{d}^{(k)})^T \nabla f(\mathbf{x}^{(k)})$ 0.45 Step-length α_k 0.4 0.35 0.3 0.25 0.2 0.15 $(\mathbf{d}^{(k)})^T \nabla f(\mathbf{x}^{(k)})$ 0.1 0.05 0.2 0.4 0.6 0.8 α 1 Condition is satisfied for α corresponding to the continuous line Step-length α_k (cont.) Unconstrained optimisation UFC/DC CK0031/CK0248 2018.2Wolfe's strong conditions Step-length α_k $f\left[\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}\right] \le f\left[\mathbf{x}^{(k)}\right] + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f\left[\mathbf{x}^{(k)}\right]$ (24) $\left|\mathbf{d}^{(k)^{T}} \nabla f[\mathbf{x}^{(k)} + \alpha_{k} \mathbf{d}^{(k)}]\right| \leq -\delta \mathbf{d}^{(k)^{T}} \nabla f[\mathbf{x}^{(k)}]$

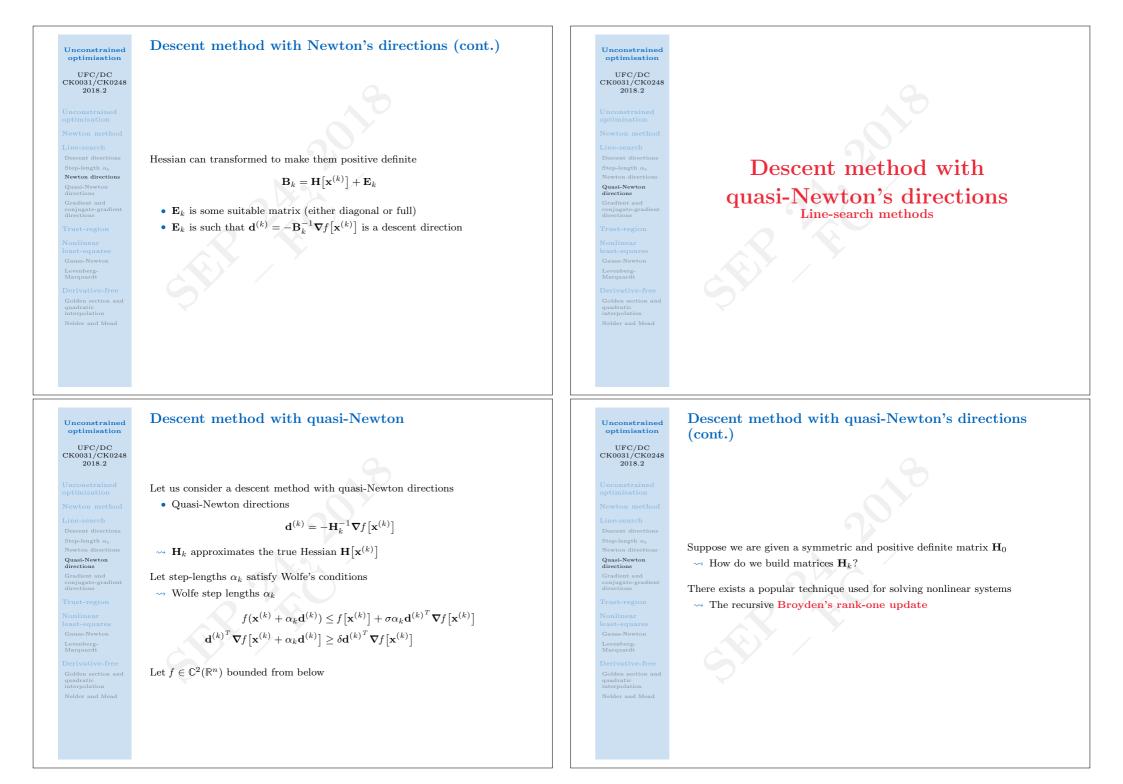
This conditions are more restrictive (duh!)

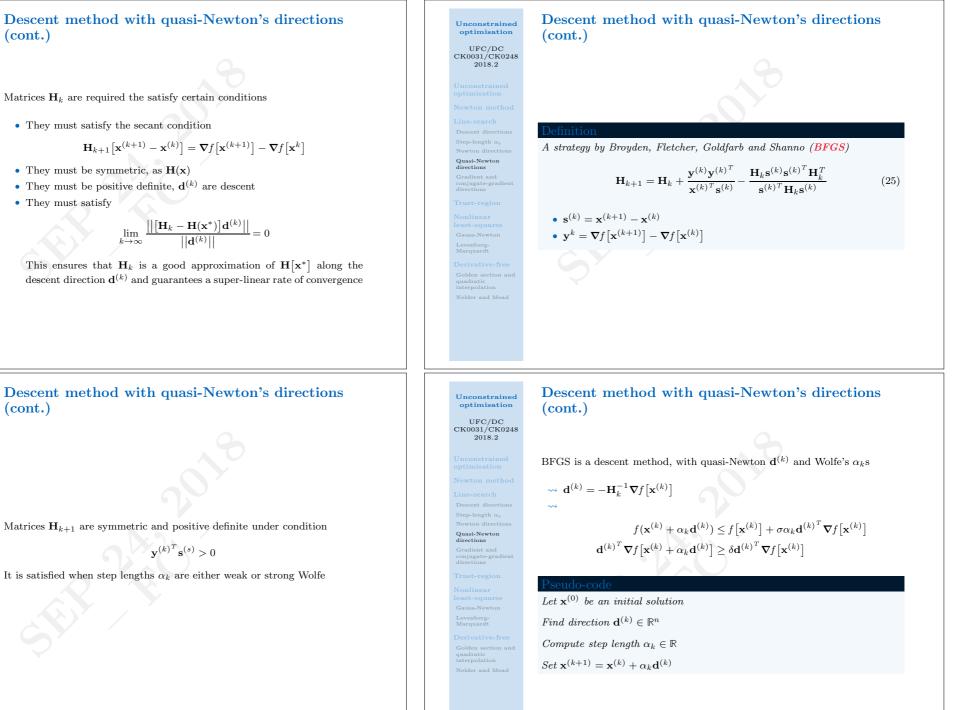
- The first condition is unchanged
- The second one inhibits f from large variations about $\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$



Jnconstrained	Step-length α_k (cont.)	Unconstrained	
optimisation		optimisation	<pre>1 function [x,err,iter]=dScent(fun,grad_fun,x_0,tol,kmax,typ,varargin)</pre>
UFC/DC K0031/CK0248 2018.2		UFC/DC CK0031/CK0248 2018.2	<pre>1 innetion (x,err,iter)=ascent(iun,grad_iun,x_0,toi,kmax,typ,varargin) 2 if nargin>6; if typ==1; hessevarargin{1}; 3 elseif typ==2; H=varargin{1}; end;</pre>
			4 5 err=tol+1; k=0; xk=x0(:); gk=grad(xk); dk=-gk; eps2=sqrt(eps);
	The descent method with various descent directions	Unconstrained optimisation	6
wton method	• α_k is determined by backtracking	Newton method	7 while err>tol & k <kmax 8 if typ==1; H = hess_fun(xk); dk = -H\gk; % Newton</kmax
	1 %DSCENT Descent method of minimisation	Line-search	9 elseif typ==2; dk = -H\gk; % BFGS 10 elseif typ==3; dk = -gk; % Gradient
escent directions	2 %[X,ERR,ITER]=DSCENT(FUN,GRAD_FUN,X_0,TOL,KMAX,TYP,HESS_FUN)	Descent directions	11 end
ep-length α_k ewton directions	3 % Approximates the minimiser of FUN using descent directions 4 % Newton (TYP=1), BFGS (TYP=2), GRADIENT (TYP=3), and the		<pre>12 [xk1,alphak]=bTrack(fun,xk,gk,dk); 13 gk1=grad_fun(xk1);</pre>
uasi-Newton rections	5 % CONJUGATE-GRADIENT method with 6 % beta_k by Fletcher and Reeves (TYP=41)		<pre>14 if typ==2</pre>
radient and njugate-gradient	7 % beta_k by Polak and Ribiere (TYP=42)		<pre>16 if yks > eps2*norm(sk)*norm(yk) 17 Hs=H*sk; H=H+(yk*yk')/yks-(Hs*Hs')/(sk'*Hs);</pre>
rections	8 % beta_k by Hestenes and Stiefel(TYP=43) 9 %		18 end
	10 % Step length is calculated using backtracking (bTrack.m) 11 %		19 elseif typ>=40 % CG upgrade 20 if typ==41; betak=(gk1'*gk1)/(gk'*gk); % FR
ast-squares	12 $\%$ FUN, GRAD_FUN and HESS_FUN (TYP=1 only) are function handles	least-squares	21 elseif typ==42; betak=(gk1'*(gk1-gk))/(gk'*gk); % PR
evenberg-	$13~\%$ for the objective, gradient and Hessian matrix $14~\%$ With TYP=2, HESS_FUN approximates the exact Hessian at X_0	Levenberg-	<pre>22 elseif typ==43; betak=(gk1'*(gk1-gk))/(dk'*(gk1-gk)); % HS 23 end</pre>
arquardt	15 % 16 % TOL is the stop check tolerance	Marquardt	24 dk = -gk1 + betak*dk; 25 end
olden section and	17 % KMAX is the maximum number of iteration	Golden section and	<pre>26</pre>
uadratic nterpolation		quadratic interpolation	<pre>28 err = norm((gk1.*xkt)/max([abs(fun(xk1)),1]),Inf);</pre>
elder and Mead		TTOTAGE MARK MICHA	29 end 30 x = xk; iter = k;
			<pre>31 if (k==kmax & err>tol); disp('[KMAX]'); end</pre>
optimisation UFC/DC K0031/CK0248 2018.2 nconstrained potimisation ewton method ime-search bescent directions tep-length α_s tey-ton directions tep-length α_s tey-ton directions main-twenton irections radient and onjugate-gradient irections rust-region onlinear mat-squares Gauss-Newton evenberg- farquart	Descent method with Newton's directions Line-search methods	optimisation UFC/DC CK0031/CK0248 2018.2 Unconstrained optimisation Newton method Line-search Descent directions Step-length α_i Newton directions Gradient and conjugate-gradient directions Trust-region Nonlinea Ioast-squares Gauss-Newton Levenberg- Marquardt	Let us consider a descent method with Newton's directions \rightarrow Newton directions $\mathbf{d}^{(k)} = -\mathbf{H}^{-1}[\mathbf{x}^{(k)}]\nabla f[\mathbf{x}^{(k)}]$ Let step-lengths α_k satisfy Wolfe's conditions \rightarrow Wolfe step lengths α_k $f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}) \leq f[\mathbf{x}^{(k)}] + \sigma \alpha_k \mathbf{d}^{(k)^T} \nabla f[\mathbf{x}^{(k)}]$ $\mathbf{d}^{(k)^T} \nabla f[\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}] \geq \delta \mathbf{d}^{(k)^T} \nabla f[\mathbf{x}^{(k)}]$
erivative-free olden section and iadratic terpolation elder and Mead		Derivative-free Golden section and quadratic interpolation Nelder and Mead	Let $f \in \mathbb{C}^2(\mathbb{R}^n)$ bounded from below







UFC/DC CK0031/CK0248 2018.2

Unconstrained optimisation

Quasi-Newton directions

Descent method with quasi-Newton's directions (cont.)

