Unconstrained Unconstrained Numerical optimisation
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
Unconstrained optimisation
Do e (CKO0031/CKO0248)
Step-lengt p-lengt
Sevton diection Sevton diecti Minimisation (maximisation)
SmNeien SciNciien
drecnen e ~ Find a global or local minimum (maximum) of some objective function
. . Francesco Corona ““ o
lir ! ti 1 ctior
Department of Computer Science
Federal University of Ceard, Fortaleza
C 1 N ton Gau Ne
I nb. Levenberg
ey Yercuae
Golden tion 1 Golden tion 1d
o vk
. R
N 1 T 1 1 Nelder T M
Unconstrained Numerical optimisation (cont.) Unconstrained Numerical optimisation (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
Find the optimal allocation of 7 = 1,...,n bounded resources z;
Descent dizection The unconstrained optimisation problem Descent directions T
Step-lengt} et @ ~ Bounded resources means limited resources
~ min f(x) 1) A . o . .
directions XER™ e The constraints express these limits in terms of inequalities
it cn e
o i 0<z; < C;, with C; some given constants
The constrained optimisation problem
- min £(x) @) Thesetﬂ:{x:(aﬁh...,xn):O§xlgCi,zzl,...7n}
Gauss-Newton xEQCR" Gauss-Newton e A subset of R" determined by such constraints
Levenb Levenberg
el Q C R"™ is a closed subset determined by equality and inequality constraints st
|
Golden tion an Golden tion 1d
quadrati o Constraints are dictated by the nature of the problem to solve tuadratic
N 1 ne 1 1 Nelder T M

Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2018.2

Newton direction

Numerical optimisation (cont.)

For some problems, 2 is characterised by explicit conditions

~ Equality constraints
h(x)=0
~» Inequality constraints

h(x) <0

h:R"™ — R™ with m < n indicates some function of x

e h(x) < 0 corresponds to h;(z1, 22, -, 2,) <0, for i =1,..., m

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Numerical optimisation (cont.)

Let f be a continuous function and let) be a connected set
A constrained optimisation problem is a non-linear programming problem
Convex programming

~ [is a convex function and h has convex components

Linear programming

~ f and h are linear

Quadratic programming

~ [is quadratic and h is linear

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Newton direction

Golden section and
quadrati

nterpolation

Nelder and Mead

Numerical optimisation (cont.)

Minimisation v maximisation

Computing the maximum of function [is equivalent to computing the min-
imum of function g = —f

~+ We shall only consider minimisation algorithms

The minimum value of some given objective function is interesting

The point at which such minimum is achieved is more interesting

~ Such point is called minimiser

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Numerical optimisation (cont.)

‘We consider the numerical solutions of optimisation problems

The ideal situation is a function with unique global minimiser

e There are often several (local) minimisers

() = [z, 22)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton

Numerical optimisation (cont.)

We are interested in finding either a (good) local or the global minimiser

e This is the simple meaning of minimising an objective function

Point x* is a global minimiser of f
~ af f(x) < f(x), Vx €R™

Point x* is a local minimiser of f

~ if there is a Br(x*) C R"™, a ball centred in x* and radius r > 0, such

Unconstrained
optimisation

UFC/DC

CK0031/CK0248
2018.2

Unconstrained
optimisation

oo i Unconstrained optimisation

C 188-N ton C U New 1

—— that f(x*) < f(x), Vx € Br(x*) D
arquardt Marquardt

(Y“w‘v\y\‘: "m!\w‘w and (“‘ i\r‘:r‘h”(«(ihm and

N \r\t‘\ and Mead Nelder nd Meac

Uneonstrained Unconstrained optimisation (cont.)

optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained

optimisation

Descent direction

Step-length o

Newton direction
Quasi-Newton
lirectior
Gradient ar
onjugate-gradient
lirectior
Gauss-Newton
Levenber

quardt
Golden section and
juadrati
nterpolatior
Nelder and Mead

Let [be differentiable in R™ with first and second derivatives

Let gradient vector of [at point x € R"™ be the symbol

of (x) af(x)]T
dz1 7 Oy

Vi(x) = [3)

Let Hessian matriz of f at point x € R"™ be the symbol

82/ (x)
(9.”57' 61,

H(X) = (h7])?’,]:17 with }L” = (4)

In general, it will be assumed that problem functions are smooth

e Continuous and continuously (Frétchet) differentiable, C*

Unconstrained Unconstrained optimisation (cont.)

optimisation
UFC/DC

CK0031/CK0248
2018.2

Unconstrained
optimisation

For f(x) at any point x there is a vector of first derivatives

scent directions

~ Gradient vector

e — of /01
f\l‘y‘:‘(: \”i” : 8)‘/672
Gradiont and . y = Vf(X) (5)
o of /o,
T
V is the gradient operator {8/81:1 ,0/0x0, - - ,8/8.@,1}

Golden section and
quadratic

Nelder and Meac

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Let f(x) be twice-differentiable, C2

There is a matrix of second partial derivatives

~» Hessian matrix

O2f a2f 92f
Ox1011 Ox1 010 o 01107,
9?f d2f d2f
010011 010010 o 01201, =H(x) = VQf(x) (6)
0%f 92%f 92%f
| 0x,0x1 Oz, 010 o 01,01] «

The (4, 5)-th element of the Hessian matrix, 92f /(0z;0x;)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Rosenbrock’s function

F(x) = 100(z2 — 2?)* + (1 — m1)?

N7

)
*
N

0.5

s

-05
Nelder 1M
< 15 -1 0.5 0 05 1 15 2
1
The global minimum is at x* = (1,1), and variation around x* is low
Unconstrained Unconstrained optimisation (cont.) Unconstrained Unconstrained optimisation (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2

Unconstrained
optimisation

A test-function for optimisation methods

F(x) = f(z1,32) = 100(z2 — 22)% + (1 — 21)?

o Of /0z1 = —400z1 (22 — 2) — 2(1 — 21)

o Of [0z = 200(z2 — z?)
of)
oz | _ [—400zy (22 — 22) — 2(1 — m1)
v = 57| = [)))
Oz

Unconstrained
optimisation

f(x) = f(z1,22) = 100(z2 — 27) + (1 — 21)?

o Of J0x1 = —400z1 (22 — 1712) —2(1 —m)
Of /0y = 200(z2 — xf

0%f/(0110m1) = 120022 — 40072 + 2
02f /(0x10x2) = —40021

9%f /(0x2071) = —40021

0%f /(0x20x2) = 200

o2f o2f
Vi) = | 55 IR

(®)

Ox20x1 Omawad «

_ [1200z7 — 40022 +2 —400z;
- —400z; 200

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

In general, Vf and V2f will vary with x

At x' = (0,0)7
_ [—4002; (22 — 22) — 2(1 — z1)
Vi) = I 200(z2 — 22) N
_ '—2]
L0 Jx=(0.0)7
2 _ [120022 — 40032 +2 —400z;
Vi) = | —400z; 200
2 o }
10 200}, —(o,0)7

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

The idea of a line is also important

We can define the line as a set of points
x[=[x()] =x'+ad, forall o

x' 1s some fized point along the line
e [t corresponds to o =0
d is the direction of the line

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Let the fixed point x’ be the point (2, 2), let the direction d be (3, 1)

~» Draw the line x = x’ + ad, for all «

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

We can determine expressions for the derivatives of f along any line x(«)

~~ Based on definitions of line, gradient vector and Hessian matrix

By the chain rule of derivation of scalar-valued function of a vector

d dz;(«) 8

ol X} = Z g b)) = Z dia%{‘ [x(e)] }
=d"v{- [x()]}

The slope of f{ =f [x(u)]} along the line at any point x(«)

d
i _ d'vf=vsTa
do

This is the directional derivative of f with respect to d

e V/ is calculated at x(c)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

The curvature of f{ =f [x(a)} } along the line at any point x(«)

d?f d ,df
,_(_

—5 = =d?v(vfTd)=dTv?sd
da?2 da da) (Vf7d) !

This is the second-order directional derivative of f
e Vf and V2f are calculated at x(a)

Let G = V2f, then Gd is a vector

(Gd); = Gyd
j

dTGd is the scalar product of d and Gd

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Rosenbrock’s function

F(x) = 100(2z — 22)2 + (1 — a1)>

—400z2; (22 — z2) — 2(1 — 561)]
Vf(x) = 1
() [200(z; — 22) —o
% _ [120027 — 40022 +2 —400m;
VG = [—400z1 200

We consider point x’ = (0,0)”

F(x) = 100(zz — 22)% + (1 — m1)>

—400z1 (22 — z2) — 2(1 — xl)]
Vf(x) = 1
f(x) [200(z2 —) .
9 _ [120022 — 400z +2 —400z;
Vi) = [—400; 200 |

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

The curvature at point x’ = (0,0)7, along the line with direction d = (1,0)”

d’Gd=[1 0] B 280} [(1)] =2

2 o

Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Let f € C2(R™), all first and second derivatives exist and are continuous

Then, H(x) is symmetric for every x € R"

A point x* is called a stationary or critical point for [if Vf(x*) =0

A point such that Vf(x*) # 0 is called a regular point

A function f over R™ does not necessarily admit a minimiser

e Should this point exist it is not necessarily unique

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

o f(x) = 21 + 3z is unbounded in R?

e f(x)=sin(x1)sin(22) - - -sin (z,) admits an infinite number of minimis-
ers and maximisers in R"™, they are both local and global

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Function f : Q C R"™ — R is convex in) if
v flax+(1-a)y] Saf)+1-fF), ¥xyeQ (9)

for all o € [0,1]

Function f is Lipschitz in Q if
o IfG) = fOIN S Llx—yll, Vx,y €Q (10)

for some constant L > 0

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Optimality conditions

Let x* € R"™ and r > 0 exzists such that f € C'[B,(x*)]
o If x* is a minimiser for [(local or global), then Vf(x*) =0
o Also, if f € C?[B,(x*)], H(x") is positive semidefinite (PSD)

Let x* € R™ and r > 0 exists such that f € C?[By(x*)]
o If Vf(x*) =0 and H(x*) is positive definite (PD) for all x € By(x*),
then x* is a local minimiser of f
o Iff € CHR"™) is convex in R™ and Vf(x*) = 0, then x* is a global
mainimiser for f

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Descent direction
Step-length o
Newton direction

Quasi-Newton

Unconstrained optimisation (cont.)

A symmetric real matriz A € R"*" is positive definite (PD) if

Vx € R™ withx #0, ~ x' Ax>0

A symmetric real matriz A € R"*" is positive semidefinite (PSD) if

Vx € R™ withx#0, ~ x Ax>0

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

Most methods for numerical optimisation are of iterative type
e They can be classified into two main categories

Depending on whether they use derivatives of the objective

Derivative-free methods
~ They explore the local behaviour of a cost function

~ Direct comparison between function values

Methods using derivatives

C 188-N ton C U New 1
Levenber Levenbers ~+ They use local information of the objective
SRR s
Golden section and Golden section and
Jjuadrati Juadratic
S S
Uneonstrained Unconstrained optimisation (cont.) Unconstrained
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
2018.2 2018.2

Unconstrained
optimisation

sth o
Newton direction

Quasi-Newton

Golden section and
quadratic

nterpolation

Nelder and Mead

Methods based on derivatives are expected faster convergence

It can be shown that given X € dom(f), if Vf(X) exists and it is not null,
then the largest increase of f from X is along the gradient vector

Conversely, the largest decrease is along the opposite direction
Among them, the two most important classes of techniques

~ Trust-region methods

~ Line-search methods

Newton method

Marquardt

Golden section and
quadratic

Nelder and Meac

The Newton method

Numerical optimisation

Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2018.2

Newton method

The Newton method

Let f : R™ — R with n > 1 be of class C(R")

We know how to compute its first and second order partial derivatives

We apply Newton’s method to solve a system of nonlinear equation

Vf(x)=0

Unconstrained
optimisation

UFC/DC

CK0031/CK0248
2018.2

Newton method

The Newton method (cont.)

