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Numerical optimisation (cont.)

For some problems, 2 is characterised by explicit conditions

~ Equality constraints
h(x)=0
~» Inequality constraints

h(x) <0

h:R"™ — R™ with m < n indicates some function of x

e h(x) < 0 corresponds to h;(z1, 22, -, 2,) <0, for i =1,..., m
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Let f be a continuous function and let ) be a connected set
A constrained optimisation problem is a non-linear programming problem
Convex programming

~ [ is a convex function and h has convex components

Linear programming

~ f and h are linear

Quadratic programming

~ [ is quadratic and h is linear
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Numerical optimisation (cont.)

Minimisation v maximisation

Computing the maximum of function [ is equivalent to computing the min-
imum of function g = —f

~+ We shall only consider minimisation algorithms

The minimum value of some given objective function is interesting

The point at which such minimum is achieved is more interesting

~ Such point is called minimiser

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Numerical optimisation (cont.)

‘We consider the numerical solutions of optimisation problems

The ideal situation is a function with unique global minimiser

e There are often several (local) minimisers

() = [z, 22)
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Numerical optimisation (cont.)

We are interested in finding either a (good) local or the global minimiser

e This is the simple meaning of minimising an objective function

Point x* is a global minimiser of f
~ af f(x) < f(x), Vx €R™

Point x* is a local minimiser of f

~ if there is a Br(x*) C R"™, a ball centred in x* and radius r > 0, such
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Let [ be differentiable in R™ with first and second derivatives

Let gradient vector of [ at point x € R"™ be the symbol

of (x) af(x)]T
dz1 7 Oy

Vi(x) = [ 3)

Let Hessian matriz of f at point x € R"™ be the symbol

82/ (x)
(9.”57' 61,

H(X) = (h7])?’,]:17 with }L” = (4)

In general, it will be assumed that problem functions are smooth

e Continuous and continuously (Frétchet) differentiable, C*
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For f(x) at any point x there is a vector of first derivatives

scent directions

~ Gradient vector

e — of /01
f\l‘y‘:‘( : \”i” : 8)‘/672
Gradiont and . y = Vf(X) (5)
o of /o,
T
V is the gradient operator {8/81:1 ,0/0x0, - - ,8/8.@,1}
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Unconstrained optimisation (cont.)

Let f(x) be twice-differentiable, C2

There is a matrix of second partial derivatives

~» Hessian matrix

O2f a2f 92f
Ox1011 Ox1 010 o 01107,
9?f d2f d2f
010011 010010 o 01201, =H(x) = VQf(x) (6)
0%f 92%f 92%f
| 0x,0x1 Oz, 010 o 01,01 ] «

The (4, 5)-th element of the Hessian matrix, 92f /(0z;0x;)
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Unconstrained optimisation (cont.)

Rosenbrock’s function

F(x) = 100(z2 — 2?)* + (1 — m1)?

N7

)
*
N
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1
The global minimum is at x* = (1,1), and variation around x* is low
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A test-function for optimisation methods

F(x) = f(z1,32) = 100(z2 — 22)% + (1 — 21)?

o Of /0z1 = —400z1 (22 — 2) — 2(1 — 21)

o Of [0z = 200(z2 — z?)
of )
oz | _ [—400zy (22 — 22) — 2(1 — m1)
v = 57| = [ ) ) )
Oz
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f(x) = f(z1,22) = 100(z2 — 27) + (1 — 21)?

o Of J0x1 = —400z1 (22 — 1712) —2(1 —m)
Of /0y = 200(z2 — xf

0%f/(0110m1) = 120022 — 40072 + 2
02f /(0x10x2) = —40021

9%f /(0x2071) = —40021

0%f /(0x20x2) = 200

o2f o2f
Vi) = | 55 IR

(®)

Ox20x1  Omawad «

_ [1200z7 — 40022 +2 —400z;
- —400z; 200




Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Unconstrained
optimisation

Unconstrained optimisation (cont.)

In general, Vf and V2f will vary with x

At x' = (0,0)7
_ [—4002; (22 — 22) — 2(1 — z1)
Vi) = I 200(z2 — 22) N
_ '—2]
L0 Jx=(0.0)7
2 _ [120022 — 40032 +2 —400z;
Vi) = | —400z; 200
2 o }
10 200}, —(o,0)7
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Unconstrained optimisation (cont.)

The idea of a line is also important

We can define the line as a set of points
x[=[x()] =x'+ad, forall o

x' 1s some fized point along the line
e [t corresponds to o =0
d is the direction of the line
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Unconstrained optimisation (cont.)

Let the fixed point x’ be the point (2, 2), let the direction d be (3, 1)

~» Draw the line x = x’ + ad, for all «
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Unconstrained optimisation (cont.)

We can determine expressions for the derivatives of f along any line x(«)

~~ Based on definitions of line, gradient vector and Hessian matrix

By the chain rule of derivation of scalar-valued function of a vector

d dz;(«) 8

ol X} = Z g b)) = Z dia%{‘ [x(e)] }
=d"v{- [x()]}

The slope of f{ =f [x(u)]} along the line at any point x(«)

d
i _ d'vf=vsTa
do

This is the directional derivative of f with respect to d

e V/ is calculated at x(c)
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Unconstrained optimisation (cont.)

The curvature of f{ =f [x(a)} } along the line at any point x(«)

d?f  d ,df
,_(_

—5 = =d?v(vfTd)=dTv?sd
da?2  da da) (Vf7d) !

This is the second-order directional derivative of f
e Vf and V2f are calculated at x(a)

Let G = V2f, then Gd is a vector

(Gd); = Gyd
j

dTGd is the scalar product of d and Gd
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Unconstrained optimisation (cont.)

Rosenbrock’s function

F(x) = 100(2z — 22)2 + (1 — a1)>

—400z2; (22 — z2) — 2(1 — 561)]
Vf(x) = 1
() [ 200(z; — 22) —o
% _ [120027 — 40022 +2 —400m;
VG = [ —400z1 200

We consider point x’ = (0,0)”

F(x) = 100(zz — 22)% + (1 — m1)>

—400z1 (22 — z2) — 2(1 — xl)]
Vf(x) = 1
f(x) [ 200(z2 — ) .
9 _ [120022 — 400z +2 —400z;
Vi) = [ —400; 200 |
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Unconstrained optimisation (cont.)

The curvature at point x’ = (0,0)7, along the line with direction d = (1,0)”

d’Gd=[1 0] B 280} [(1)] =2

2 o
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Unconstrained optimisation (cont.)

Let f € C2(R™), all first and second derivatives exist and are continuous

Then, H(x) is symmetric for every x € R"

A point x* is called a stationary or critical point for [ if Vf(x*) =0

A point such that Vf(x*) # 0 is called a regular point

A function f over R™ does not necessarily admit a minimiser

e Should this point exist it is not necessarily unique
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Unconstrained optimisation (cont.)

o f(x) = 21 + 3z is unbounded in R?

e f(x)=sin(x1)sin(22) - - -sin (z,) admits an infinite number of minimis-
ers and maximisers in R"™, they are both local and global
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Unconstrained optimisation (cont.)

Function f : Q C R"™ — R is convex in ) if
v flax+(1-a)y] Saf)+1-fF), ¥xyeQ  (9)

for all o € [0,1]

Function f is Lipschitz in Q if
o IfG) = fOIN S Llx—yll, Vx,y €Q (10)

for some constant L > 0
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Unconstrained optimisation (cont.)

Optimality conditions

Let x* € R"™ and r > 0 exzists such that f € C'[B,(x*)]
o If x* is a minimiser for [ (local or global), then Vf(x*) =0
o Also, if f € C?[B,(x*)], H(x") is positive semidefinite (PSD)

Let x* € R™ and r > 0 exists such that f € C?[By(x*)]
o If Vf(x*) =0 and H(x*) is positive definite (PD) for all x € By(x*),
then x* is a local minimiser of f
o Iff € CHR"™) is convex in R™ and Vf(x*) = 0, then x* is a global
mainimiser for f
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Unconstrained optimisation (cont.)

A symmetric real matriz A € R"*" is positive definite (PD) if

Vx € R™ withx #0, ~ x' Ax>0

A symmetric real matriz A € R"*" is positive semidefinite (PSD) if

Vx € R™ withx#0, ~ x Ax>0
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Unconstrained optimisation (cont.)