UFC/DC CK0031/CK0248 2018.2

Unconstrained

optimisation

Quasi-Newton directions

UFC/DC CK0031/CK0248 2018.2

Unconstrained optimisation Newton metho Line-search Descent direction Step-length α_k Newton directions Quasi-Newton directions

Gradient and conjugate-gradient lirections

egion

Gauss-Newton Levenberg-Marquardt Derivative-free

Golden section and quadratic interpolation Nelder and Mead

Let $\mathbf{x}^{(0)}$ be an initial solution

Let $\mathbf{H}_0 \in \mathbb{R}^{n \times n}$ be a suitable symmetric and positive definite matrix $\rightsquigarrow \mathbf{H}_0 \in \mathbb{R}^{n \times n}$ approximates $\mathbf{H}[\mathbf{x}^{(0)}]$

Solve $\mathbf{H}_k \mathbf{d}^{(k)} = -\nabla \mathbf{f} [\mathbf{x}^{(k)}]$

Rosenbrock's function

 $x_0 = [+1.2; -1.0];$

Let $\varepsilon = 10^{-6}$ be the tolerance

3 fun = $@(x) (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;$

It was, silently, approximated(finite difference methods)

Compute α_k that satisfies Wolfe's conditions

Set

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$$
$$\mathbf{s}^{(k)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$$
$$\mathbf{y}^{(k)} = \nabla f[\mathbf{x}^{(k+1)}] - \nabla f[\mathbf{x}^{(k)}]$$
$$\mathbf{y}^{(k)} \mathbf{y}^{(k)}^T - \mathbf{H}_k \mathbf{s}^{(k)} \mathbf{s}^{(k)}^T \mathbf{H}_k^T$$

Compute $\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\mathbf{y}^{(\kappa)}\mathbf{y}^{(\kappa)}}{\mathbf{x}^{(k)^T}\mathbf{s}^{(\kappa)}} - \frac{\mathbf{H}_k \mathbf{s}^{(\kappa)}\mathbf{s}^{(\kappa)} - \mathbf{H}_k}{\mathbf{s}^{(\kappa)^T}\mathbf{H}_k \mathbf{s}^{(\kappa)}}$

Descent method with quasi-Newton's directions (cont.)

 $f(\mathbf{x}) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$

options = optimset ('LargeScale','off'); % Switches to BFGS

Convergence after 24 iterations and 93 function evaluations

We did not input an expression for evaluating the gradient

6 [xstar,fval,exitflag,output] = fminunc(fun,x_0,options)

UFC/DC CK0031/CK0248 2018.2

Unconstrained

optimisation

nisation

ine-search Descent directions Step-length α.

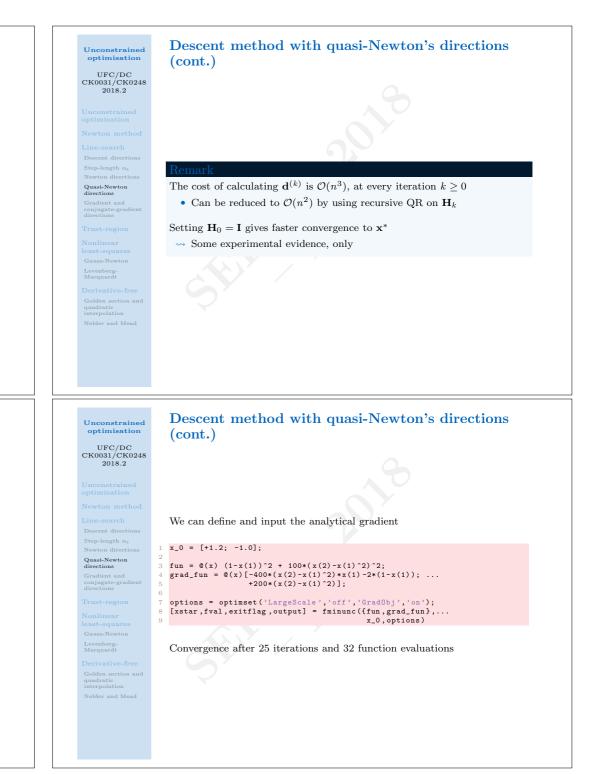
Newton direction Quasi-Newton directions