Newton’s method
Consider the problem of finding the zero of some f : [a,b] C R — R

~ Find a € [a, b] such that f(a) =0

We know the equation of the tangent to function f(z) at some point z(®)
y(z)=f [gc(]‘)] + 7 [z“’” [ar - x(]")}
We can solve for some point = = z(F+1) such that y[z(*T1] =0

(k)
S — g _ S

~

Nelde M
All this, for k =0,1,2,... and f'[z(®)] #0
Unconstrained The Newton method (cont.) Unconstrained The Newton method (cont.)
optimisation optimisation
UFC/DC) k)) UFC/DC
CKOO,E’&{E;{OMS y(z) = f[a] + f o] [z = 2] CKOO;&{ES;(OMB Consider now a set of nonlinear equations

Newton method

n : f [-’1"<A">}
L) 0 FE]
. ! f! [:1:(1")]

Sequence {w“"')} is the Newton method for finding the zero of function f
~ The method reduces to locally substituting f with its tangent

8

-2

Newton method

flz,z2,...,20) =0
folz,z2,...,2,) =0

,fll,(vT/'lv'TZv-- -7-75”) =0

We re-write the system in vector form
o Let f=(fi,....fn)7
e Let x = (;L'l,...,(L‘n)T
~ f(x)=0

We want solve the system of nonlinear equation

~ We can extend Newton’s method

Replace first derivative of function f with Jacobian J¢ of function f

7]
> (Je)y = d

dTI’ with i,5 =1,...,n
z;

Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2018.2

Newton method

Newton direction

Quasi-Newton
direction
Gr

nt and

Levenberg

Marquardt

ection and

The Newton method (cont.)

Consider the general system of nonlinear equations f(x) = 0

fiz, ... xn) =0

yeey@n) =0

fn(Il,...,J?,,.“,xn):0

The corresponding Jacobian matrix

oo
1o oz,
Of> Ofa

Jf(x) = 6_TZ o Oy

8/" v af n

Unconstrained
optimisation

UFC/DC

CK0031/CK0248
2018.2

Newton method

Descent directions

Newton direction
Quasi-Newton
directions
Gradient and
onjugate-gradient
direction
Gauss-Newton

Marquardt

len section and

quadratic

The Newton method (cont.)

Given this notation, we define the multivariable Newton’s method!

Let x(9) € R™ be an initial solution
For k=0,1,..., until convergence

Solve J¢ [x“)}(ix(k) = —f[x®]
Set xFHD — x(B) 4 55 (k)

At each iteration, a linear system with matrix Jg¢ [x(“} must be solved

interpolation interpolatior
Nelder and Mead amz 6'7:”'- Nelder and Meac
Lp(htl) = (k) _ f[;z:“‘j}/// [‘LU‘)}, (\'E“ =g+ _ 5B 'z (/‘>]o',§,/'> = —/[‘LU‘)]
Unconstraimea L€ Newton method (cont.) Unconstrainea e Newton method (cont.)
optimisation optimisation

UFC/DC UFC/DC

CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2

Newton method

descent direction

Step-length o

Newton direction

Quasi-Newton

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

function [x,res,iter] = sNWT(F_fun,J_fun,x_0,tol,imx)

% [ROOT ,RES ,ITER]=SNWT (F_FUN,J_FUN,X_0,TOL,IMX) Calculate vector ROOT,
% the zero of a nonlinear system defined in F_FUN with Jacobian J_FUN,
% from initial point X_0O

%

% RES is residual in ROOT and ITER is number of iterations

% F_FUN e J_FUN are external functions (as M-files)

iter=0; x=x_0; err=1+tol;

while err >= tol & iter < imx

J = J_fun(x);

F = F_fun(x);

deltax = -J\F;

x = x + deltax;

err = norm(deltax); iter = 1l+iter;
end

res = norm(F_fun(x));

%(Matlab/0Octave backslash operator)

if (iter==imx & err > tol)
disp (’ [Out by KMAX]’);
else

disp (’ [Out by TOL]’));
end

return

Newton method

Descent directions

Newton direction
Quasi-Newton
directions
Gradient and
onjugate-gradient
direction
Gauss-Newton

Marquardt

Golden section and
quadratic

interpolatior

Nelder and Meac

function J = J_fun(x)

J(1,1) = dF_1 / dx_1; % Add your own expression
J(1,2) = dF_1 / dx_2; % Add your own expression
J(2,1) = dF_2 / dx_1; % Add your own expression
J(2,2) = dF_2 / dx_2; % Add your own expression
J(N,1) = dF_N / dx_1; % Add your own expression

J(N,2) = dF_N / dx_2; % Add your own expression
return

function F = F_fun (x)

F(1,1) = F_1(x_1,x.2,...); % Add your own expression

F(2,1) = F_2(x_1,x.2,...); % Add your own expression

F(N,1) = F_N(x_1,x_2,...); % Add your own expression
return

Unconstrained The Newton method (cont.) Unconstrained The Newton method (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
Consider the nonlinear system of equations
2 2
= i 4 D = f@, @) =af 25 =1
Newton method Sz, 22) = i ta=1 Newton method £l) . (71')+ 3_0
s 2(z1, 22) = sin (=z1 x5 =
o fg(zl,zg):sm(gm)—kzgzo ‘ J ’ 2 2
Step-lengtl p-lengtl
Newton direction Newton directior function F=F_fun (x)
e hps = 0.5+p1;
(- o ‘ F(1,1) = x(1)°2 + x(2)°2 = 1;
contu lient a8 e F(2,1) = sin(pih*x(1)) + x(2)°3 = 0;
lirecti - lirection return
g 5
=
Il function J=J_fun (x)
Gauss-Newton ’x\ . x Gauss-Ne hpi = 0.5%pi;
B 5 S J(1,1) = 2%x(1);
Eoe N 0 Marquardt J(1,2) = 2*xx(2);
2_9 oo J(2,1) = hpi*cos (hpi*x(1));
T J(2,2) = 3*x(2)"2;
‘r““"\y«l‘«) CEE o (“‘ ‘il““w fonand return
E—— Er——
N le T 1 1 Nelder T M
The system has two solutions
o ~ (0.47,—0.88) and ~ (—0.47,0.88)
Unconstrained The Newton method (cont.) Unconstrained The Newton method (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
f(x) =Vf(x)=0
~+ The Jacobian J¢ [x“")} of the system is the Hessian matrix H(x) of f
Newton method Newton method k)
Suppose we start the solution from point x(0) = (1, 1)T ~ As computed at the generic iteration point x(k)
Descent direction De ent directions
Step-length o Let € = 0.00001 be the user-defined tolerance ep-lengtl
Newton direction Ne on direction
direction x_0=[1;1]; % Initial solution alisiions 1 (0) n = L
. olfloess 7 Mellermes o Given x\Y) € R™, for k =0,1,..., until convergence
= “u" radient imx=20; % Iteration :\“H‘(H‘ “M e . . .
Solve H[x(>] ox(F) = —Vf[x(’]
[x,res,iter] = sNWT(QF_fun,@J_fun,x_0,tol,imx); N—— N —
3¢ [x®)] £[x®) (11)
:‘ . ‘\ | ? ‘\(u Set xFTD = x(B) 4 gx (k)
T Yerol
e e ———— T R —— We can define a suitable stopping test/criterion
e v
ntery tion nterpol '
Neld r lead Nelder and M ||X<A:v1)fx(k)||§8
€ > 0 is an appropriate tolerance value

Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2018.2

Newton method

The Newton method (cont.)

F(x) = 2/5 — 1/10(522 + 523 + 32122 — @1 — 2a2)el— (F+35)]

SE
&

—~ B \“
SN
g 04 \\\\\\\\}?\Q
S N
B N
~—
02
— 2
J
(g

We want to approximate the global minimum x* =~ (—0.63, —0.70)

Unconstrained
optimisation

UFC/DC

CK0031/CK0248
2018.2

Newton method

Golden section and
quadratic

Nelder and Meac

The Newton method (cont.)

Netwon’s method with a tolerance € = 10~°

Let x(9 = (-0.9, -0.9)
~= After 5 iterations the method converges to x=[-0.63058;-0.70074]

Let x(= (=1.0,-1.0)
~ After 400 iterations the stopping criterion is still not fulfilled

Let x(® = (+0.5, —0.5)
~ After 5 iterations the method converges to the saddle point
e x=[0.80659; -0.54010]

Note that Newton’s method may converge to any stationary point

e (A point that is not necessarily a minimiser)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Newton method

Descent direction
Step-length o
Newton direction

Quasi-Newton

The Newton method (cont.)

A necessary condition for convergence of Newton’s method

e x(9) should be sufficiently close to the minimiser x*

The local convergence property of the method

General convergence criterium for the Newton’s method

If f € C?(R™) with stationary point x*
~ Positive definite Hessian H(x*)

~ Lipschitz continuous components of H(x) in a neighbourhood of x*

Then, for x(°) sufficiently close to x*, it converges (quadratically) to x*

Unconstrained
optimisation

UFC/DC

CK0031/CK0248
2018.2

Newton method

The Newton method (cont.)

In spite of a simple implementation, the method is demanding for large n

~ It requires the analytic expression of the derivatives
~~ The computation of both gradient and Hessian of f

e (Gradient and Hessian at each iteration)

Let alone that x(°) has to be chosen near enough x*

A valid approach to design efficient and robust minimisation algorithms

~» Combine locally- with globally-convergent methods

Global convergence guarantees convergence to a stationary point

o (Not necessarily a global minimiser), for all x(?) ¢ R™

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Line-search
Descent direction
Step-lengtt

Newton direction

Quasi-Newton
direction

Line-search methods

Numerical optimisation

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Line-search
Descent directions
ep-length o

Newton direction

Line-search methods

Line-search or descent methods are iterative methods

We suppose that the objective function f € C2(R™) is bounded from below
For every step k£ > 0, let x(5+1) be the next point of the minimising sequence
o Point x(**1) is determined from current point x* and a vector d*)

o Vector d(¥) itself depends on two term
~ The gradient vector Vf [X(M] of function f

Gauss-Newton Gauss-Newton ~ A step-length parameter a € R
Levenber Levenberg:

Golden section and Golden section and

juadrati quadratic

Nelder and Mead Nelder and Meac

Unconstrained Line-search methods (cont.) Unconstrained Line-search methods (cont.)
optimisation optimisation

UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
2018.2 2018.2

Line-search
Descent direction
Step-length o
Newton direction

Quasi-Newton
direction

The algorithmic formulation of the general line-search/descent method

Let x(O) € R™ be an initial minimiser
Find direction d*) € R™
Compute step-length o € R
Set xFtD = x(F) 4 o, q®

Line-search
Descent directions

Newton direction
Quasi-Newtor
lirections
Gradient and
njugate-grad
lirection
Gauss-Newton

Levenberg:
Marquardt

Golden section and
quadratic

Nelder and Meac

Vector d'%) must be a descent direction

A descent direction satisfies the following conditions
dPMvi[x®] <o, if vi[x*™] #0 12

d® =0, if vi[x"] =0

~ Vf [x(”] gives the direction of max positive growth of f from x(*)

~ dB v [X(U] is the directional derivative of f along d‘*)

First condition ensures moves in a direction opposite to the gradient

~» The iterates move towards a minimiser

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained

optimisatio
Newton methoc

Line-search
Descent directions
Step-length o
Newton directions

Quasi-Newton
directions

Gradient and
conjugate-gradient
directions

Trust-region

Nonlinear

least-square
Gauss-Newton

Levenberg-

Line-search methods (cont.)

Contour lines of function f(x) and its gradient vector evaluated at x(*)

o d(®) is a suitable descent direction

4

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained

optimisation
Newton method

Line-search
Descent directions
Step-length o
Newton directions

Quasi-Newton

directions

Gradient and
conjugate-gradient
directions

Trust-region

Nonlinea

least-square
Gauss-Newton

Levenberg-

Line-search methods (cont.)

ay, can be computed by solving a one-dimensional minimisation problem

e Minimise the restriction of f(x) along d(*)

° XE:i>n is the minimiser along d(*)
0.45 L
04) ““‘
OSSN
AN

NN
NN

0.25 '/’ “\\\\\\ \\‘“"%/,
, m\\\\\\\\\\ 55

ANV

0.15 DA

0.05

Marquardt Marquardt
Derivative-free ! Derivative-free
Golden section and Golden section and
quadratic quadratic
interpolation 4 interpolation
Nelder and Mead Nelder and Mead
Optimal value o, € R guarantees max variation of f along d(*) The computation of «y, is quite involved (when [is not quadratic)
e Once d*) is determined ~» There are alternative techniques that approximate aj well
. .
Unconstrained S Descent directions
optimisation optimisation
UFC/DC UFC/DC
CK0031/CK0248 CKO0031/CK0248
2018.2 2018.2
Unconstrained Umesneeee] Newton’s directions
optimisatio optimisation
Newton methoc Newton method dF) — —g-1! [X(k)]Vf[x(k)} (13)
Line-search Line-search

Descent directions
Step-length o
Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

I'rust-region
Nonlinear
least-square
Gauss-Newton
Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic

interpolation

Nelder and Mead

Descent directions

Line-search methods

Descent directions
Step-length o
Newton directions

Quasi-Newton

directions

Gradient and
conjugate-gradient
directions

I'rust-region

Nonlinea

least-square
Gauss-Newton
Levenberg-
Marquardt

Derivative-free

Golden section and
quadratic

interpolation

Nelder and Mead

e Matrix H[x(¥)] is the Hessian matrix at the k-th step
e Vector Vf [x(k)} is the gradient vector at the k-th step

Quasi-Newton directions

d® = B v [x®] (14)

e Matrix Hy, is an approximation of the true Hessian H[x(k)]

e It is used when second derivatives are heavy to compute

Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2018.2

Descent directions

Step-length o

Descent directions (cont.)