Most methods for numerical optimisation are of iterative type
e They can be classified into two main categories

Depending on whether they use derivatives of the objective

Derivative-free methods
~ They explore the local behaviour of a cost function

~ Direct comparison between function values

Methods using derivatives

C 188-N ton C U New 1
Levenber Levenbers ~+ They use local information of the objective
SRR s
Golden section and Golden section and
Jjuadrati Juadratic
S S
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Methods based on derivatives are expected faster convergence

It can be shown that given X € dom(f), if Vf(X) exists and it is not null,
then the largest increase of f from X is along the gradient vector

Conversely, the largest decrease is along the opposite direction
Among them, the two most important classes of techniques

~ Trust-region methods

~ Line-search methods

Newton method

Marquardt

Golden section and
quadratic

Nelder and Meac

The Newton method

Numerical optimisation
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The Newton method

Let f : R™ — R with n > 1 be of class C(R")

We know how to compute its first and second order partial derivatives

We apply Newton’s method to solve a system of nonlinear equation

Vf(x)=0
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The Newton method (cont.)

Newton’s method
Consider the problem of finding the zero of some f : [a,b] C R — R

~  Find a € [a, b] such that f(a) =0

We know the equation of the tangent to function f(z) at some point z(®)
y(z)=f [gc(]‘)] + 7 [z“’” [ar - x(]")}
We can solve for some point = = z(F+1) such that y[z(*T1] =0

(k)
S — g _ S

~

Nelde M
All this, for k =0,1,2,... and f'[z(®)] #0
Unconstrained The Newton method (cont.) Unconstrained The Newton method (cont.)
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CKOO,E’&{E;{OMS y(z) = f[a] + f o] [z = 2] CKOO;&{ES;(OMB Consider now a set of nonlinear equations

Newton method

n : f [-’1"<A">}
L) 0 FE]
. ! f! [:1:(1")]

Sequence {w“"')} is the Newton method for finding the zero of function f
~ The method reduces to locally substituting f with its tangent

8

-2

Newton method

flz,z2,...,20) =0
folz,z2,...,2,) =0

,fll,(vT/'lv'TZv-- -7-75”) =0

We re-write the system in vector form
o Let f=(fi,....fn)7
e Let x = (;L'l,...,(L‘n)T
~ f(x)=0

We want solve the system of nonlinear equation

~ We can extend Newton’s method

Replace first derivative of function f with Jacobian J¢ of function f

7]
> (Je)y = d

dTI’ with i,5 =1,...,n
z;
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The Newton method (cont.)

Consider the general system of nonlinear equations f(x) = 0

fiz, ... xn) =0

yeey@n) =0

fn(Il,...,J?,,.“,xn):0

The corresponding Jacobian matrix

oo
1o oz,
Of> Ofa

Jf(x) = 6_TZ o Oy

8/" v af n
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The Newton method (cont.)

Given this notation, we define the multivariable Newton’s method!

Let x(9) € R™ be an initial solution
For k=0,1,..., until convergence

Solve  J¢ [x“)}(ix(k) = —f[x®]
Set  xFHD — x(B) 4 55 (k)

At each iteration, a linear system with matrix Jg¢ [x(“} must be solved

interpolation interpolatior
Nelder and Mead amz 6'7:”'- Nelder and Meac
Lp(htl) = (k) _ f[;z:“‘j}/// [‘LU‘)}, (\'E“ =g+ _ 5B 'z (/‘>]o',§,/'> = —/[‘LU‘)]
Unconstraimea L€ Newton method (cont.) Unconstrainea e Newton method (cont.)
optimisation optimisation

UFC/DC UFC/DC

CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2

Newton method

descent direction

Step-length o

Newton direction

Quasi-Newton

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

function [x,res,iter] = sNWT(F_fun,J_fun,x_0,tol,imx)

% [ROOT ,RES ,ITER]=SNWT (F_FUN,J_FUN,X_0,TOL,IMX) Calculate vector ROOT,
% the zero of a nonlinear system defined in F_FUN with Jacobian J_FUN,
% from initial point X_0O

%

% RES is residual in ROOT and ITER is number of iterations

% F_FUN e J_FUN are external functions (as M-files)

iter=0; x=x_0; err=1+tol;

while err >= tol & iter < imx

J = J_fun(x);

F = F_fun(x);

deltax = -J\F;

x = x + deltax;

err = norm(deltax); iter = 1l+iter;
end

res = norm(F_fun(x));

%(Matlab/0Octave backslash operator)

if (iter==imx & err > tol)
disp (’ [Out by KMAX]’);
else

disp (’ [Out by TOL]’));
end

return
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function J = J_fun(x)

J(1,1) = dF_1 / dx_1; % Add your own expression
J(1,2) = dF_1 / dx_2; % Add your own expression
J(2,1) = dF_2 / dx_1; % Add your own expression
J(2,2) = dF_2 / dx_2; % Add your own expression
J(N,1) = dF_N / dx_1; % Add your own expression

J(N,2) = dF_N / dx_2; % Add your own expression
return

function F = F_fun (x)

F(1,1) = F_1(x_1,x.2,...); % Add your own expression

F(2,1) = F_2(x_1,x.2,...); % Add your own expression

F(N,1) = F_N(x_1,x_2,...); % Add your own expression
return
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Consider the nonlinear system of equations
2 2
= i 4 D = f@, @) =af 25 =1
Newton method Sz, 22) = i ta=1 Newton method £l ) . (71' )+ 3_0
s 2(z1, 22) = sin (=z1 x5 =
o fg(zl,zg):sm(gm)—kzgzo ‘ J ’ 2 2
Step-lengtl p-lengtl
Newton direction Newton directior function F=F_fun (x)
e hps = 0.5+p1;
( - o ‘ F(1,1) = x(1)°2 + x(2)°2 = 1;
contu lient a8 e F(2,1) = sin(pih*x(1)) + x(2)°3 = 0;
lirecti - lirection return
g 5
=
Il function J=J_fun (x)
Gauss-Newton ’x\ . x Gauss-Ne hpi = 0.5%pi;
B 5 S J(1,1) = 2%x(1);
Eoe N 0 Marquardt J(1,2) = 2*xx(2);
2_9 oo J(2,1) = hpi*cos (hpi*x(1));
T J(2,2) = 3*x(2)"2;
‘r““"\y«l‘« ) CEE o (“‘ ‘il““w fonand return
E—— Er——
N le T 1 1 Nelder T M
The system has two solutions
o ~ (0.47,—0.88) and ~ (—0.47,0.88)
Unconstrained The Newton method (cont.) Unconstrained The Newton method (cont.)
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f(x) =Vf(x)=0
~+ The Jacobian J¢ [x“")} of the system is the Hessian matrix H(x) of f
Newton method Newton method .. . . k)
Suppose we start the solution from point x(0) = (1, 1)T ~ As computed at the generic iteration point x(k)
Descent direction De ent directions
Step-length o Let € = 0.00001 be the user-defined tolerance ep-lengtl
Newton direction Ne on direction
direction x_0=[1;1]; % Initial solution alisiions 1 (0) n = L
. olfloess 7 Mellermes o Given x\Y) € R™, for k =0,1,..., until convergence
= “u" radient imx=20; % Iteration :\“H‘(H‘ “M e . . .
Solve H[x( >] ox(F) = —Vf[x( ’]
[x,res,iter] = sNWT(QF_fun,@J_fun,x_0,tol,imx); N—— N —
3¢ [x®)] £[x®) (11)
:‘ . ‘\ | ? ‘\(u Set xFTD = x(B) 4 gx (k)
T Yerol
e e ———— T R —— We can define a suitable stopping test/criterion
e v
ntery tion nterpol '
Neld r lead Nelder and M ||X<A:v1)fx(k)||§8
€ > 0 is an appropriate tolerance value
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The Newton method (cont.)

F(x) = 2/5 — 1/10(522 + 523 + 32122 — @1 — 2a2)el— (F+35)]

SE
&

—~ B \“
SN
g 04 \\\\\\\\}?\Q
S N
B N
~—
02
— 2
J
(g

We want to approximate the global minimum x* =~ (—0.63, —0.70)
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The Newton method (cont.)

Netwon’s method with a tolerance € = 10~°

Let x(9 = (-0.9, -0.9)
~= After 5 iterations the method converges to x=[-0.63058;-0.70074]

Let x( = (=1.0,-1.0)
~ After 400 iterations the stopping criterion is still not fulfilled

Let x(® = (+0.5, —0.5)
~ After 5 iterations the method converges to the saddle point
e x=[0.80659; -0.54010]

Note that Newton’s method may converge to any stationary point

e (A point that is not necessarily a minimiser)
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The Newton method (cont.)