> adient and njugate-gradient

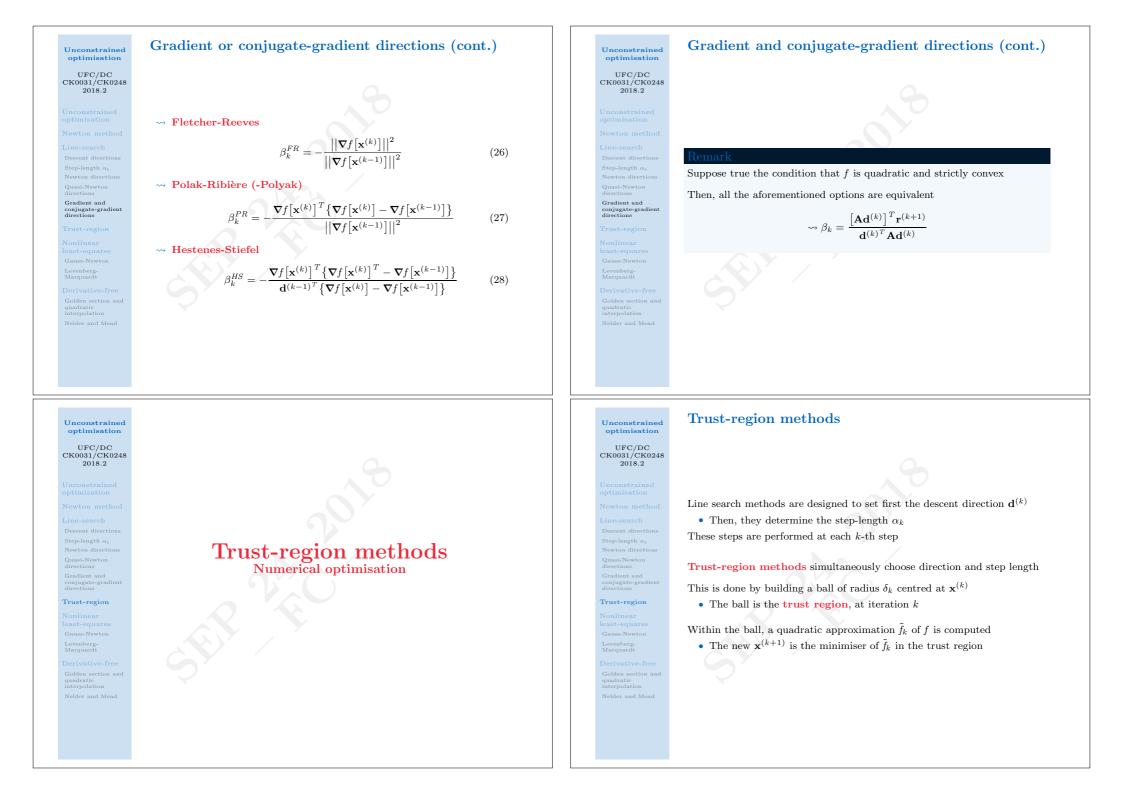
rust-region

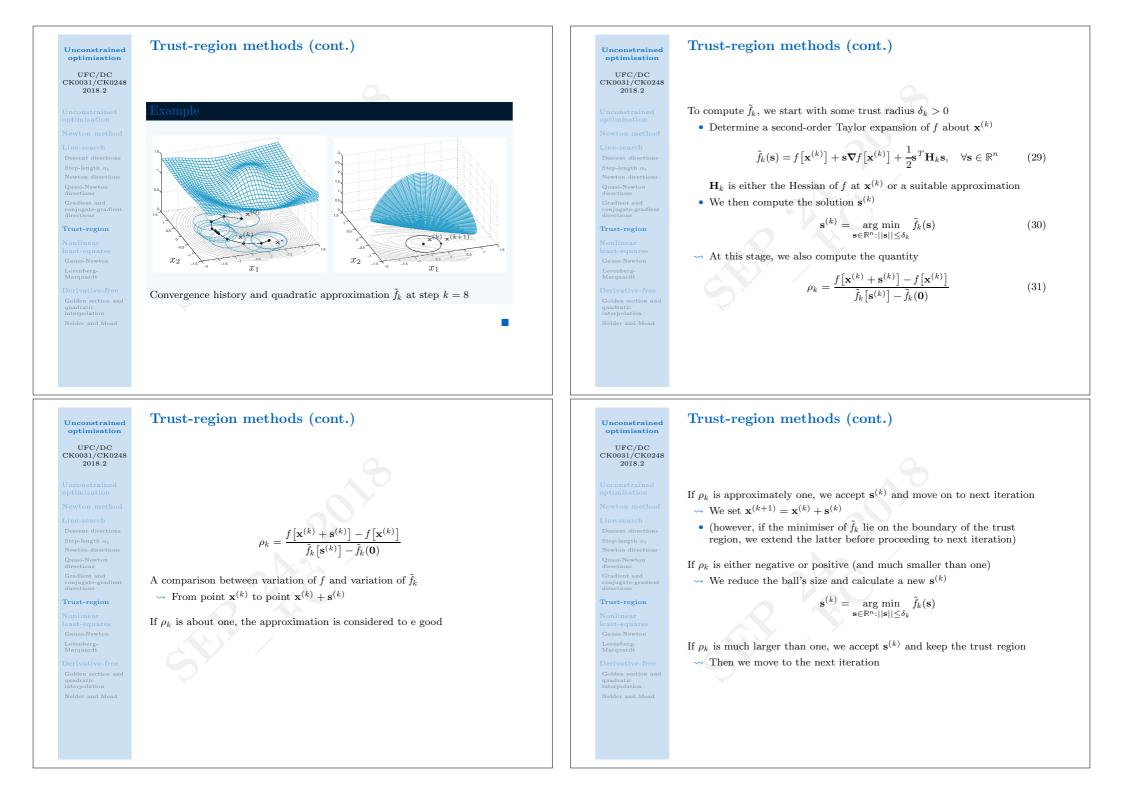
east-squares Gauss-Newton Levenberg-

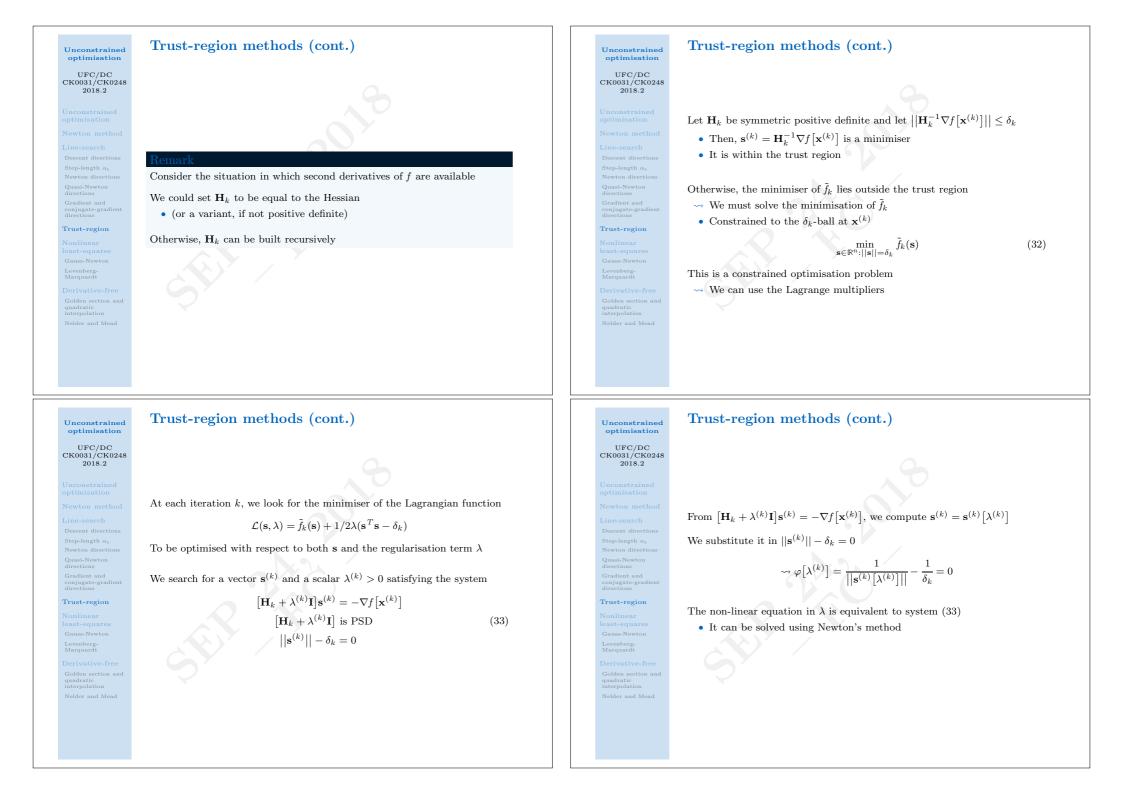
Derivative-free Golden section and quadratic interpolation