Gradient directions

d® = —vf[x®)] (15)

e These are quasi-Newton directions, with Hy = I, Vk > 0

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Descent directions (cont.)

For all k£ > 0, gradient directions are valid descent directions

dPvfx®] <o, it Vf[x®]£0

(17)

Newton direction Ne on direction
—— d® =0, ifVf[x®] =0,
lir tior direction
Conjugate-gradient directions sk Conjugate-gradient directions are valid directions for some suitable 3y,
1 ction
d©® = vy [X(O)}
(41 (e4D) ® (16) Newton’s and quasi-Newton’s directions can also be valid directions
1) _ +1 :
o d =-Vf [x] +p/pd, k20 . — . H[x<k)} and Hj, need be positive definite matrices
Levenber Levenberg:
e e Coeflicients Bj can be chosen according to different criteria e
Golden section and Golden section and
quadratic quadratic
Nelder and Mead Nelder and Meac
Unconstrained Descent directions (cont.) Unconstrained Descent directions (cont.)
optimisation optimisation
UFC/DC UFG/DC
CK0031/CK0248 CK0031/CK0248
2018.2 2018.2

Descent directions
Step-length o

Newton direction

Quasi-Newton

Golden section and
quadratic

interpolation

Nelder and Mead

f(x) =2/5 —1/10(5a% + 523 + 3w122 — 71 — 2172)6[_(zl2+z22>]

..'" I TI77
DN

AN

f(x) = f(21, 22)

Two local minimisers, one local maximiser and two saddle points

Descent directions

Gauss-Newton

Marquardt

qu
nterpolatior

Nelder and Meac

‘We compare sequences {x(k)} from Newton’s and descent methods

e Various descent directions

e From xgo) and xgo)

Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2018.2

Descent directions

Step-length o
Newton direction
Quasi-Newton
directions
Gradient and
conjugate-gradient
directions
Gauss-Newton
Levenberg-
Marquardt

Golden section and
quadratic
interpolation

Descent directions (cont.)

x{?) = (0.5,-0.5)

2

0.5

—15}F

-2

descent GC-FR

descent quasi-Newton

- Newton

descent Newton

descent grad,

quasi-Newton,; GC

descent grad X(O)
1

Newton

descent Newton
descent GC-PR

-2

-0.5

0 05 1 15

2

e Newton’s method converges rapidly towards the saddle point

e Newton’s directions take a first step identical to Newton’s

Unconstrained
optimisation

UFC/DC

CK0031/CK0248
2018.2

Descent directions

Step-length a
Newton directions
Quasi-Newton
directions

Gradient and

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Descent directions (cont.)
9]
x{”) = (0.4,0.5)
4 Newton
15
/ descent Newton
Wb
05 X<O)
2 descent grad,
o/ ///descentGCER quasi-Newton, GC
descent grad _(0)
g x|
-051
T Newton
-1.5 - descent quasi-Newton descent Newton
descent GC-PR

-0.5 0 05 1 15

e Newton’s method diverges

Nelder and Mead Neitar omd Wiead e Newton’s directions converge to a local minimum
~» Then collapse due to a non-positive definite matrix H
p p k ~+ Newton’s method and directions share the same first direction
e Others converge with different speeds into a local minimum R
e All others also converge to the same local minimiser
o Fastest convergence by quasi-Newton’s directions
Unconstrained Unconstrained Step-length Olk
optimisation optimisation
UFC/DC UFC/DC k : ;
CK0031/CK0248 CK0031/CK0248 Let d(®) be a descent direction
2018.2 20182 e How to set the step-length ay
The new iterate x(¥+1) is (should be) the minimiser of f along d(*)
Descent directions Descent directions

Step-length o

Newton direction
Quasi-Newton
directions
Gradient and
conjugate-gradient
directions
Gauss-Newton
Levenberg-
Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Step-length «;,

Line-search methods

Step-length o,
Newton directions

Quasi-Newton

directions

Gradient and

gradient

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction

Step-length o

Step-length «;, (cont.)

The new iterate x(*+1) should be the minimiser of f along d(¥)

Choose ay, such that the minimisation is exact

o) = arg min f[x(k) + ad(k)]

a€eR

or

f[x(k) + akd(k)] _ {f‘éﬁf[x(“ + adm]

(18)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Step-length o,

Step-length o (cont.)

A second-order Taylor expansion of f around x(¥) yields

2
f[x(k) + ad(k)} = f[x(k)] +ad® vy [x(k‘)] + %d(k)TH[x(k)]d(k)

+o(lad®|?) (19)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction

Step-length o

Step-length «;, (cont.)

Consider the special case in which f is a quadratic function

1
flx) = EXTAx —xTb+¢

e A € R"*"™ symmetric and positive definite
e beR"”
e ceR

The expansion is exact, the infinitesimal residual is null

2
f[x(k) + ad(k)] :f[x““)] +ad® vy [x(k)} + %d(k)TH[x(k)]d(k)

+ o(llad %)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Step-length o,

Step-length o (cont.)

For every k > 0, we have

Fx®] = %XWAXM —x® b4

Vix®] = Ax® —b = —r®
Vi [x®] =H[x®] = A

2
Differentiate f [x(k)—&-ad(k)} =f [x(k)] +ad® vy [x<k)] +%d(k)TH[x(k>}d(k>

wrt o and set the derivative equal to zero to get min,eRr f[x(k) + ad(k)]

dif x84 ax®] = —a® ") 4 . d® Ad®) =0

ay

AT (k) (20)
T AT Adk)

~ Al

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton

Step-length «;, (cont.)

Let d®) be gradient directions, d*) = —Vf(x(*¥)) = ¢(¥)

~~ The gradient method for solving linear systems

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length o,
Ne on direction:

Quasi-Newtor

Step-length o (cont.)

Let d* be conjugate-gradient directions, d#+1) = —Vf[x(*+D] 4 g,d*)
Set,
[Ad(®)] T (k+1)

21
d®TAdR) 1)

D

~» The conjugate-gradient method for solving linear systems

|

C 188-N ton Gau New 1
I nber Levenberg

juardt Marquardt
f“‘\"\y«\‘i”\ ‘ tion 1d (“‘ ‘i:““‘“ tion 1d
. o
Nelder T 1 1 Nelder T M
Unconstrained Step-length o (cont.) Unconstrained Step-length o (cont.)
optimisation optimisation

UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248

2018.2 2018.2

Let f be a non-quadratic function
et direction The computation of the optimal ay requires an iterative method Descont diections . .
Step-length a, P P k req : Step-length oy, How to pick a good approximated value of ay?
Newton direction ~ Numerical solution of minimisation along d(¥) Newton direction
S A iR Impose a condition to the new iterate x**+1) = x() 4 o, d(F)
kit ox e
S = -) <) @
~ Demanding and often not worth it
~+ Stick with an approximation of ay,

C 185-N ton Gau New 1
I nber Levenberg

juardt Marquardt
f“‘\"\y«\‘i”\ ‘ tion 1d (“‘ ‘i:““‘“ tion 1d
nterpolatior 1terpol r
Nelder T 1 1 Nelder T M

e Step-length «;, (cont.)

optimisation

UFC/DC
CK0031/CK0248
2018.2

A natural strategy for setting ay

Descent direction
Steplensth o e Initially assign a large ay,
e Then, reduce it iteratively

o Until, f[x*+D] < f[x(*®)] is satisfied

The strategy does not guarantee a {xk} that converges to x*
e Steps can be too long (go beyond the minimum)

e e Steps can be too short (get infinitesiamal)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Step-length o,

Step-length o (cont.)

There exist alternative (better/reliable) criteria for aj > 0

~> Wolfe’s conditions

Let oy, be the step-length

ay, 18 accepted if

F[x® + axd®] < £ [x®] + oard®” v [x®)] (23)
d(k,)TVf[x(k.) +akd(k~)} > 5d(k)TVf[x(k->}

The two additional parameters, constants o and §

e 0<o<d1

| G
ins AR vy [x(k)} is the directional derivative of f along direction d(¥)
Unconstrained Step'length o593 (Cont') Unconstrained Step'length A (COl’lt.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2L A2 The terms in the first of the two Wolfe’s conditions, for o = 0.2
FIx®) 4+ apa®] < F[x®] + o‘akd(k)TVf[x(k)]
0.5
Steptength ak ‘ f[x(k> + akd(k>] < f[x(k)] + o'akd(k)TVf [x(k)] e 0.45¢ FxE)y 4 oa(@EN)T v r(x(F))
: d® v [x® +apd®] > 5d®) v [x0) ‘ o4 —-=7|
. 0.35F_ i 1
First condition (Armijo’s rule) inhibits too small variations of f e 0.3 o
e With respect to step-length and directional derivative 0.25¢
0.2r
Gauss-Newton Changes in f need be proportional to step-length and directional derivative c Ne

0.15} B F(xF) 1 aalk)y

0.1

0.05
0 0.2 0.4 0.6 0.8 1
(0

Condition is satisfied for a corresponding to the continuous line

Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2018.2

Descent direction

Step-length o

Step-length «;, (cont.)

FIx®) 4+ ara®] < £[x®) +oard® vy [x(9)]
d® v [x® +apd®] > 5d® v [x®)]

Second condition states that the directional derivative of f at new point
x(®) + a,d®) should be & times larger than it was at point x(*)

o Point x(*) +o¢kd(k) is a valid candidate if f at such point decreases less
than it does at x(*) (closer to a minimiser)

This second condition prevents steps whose length would be too small

e Happens where f has a largely negative directional derivative

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length o,
Newton direction.

Qua

Step-length o (cont.)

Lines with slope Sd(k)TVf [x(k)] in second condition, § = 0.9
d® vix®) 4+ apd®] > 6d®" w[x*)]

0.5 T T
0.45] s(@FNT v p(x(F))]

0.41
0.35f
0.31
0.25F
0.21
0.15¢
0.1F

0.05

Condition is satisfied for o corresponding to the continuous line

Unconstrained
optimisation

UFC/DC

CKO0031/CK0248
2018.2

Descent direction

Step-length o

Step-length «;, (cont.)

Wolfe’s conditions are jointly satisfied in the interval

0.23 <o <0.41 or 0.62 < a < 0.77

Values of o € [0.62,0.77] are far from the minimiser of f along d(¥)

e Also o where the directional derivative is large are accepted

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Step-length o,

Step-length o (cont.)

Wolfe’s strong conditions

f[x(’“) + oakd(k)} < f[x(k)] + Jakd(k)TVf [x(’“)}

(24)
[d® " f [x®) 4+ ard®]| < —5a® " vf[x*)]

This conditions are more restrictive (duh!)

e The first condition is unchanged

o The second one inhibits f from large variations about x(*) 4+ ad(*)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton

Step-length «;, (cont.)

Acceptable o must belong to small intervals around the minimisers

e (thick continuous arcs)

05
043 £ 4 oa@®)T v pxk)) 1
o4t~
0.35

0.3
0.25

0.2
0.15

0.1

slope= +8(d(F))T v r(x(k))

0.05
0 0.2 0.4 0.6 0.8 1

e Forc =0.2and § =0.9

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length o,
Ne on direction:

i-Newtor

Step-length o (cont.)

Suppose that f € C?(R") is bounded from below in {x*) + ad(®,a >0}

o Let d(®) be a descent direction at x(*)

It can be shown that for all o and § such that 0 < o < § < 1 there exist
non-empty intervals of oy, that satisfy Wolfe’s weak and strong conditions

In practice?, o is usually chosen to be very small (e.g., ¢ = 10%)

Typical values for §
e 6 = 0.9 for Newton, quasi-Newton and gradient directions

e § = 0.1 for conjugate-gradient directions

2J. Nocedal and S. Wrigth (2006): Numerical optimization.

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o
Newton direction

Quasi-Newton

Step-length «;, (cont.)