A necessary condition for convergence of Newton’s method

e x(9) should be sufficiently close to the minimiser x*

The local convergence property of the method

General convergence criterium for the Newton’s method

If f € C?(R™) with stationary point x*
~ Positive definite Hessian H(x*)

~ Lipschitz continuous components of H(x) in a neighbourhood of x*

Then, for x(°) sufficiently close to x*, it converges (quadratically) to x*
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The Newton method (cont.)

In spite of a simple implementation, the method is demanding for large n

~ It requires the analytic expression of the derivatives
~~ The computation of both gradient and Hessian of f

e (Gradient and Hessian at each iteration)

Let alone that x(°) has to be chosen near enough x*

A valid approach to design efficient and robust minimisation algorithms

~» Combine locally- with globally-convergent methods

Global convergence guarantees convergence to a stationary point

o (Not necessarily a global minimiser), for all x(?) ¢ R™
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Line-search methods

Line-search or descent methods are iterative methods

We suppose that the objective function f € C2(R™) is bounded from below
For every step k£ > 0, let x(5+1) be the next point of the minimising sequence
o Point x(**1) is determined from current point x* and a vector d*)

o Vector d(¥) itself depends on two term
~ The gradient vector Vf [X(M] of function f

Gauss-Newton Gauss-Newton ~ A step-length parameter a € R
Levenber Levenberg:

Golden section and Golden section and

juadrati quadratic

Nelder and Mead Nelder and Meac

Unconstrained Line-search methods (cont.) Unconstrained Line-search methods (cont.)
optimisation optimisation
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Line-search
Descent direction
Step-length o
Newton direction

Quasi-Newton
direction

The algorithmic formulation of the general line-search/descent method

Let x(O) € R™ be an initial minimiser
Find direction d*) € R™
Compute step-length o € R
Set xFtD = x(F) 4 o, q®

Line-search
Descent directions

Newton direction
Quasi-Newtor
lirections
Gradient and
njugate-grad
lirection
Gauss-Newton

Levenberg:
Marquardt

Golden section and
quadratic

Nelder and Meac

Vector d'%) must be a descent direction

A descent direction satisfies the following conditions
dPMvi[x®] <o, if vi[x*™] #0 12

d® =0, if vi[x"] =0

~ Vf [x(”] gives the direction of max positive growth of f from x(*)

~ dB v [X(U] is the directional derivative of f along d‘*)

First condition ensures moves in a direction opposite to the gradient

~» The iterates move towards a minimiser
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Unconstrained

optimisatio
Newton methoc

Line-search
Descent directions
Step-length o
Newton directions

Quasi-Newton
directions

Gradient and
conjugate-gradient
directions

Trust-region

Nonlinear

least-square
Gauss-Newton

Levenberg-

Line-search methods (cont.)

Contour lines of function f(x) and its gradient vector evaluated at x(*)

o d(®) is a suitable descent direction

4
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Unconstrained

optimisation
Newton method

Line-search
Descent directions
Step-length o
Newton directions

Quasi-Newton

directions

Gradient and
conjugate-gradient
directions

Trust-region

Nonlinea

least-square
Gauss-Newton

Levenberg-

Line-search methods (cont.)

ay, can be computed by solving a one-dimensional minimisation problem

e Minimise the restriction of f(x) along d(*)

° XE:i>n is the minimiser along d(*)
0.45 L
04 ) ““‘
OSSN
AN

NN
NN

0.25 '/’ “\\\\\\ \\‘“"%/,
, m\\\\\\\\\\ 55

ANV

0.15 DA

0.05

Marquardt Marquardt
Derivative-free ! Derivative-free
Golden section and Golden section and
quadratic quadratic
interpolation 4 interpolation
Nelder and Mead Nelder and Mead
Optimal value o, € R guarantees max variation of f along d(*) The computation of «y, is quite involved (when [ is not quadratic)
e Once d*) is determined ~» There are alternative techniques that approximate aj well
. .
Unconstrained S Descent directions
optimisation optimisation
UFC/DC UFC/DC
CK0031/CK0248 CKO0031/CK0248
2018.2 2018.2
Unconstrained Umesneeee] Newton’s directions
optimisatio optimisation
Newton methoc Newton method dF) — —g-1! [X(k)]Vf[x(k)} (13)
Line-search Line-search

Descent directions
Step-length o
Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

I'rust-region
Nonlinear
least-square
Gauss-Newton
Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic

interpolation

Nelder and Mead

Descent directions

Line-search methods

Descent directions
Step-length o
Newton directions

Quasi-Newton

directions

Gradient and
conjugate-gradient
directions

I'rust-region

Nonlinea

least-square
Gauss-Newton
Levenberg-
Marquardt

Derivative-free

Golden section and
quadratic

interpolation

Nelder and Mead

e Matrix H[x(¥)] is the Hessian matrix at the k-th step
e Vector Vf [x(k)} is the gradient vector at the k-th step

Quasi-Newton directions

d® = B v [x®] (14)

e Matrix Hy, is an approximation of the true Hessian H[x(k)]

e It is used when second derivatives are heavy to compute
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Descent directions

Step-length o

Descent directions (cont.)

Gradient directions

d® = —vf[x®)] (15)

e These are quasi-Newton directions, with Hy = I, Vk > 0
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Descent directions

Descent directions (cont.)

For all k£ > 0, gradient directions are valid descent directions

dPvfx®] <o, it Vf[x®]£0

(17)

Newton direction Ne on direction
—— d® =0, ifVf[x®] =0,
lir tior direction
Conjugate-gradient directions sk Conjugate-gradient directions are valid directions for some suitable 3y,
1 ction
d©® = vy [X(O)}
(41 (e4D) ® (16) Newton’s and quasi-Newton’s directions can also be valid directions
1) _ +1 :
o d =-Vf [x ] +p/pd, k20 . — . H[x<k)} and Hj, need be positive definite matrices
Levenber Levenberg:
e e Coeflicients Bj can be chosen according to different criteria e
Golden section and Golden section and
quadratic quadratic
Nelder and Mead Nelder and Meac
Unconstrained Descent directions (cont.) Unconstrained Descent directions (cont.)
optimisation optimisation
UFC/DC UFG/DC
CK0031/CK0248 CK0031/CK0248
2018.2 2018.2

Descent directions
Step-length o

Newton direction

Quasi-Newton

Golden section and
quadratic

interpolation

Nelder and Mead

f(x) =2/5 —1/10(5a% + 523 + 3w122 — 71 — 2172)6[_(zl2+z22>]

..'" I TI77
DN

AN

f(x) = f(21, 22)

Two local minimisers, one local maximiser and two saddle points

Descent directions

Gauss-Newton

Marquardt

qu
nterpolatior

Nelder and Meac

‘We compare sequences {x(k)} from Newton’s and descent methods

e Various descent directions

e From xgo) and xgo)
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Descent directions

Step-length o
Newton direction
Quasi-Newton
directions
Gradient and
conjugate-gradient
directions
Gauss-Newton
Levenberg-
Marquardt

Golden section and
quadratic
interpolation

Descent directions (cont.)

x{?) = (0.5,-0.5)

2

0.5

—15}F

-2

descent GC-FR

descent quasi-Newton

- Newton

descent Newton

descent grad,

quasi-Newton,; GC

descent grad X(O)
1

Newton

descent Newton
descent GC-PR

-2

-0.5

0 05 1 15

2

e Newton’s method converges rapidly towards the saddle point

e Newton’s directions take a first step identical to Newton’s
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Descent directions

Step-length a
Newton directions
Quasi-Newton
directions

Gradient and

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic
interpolation

Descent directions (cont.)
9]
x{”) = (0.4,0.5)
4 Newton
15
/ descent Newton
Wb
05 X<O)
2 descent grad,
o/ ///descentGCER quasi-Newton, GC
descent grad  _(0)
g x|
-051
T Newton
-1.5 - descent quasi-Newton descent Newton
descent GC-PR

-0.5 0 05 1 15

e Newton’s method diverges

Nelder and Mead Neitar omd Wiead e Newton’s directions converge to a local minimum
~» Then collapse due to a non-positive definite matrix H . . . .
p p k ~+ Newton’s method and directions share the same first direction
e Others converge with different speeds into a local minimum R
e All others also converge to the same local minimiser
o Fastest convergence by quasi-Newton’s directions
Unconstrained Unconstrained Step-length Olk
optimisation optimisation
UFC/DC UFC/DC k : ;
CK0031/CK0248 CK0031/CK0248 Let d(®) be a descent direction
2018.2 20182 e How to set the step-length ay
The new iterate x(¥+1) is (should be) the minimiser of f along d(*)
Descent directions Descent directions

Step-length o

Newton direction
Quasi-Newton
directions
Gradient and
conjugate-gradient
directions
Gauss-Newton
Levenberg-
Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Step-length «;,

Line-search methods

Step-length o,
Newton directions

Quasi-Newton

directions

Gradient and

gradient

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead
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Descent direction

Step-length o

Step-length «;, (cont.)