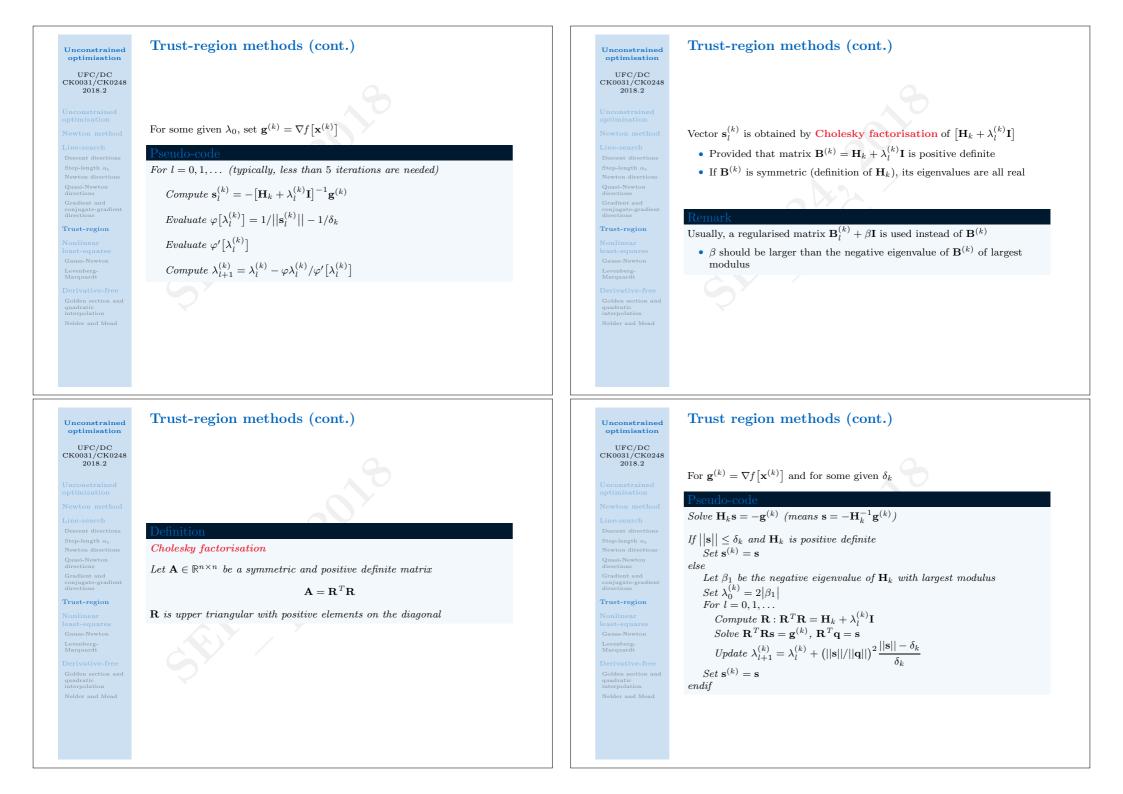


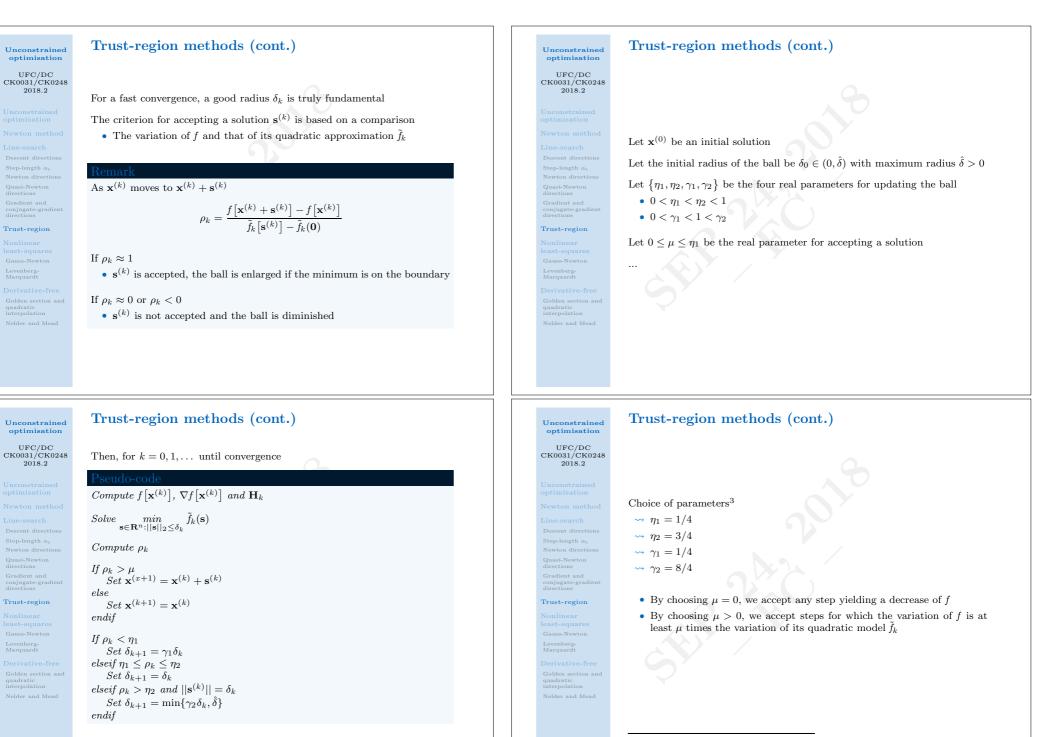




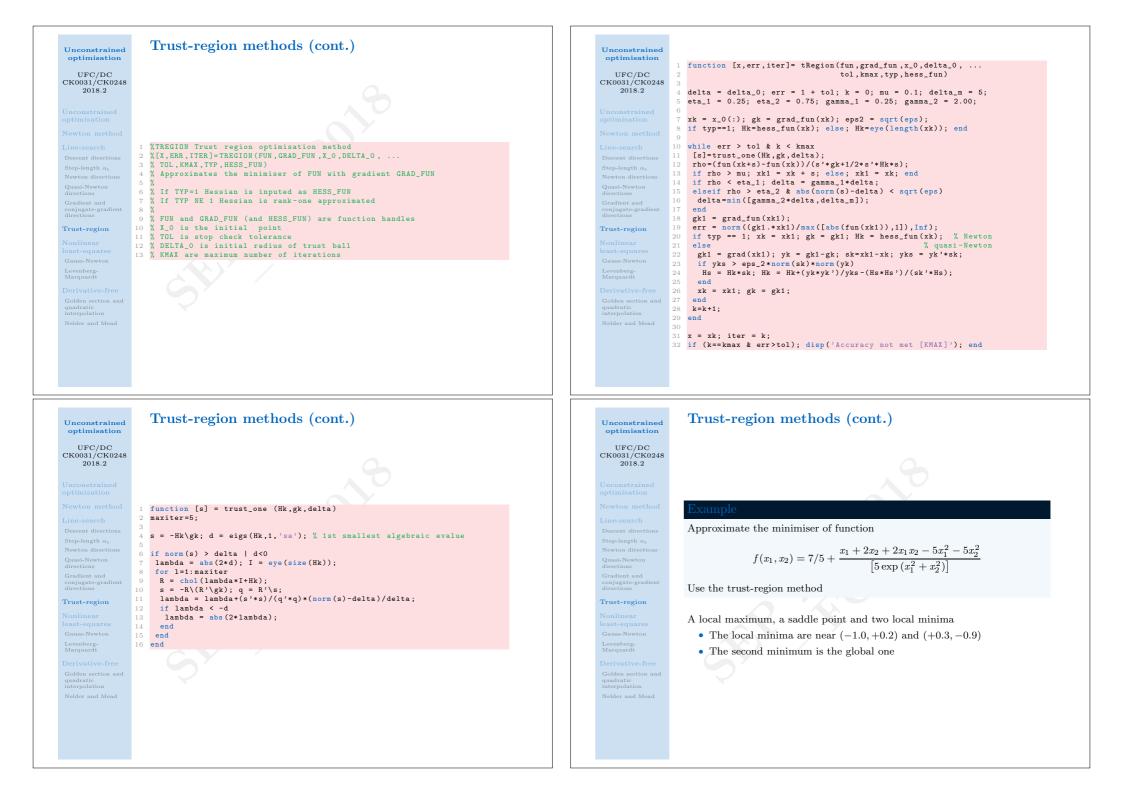


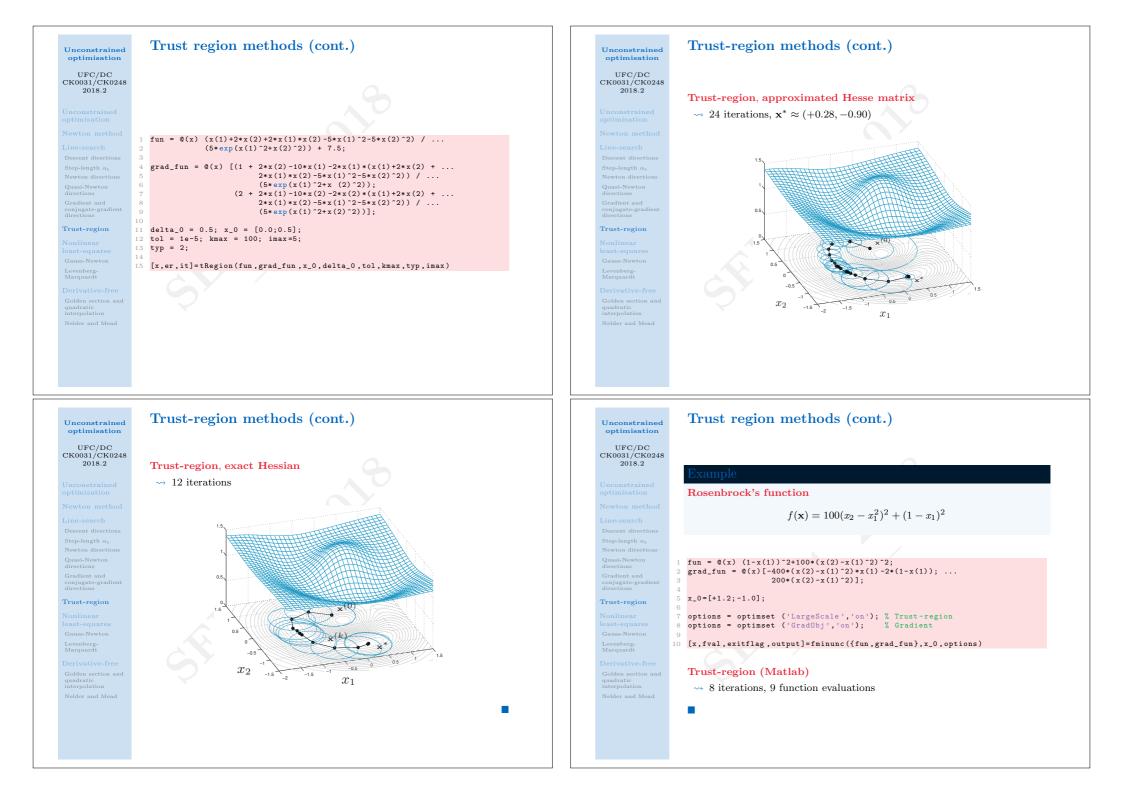


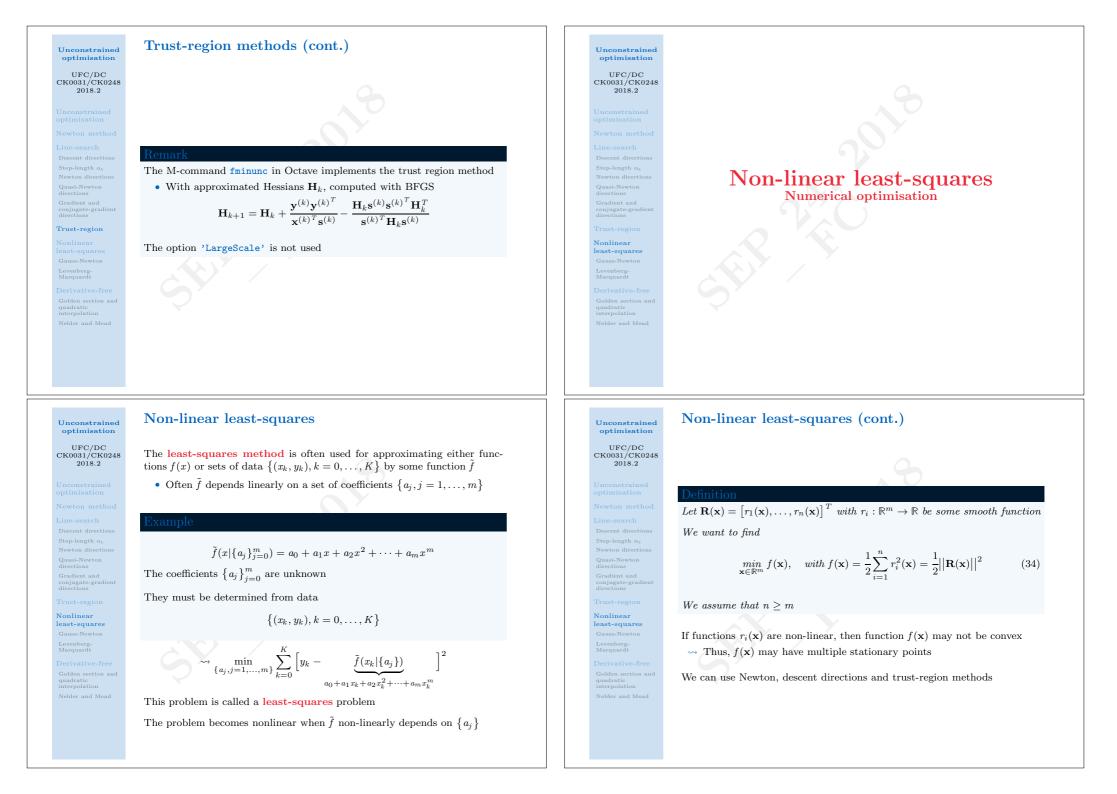




³J. Nocedal and S. Wrigth (2006): Numerical optimization.







Unconstrained optimisation

UFC/DC CK0031/CK0248 2018.2

Nonlinear least-squares

Unconstrained optimisation

UFC/DC CK0031/CK0248 2018.2

Nonlinear least-squares

Non-linear least-squares (cont.)

We have assembled the components $r_i(\mathbf{x})$ into a residual vector

 $\mathbf{R}(\mathbf{x}) = \left[r_1(\mathbf{x}), \dots, r_n(\mathbf{x})\right]^T$

Because of this, we compactly rewrote the objective function

 $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x})||^2$

Non-linear least-squares (cont.)

Gradient and Hessian of the cost function can be compactly written

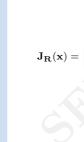
$$\nabla f(\mathbf{x}) = \sum_{i=1}^{n} r_i(\mathbf{x}) \nabla r_i(\mathbf{x}) = \mathbf{J}_{\mathbf{R}}(\mathbf{x})^T \mathbf{R}(\mathbf{x})$$
$$\nabla^2 f(\mathbf{x}) = \mathbf{J}_{\mathbf{R}}(\mathbf{x})^T \mathbf{J}_{\mathbf{R}}(\mathbf{x}) + \sum_{i=1}^{n} r_i(\mathbf{x}) \nabla r_i(\mathbf{x}) = \mathbf{J}_{\mathbf{R}}(\mathbf{x})^T \mathbf{J}_{\mathbf{R}}(\mathbf{x}) + \mathbf{S}(\mathbf{x})$$

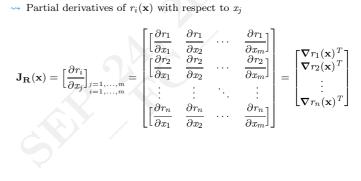
 \rightsquigarrow The second derivatives of **R** cannot be calculated from the Jacobian

$$\mathbf{S}_{lj}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial^2 r_i}{\partial x_l \partial x_j}(\mathbf{x}) r_i(\mathbf{x}), \text{ for } l, j = 1, \dots, m$$

Non-linear least-squares (cont.)

The derivatives of $f(\mathbf{x})$ can be expressed in terms of the Jacobian of **R** \rightarrow Partial derivatives of $r_i(\mathbf{x})$ with respect to x_i





Non-linear least-squares (cont.)