A strategy for step-lengths aj that satisfy Wolfe’s conditions

Backtracking
e Start with a =1
e Then reduce it by a given factor p (tipically, p € [0.1,0.5))

e Until, the first weak condition is satisfied

For x(®) and a direction d(®), for o € (0,1) and p € [0.1,0.5)

Seta =1
while f[x(k) + ad(k')} > f[x(k)] +oad®Vf [x(k)]
a = pa
end
Set o, = «

Second condition is never checked, as step-lengths are not small

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length o,
Ne on direction:

Quasi-Newtor

Step-length o (cont.)

function [x,alpha_k]=bTrack(fun,x_k,g k,d_k,varargin)

%BTRACK Backtracking with line search

% [X,ALPHA_K]=BTRACK(FUN,X_K,G_K,D_K) x_{k+1}=x_k+alpha_k*d_k
% in the descent method, alpha_k by backtracking with

% sigma=le-4 and rho=0.25

% [X,ALPHA_K]=BTRACK(FUN,X_K,G_K,D_K,SIGMA ,RHO) sigma and rho
% can be inputed - sigma in (1e-4,0.1) and rho in (0.1,0.5)

% FUN is the function handle of the objective function
% X_K is element x_k, G_K is the gradient , D_K is d_k

if nargin == 4

sigma = 1.0e-4; rho = 1/4;

else

sigma = varargin {1}; rho = varargin {2};
end

minAlpha = 1.0e-5; % Smallest steplength
alpha_k = 1.0; f_k = fun(x_k);

k = 0; x = x_k + alpha_k*d_k;
while fun(x) > f_k+sigma*alpha_k*g k’*d_k & alpha_k > minAlpha
alpha_k = alpha_kx*rho;
x = x_k + alpha_kx*d_k; k = k+1;
end

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Step-length o

Step-length o (cont.)

The descent method with various descent directions
e «y is determined by backtracking
%DSCENT Descent method of minimisation

%[X,ERR,ITER]=DSCENT (FUN , GRAD_FUN ,X_0,TOL ,KMAX ,TYP ,HESS_FUN)
% Approximates the minimiser of FUN using descent directions

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Step-length o,

function [x,err,iter]=dScent (fun,grad_fun ,x_0,tol ,kmax,typ,varargin)
if nargin>6; if typ==1; hess=varargin{1i};

elseif typ==2; H=varargin{1l}; end; end
err=tol+1; k=0; xk=x0(:); gk=grad(xk); dk=-gk; eps2=sqrt (eps);

while err>tol & k<kmax

if typ==1; H = hess_fun(xk); dk = -H\gk; % Newton
elseif typ= dk = -H\gk; % BFGS
elseif typ== dk = -gk; % Gradient
end

[xk1,alphak]=bTrack (fun,xk,gk,dk);

Newton directions % Newton (TYP=1), BFGS (TYP=2), GRADIENT (TYP=3), and the Newton directions 13 gkl=grad_fun(xkl);
Quasi-Newton % CONJUGATE -GRADIENT method with Quasi-Newton 14 if typ== % BFGS update
(i‘””"’m 6 % beta_k by Fletcher and Reeves (TYP=41) (}_‘W“”“' L5 yk = gkl-gk; sk = xkl-xk; yks = yk’xsk;
e e 7 ' beta_k by Polak and Ribiere (TYP=42) L if yks > eps2*norm (sk)*norm (yk)
abreeeeE 8 % beta_k by Hestenes and Stiefel (TYP=43) directions 17 Hs=H*sk; H=H+(yk*yk’)/yks-(Hs*Hs’)/(sk’*Hs);

9 % 18 end

10 % Step length is calculated using backtracking (bTrack.m) 19 elseif typ>=40 % CG upgrade

1Y 20 if typ==41; betak=(gkl ’*gkl)/(gk’*gk); % FR

12 % FUN, GRAD_FUN and HESS_FUN (TYP=1 only) are function handles 21 elseif ty ; betak=(gkl’*(gkl-gk))/(gk’*gk); % PR
Gauss-Newton 13 % for the objective, gradient and Hessian matrix Gauss-Newton 22 elseif typ 3; betak=(gkl ’*(gkl-gk))/(dk’*(gkl-gk)); % HS
Levenberg- 14 % With TYP=2, HESS_FUN approximates the exact Hessian at X_O Levenbe 23 end
Marquardt 15 % Marquardt 24 dk = -gkl + betakx*dk;

16 % TOL is the stop check tolerance 25 end

17 % KMAX is the maximum number of iteration § 26 xk = xk1; gk = gkl; k =1 + k; xkt = xki;
j{’l;’}j‘,“;“‘;““"“ =Gl :";‘}‘(‘]"‘:‘;‘““"’ and 57 for i=1:length(xk1l); xkt(i) = max ([abs(xk1(i)),1]1); end
interpolation interpolation 28 err = norm((gkl.*xkt)/max ([abs (fun(xk1)),1]),Inf);
Nelder and Mead Nelder and Mead 29 end

30 x = xk; iter = k;
31 if (k==kmax & err>tol); disp (’[KMAX]’); end
.) . .
e] Unconstrainea D €Scent method with Newton’s directions
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
2018.2 2018.2
Let us consider a descent method with Newton’s directions
~» Newton directions

fvl:‘—v(uln\ (1v;w(\v(nv~v escent ethod ‘_)(M'l”((l\lvv((vnn—, d(k) — _H—l [X(k)] Vf [X(k)]
Step-length I ’ m Step-length a;

Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

with Newton’s directions

Line-search methods

Newton directions
Quasi-Newton
directions

Gradient and
-gradient

conjuga

directions

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Let step-lengths «j, satisfy Wolfe’s conditions
~ Wolfe step lengths oy,

F(x®) 4+ apa®)y < f[x(k)] + aakd(k)TVf [x<k)}
AW v [x® 4+ apd®] > 5d®) " wr[x*)]

Let f € C2(R™) bounded from below

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o
Newton directions

Quasi-Newton

Descent method with Newton’s directions (cont.)

Find direction d*) € R
Compute step ay € R

Set x&+1) = x(B) 4 o, d®)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

ep-length o
Newton directions

Quasi-Newtor

Golden section

quadratic
nterpola

Nelder and Meac

Descent method with Newton’s directions (cont.)

Suppose that the Hessian H[x(®)] is symmetric, for all k£ > 0
~ (from the assumption on f)

Suppose that H[x““)] is also positive definite (no uphill moves)

Let By = H[x(®]

Suppose that M > 0 : K(Bg) = ||B|,||B;, *||, < M, for all k >0
e K(By) is the (one) spectral condition number of By

e Uniform upper bound on the condition number

Then, Newton’s sequence {x(k)} converges to a stationary point x*

~ By letting ay, = 1 for k > k, the converge is quadratic

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o
Newton directions

Quasi-Newton

Descent method with Newton’s directions (cont.)

Let A € R"X™ be a matriz

Consider the problem of finding a scalar A (complex or real) and a non-null
vector x € C" such that
Ax = \x

Any X that satisfy this equation is an eigenvalue of A

e x is the corresponding eigenvector

The spectral condition number of A is the quantity

>\maz

K(A) =

)\m.zn

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

ep-length o
Newton directions

Quasi-Newtor

Levenberg.
Marquardt

Golden section

quadratic
nterpolatior

Nelder and Meac

Descent method with Newton’s directions (cont.)

If Hessians are positive definite, x* cannot be a maximiser or saddle point

e The stationary point must necessarily be a minimiser

It can happen that H[x(k)] is not positive definite for some point x(*)

e d*) may not be a descent direction

e Wolfe’s conditions might become meaningless

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length o
Newton directions

Quasi-Newton
directions

Gradien

directions

Gauss-Newton

Descent method with Newton’s directions (cont.)

Hessian can transformed to make them positive definite

By, = H[x(®] + E;

e E; is some suitable matrix (either diagonal or full)
e E; is such that d(*) = —B;1Vf [x(k)] is a descent direction

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length a

Newton directions

Quasi-Newton
directions

Descent method with
quasi-Newton’s directions

Line-search methods

Levenberg- Levenberg-
Marquardt Marquardt
Golden section and Golden section and
quadratic quadratic
interpolation interpolation
Nelder and Mead Nelder and Mead
Unconstrained Descent method with quasi-Newton Unconstrained Descent method with quasi-Newton’s directions
optimisation optimisation (cont)
UFC/DC UFC/DC

CK0031/CK0248 CK0031/CK0248

2018.2 2018.2

Let us consider a descent method with quasi-Newton directions
e Quasi-Newton directions
-1
Descent directions d<k) = _Hk Vf [x(k)} Descent directions
Step-length o Step-length «
et e ~ Hj, approximates the true Hessian H[x(k)} o e Suppose we are given a symmetric and positive definite matrix Ho
e o ~» How do we build matrices Hj,?
Craden o Let step-lengths «y, satisfy Wolfe’s conditions Tt
directions — Wolfe step lengths directions There exists a popular technique used for solving nonlinear systems
- ~» The recursive Broyden’s rank-one update
f(x(k) 4 akd(k)) < f[x(k)] +oapd® vy [x(k)]

Gauss-Newton T T Gauss-Newton
o 4 VF [x(k) + oz;cd(k)] > sd(k) \i [x(k)] S
Marquardt Marquardt
Golden section and Let f € C2(R"™) bounded from below Golden section and
quadratic quadratic
interpolation interpolation
Nelder and Mead

Nelder and Mead

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Newton direction
Quasi-Newton
directions

Gradient anc

Descent method with quasi-Newton’s directions
(cont.)

Matrices Hy, are required the satisfy certain conditions

e They must satisfy the secant condition
Hj 1 [x(lﬁ—l) _ x(k)} =Vf [x<k+1)} —-vf [ka
e They must be symmetric, as H(x)
e They must be positive definite, d(¥) are descent
e They must satisfy
[— HEH)[dW]|

W% lTat]|

This ensures that Hjy is a good approximation of H[x*} along the
descent direction d(*) and guarantees a super-linear rate of convergence

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Quasi-Newton
directions

Descent method with quasi-Newton’s directions
(cont.)

A strategy by Broyden, Fletcher, Goldfarb and Shanno (BFGS)

OMOR Hks(k)s(k)THg

H =H —
M= TR T s BT H, s

(25)

o 5(B) — (k1) _ (k)

o yb =Vf [x(kﬂ)] _ Vf[x(k)}

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Newton direction

Quasi-Newton
directions

Descent method with quasi-Newton’s directions
(cont.)

Matrices Hy 1 are symmetric and positive definite under condition

MORNOREE

It is satisfied when step lengths oy, are either weak or strong Wolfe

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Quasi-Newton
directions

Descent method with quasi-Newton’s directions
(cont.)

BFGS is a descent method, with quasi-Newton d®) and Wolfe’s ays

— dk) = fHkTIVf [X(k)]
F® 4 apd®) < Fx®)] + card®’ vy [x(M]
d® v [x® 4 a,d®] > 5d®) " wi[x*)]

Let x(9 be an initial solution
Find direction d(®) ¢ R™
Compute step length oy € R

Set x(k+1) = x(B) 4 o d(*)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-lengtt
Newton direction

Quasi-Newton
directions

Descent method with quasi-Newton’s directions
(cont.)

Let x(©) be an initial solution

Let Hy € R"*™ be a suitable symmetric and positive definite matriz

~ Hp € R"*" approrimates H[x<0)]
Solve Hd*) = —vf [x(k>]
Compute oy, that satisfies Wolfe’s conditions
Set
xF+D) = x(*) 4, d)
s(F) — x(k+1) _ (k)

y*) = vy [x(k+1)] —Vf [x(k)]

y®By®T W50 HT

C teH, 1 =H 7 - T
ompute Hy 1 S Y eS| s TH,s(k)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

ep-lengtl
Newton direction
Quasi-Newton
directions

Gradient and
conjugate-grad
lirection,

Descent method with quasi-Newton’s directions
(cont.)

The cost of calculating d(F) is O(n3), at every iteration k > 0
e Can be reduced to O(n?) by using recursive QR on Hy,

Setting Hp = I gives faster convergence to x*

~ Some experimental evidence, only

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-lengtt
Newton direction

Quasi-Newton
directions

Gradient anc

Descent method with quasi-Newton’s directions
(cont.)

Rosenbrock’s function
f(x) = (1 —z1)2 4 100(z2 — 22)?

Let e = 10~ be the tolerance

4

|

o
1

[+1.2; -1.0];

fun = @(x) (1-x(1))"2 + 100x(x(2)-x(1)"2)"2;

options = optimset (’LargeScale’,’off’); % Switches to BFGS
[xstar ,fval,exitflag ,output] = fminunc(fun,x_0,options)

Convergence after 24 iterations and 93 function evaluations

We did not input an expression for evaluating the gradient
e It was, silently, approximated

o (finite difference methods)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

ep-lengtl
Newton direction
Quasi-Newton
directions

Gradient and
conjugate-grad
lirection,

Descent method with quasi-Newton’s directions
(cont.)