The new iterate x(*+1) should be the minimiser of f along d(¥)

Choose ay, such that the minimisation is exact

o) = arg min f[x(k) + ad(k)]

a€eR

or

f[x(k) + akd(k)] _ {f‘éﬁf[x(“ + adm]

(18)
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Descent directions

Step-length o,

Step-length o (cont.)

A second-order Taylor expansion of f around x(¥) yields

2
f[x(k) + ad(k)} = f[x(k)] +ad® vy [x(k‘)] + %d(k)TH[x(k)]d(k)

+o(lad®|?)  (19)
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Descent direction

Step-length o

Step-length «;, (cont.)

Consider the special case in which f is a quadratic function

1
flx) = EXTAx —xTb+¢

e A € R"*"™ symmetric and positive definite
e beR"”
e ceR

The expansion is exact, the infinitesimal residual is null

2
f[x(k) + ad(k)] :f[x““)] +ad® vy [x(k)} + %d(k)TH[x(k)]d(k)

+ o(llad %)
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Descent directions

Step-length o,

Step-length o (cont.)

For every k > 0, we have

Fx®] = %XWAXM —x® b4

Vix®] = Ax® —b = —r®
Vi [x®] =H[x®] = A

2
Differentiate f [x(k)—&-ad(k)} =f [x(k)] +ad® vy [x<k)] +%d(k)TH[x(k>}d(k>

wrt o and set the derivative equal to zero to get min,eRr f[x(k) + ad(k)]

dif x84 ax®] = —a® ") 4 . d® Ad®) =0

ay

AT (k) (20)
T AT Adk)

~ Al
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Descent direction
Step-length o

Newton direction

Quasi-Newton

Step-length «;, (cont.)

Let d®) be gradient directions, d*) = —Vf(x(*¥)) = ¢(¥)

~~ The gradient method for solving linear systems
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Descent directions
Step-length o,
Ne on direction:

Quasi-Newtor

Step-length o (cont.)

Let d* be conjugate-gradient directions, d#+1) = —Vf[x(*+D] 4 g,d*)
Set,
[Ad(®)] T (k+1)

21
d®TAdR) 1)

D

~» The conjugate-gradient method for solving linear systems

|

C 188-N ton Gau New 1
I nber Levenberg

juardt Marquardt
f“‘\"\y«\‘i”\ ‘ tion 1d (“‘ ‘i:““‘“ tion 1d
. o
Nelder T 1 1 Nelder T M
Unconstrained Step-length o (cont.) Unconstrained Step-length o (cont.)
optimisation optimisation

UFC/DC UFC/DC
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Let f be a non-quadratic function
et direction The computation of the optimal ay requires an iterative method Descont diections . .
Step-length a, P P k req : Step-length oy, How to pick a good approximated value of ay?
Newton direction ~ Numerical solution of minimisation along d(¥) Newton direction
S A iR Impose a condition to the new iterate x**+1) = x() 4 o, d(F)
kit ox e
S = - ) <) @
~ Demanding and often not worth it
~+ Stick with an approximation of ay,

C 185-N ton Gau New 1
I nber Levenberg

juardt Marquardt
f“‘\"\y«\‘i”\ ‘ tion 1d (“‘ ‘i:““‘“ tion 1d
nterpolatior 1terpol r
Nelder T 1 1 Nelder T M
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A natural strategy for setting ay

Descent direction
Steplensth o e Initially assign a large ay,
e Then, reduce it iteratively

o Until, f[x*+D] < f[x(*®)] is satisfied

The strategy does not guarantee a {xk} that converges to x*
e Steps can be too long (go beyond the minimum)

e e Steps can be too short (get infinitesiamal)
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Descent directions

Step-length o,

Step-length o (cont.)

There exist alternative (better/reliable) criteria for aj > 0

~> Wolfe’s conditions

Let oy, be the step-length

ay, 18 accepted if

F[x® + axd®] < £ [x®] + oard®” v [x®)] (23)
d(k,)TVf[x(k.) +akd(k~)} > 5d(k)TVf[x(k->}

The two additional parameters, constants o and §

e 0<o<d1

| G
ins AR vy [x(k)} is the directional derivative of f along direction d(¥)
Unconstrained Step'length o593 (Cont') Unconstrained Step'length A (COl’lt.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2L A2 The terms in the first of the two Wolfe’s conditions, for o = 0.2
FIx®) 4+ apa®] < F[x®] + o‘akd(k)TVf[x(k)]
0.5
Steptength ak ‘ f[x(k> + akd(k>] < f[x(k)] + o'akd(k)TVf [x(k)] e 0.45¢ FxE)y 4 oa(@EN)T v r(x(F))
: d® v [x® +apd®] > 5d®) v [x0) ‘ o4 —-=7|
. 0.35F\_ i 1
First condition (Armijo’s rule) inhibits too small variations of f e 0.3 o
e With respect to step-length and directional derivative 0.25¢
0.2r
Gauss-Newton Changes in f need be proportional to step-length and directional derivative c Ne

0.15} B F(xF) 1 aalk)y

0.1

0.05 . . . .
0 0.2 0.4 0.6 0.8 1
(0

Condition is satisfied for a corresponding to the continuous line
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Descent direction

Step-length o

Step-length «;, (cont.)

FIx®) 4+ ara®] < £[x®) +oard® vy [x(9)]
d® v [x® +apd®] > 5d® v [x®)]

Second condition states that the directional derivative of f at new point
x(®) + a,d®) should be & times larger than it was at point x(*)

o Point x(*) +o¢kd(k) is a valid candidate if f at such point decreases less
than it does at x(*) (closer to a minimiser)

This second condition prevents steps whose length would be too small

e Happens where f has a largely negative directional derivative
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Descent directions
Step-length o,
Newton direction.

Qua

Step-length o (cont.)

Lines with slope Sd(k)TVf [x(k)] in second condition, § = 0.9
d® vix®) 4+ apd®] > 6d®" w[x*)]

0.5 T T
0.45] s(@FNT v p(x(F)) ]

0.41
0.35f
0.31
0.25F
0.21
0.15¢
0.1F

0.05

Condition is satisfied for o corresponding to the continuous line
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Descent direction

Step-length o

Step-length «;, (cont.)

Wolfe’s conditions are jointly satisfied in the interval

0.23 <o <0.41 or 0.62 < a < 0.77

Values of o € [0.62,0.77] are far from the minimiser of f along d(¥)

e Also o where the directional derivative is large are accepted
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Descent directions

Step-length o,

Step-length o (cont.)

Wolfe’s strong conditions

f[x(’“) + oakd(k)} < f[x(k)] + Jakd(k)TVf [x(’“)}

(24)
[d® " f [x®) 4+ ard®]| < —5a® " vf[x*)]

This conditions are more restrictive (duh!)

e The first condition is unchanged

o The second one inhibits f from large variations about x(*) 4+ ad(*)
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Descent direction
Step-length o

Newton direction

Quasi-Newton

Step-length «;, (cont.)

Acceptable o must belong to small intervals around the minimisers

e (thick continuous arcs)

05
043 £ 4 oa@®)T v pxk)) 1
o4t~
0.35

0.3
0.25

0.2
0.15

0.1

slope= +8(d(F))T v r(x(k))

0.05 . . . .
0 0.2 0.4 0.6 0.8 1

e Forc =0.2and § =0.9
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Descent directions
Step-length o,
Ne on direction:

i-Newtor

Step-length o (cont.)

Suppose that f € C?(R") is bounded from below in {x*) + ad(®,a >0}

o Let d(®) be a descent direction at x(*)

It can be shown that for all o and § such that 0 < o < § < 1 there exist
non-empty intervals of oy, that satisfy Wolfe’s weak and strong conditions

In practice?, o is usually chosen to be very small (e.g., ¢ = 10%)

Typical values for §
e 6 = 0.9 for Newton, quasi-Newton and gradient directions

e § = 0.1 for conjugate-gradient directions

2J. Nocedal and S. Wrigth (2006): Numerical optimization.
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Descent direction
Step-length o
Newton direction

Quasi-Newton

Step-length «;, (cont.)