UFC/DC K0031/CK0248 2018.2	

Unconstrained

optimisation

(35)

Unconstrained

optimisation

UFC/DC

CK0031/CK0248

2018.2

Nonlinear least-squares

Calculation of the Hesse matrix can be heavy when m and n are large

• This is mostly due to matrix $\mathbf{S}(\mathbf{x})$

In some cases, $\mathbf{S}(\mathbf{x})$ is less influent than $\mathbf{J}_{\mathbf{R}}(\mathbf{x})^T \mathbf{J}_{\mathbf{R}}(\mathbf{x})$

→ It could be approximated or neglected

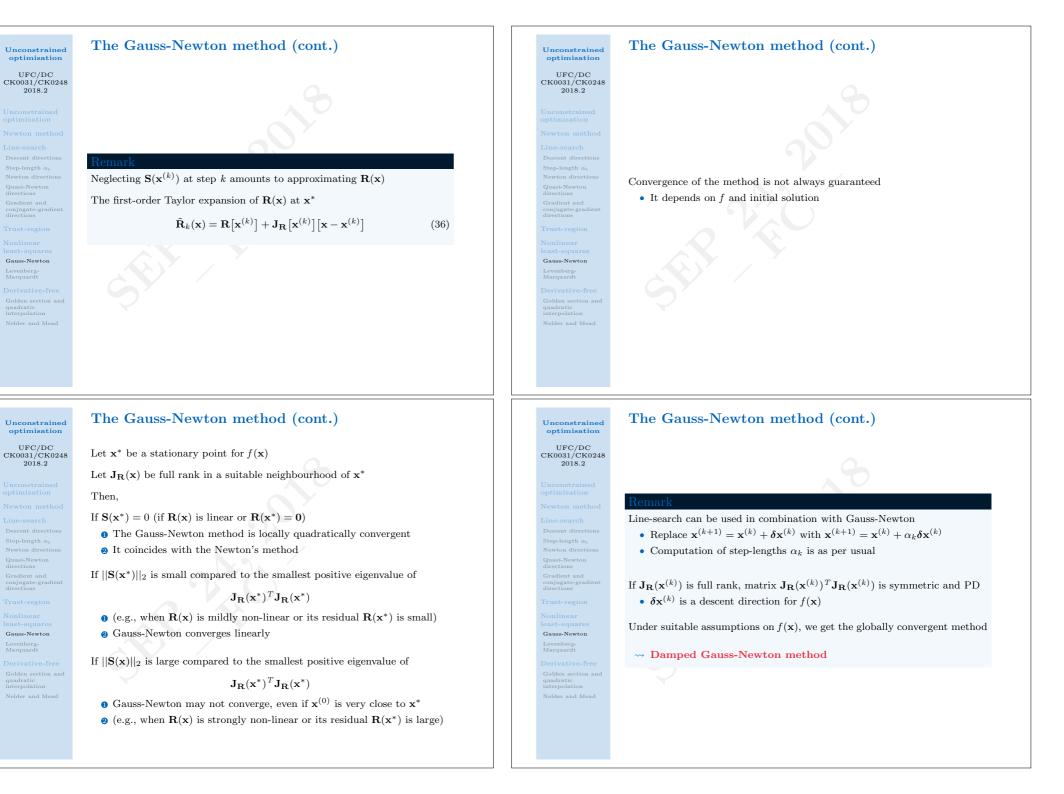
 \rightsquigarrow It simplifies the construction of $\mathbf{H}(\mathbf{x})$

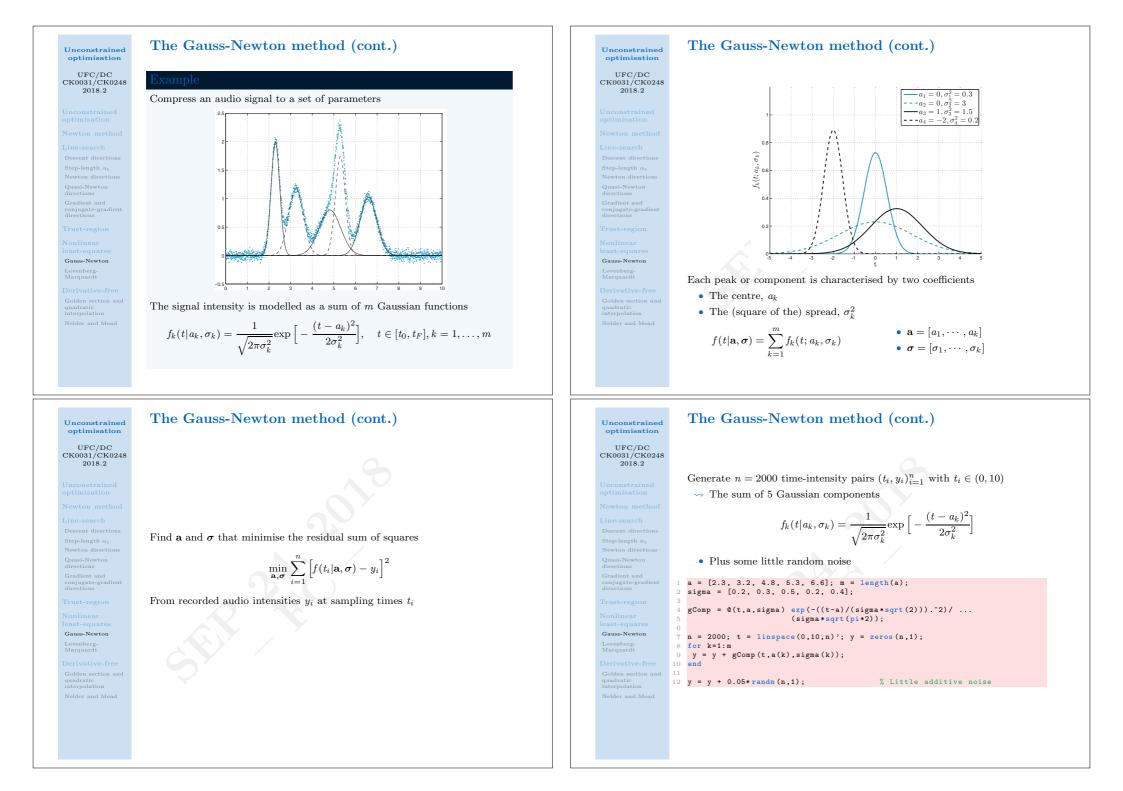
We discuss two methods devoted to handling such cases

Nonlinear

least-squares

Unconstrained optimisation UFC/DC CX0031/CK0248 2018.2 Unconstrained Optimisation Newton method Line-search Descent directions Step-length eq Newton directions Guais-Newton directions Gradient and conjugate-gradient directions Gradient and Gradient and Gradient Gradient a	Gauss-Newton method Nonlinear least-squares	Unconstrained optimisation CUFC/DC CX0031/CK0248 2018.2 Unconstrained optimisation Newton method Line-search Descent directions Stop-length o ₃ Newton directions Stop-length o ₃ Newton directions Guasi-Newton directions Trust-region Nonlinear least-squares Gause-Newton Least-squares Gause-Newton Consensors- Marquard	The Gauss-Newton method The Gauss-Newton method is a variant of the Newton method Given $\mathbf{x}^{(0)} \in \mathbb{R}^n$, for $k = 0, 1,$ until convergence Pseudo-code Solve $\mathbf{H}[\mathbf{x}^{(k)}] \delta \mathbf{x}^{(k)} = -\nabla f[\mathbf{x}^{(k)}]$ Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}$ The Hessian $\mathbf{H}(\mathbf{x})$ is approximated by neglecting $\mathbf{S}(\mathbf{x})$
URC/DC CK0031/CK0248 2018.2 Unconstrained optimisation Newton method Line-search Descent directions Step-length o ₄ Newton directions Gradient and conjugate-gradient directions Gradient and conjugate-gradient directions Trust-region Nonlinear East-squares Gause-Newton Levenberg- Marquardt Derivative-free Golden section and quadarki interpolation Netder and Mead	The Gauss-Newton method (cont.) Given $\mathbf{x}^{(0)} \in \mathbb{R}^m$ and for $k = 0, 1,$ until the convergence Pseudo-code Solve $\{\mathbf{J}_{\mathbf{R}}(\mathbf{x}^k)^T \mathbf{J}_{\mathbf{R}}[\mathbf{x}^{(k)}]\}\delta\mathbf{x}^{(k)} = -\mathbf{J}_{\mathbf{R}}[\mathbf{x}^{(k)}]^T \mathbf{R}[\mathbf{x}^{(k)}]$ Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta\mathbf{x}^{(k)}$ The system in the first equation may have infinitely many solutions If $\mathbf{J}_{\mathbf{R}}[\mathbf{x}^{(k)}]$ is not full rank \sim Stagnation \sim Non-convergence \sim Convergence to a non-stationary point If $\mathbf{J}_{\mathbf{R}}[\mathbf{x}^{(k)}]$ is full rank, the linear system has form $\mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b}$ \bullet It can be solved by using QR or SVD factorisations of $\mathbf{J}_{\mathbf{R}}(\mathbf{x})$	Quasi-Newton directions Gradient and conjugate-gradient directions Trust-region Nonlinear least-squares Gauss-Newton Levenberg- Marquardt Derivative-free Golden section and quadratic interpolation Nelder and Mead	<pre>The Gauss-Newton method (cont.) function [x,err,iter]=nllsGauNewtn(r,jr,x_0,tol,kmax,varargin) 2 %NLLSGAUNEW Nonlinear least=squares with Gauss-Newton method 3 % [X,ERR,ITER]=NLLSGAUNEW(R,JR,X_0,TOL,KMAX) 4 % R and JR: Function handles for objective R and its Jacobian 5 % X_0 is the initial solution 6 % TOL is the stop check tolerance 7 % KMAX is the max number of iterations 8 9 err = 1 + tol; k = 0; 10 xk = x_0(:); 11 12 rk = r(xk,varargin{:}); jrk = jr(xk,varargin{:}); 13 14 while err > tol & k < kmax 15 [Q,R] = qr(jrk,0); dk = -R\(Q'*rk); 16 xk1 = xk + dk; 17 rk1 = r(xk1,varargin{:}); 18 jrk1 = jr(xk1,varargin{:}); 19 20 k = 1 + k; err = norm(xk1 - xk); 21 xk = xk1; rk = rk1; jrk = jrk1; 22 end 23 24 x = xk; iter = k; 25 26 if (k==kmax & err > tol) 27 disp('nllsGauNewtn stopped w\o reaching accuracy [KMAX]'); 28 end </pre>