We can define and input the analytical gradient

x_0 = [+1.2; -1.0];

fun = @(x) (1-x(1))"2 + 100*(x(2)-x(1)"2)"2;
grad_fun = @(x)[-400%(x(2)-x(1)"2)*x (1) -2*x(1-x(1));
+200x%(x(2)-x(1)"2)1;

options = optimset (’LargeScale’,’off’,’Grad0Obj’,’on’);

[xstar ,fval,exitflag ,output] = fminunc ({fun,grad_fun},...
x_0,options)

Convergence after 25 iterations and 32 function evaluations

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Quasi-Newton
directions

C

Descent method with quasi-Newton’s directions
(cont.)

In Octave, BFGS is implemented by the M-command bfgsmin
e M-command fminunc implements a different method

e (A trust-region method)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gradient and
conjugate-gradient
directions

Descent method with gradient
and conjugate-gradient
directions

Line-search methods

N 1 d
Unconstrained Gradient and conjugate-gradient directions Unconstrained Gradient and conjugate-gradient directions (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
2018.2 2018.2

Gradient and
conjugate-gradient
directions

Let us first consider the general descent method

Find direction d(¥) € R®
Compute step oy € R

Set x(+1) — x(0) | (k)

The gradient (descent) directions

d®) = —wr(x*)

If f € C2(R™) is bounded from below and step lengths ay, are Wolfe

~» This method converges (linearly) to a stationary point

Gradient and
conjugate-gradient
directions

Let us now consider conjugate directions

d® = —vy(x)
d* D = —vfx*T) — g.a®, k>0

There are several options for setting S

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gradient and
conjugate-gradient,
directions

~ Fletcher-Reeves

AL

BFR — _
S P
~» Polak-Ribiére (-Polyak)

VIO (O[] - e D]
194 (<]

PR
/Bk =

~~ Hestenes-Stiefel

CVi[x®] v [x®]T = w[xtE-D]}

BHS —
T T aE T 0] vy <]

Gradient or conjugate-gradient directions (cont.)

(26)

(27)

(28)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gradient and
conjugate-gradient
directions

Gradient and conjugate-gradient directions (cont.)

Suppose true the condition that f is quadratic and strictly convex
Then, all the aforementioned options are equivalent

[Ad(®)] T (k+1)

~ P = T Aa®

d
Unconstrained Unconstrained rI‘I'llSt-I'egIOIl methods
optimisation optimisation
UFC/DC UFC/DC
CK0031/CK0248 CKO0031/CK0248
2018.2 2018.2

Trust-region methods

Numerical optimisation

Line search methods are designed to set first the descent direction d(*)
e Then, they determine the step-length ay
These steps are performed at each k-th step

Trust-region methods simultaneously choose direction and step length

This is done by building a ball of radius 8; centred at x(¥)

e The ball is the trust region, at iteration &

Within the ball, a quadratic approximation fk of f is computed

o The new x(**t1) is the minimiser of fk in the trust region

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton
direction

Trust-region methods (cont.)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length o

Newton direction

Quasi-Newton
directions
1

sradient

Gradier

directions

Trust-region

Trust-region methods (cont.)

To compute fi;, we start with some trust radius 6; > 0

o Determine a second-order Taylor expansion of f about x(¥)
- 1
Ju(s) = F[xP] +svf[xP] + 5sTHks, Vs € R" (29)

H), is either the Hessian of f at x(*) or a suitable approximation

e We then compute the solution s(*)

s®) = argmin fi(s) (30)
sER™:|[s|| <6

~» At this stage, we also compute the quantity

- EowENerien
Levenberg. Levenberg

Marquardt Marquardt f[x(k) +S(k)} 7f[X<k)] (31)

g] 3] 7 k= = =

R Convergence history and quadratic approximation f; at step k = 8 P r fr [s(k)} — f(0)

tntarpolation Sterpolatior

Nelder and Mead Nelder and Meac

Unconstrained Trust-region methods (cont.) Unconstrained Trust-region methods (cont.)

optimisation optimisation

UFC/DC UFC/DC
CK0031/CK0248 CK0031/CK0248
2018.2 2018.2
If pj. is approximately one, we accept s(®) and move on to next iteration
~ We set x(FT1) = x(k) 4 g(k)

Descent direction (k) (k) (k) S e (however, if the minimiser of fk lie on the boundary of the trust
—— £ + 8] — f[x] Stap-langt! regi tend the latter bef ding to next iterati

Sl @ oK = _ _ tep-length a gion, we exten e latter before proceeding to next iteration)

Newton direction i3 [S(k>] —fk(()) Newton direction

drectione " If py, is either negative or positive (and much smaller than one)

Quasi-Newton

directions

Trust-region

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

A comparison between variation of f and variation of fj

~ From point x(®) to point x(®) 4 s(®)

If pi is about one, the approximation is considered to e good

directions

Gradient and
conjugate-gradient

directions

Trust-region

Gauss-Newton

Marquardt

Nelder and Meac

~~ We reduce the ball’s size and calculate a new s(*)
s®) = arg min fi(s)
SER™:[|s|| <4y

If pj. is much larger than one, we accept s(*) and keep the trust region

~~ Then we move to the next iteration

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region

Trust-region methods (cont.)

Consider the situation in which second derivatives of f are available

We could set Hy to be equal to the Hessian

e (or a variant, if not positive definite)

Otherwise, Hy, can be built recursively

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region methods (cont.)

Let Hj, be symmetric positive definite and let ||H;1Vf [x<k)] || <6k
e Then, s(*) = H;IVf [x(kﬂ is a minimiser

e It is within the trust region

Otherwise, the minimiser of fk lies outside the trust region
~~ We must solve the minimisation of f,
o Constrained to the §j-ball at x(*)

fi(s)

min
SER™:[|s||=0,

This is a constrained optimisation problem

~ We can use the Lagrange multipliers

(32)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region methods (cont.)

At each iteration k, we look for the minimiser of the Lagrangian function
L(s,)) = fi(s) + 1/2x(sTs — &)

To be optimised with respect to both s and the regularisation term A

We search for a vector s(*) and a scalar A(¥) > 0 satisfying the system
[H + AP1)s®) = —v[x®)]
[H; +AM1] is PSD (33)
5] = =0

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region methods (cont.)

From [Hj + A®I]s*) = —Vf[x(*)], we compute s(*) = s(&) [X(*F)]
We substitute it in [|s®¥)|| — 8, =0
1 1
~)= - - _
D)= mpe

The non-linear equation in A is equivalent to system (33)

e It can be solved using Newton’s method

Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2018.2

Trust-region methods (cont.)

For some given Ag, set g(¥) = Vf[x(®)]

For 1=0,1,... (typically, less than 5 iterations are needed)
Compute sgk) = — [Hk + ,\EMI} *1g(k)
Evaluate ap[)\gk)] = l/||s§k)|| —1/6g
Evaluate ¢’ [)\gk)]

Compute)\Ei)l =)\Ek) - ga/\gk)/go’ [Agk)}

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region methods (cont.)

Vector s{*) is obtained by Cholesky factorisation of [Hy + A{"1]
o Provided that matrix B(%) = H; +)\EMI is positive definite

o If B() is symmetric (definition of Hy), its eigenvalues are all real

Usually, a regularised matrix ng) + B is used instead of B(¥)

o 3 should be larger than the negative eigenvalue of B(*) of largest
modulus

Unconstrained
optimisation

UFC/DC
CKO0031/CK0248
2018.2

Trust-region methods (cont.)

Cholesky factorisation
Let A € R"X™ be a symmetric and positive definite matriz
A=R"R

R is upper triangular with positive elements on the diagonal

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust region methods (cont.)

For glb) = Vs [x(k)] and for some given dj

Solve Hys = —g(®) (means s = —H;lg(k))

If | |SH < & and Hy, is positive definite
Set s(k) =5
else
Let B1 be the negative eigenvalue of Hy, with largest modulus
Set A = 2|1
Forl=0,1,...
Compute R : RTR = H;, + /\gk)l
Solve RTRs =g(®), RTq=s

k k

Update)\§+)1 =)\E) 4 (I1sl1/1lall)
Set s(k) =g

endif

2 |Is[| — o
Ok

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region

Trust-region methods (cont.)

For a fast convergence, a good radius dy, is truly fundamental

The criterion for accepting a solution s(*) is based on a comparison

e The variation of f and that of its quadratic approximation fk

As x®) moves to x(®) + s(*)

FIx® +s0)] — £[x®)]
Fe[s®] — fu(0)

Pk =
If Pk~ 1
o s(%) is accepted, the ball is enlarged if the minimum is on the boundary

If pp =0or pp, <0

o s(*) is not accepted and the ball is diminished

Trust-region methods (cont.)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Let x(©) be an initial solution
Let the initial radius of the ball be &y € (0,8) with maximum radius 6 > 0

Let {7]1,7)2, Y, 'yg} be the four real parameters for updating the ball
e 0<m<n<1
e 0< 11 <1<y

Let 0 < p < m1 be the real parameter for accepting a solution

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region methods (cont.)

Then, for £ =0,1,... until convergence

Compute f[x““)} , Vf [x(k)} and Hy,

Solve min fu(s
SER™:|[s|[2<5y, (®)

Compute py,

If pr > p

Set x(@+1) = x(k) 4 g(k)
else

Set x(k+1) = x (k)
endif

If pp <m
Set 0p+1 = 710k
elseif 1 < pp < m2
Set §k41 = Ok
elseif pr > n2 and ||s(F)|| = 6y,
Set dp+1 = min{'yg6k,5}
endif

Trust-region methods (cont.)

Unconstrained
optimisation
UFC/DC
CKO0031/CK0248
2018.2
Choice of parameters
~ o =1/4
Dt At
op-length o ~ o2 =3/4
Novton et =174
. | w2 =8/4
. o
1 ct
T mreEem e By choosing p = 0, we accept any step yielding a decrease of f

e By choosing 11 > 0, we accept steps for which the variation of f is at
least p times the variation of its quadratic model fj

3J. Nocedal and S. Wrigth (2006): Numerical optimization.

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length ¢
Newton direction

Quasi-Newton

nt and

Trust-region methods (cont.)

%TREGION Trust region optimisation method

%[X,ERR ,ITER]=TREGION (FUN , GRAD_FUN ,X_0 ,DELTA_O,

% TOL ,KMAX ,TYP ,HESS_FUN)

% Approximates the minimiser of FUN with gradient GRAD_FUN
%

% If TYP=1 Hessian is inputed as HESS_FUN

% If TYP NE 1 Hessian is rank-one approximated

)

% FUN and GRAD_FUN (and HESS_FUN) are function handles
% X_0 is the initial point

% TOL is stop check tolerance

% DELTA_O is initial radius of trust ball
% KMAX are maximum number of iterations

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
ep-length
Newton direction

Quasi-Newton

Gradient and

direction

Trust-region

function [x,err,iter]= tRegion (fun, grad_fun ,x_0,delta_O,
tol ,kmax ,typ,hess_fun)

delta = delta_0; err = 1 + tol; k = 0; mu = 0.1; delta_m = 5;
eta_1l = 0.25; eta_2 = 0.75; gamma_1 = 0.25; gamma_2 = 2.00;

xk = x_0(:); gk = grad_fun(xk); eps2 = sqrt(eps);
; Hk=hess_fun(xk); else; Hk=eye(length(xk)); end

while err > tol & k < kmax
[s]l=trust_one (Hk,gk,delta);
rho=(fun (xk+s)-fun(xk))/(s’*gk+1/2xs’*Hk*s) ;
if rho > mu; xkl = xk + s; else; xkl = xk; end
if rho < eta_1; delta = gamma_1lx*delta;
elseif rho > eta_2 & abs(norm(s)-delta) < sqrt (eps)
delta=min ([gamma_2*delta,delta_m]);
end
gkl = grad_fun(xk1l);
err = norm ((gkl.*xkl)/max ([abs (fun(xk1)) ,1]),Inf);
if typ == 1; xk = xk1; gk = gkl; Hk = hess_fun(xk); 7 Newton
else % quasi-Newton
gkl = grad(xk1); yk = gkl-gk; sk=xkl-xk; yks = yk’*sk;

CanssNewton CanseNewton if yks > eps_2#*norm (sk)*norm (yk)
e L Hs = Hk*sk; Hk = Hk+(yk*yk’)/yks-(Hsx*Hs’)/(sk’*Hs);
o - end
xk = xkl1; gk = gkil;

Golden section and Golden section and end

quadratic quadratic k=k+1;

nterpolation nterpolatior ol

Nelder and Mead Nelder and Meac

x = xk; iter = k;
if (k==kmax & err>tol); disp(’Accuracy not met [KMAX]’); end

Unconstrainea LTUSt-region methods (cont.) Unconstraimea LTUSt-region methods (cont.)