A strategy for step-lengths aj that satisfy Wolfe’s conditions

Backtracking
e Start with a =1
e Then reduce it by a given factor p (tipically, p € [0.1,0.5))

e Until, the first weak condition is satisfied

For x(®) and a direction d(®), for o € (0,1) and p € [0.1,0.5)

Seta =1
while f[x(k) + ad(k')} > f[x(k)] +oad®Vf [x(k)]
a = pa
end
Set o, = «

Second condition is never checked, as step-lengths are not small
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Descent directions
Step-length o,
Ne on direction:

Quasi-Newtor

Step-length o (cont.)

function [x,alpha_k]=bTrack(fun,x_k,g k,d_k,varargin)

%BTRACK Backtracking with line search

% [X,ALPHA_K]=BTRACK(FUN,X_K,G_K,D_K) x_{k+1}=x_k+alpha_k*d_k
% in the descent method, alpha_k by backtracking with

% sigma=le-4 and rho=0.25

% [X,ALPHA_K]=BTRACK(FUN,X_K,G_K,D_K,SIGMA ,RHO) sigma and rho
% can be inputed - sigma in (1e-4,0.1) and rho in (0.1,0.5)

% FUN is the function handle of the objective function
% X_K is element x_k, G_K is the gradient , D_K is d_k

if nargin == 4

sigma = 1.0e-4; rho = 1/4;

else

sigma = varargin {1}; rho = varargin {2};
end

minAlpha = 1.0e-5; % Smallest steplength
alpha_k = 1.0; f_k = fun(x_k);

k = 0; x = x_k + alpha_k*d_k;
while fun(x) > f_k+sigma*alpha_k*g k’*d_k & alpha_k > minAlpha
alpha_k = alpha_kx*rho;
x = x_k + alpha_kx*d_k; k = k+1;
end
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Descent directions

Step-length o

Step-length o (cont.)

The descent method with various descent directions
e «y is determined by backtracking
%DSCENT Descent method of minimisation

%[X,ERR,ITER]=DSCENT (FUN , GRAD_FUN ,X_0,TOL ,KMAX ,TYP ,HESS_FUN)
% Approximates the minimiser of FUN using descent directions
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Descent directions

Step-length o,

function [x,err,iter]=dScent (fun,grad_fun ,x_0,tol ,kmax,typ,varargin)
if nargin>6; if typ==1; hess=varargin{1i};

elseif typ==2; H=varargin{1l}; end; end
err=tol+1; k=0; xk=x0(:); gk=grad(xk); dk=-gk; eps2=sqrt (eps);

while err>tol & k<kmax

if typ==1; H = hess_fun(xk); dk = -H\gk; % Newton
elseif typ= dk = -H\gk; % BFGS
elseif typ== dk = -gk; % Gradient
end

[xk1,alphak]=bTrack (fun,xk,gk,dk);

Newton directions % Newton (TYP=1), BFGS (TYP=2), GRADIENT (TYP=3), and the Newton directions 13  gkl=grad_fun(xkl);
Quasi-Newton % CONJUGATE -GRADIENT method with Quasi-Newton 14 if typ== % BFGS update
(i‘””"’m 6 % beta_k by Fletcher and Reeves (TYP=41) (}_‘W“”“' L5 yk = gkl-gk; sk = xkl-xk; yks = yk’xsk;
e e 7 ' beta_k by Polak and Ribiere  (TYP=42) L if yks > eps2*norm (sk)*norm (yk)
abreeeeE 8 % beta_k by Hestenes and Stiefel (TYP=43) directions 17 Hs=H*sk; H=H+(yk*yk’)/yks-(Hs*Hs’)/(sk’*Hs);

9 % 18 end

10 % Step length is calculated using backtracking (bTrack.m) 19 elseif typ>=40 % CG upgrade

1Y 20 if typ==41; betak=(gkl ’*gkl)/(gk’*gk); % FR

12 % FUN, GRAD_FUN and HESS_FUN (TYP=1 only) are function handles 21 elseif ty ; betak=(gkl’*(gkl-gk))/(gk’*gk); % PR
Gauss-Newton 13 % for the objective, gradient and Hessian matrix Gauss-Newton 22 elseif typ 3; betak=(gkl ’*(gkl-gk))/(dk’*(gkl-gk)); % HS
Levenberg- 14 % With TYP=2, HESS_FUN approximates the exact Hessian at X_O Levenbe 23 end
Marquardt 15 % Marquardt 24 dk = -gkl + betakx*dk;

16 % TOL is the stop check tolerance 25 end

17 % KMAX is the maximum number of iteration § 26 xk = xk1; gk = gkl; k =1 + k; xkt = xki;
j{’l;’}j‘,“;“‘;““"“ =Gl :";‘}‘(‘]"‘:‘;‘““"’ and 57 for i=1:length(xk1l); xkt(i) = max ([abs(xk1(i)),1]1); end
interpolation interpolation 28 err = norm((gkl.*xkt)/max ([abs (fun(xk1)),1]),Inf);
Nelder and Mead Nelder and Mead 29 end

30 x = xk; iter = k;
31 if (k==kmax & err>tol); disp (’[KMAX]’); end
. ) . .
e ] Unconstrainea D €Scent method with Newton’s directions
optimisation optimisation
UFC/DC UFC/DC
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2018.2 2018.2
Let us consider a descent method with Newton’s directions
~» Newton directions

fvl:‘—v(uln\ (1v;w(\v(nv~v escent ethod ‘_)(M'l”( (l\lvv((vnn—, d(k) — _H—l [X(k)] Vf [X(k)]
Step-length I ’ m Step-length a;

Newton directions

Quasi-Newton
directions
Gradient and
conjugate-gradient
directions

Gauss-Newton

Levenberg-

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

with Newton’s directions

Line-search methods

Newton directions
Quasi-Newton
directions

Gradient and
-gradient

conjuga

directions

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Let step-lengths «j, satisfy Wolfe’s conditions
~ Wolfe step lengths oy,

F(x®) 4+ apa®)y < f[x(k)] + aakd(k)TVf [x<k)}
AW v [x® 4+ apd®] > 5d®) " wr[x*)]

Let f € C2(R™) bounded from below
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Descent direction
Step-length o
Newton directions

Quasi-Newton

Descent method with Newton’s directions (cont.)

Find direction d*) € R
Compute step ay € R

Set x&+1) = x(B) 4 o, d®)
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ep-length o
Newton directions

Quasi-Newtor

Golden section

quadratic
nterpola

Nelder and Meac

Descent method with Newton’s directions (cont.)

Suppose that the Hessian H[x(®)] is symmetric, for all k£ > 0
~ (from the assumption on f)

Suppose that H[x““)] is also positive definite (no uphill moves)

Let By = H[x(®]

Suppose that M > 0 : K(Bg) = ||B|,||B;, *||, < M, for all k >0
e K(By) is the (one) spectral condition number of By

e Uniform upper bound on the condition number

Then, Newton’s sequence {x(k)} converges to a stationary point x*

~ By letting ay, = 1 for k > k, the converge is quadratic
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Newton directions

Quasi-Newton

Descent method with Newton’s directions (cont.)

Let A € R"X™ be a matriz

Consider the problem of finding a scalar A (complex or real) and a non-null
vector x € C" such that
Ax = \x

Any X that satisfy this equation is an eigenvalue of A

e x is the corresponding eigenvector

The spectral condition number of A is the quantity

>\maz

K(A) =

)\m.zn
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Descent method with Newton’s directions (cont.)

If Hessians are positive definite, x* cannot be a maximiser or saddle point

e The stationary point must necessarily be a minimiser

It can happen that H[x(k)] is not positive definite for some point x(*)

e d*) may not be a descent direction

e Wolfe’s conditions might become meaningless
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Descent method with Newton’s directions (cont.)

Hessian can transformed to make them positive definite

By, = H[x(®] + E;

e E; is some suitable matrix (either diagonal or full)
e E; is such that d(*) = —B;1Vf [x(k)] is a descent direction
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Descent directions
Step-length a

Newton directions

Quasi-Newton
directions

Descent method with
quasi-Newton’s directions

Line-search methods

Levenberg- Levenberg-
Marquardt Marquardt
Golden section and Golden section and
quadratic quadratic
interpolation interpolation
Nelder and Mead Nelder and Mead
Unconstrained Descent method with quasi-Newton Unconstrained Descent method with quasi-Newton’s directions
optimisation optimisation (cont )
UFC/DC UFC/DC

CK0031/CK0248 CK0031/CK0248

2018.2 2018.2

Let us consider a descent method with quasi-Newton directions
e Quasi-Newton directions
-1
Descent directions d<k) = _Hk Vf [x(k)} Descent directions
Step-length o Step-length «
et e ~ Hj, approximates the true Hessian H[x(k)} o e Suppose we are given a symmetric and positive definite matrix Ho
e o ~» How do we build matrices Hj,?
Craden o Let step-lengths «y, satisfy Wolfe’s conditions Tt
directions — Wolfe step lengths directions There exists a popular technique used for solving nonlinear systems
- ~» The recursive Broyden’s rank-one update
f(x(k) 4 akd(k)) < f[x(k)] +oapd® vy [x(k)]

Gauss-Newton T T Gauss-Newton
o 4 VF [x(k) + oz;cd(k)] > sd(k) \i [x(k)] S
Marquardt Marquardt
Golden section and Let f € C2(R"™) bounded from below Golden section and
quadratic quadratic
interpolation interpolation
Nelder and Mead

Nelder and Mead
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Descent method with quasi-Newton’s directions
(cont.)