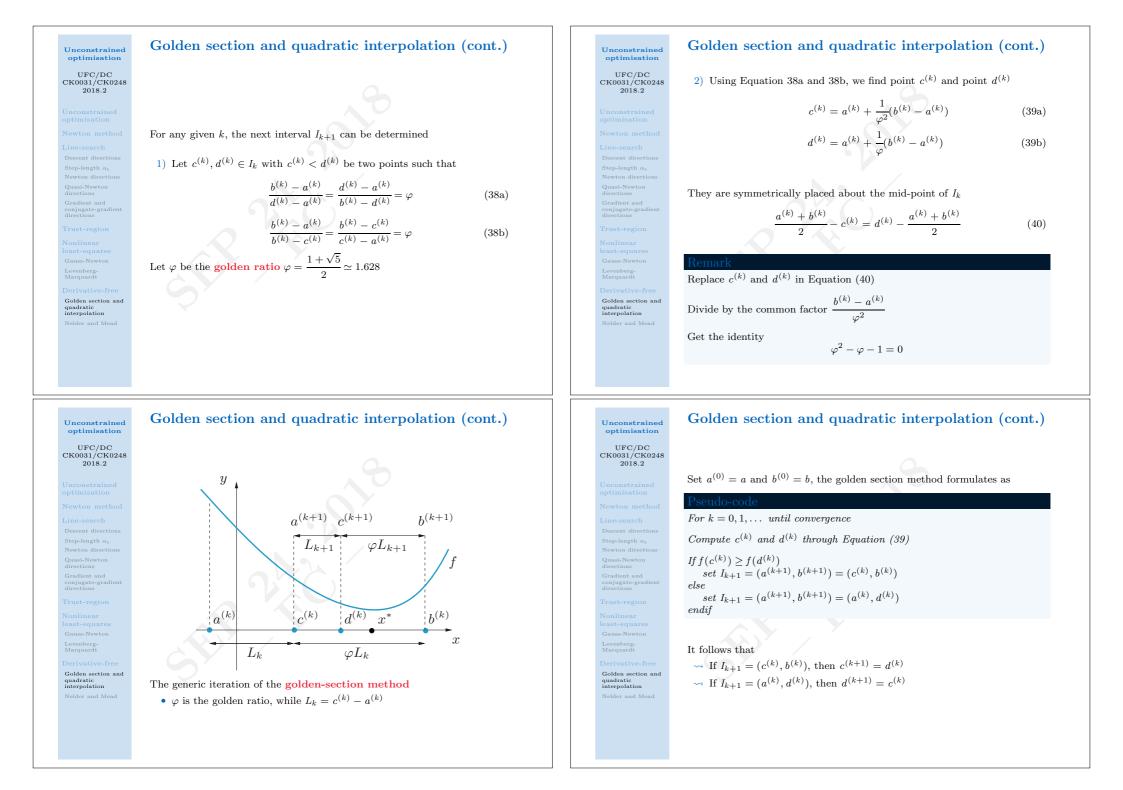




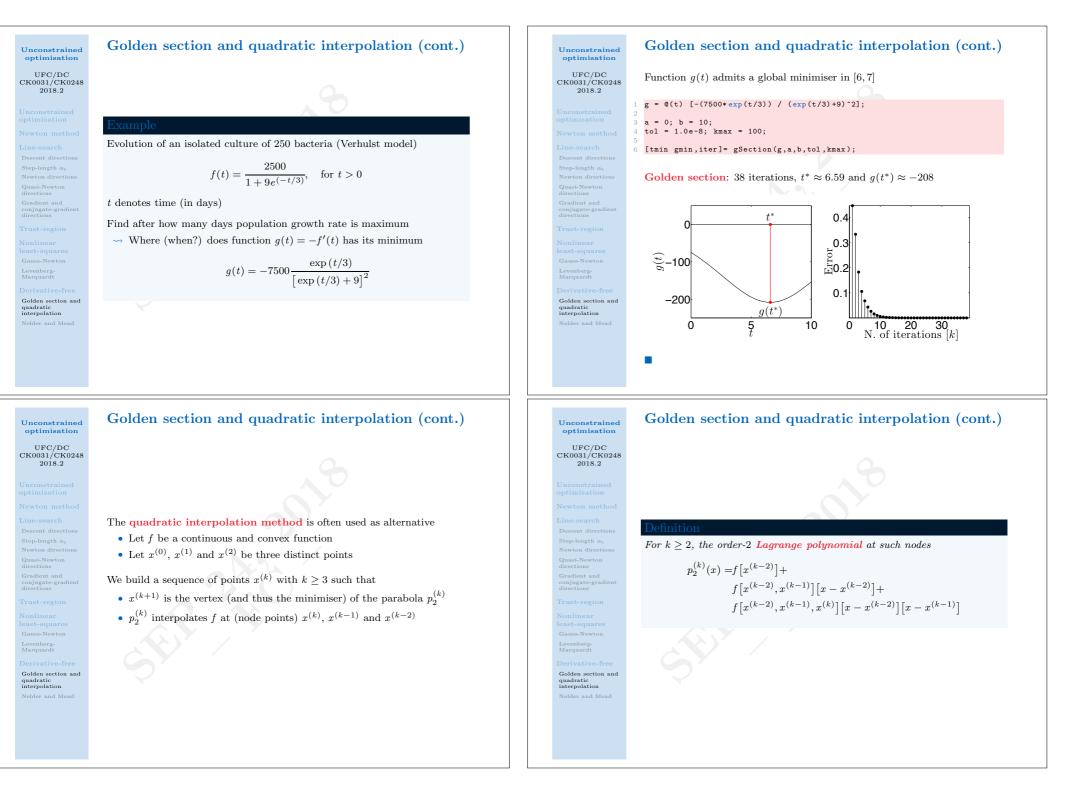
The Gauss-Newton method (cont.) The Gauss-Newton method (cont.) Unconstrained Unconstrained optimisation optimisation UFC/DC UFC/DC CK0031/CK0248 CK0031/CK0248 2018.22018.2Solve the nonlinear least-squares problem of form **Gauss-Newton** $\min_{\mathbf{x}\in\mathbb{R}^m}\Phi(\mathbf{x}), \quad \text{with } \Phi(\mathbf{x}) = \frac{1}{2}||\mathbf{R}(\mathbf{x})||^2 = \frac{1}{2}\sum_{i=1}^n r_i^2(\mathbf{x})$ M-command nllsGauNewtn (22 iterations) x = [2.0.3.0.4.0.5.0.6.0.0.3.0.3.0.6.0.3.0.3]; $r_i(\mathbf{x}) = f(t_i | \mathbf{a}, \boldsymbol{\sigma}) - y_i = \sum_{k=1}^m f_k(t_i | a_k, \sigma_k) - y_i$ tol = 3.0e-5;kmax = 200; We also have, [x,err,iter]=nllsGauNew(@gmR,@gmJR,x_0,tol,kmax,t,y) $\frac{\partial r_i}{\partial a_k} = f_k(t_i | a_k, \sigma_k) \Big[\frac{t_i - a_k}{\sigma_k} \Big]$ $x_a = x(1:m);$ 8 x_sigma = x(m+1:end); $\frac{\partial r_i}{\partial \sigma_k} = f_k(t_i|a_k, \sigma_k) \Big[\frac{(t_i - a_k)^2}{\sigma_k^3} - \frac{1}{2\sigma_k} \Big]$ Gauss-Newton Gauss-Newton 11 h = 1./(x_sigma*sqrt(2*pi)); 12 w = 2*x_sigma*sqrt(log(4)); The Gauss-Newton method (cont.) Unconstrained Unconstrained optimisation optimisation UFC/DC UFC/DC CK0031/CK0248 CK0031/CK0248 2018.22018.21 function [R]=gmR(x,t,y) 3 x = x(:); m = round(0.5*length(x));4 = x(1:m); sigma = x(m+1: end);6 gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ... /(sigma*sqrt(pi*2))]; 9 n = length(t); R = zeros(n,1);Levenberg-Marquardt 10 for k = 1:m; R = R + gauFun(t,a(k),sigma(k)); end 11 R = R - v;Nonlinear least-squares 1 function [Jr]=gmJR(x,t,y) 2 x = x(:); m = round(0.5*length(x));3 = x(1:m); sigma = x(m+1: end);5 gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2))).^2) ... /(sigma*sqrt(pi*2))]; Gauss-Newton 8 n = length(t); JR = zeros(n, 2*m); fk = zeros(n, m);Levenberg-Marquardt 9 for k = 1:m; fk(:,k) = gauFun(t,a(k),sigma(k)); end 10 for k = 1:m; JR(:,k) = (fk(:,k).*(t-a(k))/sigma(k)^2)'; end 11 for k = 1:m12 JR(:,k+m) = (fk(:,k).*((t-a(k)).^2/(k)^3-1/(2*sigma(k))))'; 13 **end**