optimisation optimisation

UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
maxiter=5;

S e Bt iastiions Approximate the minimiser of function

— : s = -Hk\gk; d = eigs(Hk,1,’sa’); % 1st smallest algebraic evalue s

Step-length ep-length

ewton direction ewton direction — 522 — 522
Sovtond if norm(s) > delta | d<0 N e 1+ 232 + 22122 — 521 — 535
Quasi-Newton @rerNerEn flz,22) =7/5+

Gradient and

Trust-region

Golden section and
quadratic

nterpolation

Nelder and Mead

lambda = abs (2*d); I = eye(size (Hk));
for l=1:maxiter
R = chol (lambdaxI+Hk) ;
s = -R\(R’\gk); q = R’\s;
lambda = lambda+(s’*s)/(q’*q)*(norm(s)-delta)/delta;
if lambda < -d
lambda = abs (2*lambda);
end
end
end

Gradient and
onjugate-gradient
direction

Trust-region

Gauss-Newton

Marquardt

Golden section and
quadratic

Nelder and Meac

[5 exp (z2 + zQQ)}
Use the trust-region method
A local maximum, a saddle point and two local minima

e The local minima are near (—1.0,+40.2) and (40.3,—0.9)

e The second minimum is the global one

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length a
Newton direction
Quasi-Newton
directions

Gradient and

conjugate-gradient

directions

Trust-region

Gauss-Newton

Levent

Marquardt

Golden section and
quadratic
interpolation

1

Trust region methods (cont.)

fun = @(x) (x(1)+2*x(2)+2xx (1) *x(2) -5*x (1) "2-5%xx(2) "2) /
(5*exp (x(1) "2+x(2)"2)) + 7.5;

grad_fun = @(x) [(1 + 2*x(2)-10*x (1) -2*x (1) *(x (1) +2*x(2) +
2xx (1) *x(2) -5*%x (1) "2-5xx(2) "2)) /
(Bxexp (x(1) "2+x (2)°2));
(2 + 2*%x(1) -10*%x(2) -2%x (2) *(x (1) +2*xx (2) +
2%x (1) *x(2) -5%x (1) "2-5%x(2) "2)) /
(5*exp (x(1) "2+x(2)"2))1;

delta_0 = 0.5; x_0 = [0.0;0.5];
tol le-5; kmax = 100; imax=5;

typ = 2;

[x,er,it]=tRegion (fun,grad_fun ,x_0,delta_0,tol,kmax,typ,imax)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Step-length a;

Newton directions
Quasi-Newton
directions

Trust-region

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic
interpolation

Trust-region methods (cont.)

Trust-region, approximated Hesse matrix
~ 24 iterations, x* &~ (40.28, —0.90)

Nelder and Mead Nelder and Mead

Unconstraimea Lrust-region methods (cont.) Unconstramea Lrust region methods (cont.)
optimisation optimisation

UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
e et Mo B e |
~~ 12 iterations
Rosenbrock’s function
F(x) = 100(z2 — 27)* + (1 — 21)?

Descent directions Descent directions

Step-length o Step-length

Newton direction Newton directions

i SLUTT 0 fun = 000 (-x(1)) 7241004 (x(2) -2 (1) °2) °2;

Gradient

conjugate-gradient

directi

Trust-region

Gauss-Newton

Levent

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Trust-region

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

grad_fun = @(x) [-400*(x(2)-x(1)"2)*x (1) -2*x(1-x(1));
200%(x(2)-x(1)"2)1;

x_0=[+1.2;-1.0];

optimset (’LargeScale’,’on’); % Trust-region
optimset (’GradObj’,’on’); % Gradient

options
options

[x,fval,exitflag ,output]=fminunc ({fun,grad_fun},x_0,options)
Trust-region (Matlab)
~ 8 iterations, 9 function evaluations

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region methods (cont.)

The M-command fminunc in Octave implements the trust region method
o With approximated Hessians Hy, computed with BFGS
y(k)y(k)T Hks(k)s(MTHg

Hy, =H -
1= THT® T s Hs®

The option ’LargeScale’ is not used

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Nonlinear
least-squares
Gauss-Newton

Levenberg.
Marquardt

Golden section

quadratic
nterpola

Nelder and Meac

Non-linear least-squares

Numerical optimisation

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Nonlinear
least-squares

Gauss-Newton

Non-linear least-squares

The least-squares method is often used for approximating either func-
tions f(z) or sets of data {(zx,yx),k =0,..., K} by some function f

e Often f depends linearly on a set of coefficients {a] Jg=1,..., m}

fel{a}0) = a0 + a1z + a22® + -+ + ama™

The coefficients {a; };io are unknown

They must be determined from data
{(zx, y), k=0,...,K}

K

Z[yk—

k=0

s min
{aj,5=1,...,m}

s 2

f(@el{a;}) }

———
a0+a1$k+a2ff+~-+ar,nz,1’”

This problem is called a least-squares problem

The problem becomes nonlinear when f non-linearly depends on {aj}

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Nonlinear
least-squares
Gauss-Newtor

Levenberg.
Marquardt

Golden section

quadratic
nterpolatior

Nelder and Meac

Non-linear least-squares (cont.)

Let R(x) = [r1(x),...,mn(x)] T with r; : R™ — R be some smooth function

We want to find

1E 1
i, 100, with 1) = 53 i) = 5IIRGI” (34)

We assume that n > m

If functions r;(x) are non-linear, then function f(x) may not be convex

~» Thus, f(x) may have multiple stationary points

‘We can use Newton, descent directions and trust-region methods

Non-linear least-squares (cont.)

Non-linear least-squares (cont.)

Unconstrained Unconstrained
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
) . The derivatives of f(x) can be expressed in terms of the Jacobian of R
Consider the special form of f . . .
S S ~ Partial derivatives of r;(x) with respect to z;
Step-length a We have assembled the components r;(x) into a residual vector Step-length o
Newton direction n [87'1 ort a'r'l]
e T R em - — -
f\gu Mw\m R(x) — [7'1 (x)> ey (x)] f{mmw o 02 OTm T
Vri(x)
Gradier ora Org ory T
Because of this, we compactly rewrote the objective function Ghrontions b or; [37 9 B] Vra(x)
JR(x) = [] = 1 2 Tm = .
1 Ox; =L
2 i=1,...,m :) :
Nonlinear x) = —||R(x Nonlinear . . . T
least-squares f() 2|| ()H least-squares [8Tn Orn 6Tn] Vi (x)
Gauss-Newton Gauss-Newton -~ -~ st
R R LLOz1 Oz Om A |
Marquardt Marquardt
Golden section and Golden section and
quadratic qu tic
interpolation interpolatior
Nelder and Mead Nelder and Meac
Unconstrained Non-linear least-squares (cont.) Unconstrained Non-linear least-squares (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
Gradient and Hessian of the cost function can be compactly written
n . .
Calculation of the Hesse matrix can be heavy when m and n are large
T
VIx) = 3 n(x)Vri(x) = Jr(x) TR(x) S e _
Stiomelngin @ i=1 . e This is mostly due to matrix S(x)
Newton direction n (35) Newton dicactian
uasi-Newton Juasi-Newton i i T
Quasi-N V2f(x) = Jr(x) TIr (%) + Z ri(x)Vri(x) = Jr(x) TIr (%) + S(x) S In some cases, S(x) is less influent than Jg(x)? Jgr(x)
i=1 e ~» It could be approximated or neglected
G ~ It simplifies the construction of H(x)
et ~» The second derivatives of R cannot be calculated from the Jacobian e

least-squares
Gauss-Newton

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

n

&y .
Sx)=>_ m(x)n(x), for ,j=1,...,m
i=1

least-squares
Gauss-Newton

Marquardt

ection and

Nelder and Meac

We discuss two methods devoted to handling such cases

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-lengtl

Newton direction

Quasi-Newtor

Gauss-Newton

Gauss-Newton method

Nonlinear least-squares

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gauss-Newton

Levenberg:
Marquardt

The Gauss-Newton method

The Gauss-Newton method is a variant of the Newton method

Given x(0) ¢ R™, for k = 0,1,... until convergence

Solve H[x(k)]ﬁx(k> =-Vf [x(k)}
Set x(k+1) = x (k) 4 §x(k)

The Hessian H(x) is approximated by neglecting S(x)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Newton direction

Quasi-Newtor

Gauss-Newton

The Gauss-Newton method (cont.)

Given x(9 € R™ and for k = 0,1,... until the convergence

Solve {Jg (x*)TIg [xM]}ox*) = —Jg [x(F)] TR[x<k)]

Set x(F+1) = x(k) 4 §x(*)

The system in the first equation may have infinitely many solutions

If Jrp [x(m} is not full rank
~~ Stagnation
~+ Non-convergence

~+ Convergence to a non-stationary point

IfJr [x(m} is full rank, the linear system has form ATAx* = ATb
e It can be solved by using QR or SVD factorisations of Jg (x)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gauss-Newton

Levenberg
Marquardt

The Gauss-Newton method (cont.)

function [x,err,iter]=nllsGauNewtn(r,jr,x_0,tol,kmax,varargin)
%NLLSGAUNEW Nonlinear least-squares with Gauss-Newton method

% [X,ERR,ITER]=NLLSGAUNEW(R,JR,X_0,TOL ,KMAX)

% R and JR: Function handles for objective R and its
% X_0 is the initial solution

% TOL is the stop check tolerance

% KMAX is the max number of iterations

err = 1 + tol; k = 0;
xk = x_0(:);

rk = r(xk,varargin{:}); jrk = jr(xk,varargin{:});

while err > tol & k < kmax
[Q,R] = qr(jrk,0); dk = -R\(Q’*rk);
xkl = xk + dk;
rkl = r(xkl,varargin{:});
jrkl = jr(xkl,varargin{:});

k = 1 + k; err = norm(xkl - xk);
xk = xk1; rk = rkil; jrk = jrkil;
end

x = xk; iter = k;

if (k==kmax & err > tol)

Jacobian

disp (’nllsGauNewtn stopped w\o reaching accuracy [KMAX]’);

end

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gauss-Newton

The Gauss-Newton method (cont.)

Neglecting S(x(*)) at step k amounts to approximating R(x)

The first-order Taylor expansion of R(x) at x*

Ry(x) = R[x(k>] +Jr [x(w} [x— x(k>] (36)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

The Gauss-Newton method (cont.)

Convergence of the method is not always guaranteed

e It depends on f and initial solution

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gauss-Newton

The Gauss-Newton method (cont.)

Let x* be a stationary point for f(x)
Let Jr(x) be full rank in a suitable neighbourhood of x*
Then,

If S(x*) = 0 (if R(x) is linear or R(x*) = 0)
©® The Gauss-Newton method is locally quadratically convergent

® It coincides with the Newton’s method

If ||S(x*)||2 is small compared to the smallest positive eigenvalue of
Jr(x")TIr(x")
® (e.g., when R(x) is mildly non-linear or its residual R(x*) is small)
® Gauss-Newton converges linearly
If ||S(x)||2 is large compared to the smallest positive eigenvalue of
Jr(x")TIR(x")

® Gauss-Newton may not converge, even if x(?) is very close to x*

® (e.g., when R(x) is strongly non-linear or its residual R(x*) is large)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

The Gauss-Newton method (cont.)

Line-search can be used in combination with Gauss-Newton
o Replace x(*t1) = x(7) 4 §x(*) with x(*+1) = x(*) 4 o 5x ()

e Computation of step-lengths oy, is as per usual

If Jr (x(®) is full rank, matrix Jg (x(®))T Jg (x(*)) is symmetric and PD

o 0x(%) is a descent direction for f(x)

Under suitable assumptions on f(x), we get the globally convergent method

~» Damped Gauss-Newton method

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o
Newton direction

Quasi-Newton

Grad

Gauss-Newton

Levenber

The Gauss-Newton method (cont.)

Compress an audio signal to a set of parameters

25 T T T T T T T T T

0.5

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
tep-length o
Newton direction

Quasi-Newton

directions

Gradient and
conjugate-gradient
direction

Gauss-Newton

The Gauss-Newton method (cont.)