Matrices Hy, are required the satisfy certain conditions

e They must satisfy the secant condition
Hj 1 [x(lﬁ—l) _ x(k)} =Vf [x<k+1)} —-vf [ka
e They must be symmetric, as H(x)
e They must be positive definite, d(¥) are descent
e They must satisfy
[ — HEH)[dW]|

W% lTat]|

This ensures that Hjy is a good approximation of H[x*} along the
descent direction d(*) and guarantees a super-linear rate of convergence
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Quasi-Newton
directions

Descent method with quasi-Newton’s directions
(cont.)

A strategy by Broyden, Fletcher, Goldfarb and Shanno (BFGS)

OMOR Hks(k)s(k)THg

H =H —
M= TR T s BT H, s

(25)

o 5(B) — (k1) _ (k)

o yb =Vf [x(kﬂ)] _ Vf[x(k)}
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Newton direction

Quasi-Newton
directions

Descent method with quasi-Newton’s directions
(cont.)

Matrices Hy 1 are symmetric and positive definite under condition

MORNOREE

It is satisfied when step lengths oy, are either weak or strong Wolfe
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Quasi-Newton
directions

Descent method with quasi-Newton’s directions
(cont.)

BFGS is a descent method, with quasi-Newton d®) and Wolfe’s ays

— dk) = fHkTIVf [X(k)]
F® 4 apd®) < Fx®)] + card®’ vy [x(M]
d® v [x® 4 a,d®] > 5d®) " wi[x*)]

Let x(9 be an initial solution
Find direction d(®) ¢ R™
Compute step length oy € R

Set x(k+1) = x(B) 4 o d(*)
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Descent method with quasi-Newton’s directions
(cont.)

Let x(©) be an initial solution

Let Hy € R"*™ be a suitable symmetric and positive definite matriz

~ Hp € R"*" approrimates H[x<0)]
Solve Hd*) = —vf [x(k>]
Compute oy, that satisfies Wolfe’s conditions
Set
xF+D) = x(*) 4, d)
s(F) — x(k+1) _ (k)

y*) = vy [x(k+1)] —Vf [x(k)]

y®By®T W50 HT

C teH, 1 =H 7 - T
ompute Hy 1 S Y eS| s TH,s(k)
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Gradient and
conjugate-grad
lirection,

Descent method with quasi-Newton’s directions
(cont.)

The cost of calculating d(F) is O(n3), at every iteration k > 0
e Can be reduced to O(n?) by using recursive QR on Hy,

Setting Hp = I gives faster convergence to x*

~ Some experimental evidence, only
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directions

Gradient anc

Descent method with quasi-Newton’s directions
(cont.)

Rosenbrock’s function
f(x) = (1 —z1)2 4 100(z2 — 22)?

Let e = 10~ be the tolerance

4

|

o
1

[+1.2; -1.0];

fun = @(x) (1-x(1))"2 + 100x(x(2)-x(1)"2)"2;

options = optimset (’LargeScale’,’off’); % Switches to BFGS
[xstar ,fval,exitflag ,output] = fminunc(fun,x_0,options)

Convergence after 24 iterations and 93 function evaluations

We did not input an expression for evaluating the gradient
e It was, silently, approximated

o (finite difference methods)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

ep-lengtl
Newton direction
Quasi-Newton
directions

Gradient and
conjugate-grad
lirection,

Descent method with quasi-Newton’s directions
(cont.)

We can define and input the analytical gradient

x_0 = [+1.2; -1.0];

fun = @(x) (1-x(1))"2 + 100*(x(2)-x(1)"2)"2;
grad_fun = @(x)[-400%(x(2)-x(1)"2)*x (1) -2*x(1-x(1));
+200x%(x(2)-x(1)"2)1;

options = optimset (’LargeScale’,’off’,’Grad0Obj’,’on’);

[xstar ,fval,exitflag ,output] = fminunc ({fun,grad_fun},...
x_0,options)

Convergence after 25 iterations and 32 function evaluations
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directions

C

Descent method with quasi-Newton’s directions
(cont.)

In Octave, BFGS is implemented by the M-command bfgsmin
e M-command fminunc implements a different method

e (A trust-region method)

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Gradient and
conjugate-gradient
directions

Descent method with gradient
and conjugate-gradient
directions

Line-search methods

N 1 d
Unconstrained Gradient and conjugate-gradient directions Unconstrained Gradient and conjugate-gradient directions (cont.)
optimisation optimisation
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Gradient and
conjugate-gradient
directions

Let us first consider the general descent method

Find direction d(¥) € R®
Compute step oy € R

Set x(+1) — x(0) | (k)

The gradient (descent) directions

d®) = —wr(x*)

If f € C2(R™) is bounded from below and step lengths ay, are Wolfe

~» This method converges (linearly) to a stationary point

Gradient and
conjugate-gradient
directions

Let us now consider conjugate directions

d® = —vy(x)
d* D = —vfx*T) — g.a®, k>0

There are several options for setting S
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directions

~ Fletcher-Reeves

AL

BFR — _
S P
~» Polak-Ribiére (-Polyak)

VIO (O[] - e D]
194 (<]

PR
/Bk =

~~ Hestenes-Stiefel

CVi[x®] v [x®]T = w[xtE-D]}

BHS —
T T aE T 0] vy <]

Gradient or conjugate-gradient directions (cont.)

(26)

(27)

(28)
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Gradient and
conjugate-gradient
directions

Gradient and conjugate-gradient directions (cont.)

Suppose true the condition that f is quadratic and strictly convex
Then, all the aforementioned options are equivalent

[Ad(®)] T (k+1)

~ P = T Aa®

d
Unconstrained Unconstrained rI‘I'llSt-I'egIOIl methods
optimisation optimisation
UFC/DC UFC/DC
CK0031/CK0248 CKO0031/CK0248
2018.2 2018.2

Trust-region methods

Numerical optimisation

Line search methods are designed to set first the descent direction d(*)
e Then, they determine the step-length ay
These steps are performed at each k-th step

Trust-region methods simultaneously choose direction and step length

This is done by building a ball of radius 8; centred at x(¥)

e The ball is the trust region, at iteration &

Within the ball, a quadratic approximation fk of f is computed

o The new x(**t1) is the minimiser of fk in the trust region




Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
Step-length o

Newton direction

Quasi-Newton
direction

Trust-region methods (cont.)
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sradient

Gradier

directions

Trust-region

Trust-region methods (cont.)

To compute fi;, we start with some trust radius 6; > 0

o Determine a second-order Taylor expansion of f about x(¥)
- 1
Ju(s) = F[xP] +svf[xP] + 5sTHks, Vs € R" (29)

H), is either the Hessian of f at x(*) or a suitable approximation

e We then compute the solution s(*)

s®) =  argmin  fi(s) (30)
sER™:|[s|| <6

~» At this stage, we also compute the quantity

- EowENerien
Levenberg. Levenberg

Marquardt Marquardt f[x(k) +S(k)} 7f[X<k)] (31)

g ] 3 ] 7 k= = =

R Convergence history and quadratic approximation f; at step k = 8 P r fr [s(k)} — f(0)

tntarpolation Sterpolatior

Nelder and Mead Nelder and Meac

Unconstrained Trust-region methods (cont.) Unconstrained Trust-region methods (cont.)

optimisation optimisation
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If pj. is approximately one, we accept s(®) and move on to next iteration
~ We set x(FT1) = x(k) 4 g(k)

Descent direction (k) (k) (k) S e (however, if the minimiser of fk lie on the boundary of the trust
—— £ + 8] — f[x] Stap-langt! regi tend the latter bef ding to next iterati

Sl @ oK = _ _ tep-length a gion, we exten e latter before proceeding to next iteration)

Newton direction i3 [S(k>] —fk(()) Newton direction

drectione " If py, is either negative or positive (and much smaller than one)

Quasi-Newton

directions

Trust-region

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

A comparison between variation of f and variation of fj

~ From point x(®) to point x(®) 4 s(®)

If pi is about one, the approximation is considered to e good

directions

Gradient and
conjugate-gradient

directions

Trust-region

Gauss-Newton

Marquardt

Nelder and Meac

~~ We reduce the ball’s size and calculate a new s(*)
s®) = arg min fi(s)
SER™:[|s|| <4y

If pj. is much larger than one, we accept s(*) and keep the trust region

~~ Then we move to the next iteration
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Trust-region methods (cont.)