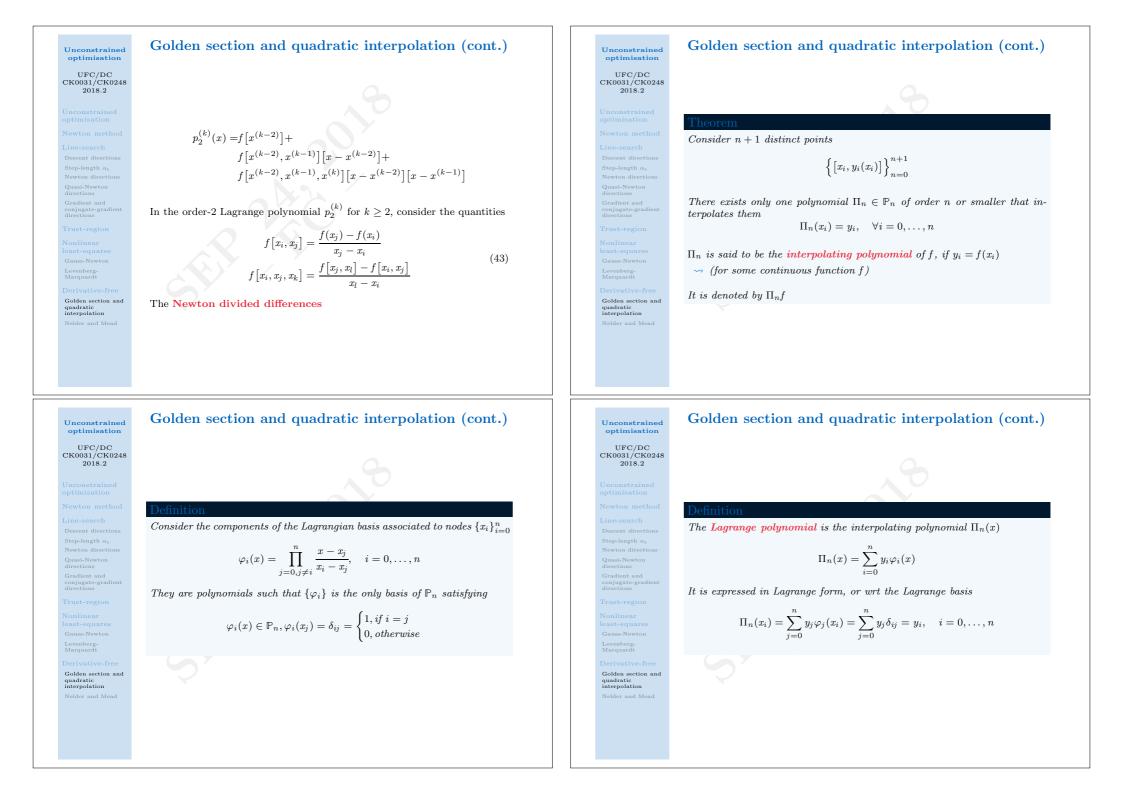
Levenberg-Marquardt Levenberg-Marquardt (cont.) Unconstrained Unconstrained optimisation optimisation UFC/DC UFC/DC CK0031/CK0248 CK0031/CK0248 2018.22018.2Compute $f[\mathbf{x}^{(k)}], \nabla f[\mathbf{x}^{(k)}]$ and \mathbf{H}_k Solve $\min_{||\mathbf{s}||_2 \le \delta_k} \tilde{f}_k(\mathbf{s})$ Levenberg-Marquardt is a trust-region method Compute ρ_k If $\rho_k > \mu$ $\min_{\mathbf{x}\in\mathbb{R}^m} f(\mathbf{x}), \quad \text{with } f(\mathbf{x}) = \frac{1}{2} ||\mathbf{R}(\mathbf{x})||^2 = \frac{1}{2} \sum_{i=1}^n r_i^2(\mathbf{x})$ Set $\mathbf{x}^{(x+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$ elseSet $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}$ We can use the general trust-region formulation endif If $\rho_k < \eta_1$ Set $\delta_{k+1} = \gamma_1 \delta_k$ Levenberg-Levenbergelseif $\eta_1 \leq \rho_k \leq \eta_2$ Marquardt Marquardt Set $\delta_{k+1} = \delta_k$ else if $\rho_k > \eta_2$ and $||\mathbf{s}^{(k)}|| = \delta_k$ Set $\delta_{k+1} = \min\{\gamma_2 \delta_k, \hat{\delta}\}$ endifLevenberg-Marquardt (cont.) Levenberg-Marquardt (cont.) Unconstrained Unconstrained optimisation optimisation UFC/DC UFC/DC CK0031/CK0248 CK0031/CK0248 2018.22018.2Often $\mathbf{J}_{\mathbf{R}}(\mathbf{x})$ is not full rank, yet the method is well-posed The method is suited for minimisation problems with strong non-linearities At each step k, we solve or large residuals $f(\mathbf{x}^*) = 1/2 ||\mathbf{R}(\mathbf{x}^*))||^2$ about the local minimiser \mathbf{x}^* $\min_{\mathbf{s}\in\mathbb{R}^n:||\mathbf{s}||\leq\delta_k}\tilde{f}_k(\mathbf{s}), \quad \text{with } \tilde{f}_k(\mathbf{s}) = \frac{1}{2}||\mathbf{R}[\mathbf{x}^{(k)}] + \mathbf{J}_{\mathbf{R}}[\mathbf{x}^{(k)}]\mathbf{s}||^2$ (37)Hessian approximations are those of the Gauss-Newton method $\tilde{f}_k(\mathbf{x})$ is a quadratic approximation of $f(\mathbf{x})$ about $\mathbf{x}^{(k)}$ \rightsquigarrow By approximating $\mathbf{R}(\mathbf{x})$ with its linear model The two methods share the same local convergence properties $\tilde{\mathbf{R}}_{k}(\mathbf{x}) = \mathbf{R}[\mathbf{x}^{(k)}] + \mathbf{J}_{\mathbf{R}}[\mathbf{x}^{(k)}] [\mathbf{x} - \mathbf{x}^{(k)}]$ Convergence rates when Levenberg-Marquardt iterations do converge • Convergence rate is quadratic, if residual is small at local minimiser Levenberg-Levenberg-Marquardt Marquardt • Convergence rate is linear, otherwise

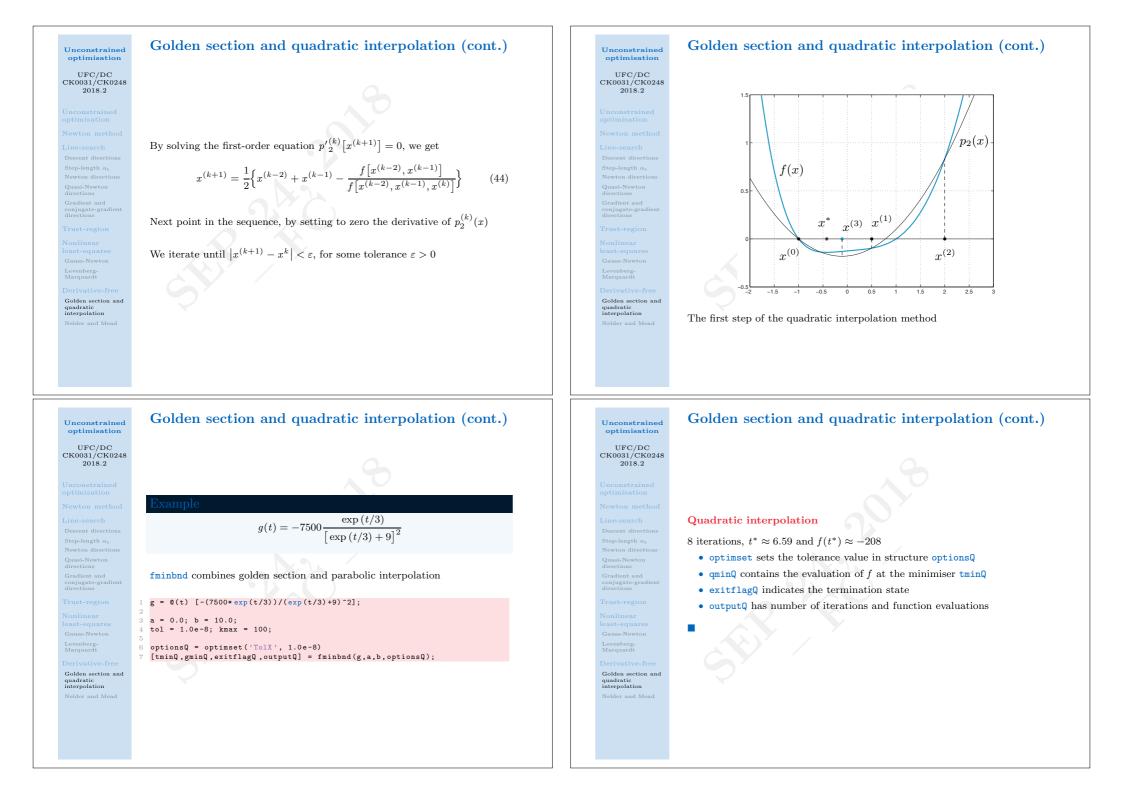
Unconstrained optimisation UFC/DC CK0031/CK0248 2018.2 Unconstrained optimisation Newton method Line-search Descent directions Step-length α ₈ Newton directions Quais-Newton	Derivative-free methods	Unconstrained optimisation UFC/DC CK0031/CK0248 2018.2 Unconstrained optimisation Newton method Line-search Descent directions Step-length α_i Newton directions	Derivative-free methods We describe two simple numerical methods • Minimisation of univariate real-valued functions • Minimisation of multivariate real-valued functions
directions directions Trust-region Nonlinear least-squares Gauss-Newton Construction Derivative-free Golden section and quadratic interpolation Nelder and Mead	Unconstrained optimisation	directions Gradient and conjugate-gradient directions Trust-region Nonlinear least-squares Gauss-Newton Levenberg- Marquardt Derivative-free Golden section and quadratic interpolation Nelder and Mead	 (along a single direction) We then describe the Nelder and Mead method Minimisation of functions of several variables
Urconstrained optimisation UFC/DC CK0031/CK0248 2018;2 Unconstrained optimisation Newton method Line-search Descent directions Step-length os Newton directions Gradient and consultation Gradient and consultation Crust-region Nonlinear Assawton Levenberg- Gauss-Newton Levenberg- Scauss-Newton Levenberg- Neto- Scauss-Newton Levenberg- Scauss-Newton Levenberg- Scauss-Newton Levenberg- Scauss-Newton Levenberg- Scauss-Newton Levenberg- Scauss-Newton Levenberg- Scauss-Newton Levenberg- Scauss-Newton Levenberg- Neto-Scauss- N	Golden section and quadratic interpolation Derivative-free methods	Unconstrained optimisation UFC/DC CK0031/CK0248 2018.2 Unconstrained optimisation Newton method Line-search Descent directions Step-length o _a Newton directions Step-length o _a Newton directions Gradient and conjugate-gradient directions Trust-region Nollinear least-squares Gauss-Newton Levenberg- Marquardt Derivative-free Golden section and quadratic interpolation Nelder and Mead	Golden section and quadratic interpolation Let $f : (a, b) \to \mathbb{R}$ be a continuous function with unique minimiser $x^* \in (a, b)$ Set $I_0 = (a, b)$, for $k \ge 0$ generate a sequence of intervals I_k $I_k = (a^{(k)}, b^{(k)})$ The intervals I_k are of decreasing length and each contains x^*