08f

Heme . : : : : : : : : : ST Each peak or component is characterised by two coefficients
0 1 2 3 4 5 6 7 8 9 10
Golden section and Golden section and e The Centre’ af;
nterpotation The signal intensity is modelled as a sum of m Gaussian functions R e The (square of the) spread, Uz
Nelder and Mead 1 (t _ ﬂk)2 Nelder and Meac m
fi(tlag, on) = exp[—]a t € lto,tr],k=1,...,m e a=f[a, -, al
202 tla,o) = t; ag, o)
famo? o2 f(tla, o) I;fk(7 k) Ok) « o =[on, - 0u)
Unconstrained The Gauss-Newton method (cont.) Unconstrained The Gauss-Newton method (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
Generate n = 2000 time-intensity pairs (;, y;)j—; with ¢; € (0,10)
~~ The sum of 5 Gaussian components
1 (t—a)?
S filtlan, o3) = ——exp [~ = 5]
—— Find a and o that minimise the residual sum of squares — QTFU% Tk
Newton direction Newton direction.
Quasi-Newton Quasi-Newton e Plus some little random noise

Gradient and
conjugate-gradient

Gauss-Newton

Levenber

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

n
2
min Zl [f(ti\& o) — y]
1=

From recorded audio intensities y; at sampling times ¢;

directions

Gradient and
conjugate-gradient
direction

Gauss-Newton

Marquardt

Golden section and
quadratic

Nelder and Meac

a = [2.3, 3.2, 4.8, 5.3, 6.6]; m = length(a);
sigma = [0.2, 0.3, 0.5, 0.2, 0.4];

gComp = @(t,a,sigma) exp(-((t-a)/(sigma*sqrt(2)))."2)/
(sigma*sqrt (pi*2));

n = 2000; t = linspace(0,10,n)’; y = zeros(n,1);
for k=1:m

y =y + gComp (t,a(k),sigma(k));

end

y =y + 0.05%randn(n,1); % Little additive noise

The Gauss-Newton method (cont.)

The Gauss-Newton method (cont.)

Unconstrained Unconstrained
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
2018.2 2018.2
Solve the nonlinear least-squares problem of form
Gauss-Newton
. . 1 2 1 - 2 . .
min ®(x), with &(x)= 7‘ |R(x)H = _ E r2(x) M-command nllsGaulewtn (22 iterations)
Descent direction xER™M 2 2 4 g Descent directions
Step-length « i=1 Step-length a
Newton direction m Newton directions I x0 = [2.0,3.0,4.0,5.0,6.0,0.3,0.3,0.6,0.3,0.3];
Quasi-Newton 7‘i(x) = f(tllay 0’) —Yi = Zk:l fk(tz|ak7 Uk) — Y Quasi-Newton 2
direction directions ; tol = 3.0e-5;
Grad Gradient and | kmax = 200;
conju conjugate-gradient -
o e ‘We also have, ke e
6 [x,err,iter]=nllsGauNew (@gmR,@gmJR,x_0,tol ,kmax,t,y)
87‘1',7 ti — ag 5 x_a = x(1:m);
8ak*fk(ti‘akzak) M: x_sigma = x(m+1l:end);
Gauss-Newton 9 Gauss-Newton . i
Levenberg- 6Ti (tl - (lk) 1 Levenberg- 11 L/(szlgma*sqrt (2¢pi));
Marquardt :fk(ti\ak,ak) —=3 T 5 Marquardt 12w = 2%x_sigmax*sqrt (log(4));
doy, o 20},
k
Golden section and Golden section and
quadratic quadratic
interpolation interpolation
Nelder and Mead Nelder and Meac
Unconstramea The Gauss-Newton method (cont.) Unconstrained
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
2018.2 I function [R]=gmR(x,t,y) 2018.2
3 x = x(:); m = round (0.5*%length(x));
a = x(1:m); sigma = x(m+1: end);
gauFun = Q@(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2)))."2)
7 /(sigma*sqrt (pi*2))];
Descent direction S Descent directions
Step-length 9 n = length(t); R = zeros(n,1); Step-length o
Newton dircctions 10 for k = lim; R = R + gauFun(t,a(k),signa(k)); end Nexiion Qs L b M dt
e R = Ry evenberg-iviarquar
e dre Nonlinear least-squares
conjugate. gradient | function [Jrl=gmJR(x,t,y) conjugnte-gradiont

directions

Gauss-Newton
Levenberg-

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

x = x(:); m = round (0.5*%length(x));
a = x(1:m); sigma = x(m+1: end);

gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2)))."2)
/(sigma*sqrt (pix*2))];

n = length(t); JR = zeros(mn,2*m); fk = zeros(n,m);

for k = 1:m; fk(:,k) = gauFun(t,a(k),sigma(k)); end

for k = 1:m; JR(:,k) = (fk(:,k).*(t-a(k))/sigma(k)"2)’; end
for k = 1:m

JR(C:,k+m) = (fk(:,k).*((t-a(k))."2/(k)"3-1/(2xsigma(k))))’;
end

directions

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic

interpolation

Nelder and Meac

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gauss-Newton

Levenberg-
Marquardt

Levenberg-Marquardt

Levenberg-Marquardt is a trust-region method

min 700, with £() = J[RG0)|* = %; r2(x)

We can use the general trust-region formulation

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gauss-Newton

Levenberg-

Levenberg-Marquardt (cont.)

Compute f[x““)}, Vf [x(k)} and Hy,

Solve min_ fi(s
e, e (5)

Compute py,
If pr > 1

Set x(z+1) — x(k) 4 g(k)
else

Set x(k+1) = x(k)
endif

If pr <m
Set 6g+1 = 716k

Marquardt elseif m < pr < n2
Set 641 = 0
: Colden elseif pr, > n2 and ||s()]| = Ok
. SO LY Set 0;+1 = min{y28x,d}
N 1 T Nelder and Meac .
endif

Uneonstrained Levenberg-Marquardt (cont.) Unconstrained Levenberg-Marquardt (cont.)
optimisation optimisation

UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248

2018.2 2018.2

Gauss-Newton

Levenberg-
Marquardt

At each step k, we solve

Je(s), with Ju(s) = | R[] + 3m [xV]s]?

min
sER™:[[s[| <y

fi(x) is a quadratic approximation of f(x) about x(¥)

~» By approximating R(x) with its linear model

Ry (x) = R[x(k)} + JR[x(k)} [x— x(k)}

(37)

Gauss-Newtor

Levenberg-
Marquardt

Golden section

quadratic
nterpolatior

Nelder and Meac

Often Jg (x) is not full rank, yet the method is well-posed

The method is suited for minimisation problems with strong non-linearities
or large residuals f(x*) = 1/2||R(x*))||? about the local minimiser x*

Hessian approximations are those of the Gauss-Newton method
The two methods share the same local convergence properties

Convergence rates when Levenberg-Marquardt iterations do converge

e Convergence rate is quadratic, if residual is small at local minimiser

e Convergence rate is linear, otherwise

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisatio

Newton method

Line-search
Descent directions
Step-length o
Newton directions
Quasi-Newton
directions

Gr:
conjugate-gradient
directions

ient and

Trust-region
Nonlinear

least-square
Gauss-Newton

Levenberg

Marquardt

Derivative-free

Golden section and
quadratic

interpolation

Nelder and Mead

Derivative-free methods

Unconstrained optimisation

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Newton method

Line-search
Descent directions
Step-length o
Newton directions
Quasi-Newton
directions
Gradient and
conjuga
directions

gradient

Trust-region
Nonlinea
least-square
Gauss-Newton
Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Derivative-free methods

‘We describe two simple numerical methods
e Minimisation of univariate real-valued functions
e Minimisation of multivariate real-valued functions

e (along a single direction)

We then describe the Nelder and Mead method

e Minimisation of functions of several variables

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisatio

Newton method

Line-search
Descent directions
Step-length o
Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Trust-region
Nonlinear
least-square
Gauss-Newton
Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section
and
quadratic interpolation

Derivative-free methods

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Newton method

Line-search
Descent directions
Step-length o
Newton directions

Quasi-Newton
directions

Gradient and
conjugate-gradient
directions

Trust-region
Nonlinea
least-square
Gauss-Newton
Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation

Let f : (a,b) = R be a continuous function with unique minimiser

z* € (a,b)

Set Ip = (a, b), for k > 0 generate a sequence of intervals Ij
I = (@®,59)

The intervals I are of decreasing length and each contains z*

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

For any given k, the next interval I;1; can be determined

1) Let C(k), d®) e I}, with c®) < d*) be two points such that

pk) _ g(k) q(k) _ o(k)
AR — g pm) — g ¥
pk) — o (k) p(k) _ (k)
bR — ()) — gtk ¥
1 5
Let ¢ be the golden ratio ¢ = +v5 ~ 1.628

(38a)

(38b)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic
interpolation

Nelder and Meac

Golden section and quadratic interpolation (cont.)

2) Using Equation 38a and 38b, we find point ¢®) and point d*)
®) — o®) 4 L) _ ok 39
¢\ =a" + E(—a'") (39a)

d®) = o® 4 L _ g0 (39b)
@

They are symmetrically placed about the mid-point of Ij

a1+ p(*)

*®) 4 p(k)
LA (S ST - (40)
2

2

Replace ¢(®) and d(®) in Equation (40)

b(k) — g(k)

Divide by the common factor 5
%)

Get the identity
P —p-1=0

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

QD) (o)

Ly

The generic iteration of the golden-section method

L

e ¢ is the golden ratio, while Lj = ¢(F) — (%)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic
interpolation

Nelder and Meac

Golden section and quadratic interpolation (cont.)

Set a(® = g and b(® = b, the golden section method formulates as

For k=0,1,... until convergence
Compute ¢®) and d*) through Equation (39)

If £(e®) > £(d®)

set Iyy1 = (B0 plh+1)) = (c(B) p(R))
else

set Ipq = (alFHD) p(+1D)y = (k) q(k))
endif

It follows that
s I Dyyq = (C(k), b(’“)), then c(Ft1) — g(k)
N (a(®), d®) then dF+1) = ()

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length o
Newton directions

Quasi-Newton

directions

Gradient and

conjugate-gradient

directions

Gauss-Newton

Levenberg-
Marquardt

Golden section and

Golden section and quadratic interpolation (cont.)

We need to set a stopping criterion

When the normalised size of the k-th interval is smaller than a tolerance &
p(k+1) _ o (k+1)
[cGH+D] + ‘d(k+1_)‘ <e (41)
The mid-point of the last interval I can be taken as solution

e This is an approximation of the minimiser x*

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length a;
Newton directions

Quasi-Newton
directions

Gradient and
radient

conjuga
directions

Gauss-Newton

Levenbe
Marquardt

Golden section and

Golden section and quadratic interpolation (cont.)

By using Equation (38a) and (38b), yields the expression
b0+ _ (D) = L) _ g 22 L0) (a9
k1
@ Pkt

The golden-section method converges linearly with rate

o 1 ~0618

quadratic quadratic
interpolation interpolation
Nelder and Mead Nelder and Mead
R Unconstrainea Olden section and quadratic interpolation (cont.)
optimisation optimisation
I function [xmin,fmin,iter]=gSection(fun,a,b,tol,kmax,varargin)
CKO%;C/CDISOMS > %GSECTION finds the minimum of a function cxo%gf/cDch)us
201/8 5 % XMIN=GSECTION (FUN,A,B,TOL,KMAX) approximates a min point of 201/8 5
% function FUN in [A,B] by using the golden section method
5 % If the search fails, an error message is returned
6 % FUN can be i) an inline function, ii) an anonymous function
7 % or iii) a function defined in a M-file
& % XMIN=GSECTION (FUN,A,B,TOL,KMAX,P1,P2,...) passes parameters
9 % Pi, P2,... to function FUN(X,P1,P2,...) e fun is either an anonymous or an inline function for function f
10 % [XMIN,FMIN,ITER]= GSECTION (FUN,...) returns the value of FUN . .
Descent directions 11 % at XMIN and number of iterations ITER done to find XMIN Descent directions e a and b are endpoints of the search interval
Step-length o 12 Step-length a; .
Newton directions 13 phi = (1+sqrt(5))/2; Newton directions e tol is the tolerance &
Quasi-Newton 1 iphi (1) = inv(phi); iphi(2) = inv (1+phi); Quasi-Newton °
S S 15 = iphi(2)%(b-a) + a; d = iphi (1) %(b-a) + a; Sl kmax is the maximum allowed number of iterations
Gradient and 16 err = 1+tol; k = 0; Gradient and
conjugate-gradient _ ’ ’ conjugate-gradient
directions L7 directions
18 while err > tol & k < kmax
19 if (fun(c) >= fun(d)) e xmin contains the value of the minimiser
20 a = c; ¢ =d; d = iphi(1)*(b-a) + a;
21 else e fmin is the minimum value of f in (a, b)
Gauss-Newton 22 b =d; d = c; c = iphi(2)*(b-a) + a; Gauss-Newton
et 23 end . e iter is the number of iterations carried out by the algorithm
Marquardt 2 k = 1 + k; err = abs(b-a)/(abs(c)+abs(d)); Marquardt
25 end
26
Golden section and 57 ynin = 0.5%(a+b); fmin = fun(xmin); iter = k; Golden section and
quadratic “' B . . 0 o 0 quadratic
interpolation 8 if (iter == kmax & err > tol) interpolation
Nelder and Mead) fprintf (’The method stopped after reaching the maximum number B el INeed]

of iterations , and without meeting the tolerance’);
end

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Newton direction

Quasi-Newton

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

Evolution of an isolated culture of 250 bacteria (Verhulst model)

2500

T 0e /3" for t >0

f(t) =

t denotes time (in days)

Find after how many days population growth rate is maximum

~» Where (when?) does function g(¢) = —f’(t) has its minimum

exp (t/3)

=-7500 —MmMm—————
9(t) [exp(t/3)+9]2

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic
interpolation

Nelder and Meac

Golden section and quadratic interpolation (cont.)