Consider the situation in which second derivatives of f are available

We could set Hy to be equal to the Hessian

e (or a variant, if not positive definite)

Otherwise, Hy, can be built recursively
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Trust-region methods (cont.)

Let Hj, be symmetric positive definite and let ||H;1Vf [x<k)] || <6k
e Then, s(*) = H;IVf [x(kﬂ is a minimiser

e It is within the trust region

Otherwise, the minimiser of fk lies outside the trust region
~~ We must solve the minimisation of f,
o Constrained to the §j-ball at x(*)

fi(s)

min
SER™:[|s||=0,

This is a constrained optimisation problem

~ We can use the Lagrange multipliers

(32)
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Trust-region methods (cont.)

At each iteration k, we look for the minimiser of the Lagrangian function
L(s,)) = fi(s) + 1/2x(sTs — &)

To be optimised with respect to both s and the regularisation term A

We search for a vector s(*) and a scalar A(¥) > 0 satisfying the system
[H + AP1)s®) = —v[x®)]
[H; +AM1] is PSD (33)
5] = =0
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Trust-region methods (cont.)

From [Hj + A®I]s*) = —Vf[x(*)], we compute s(*) = s(&) [X(*F)]
We substitute it in [|s®¥)|| — 8, =0
1 1
~ )= - - _
D)= mpe

The non-linear equation in A is equivalent to system (33)

e It can be solved using Newton’s method
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For some given Ag, set g(¥) = Vf[x(®)]

For 1=0,1,... (typically, less than 5 iterations are needed)
Compute sgk) = — [Hk + ,\EMI} *1g(k)
Evaluate ap[)\gk)] = l/||s§k)|| —1/6g
Evaluate ¢’ [)\gk)]

Compute )\Ei)l = )\Ek) - ga/\gk)/go’ [Agk)}
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Trust-region methods (cont.)

Vector s{*) is obtained by Cholesky factorisation of [Hy + A{"1]
o Provided that matrix B(%) = H; + )\EMI is positive definite

o If B() is symmetric (definition of Hy), its eigenvalues are all real

Usually, a regularised matrix ng) + B is used instead of B(¥)

o 3 should be larger than the negative eigenvalue of B(*) of largest
modulus
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Trust-region methods (cont.)

Cholesky factorisation
Let A € R"X™ be a symmetric and positive definite matriz
A=R"R

R is upper triangular with positive elements on the diagonal
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Trust region methods (cont.)

For glb) = Vs [x(k)] and for some given dj

Solve Hys = —g(®) (means s = —H;lg(k))

If | |SH < & and Hy, is positive definite
Set s(k) =5
else
Let B1 be the negative eigenvalue of Hy, with largest modulus
Set A = 2|1
Forl=0,1,...
Compute R : RTR = H;, + /\gk)l
Solve RTRs =g(®), RTq=s

k k

Update )\§+)1 = )\E ) 4 (I1sl1/1lall)
Set s(k) =g

endif

2 |Is[| — o
Ok




Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Trust-region

Trust-region methods (cont.)

For a fast convergence, a good radius dy, is truly fundamental

The criterion for accepting a solution s(*) is based on a comparison

e The variation of f and that of its quadratic approximation fk

As x®) moves to x(®) + s(*)

FIx® +s0)] — £[x®)]
Fe[s®] — fu(0)

Pk =
If Pk~ 1
o s(%) is accepted, the ball is enlarged if the minimum is on the boundary

If pp =0or pp, <0

o s(*) is not accepted and the ball is diminished

Trust-region methods (cont.)
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Let x(©) be an initial solution
Let the initial radius of the ball be &y € (0,8) with maximum radius 6 > 0

Let {7]1,7)2, Y, 'yg} be the four real parameters for updating the ball
e 0<m<n<1
e 0< 11 <1<y

Let 0 < p < m1 be the real parameter for accepting a solution
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Trust-region methods (cont.)

Then, for £ =0,1,... until convergence

Compute f[x““)} , Vf [x(k)} and Hy,

Solve min fu(s
SER™:|[s|[2<5y, (®)

Compute py,

If pr > p

Set x(@+1) = x(k) 4 g(k)
else

Set x(k+1) = x (k)
endif

If pp <m
Set 0p+1 = 710k
elseif 1 < pp < m2
Set §k41 = Ok
elseif pr > n2 and ||s(F)|| = 6y,
Set dp+1 = min{'yg6k,5}
endif

Trust-region methods (cont.)

Unconstrained
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Choice of parameters
~ o =1/4
Dt At
op-length o ~ o2 =3/4
Novton et =174
. | w2 =8/4
. o
1 ct
T mreEem e By choosing p = 0, we accept any step yielding a decrease of f

e By choosing 11 > 0, we accept steps for which the variation of f is at
least p times the variation of its quadratic model fj

3J. Nocedal and S. Wrigth (2006): Numerical optimization.
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Trust-region methods (cont.)

%TREGION Trust region optimisation method

%[X,ERR ,ITER]=TREGION (FUN , GRAD_FUN ,X_0 ,DELTA_O,

% TOL ,KMAX ,TYP ,HESS_FUN)

% Approximates the minimiser of FUN with gradient GRAD_FUN
%

% If TYP=1 Hessian is inputed as HESS_FUN

% If TYP NE 1 Hessian is rank-one approximated

)

% FUN and GRAD_FUN (and HESS_FUN) are function handles
% X_0 is the initial point

% TOL is stop check tolerance

% DELTA_O is initial radius of trust ball
% KMAX are maximum number of iterations

Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2

Descent direction
ep-length
Newton direction

Quasi-Newton

Gradient and

direction

Trust-region

function [x,err,iter]= tRegion (fun, grad_fun ,x_0,delta_O,
tol ,kmax ,typ,hess_fun)

delta = delta_0; err = 1 + tol; k = 0; mu = 0.1; delta_m = 5;
eta_1l = 0.25; eta_2 = 0.75; gamma_1 = 0.25; gamma_2 = 2.00;

xk = x_0(:); gk = grad_fun(xk); eps2 = sqrt(eps);
; Hk=hess_fun(xk); else; Hk=eye(length(xk)); end

while err > tol & k < kmax
[s]l=trust_one (Hk,gk,delta);
rho=(fun (xk+s)-fun(xk))/(s’*gk+1/2xs’*Hk*s) ;
if rho > mu; xkl = xk + s; else; xkl = xk; end
if rho < eta_1; delta = gamma_1lx*delta;
elseif rho > eta_2 & abs(norm(s)-delta) < sqrt (eps)
delta=min ([gamma_2*delta,delta_m]);
end
gkl = grad_fun(xk1l);
err = norm ((gkl.*xkl)/max ([abs (fun(xk1)) ,1]),Inf);
if typ == 1; xk = xk1; gk = gkl; Hk = hess_fun(xk); 7 Newton
else % quasi-Newton
gkl = grad(xk1); yk = gkl-gk; sk=xkl-xk; yks = yk’*sk;

CanssNewton CanseNewton if yks > eps_2#*norm (sk)*norm (yk)
e L Hs = Hk*sk; Hk = Hk+(yk*yk’)/yks-(Hsx*Hs’)/(sk’*Hs);
o - end
xk = xkl1; gk = gkil;

Golden section and Golden section and end

quadratic quadratic k=k+1;

nterpolation nterpolatior ol

Nelder and Mead Nelder and Meac

x = xk; iter = k;
if (k==kmax & err>tol); disp(’Accuracy not met [KMAX]’); end

Unconstrainea LTUSt-region methods (cont.) Unconstraimea  LTUSt-region methods (cont.)
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maxiter=5;

S e Bt iastiions Approximate the minimiser of function

— : s = -Hk\gk; d = eigs(Hk,1,’sa’); % 1st smallest algebraic evalue s

Step-length ep-length

ewton direction ewton direction — 522 — 522
Sovtond if norm(s) > delta | d<0 N e 1+ 232 + 22122 — 521 — 535
Quasi-Newton @rerNerEn flz,22) =7/5+