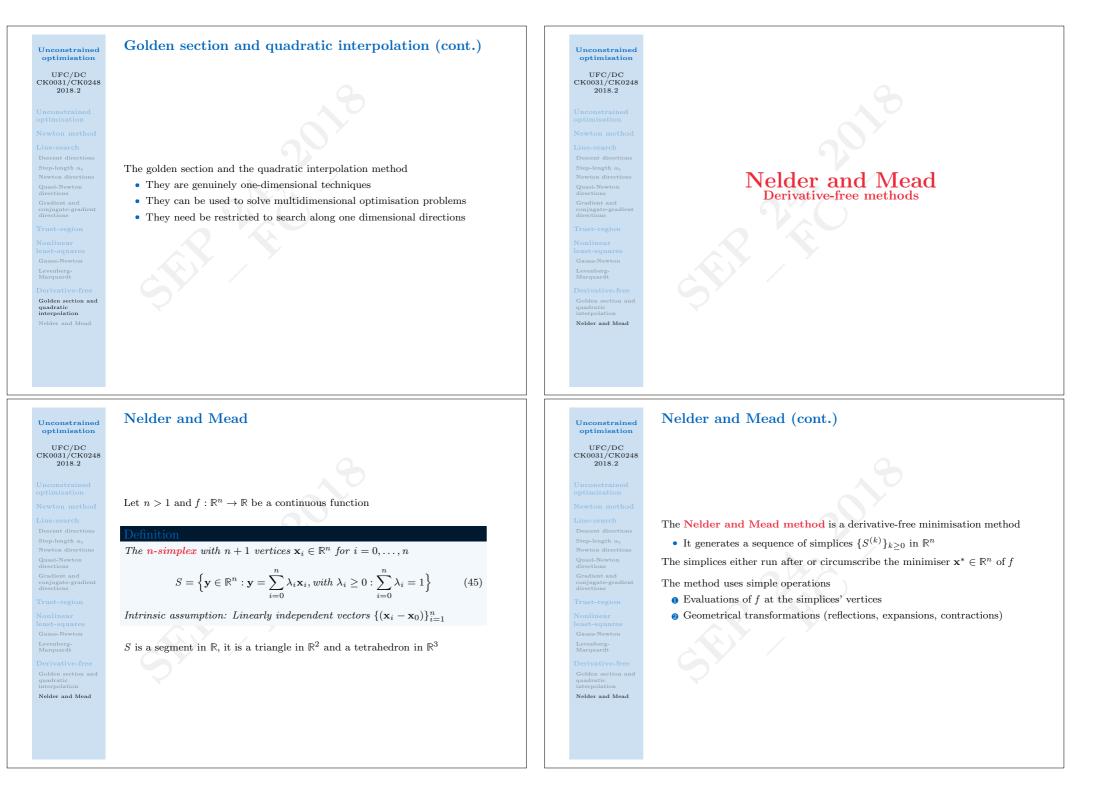


Golden section and quadratic interpolation (cont.) Golden section and quadratic interpolation (cont.) Unconstrained Unconstrained optimisation optimisation UFC/DC UFC/DC CK0031/CK0248 CK0031/CK0248 2018.22018.2We need to set a stopping criterion By using Equation (38a) and (38b), yields the expression When the normalised size of the k-th interval is smaller than a tolerance ε $|b^{(k+1)} - a^{(k+1)}| = \frac{1}{\omega} |b^{(k)} - a^{(k)}| = \dots = \frac{1}{\omega^{k+1}} |b^{(0)} - a^{(0)}|$ (42) $b^{(k+1)} - a^{(k+1)}$ $\frac{|c^{(k+1)}|+|d^{(k+1)}|}{|c^{(k+1)}|+|d^{(k+1)}|} < \varepsilon$ (41)The golden-section method converges linearly with rate The mid-point of the last interval I_{k+1} can be taken as solution $\varphi^{-1} \simeq 0.618$ • This is an approximation of the minimiser x* Golden section and Golden section and quadratic interpolation quadratic interpolation Golden section and quadratic interpolation (cont.) Unconstrained Unconstrained optimisation optimisation 1 function [xmin,fmin,iter]=gSection(fun,a,b,tol,kmax,varargin) UFC/DC UFC/DC 2 %GSECTION finds the minimum of a function CK0031/CK0248 CK0031/CK0248 3 % XMIN=GSECTION(FUN, A, B, TOL, KMAX) approximates a min point of 2018.22018.24 % function FUN in [A,B] by using the golden section method 5 % If the search fails, an error message is returned 6 % FUN can be i) an inline function, ii) an anonymous function 7 % or iii) a function defined in a M-file 8 % XMIN=GSECTION(FUN,A,B,TOL,KMAX,P1,P2,...) passes parameters • fun is either an anonymous or an inline function for function f9 % P1, P2,... to function FUN(X,P1,P2,...) 10 % [XMIN, FMIN, ITER] = GSECTION (FUN, ...) returns the value of FUN • a and b are endpoints of the search interval 11 % at XMIN and number of iterations ITER done to find XMIN 12 • tol is the tolerance ε 13 phi = (1+sqrt(5))/2;14 iphi(1) = inv(phi); iphi(2) = inv(1+phi); • kmax is the maximum allowed number of iterations 15 c = iphi(2)*(b-a) + a; d = iphi(1)*(b-a) + a; 16 err = 1 + tol; k = 0;18 while err > tol & k < kmax 19 $if(fun(c) \ge fun(d))$ • xmin contains the value of the minimiser 20 a = c; c = d; d = iphi(1)*(b-a) + a; • fmin is the minimum value of f in (a, b)21 else 22 b = d; d = c; c = iphi(2)*(b-a) + a; • iter is the number of iterations carried out by the algorithm 23 end 24 k = 1 + k; err = abs(b-a)/(abs(c)+abs(d)); 25 **end** Golden section and 27 xmin = 0.5*(a+b); fmin = fun(xmin); iter = k; Golden section and quadratic interpolation quadratic interpolation 28 if (iter == kmax & err > tol) 29 fprintf('The method stopped after reaching the maximum number 30 of iterations, and without meeting the tolerance'); 31 end



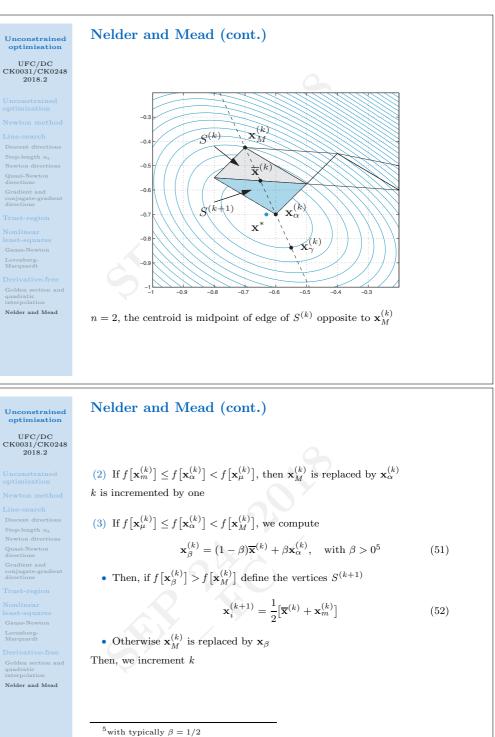






Nelder and Mead (cont.) Nelder and Mead (cont.) Unconstrained Unconstrained optimisation optimisation UFC/DC UFC/DC CK0031/CK0248 CK0031/CK0248 2018.2 2018.2• At the k-th iteration, the 'worst' vertex of simplex $S^{(k)}$ is identified $\mathbf{x}_M^{(k)}$, such that $f[\mathbf{x}_M^{(k)}] = \max_{0 \le i \le n} f[\mathbf{x}_i^{(k)}]$ How to generate the initial simplex $S^{(0)}$ We take a point $\tilde{\mathbf{x}} \in \mathbb{R}^n$ and a positive real number η + $\mathbf{x}_M^{(k)}$ is substituted with a new point at which f takes a smaller value • The new point is got by reflecting/expanding/contracting the simplex Then, we set $\mathbf{x}_i^{(0)} = \tilde{\mathbf{x}} + \eta \mathbf{e}_i$, with $i = 1, \dots, n$ along the line joining $\mathbf{x}_{M}^{(k)}$ and the centroid of the other vertices $\{\mathbf{e}_i\}$ are the vectors of the standard basis in \mathbb{R}^n $\mathbf{x}_{c}^{(k)} = rac{1}{n} \sum_{\substack{i=0\i eq M}}^{n} \mathbf{x}_{i}^{(k)}$ Nelder and Mead Nelder and Mead Nelder and Mead (cont.) Nelder and Mead (cont.) Unconstrained Unconstrained optimisation optimisation UFC/DC UFC/DC CK0031/CK0248 CK0031/CK0248 2018.22018.2The new point is chosen by firstly selecting $\mathbf{x}_m^{(k)} = \min_{0 \le i \le n} f\big[\mathbf{x}_i^{(k)}\big]$ (47)While $k \ge 0$ and until convergence, select the 'worst' vertex of $S^{(k)}$ $\mathbf{x}_{\mu}^{(k)} = \max f\left[\mathbf{x}_{i}^{(k)}\right]$ $\mathbf{x}_{M}^{(k)} = \max_{0 \leq i \leq n} f\left[\mathbf{x}_{i}^{(k)}\right]$ (46)and secondly by defining the **centroid** point Then, replace it by a new point to form the new simplex $S^{(k+1)}$ $\overline{\mathbf{x}}^{(k)} = \frac{1}{n} \sum_{i=0}^{n} \mathbf{x}_{i}^{(k)}$ (48)This is the centroid of hyperplane $H^{(k)}$ passing through vertices $\{\mathbf{x}_i\}_{i=0}^n$ Nelder and Mead Nelder and Mead

Nelder and Mead (cont.) Unconstrained optimisation UFC/DC CK0031/CK0248 2018.2Thirdly, compute reflection $\mathbf{x}_{\alpha}^{(k)}$ of $\mathbf{x}_{M}^{(k)}$ with respect to hyperplane $H^{(k)}$ $\mathbf{x}_{\alpha}^{(k)} = (1 - \alpha) \overline{\mathbf{x}}^{(k)} + \alpha \mathbf{x}_{M}^{(\alpha)}$ (49)The **reflection coefficient** $\alpha < 0$ is typically set to be -1Point $\mathbf{x}_{\alpha}^{(k)}$ lies on the straight line joining points $\overline{\mathbf{x}}^{(k)}$ and $\mathbf{x}_{M}^{(k)}$ • It is on the side of $\overline{\mathbf{x}}^{(k)}$, far from $\mathbf{x}_{M}^{(k)}$ Nelder and Mead Nelder and Mead (cont.) Unconstrained optimisation UFC/DC CK0031/CK0248 2018.2We fourthly compare $f[\mathbf{x}_{\alpha}^{(k)}]$ with f at the other vertices of the simplex • Before accepting $\mathbf{x}_{\alpha}^{(k)}$ as the new vertex We also try to move $\mathbf{x}_{\alpha}^{(k)}$ on the straight line joining $\overline{\mathbf{x}}^{(k)}$ and $\mathbf{x}_{M}^{(k)}$ To set the new simplex $S^{(k+1)}$ (1) If $f[\mathbf{x}_{\alpha}^{(k)}] < f[\mathbf{x}_{m}^{(k)}]$ (reflection produced a minimum), then $\mathbf{x}_{\gamma}^{(k)} = (1-\gamma)\overline{\mathbf{x}}^{(k)} + \gamma \mathbf{x}_{M}^{(k)}, \text{ with } \gamma < -1^{4}$ (50)• Then, if $f[\mathbf{x}_{\gamma}^{(k)}] < f[\mathbf{x}_{m}^{(k)}]$, replace \mathbf{x}_{M} by $\mathbf{x}_{\gamma}^{(k)}$ • Otherwise, $\mathbf{x}_{M}^{(k)}$ is replaced by $\mathbf{x}_{\alpha}^{(k)}$ We then proceed by incrementing k by one Nelder and Mead



⁴Typically, $\gamma = -2$