Function ¢(t) admits a global minimiser in [6, 7]

g = @(t) [-(7500%exp(t/3)) / (exp(t/3)+9)"2];

a=0; b = 10;
tol = 1.0e-8; kmax = 100;

[tmin gmin,iter]= gSection(g,a,b,tol,kmax);

Golden section: 38 iterations, t* ~ 6.59 and g(t*) ~ —208

t*
o ‘ 0.4
0.3
<-100 :
=" (50.2
-200 0.1 [
o(t) [
0 5 10 0 1 20 30
t N. of iterations [k]

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o
Newton direction

Quasi-Newton

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

The quadratic interpolation method is often used as alternative
e Let f be a continuous and convex function

e Let 2(0, () and z(? be three distinct points

We build a sequence of points z(*) with k& > 3 such that

e z(F+1) i the vertex (and thus the minimiser) of the parabola pék)

° pém interpolates f at (node points) z(*®), z(*=1) and z(+~2)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gauss-Newton

Levenberg:
Marquardt

Golden section and
quadratic
interpolation

Nelder and Meac

Golden section and quadratic interpolation (cont.)

For k > 2, the order-2 Lagrange polynomial at such nodes
288 (z) =f[a*=D]+
f[gg(k*Z)7 m(kfl)] [z — x(k*Z)]Jr
f[gc(k—?)7 =1 x(k‘)] [:c _ x(k—2)] [x _ x(k—l)]

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic
interpolation

Nelder anc

Golden section and quadratic interpolation (cont.)

i (@) =f [+ D]+
Fe, 2] [z — D] 1
a2 g1 0] [= 4= [— =D)]

In the order-2 Lagrange polynomial péb for k > 2, consider the quantities

flaj, @] = floi,]

Ty — Iy

(43)

flaiyzg, o] =

The Newton divided differences

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic
interpolation

Nelder and Meac

Golden section and quadratic interpolation (cont.)

Consider n + 1 distinct points

n+1

{[% vi ()] }n

=0
There exists only one polynomial 11, € P, of order n or smaller that in-
terpolates them

Mp(zi) =yi, Vi=0,...,n

I, is said to be the interpolating polynomial of f, if y; = f(z;)

~ (for some continuous function f)

It is denoted by I, f

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic
interpolation

Nelder anc

Golden section and quadratic interpolation (cont.)

Consider the components of the Lagrangian basis associated to nodes {z;}7_

n

r — T
piz) =]I 2, i=0,...,

)
A -
j=0,4#1 7"

3

They are polynomials such that {¢;} is the only basis of Py satisfying

1,ifi=7
0, otherwise

592(1) (S an@i(iﬂj) = 6'ij _ {

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gauss-Newtor

Levenberg.
Marquardt

Golden section and
quadratic
interpolation

Nelder and Meac

Golden section and quadratic interpolation (cont.)

The Lagrange polynomial is the interpolating polynomial 11, ()
n
Mn(z) = Y yivi()
i=0
It is expressed in Lagrange form, or wrt the Lagrange basis

n n
Mo(m) =Y wes(@) =Y ydy =y, i=0,...,n
i=0 i=0

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

By solving the first-order equation p’ék) [z(k‘q)} =0, we get

Fz=2), o k-D)]
Flat=2) 2G=D) (0] }

(D) = %{x““_z) + =D (44)

Next point in the sequence, by setting to zero the derivative of pék) (z)

We iterate until {x(k‘*'l) — xk‘ < g, for some tolerance € > 0

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
tep-length o

on direction.

Gauss-Newton

Marquardt

Golden section and
quadratic
interpolation

Golden section and quadratic interpolation (cont.)

2 -15 -1 -0.5 0 0.5 1 15 2 25 3

The first step of the quadratic interpolation method

Nelder and Meac
Unconstrained Golden section and quadratic interpolation (cont.) Unconstrained Golden section and quadratic interpolation (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
2018.2 2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton

Golden section and
quadratic
interpolation

Nelder and Mead

§) = —7500— 2P/
9(t) [exp(t/S)-i—Q}2

fminbnd combines golden section and parabolic interpolation

g = Q(t) [-(7500*%exp(t/3))/(exp(t/3)+9) "2];
a = 0.0; b= 10.0;
tol = 1.0e-8; kmax = 100;

optionsQ = optimset (’TolX’, 1.0e-8)
[tminQ , gminQ,exitflagQ ,outputQ] = fminbnd(g,a,b,optionsQ);

Descent directions

\ direction
Quasi-Newton
directions
Gradient and
conjugate-gradien
direction

Gauss-Newton

Marquardt

Golden section and
quadratic
interpolation

Nelder and Meac

Quadratic interpolation

8 iterations, t* &~ 6.59 and f(t*) ~ —208

e optimset sets the tolerance value in structure optionsQ
e gminQ contains the evaluation of f at the minimiser tminQ
e exitflagQ indicates the termination state

e outputQ has number of iterations and function evaluations

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation (cont.)

The golden section and the quadratic interpolation method
e They are genuinely one-dimensional techniques
e They can be used to solve multidimensional optimisation problems

e They need be restricted to search along one dimensional directions

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Golden section and
quadratic

Nelder and Mead

Nelder and Mead

Derivative-free methods

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o
Newton direction

Quasi-Newton

Golden section and
quadratic

nterpolation

Nelder and Mead

Nelder and Mead

Let n > 1 and f : R® — R be a continuous function

The n-simplex with n 4+ 1 vertices x; € R"™ for i =0,...,n
n n
S:{yen%":yzz,\ixi7wz‘th,\izo:ZAl=1} (45)
=0 =0

Intrinsic assumption: Linearly independent vectors {(x; — x0)}/'_q

S is a segment in R, it is a triangle in R? and a tetrahedron in R?

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Nelder and Mead

Nelder and Mead (cont.)

The Nelder and Mead method is a derivative-free minimisation method
o It generates a sequence of simplices {S(k)}kzo in R™

The simplices either run after or circumscribe the minimiser x* € R™ of f

The method uses simple operations

© Evaluations of f at the simplices’ vertices

® Geometrical transformations (reflections, expansions, contractions)

Unconstrainea INe€lder and Mead (cont.)

optimisation

UFC/DC
CK0031/CK0248
2018.2
e At the k-th iteration, the ‘worst’ vertex of simplex S(*) is identified
S e x%?? such that f[xgé)} = max f[xfk)]
Step-length 0<i<n 4
Newton direction
Quasi-Newton (k)

e x,, is substituted with a new point at which f takes a smaller value
zeadiont e The new point is got by reflecting/expanding/contracting the simplex

along the line joining xg\fj) and the centroid of the other vertices

. 1 .
8 = Ly o

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions

Nelder and Mead (cont.)

How to generate the initial simplex S(©)

We take a point X € R and a positive real number 7

Then, we set

xgo):i—i-nei, withi=1,...,n

{e;} are the vectors of the standard basis in R™

Levenberg " i=0 (\w\v‘\\n\r“
Marquardt i#M Marquardt
Golden section and Golden section and
quadratic qu tic
interpolation interpolatior
Nelder and Mead Nelder and Mead
Unconstramea Nelder and Mead (cont.) Unconstramea Nelder and Mead (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
The new point is chosen by firstly selecting
k . k
D nt d t D td t Xgn) B Oglilgn f[x,E)]
Step-length o While k£ > 0 and until convergence, select the ‘worst’ vertex of S Step-length a (k) 14 (k) (47)
Newton direction Newton direction Xy = maxf[xi }
ton Juasi-Newton a
atsaction xgg) = max f[xgk)] (46) divections
0<isn Gradiont and and secondly by defining the centroid point
directions et
Then, replace it by a new point to form the new simplex S (k+1) 1 ®)
xk) — = Z x; (48)
" i=o
iEM
C 1 Newton Gauss-Newton

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Marquardt

ection and

Nelder and Mead

This is the centroid of hyperplane H(*) passing through vertices {xi}"_g
iEM

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Nelder and Mead

Nelder and Mead (cont.)

Thirdly, compute reflection x((p of xg\s) with respect to hyperplane H®)
< = (1—a)x® 4+ ozxg\?> (49)

The reflection coefficient a < 0 is typically set to be —1

(k)

Point x4’ lies on the straight line joining points x(®) and x
(k)
M

(k)
M

o It is on the side of X(*) far from x

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Nelder and Mead

Nelder and Mead (cont.)

n = 2, the centroid is midpoint of edge of S(*) opposite to xg\s)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Nelder and Mead

Nelder and Mead (cont.)

We fourthly compare f [x(()k)} with f at the other vertices of the simplex
(k)

o Before accepting x4’ as the new vertex

We also try to move xgk) on the straight line joining X(*) and xs\];)

To set the new simplex $(*+1)

(1) Iff[x((lk)} < f[ng)] (reflection produced a minimum), then

x = 1 =)=® +4xB | with v < —14 (50)

e Then, iff[xgk)} < f[ng)], replace x s by xﬁrm

(k) (k)
M

e Otherwise, x;,” is replaced by x¢

We then proceed by incrementing k& by one

4Typically, y=-2

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Nelder and Mead

Nelder and Mead (cont.)

(2) Iff[ng)] < f[xgo} < f[xfbk)], then xg‘f[) is replaced by xg‘k)

k is incremented by one
(3) Iff[x;(f)] < f[x&k)} < f[x%?], we compute
x() = 1 - g™ + pxi, with g > 0° (51)

o Then, iff[xgg)] > f [xg\f{)} define the vertices §(++1)

1
(1 = C[R®) i) (52)

e Otherwise XS\Z) is replaced by xg

Then, we increment k

5with typically B =1/2

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton
direction

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Nelder and Mead (cont.)

(4) Iff[xgk)J > f[xg\f[)}, we compute
xg = (1-A)x® + px{), with 5> 0 (53)

. Iff[xgc)} > f[x%m define the vertices of §(k+1)

7

D) _ %[i(k) +x®]

(k)

S\Z) with X

e Otherwise we replace x

Then we increment k

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent directions
Step-length o

Ne

on direction

Quasi-Newton
directions
Gradier

direction

Gauss-Newton

Marquardt

Golden section and
qu

erpolatior

Nelder and Mead

Nelder and Mead (cont.)

When the stopping criterion max ||x§k) — xﬁ,’f’”oo < ¢ is met

IR

(k)

~ Xy, is retained as approximation of the minimiser

Convergence is guaranteed in very special cases only

Stagnation may occur, algorithm needs to be restarted
e The algorithm is nevertheless quite robust
e Tt is efficient for small dimensional problems

e Convergence rate depends on initial simplex

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Nelder and Mead (cont.)

The Rosenbrock function

f(@1,22) = 100(z2 — 2)? + (1 — 1)?

The global minimum is at x* = (1,1), and variation around x* is low

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

descent directions
Step-length a
Newton direction,
Quasi-Newton
directions
Gradient and
conjugate-gradient

direction

Gauss-Newton

Marquardt

Nelder and Mead

Nelder and Mead (cont.)

Unconstrainea INe€lder and Mead (cont.)

optimisation

UFC/DC
CKO0031/CK0248
2018.2
The simplex method
The M-command is fminsearch
Descent directions | x_0 = [-1.2,+1.0];
Step-length o 2
Newton direction 3 fun = @(x) (1-x(1))"2 + 100%(x(2)-x(1)"2)"2;
Quasi-Newton
direction: xstar = fminsearch (fun,x_0)

Gradient and

conjugate-gradient

directions | 7 xstar =
% 1.000022021783570 1.000042219751772

To obtain additional information on the minimum value of f

Gauss-Newton

Levenberg- 1

Marquardt 2 [xstar ,fval,exitflag ,output] = fminsearch (fun,x_0)
Golden section and

quadratic []

interpolation

Nelder and Mead