Gradient and

Trust-region

Golden section and
quadratic

nterpolation

Nelder and Mead

lambda = abs (2*d); I = eye(size (Hk));
for l=1:maxiter
R = chol (lambdaxI+Hk) ;
s = -R\(R’\gk); q = R’\s;
lambda = lambda+(s’*s)/(q’*q)*(norm(s)-delta)/delta;
if lambda < -d
lambda = abs (2*lambda);
end
end
end

Gradient and
onjugate-gradient
direction

Trust-region

Gauss-Newton

Marquardt

Golden section and
quadratic

Nelder and Meac

[5 exp (z2 + zQQ)}
Use the trust-region method
A local maximum, a saddle point and two local minima

e The local minima are near (—1.0,+40.2) and (40.3,—0.9)

e The second minimum is the global one
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1

Trust region methods (cont.)

fun = @(x) (x(1)+2*x(2)+2xx (1) *x(2) -5*x (1) "2-5%xx(2) "2) /
(5*exp (x(1) "2+x(2)"2)) + 7.5;

grad_fun = @(x) [(1 + 2*x(2)-10*x (1) -2*x (1) *(x (1) +2*x(2) +
2xx (1) *x(2) -5*%x (1) "2-5xx(2) "2)) /
(Bxexp (x(1) "2+x (2)°2));
(2 + 2*%x(1) -10*%x(2) -2%x (2) *(x (1) +2*xx (2) +
2%x (1) *x(2) -5%x (1) "2-5%x(2) "2)) /
(5*exp (x(1) "2+x(2)"2))1;

delta_0 = 0.5; x_0 = [0.0;0.5];
tol le-5; kmax = 100; imax=5;

typ = 2;

[x,er,it]=tRegion (fun,grad_fun ,x_0,delta_0,tol,kmax,typ,imax)
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Descent directions
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Newton directions
Quasi-Newton
directions

Trust-region

Gauss-Newton

Levenberg-
Marquardt

Golden section and
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interpolation

Trust-region methods (cont.)

Trust-region, approximated Hesse matrix
~ 24 iterations, x* &~ (40.28, —0.90)

Nelder and Mead Nelder and Mead

Unconstraimea  Lrust-region methods (cont.) Unconstramea  Lrust region methods (cont.)
optimisation optimisation

UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
e et Mo B e |
~~ 12 iterations
Rosenbrock’s function
F(x) = 100(z2 — 27)* + (1 — 21)?

Descent directions Descent directions

Step-length o Step-length

Newton direction Newton directions

i SLUTT 0 fun = 000 (-x(1)) 7241004 (x(2) -2 (1) °2) °2;

Gradient

conjugate-gradient

directi

Trust-region

Gauss-Newton

Levent

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Trust-region

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

grad_fun = @(x) [-400*(x(2)-x(1)"2)*x (1) -2*x(1-x(1));
200%(x(2)-x(1)"2)1;

x_0=[+1.2;-1.0];

optimset (’LargeScale’,’on’); % Trust-region
optimset (’GradObj’,’on’); % Gradient

options
options

[x,fval,exitflag ,output]=fminunc ({fun,grad_fun},x_0,options)
Trust-region (Matlab)
~ 8 iterations, 9 function evaluations
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The M-command fminunc in Octave implements the trust region method
o With approximated Hessians Hy, computed with BFGS
y(k)y(k)T Hks(k)s(MTHg

Hy, =H -
1= THT® T s Hs®

The option ’LargeScale’ is not used
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Non-linear least-squares
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Nonlinear
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Gauss-Newton

Non-linear least-squares

The least-squares method is often used for approximating either func-
tions f(z) or sets of data {(zx,yx),k =0,..., K} by some function f

e Often f depends linearly on a set of coefficients {a] Jg=1,..., m}

fel{a}0) = a0 + a1z + a22® + -+ + ama™

The coefficients {a; };io are unknown

They must be determined from data
{(zx, y), k=0,...,K}

K

Z[yk—

k=0

s min
{aj,5=1,...,m}

s 2

f(@el{a;}) }

———
a0+a1$k+a2ff+~-+ar,nz,1’”

This problem is called a least-squares problem

The problem becomes nonlinear when f non-linearly depends on {aj}
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Non-linear least-squares (cont.)

Let R(x) = [r1(x),...,mn(x)] T with r; : R™ — R be some smooth function

We want to find

1E 1
i, 100, with 1) = 53 i) = 5IIRGI” (34)

We assume that n > m

If functions r;(x) are non-linear, then function f(x) may not be convex

~» Thus, f(x) may have multiple stationary points

‘We can use Newton, descent directions and trust-region methods
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) . The derivatives of f(x) can be expressed in terms of the Jacobian of R
Consider the special form of f . . .
S S ~ Partial derivatives of r;(x) with respect to z;
Step-length a We have assembled the components r;(x) into a residual vector Step-length o
Newton direction n [87'1 ort a'r'l]
e T R em - — -
f\gu Mw\m R(x) — [7'1 (x)> ey (x)] f{mmw o 02 OTm T
Vri(x)
Gradier ora  Org ory T
Because of this, we compactly rewrote the objective function Ghrontions b or; [37 9 B ] Vra(x)
JR(x) = [ ] = 1 2 Tm = .
1 Ox; =L . . . .
2 i=1,...,m : ) :
Nonlinear x) = —||R(x Nonlinear . . . T
least-squares f( ) 2|| ( )H least-squares [8Tn Orn 6Tn] Vi (x)
Gauss-Newton Gauss-Newton -~ -~ st
R R LLOz1 Oz Om A |
Marquardt Marquardt
Golden section and Golden section and
quadratic qu tic
interpolation interpolatior
Nelder and Mead Nelder and Meac
Unconstrained Non-linear least-squares (cont.) Unconstrained Non-linear least-squares (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
Gradient and Hessian of the cost function can be compactly written
n . .
Calculation of the Hesse matrix can be heavy when m and n are large
T
VIx) = 3 n(x)Vri(x) = Jr(x) TR(x) S e _
Stiomelngin @ i=1 . e This is mostly due to matrix S(x)
Newton direction n (35) Newton dicactian
uasi-Newton Juasi-Newton i i T
Quasi-N V2f(x) = Jr(x) TIr (%) + Z ri(x)Vri(x) = Jr(x) TIr (%) + S(x) S In some cases, S(x) is less influent than Jg(x)? Jgr(x)
i=1 e ~» It could be approximated or neglected
G ~ It simplifies the construction of H(x)
et ~» The second derivatives of R cannot be calculated from the Jacobian e

least-squares
Gauss-Newton

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

n

&y .
Sx)=>_ m(x)n(x), for ,j=1,...,m
i=1

least-squares
Gauss-Newton

Marquardt

ection and

Nelder and Meac

We discuss two methods devoted to handling such cases
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Unconstrained
optimisation

UFC/DC
CK0031/CK0248
2018.2
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The Gauss-Newton method

The Gauss-Newton method is a variant of the Newton method

Given x(0) ¢ R™, for k = 0,1,... until convergence

Solve H[x(k)]ﬁx(k> =-Vf [x(k)}
Set x(k+1) = x (k) 4 §x(k)

The Hessian H(x) is approximated by neglecting S(x)
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Newton direction

Quasi-Newtor

Gauss-Newton

The Gauss-Newton method (cont.)

Given x(9 € R™ and for k = 0,1,... until the convergence

Solve {Jg (x*)TIg [xM]}ox*) = —Jg [x(F)] TR[x<k)]

Set x(F+1) = x(k) 4 §x(*)

The system in the first equation may have infinitely many solutions

If Jrp [x(m} is not full rank
~~ Stagnation
~+ Non-convergence

~+ Convergence to a non-stationary point

IfJr [x(m} is full rank, the linear system has form ATAx* = ATb
e It can be solved by using QR or SVD factorisations of Jg (x)
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Gauss-Newton
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The Gauss-Newton method (cont.)

function [x,err,iter]=nllsGauNewtn(r,jr,x_0,tol,kmax,varargin)
%NLLSGAUNEW Nonlinear least-squares with Gauss-Newton method

% [X,ERR,ITER]=NLLSGAUNEW(R,JR,X_0,TOL ,KMAX)

% R and JR: Function handles for objective R and its
% X_0 is the initial solution

% TOL is the stop check tolerance

% KMAX is the max number of iterations

err = 1 + tol; k = 0;
xk = x_0(:);

rk = r(xk,varargin{:}); jrk = jr(xk,varargin{:});

while err > tol & k < kmax
[Q,R] = qr(jrk,0); dk = -R\(Q’*rk);
xkl = xk + dk;
rkl = r(xkl,varargin{:});
jrkl = jr(xkl,varargin{:});

k = 1 + k; err = norm(xkl - xk);
xk = xk1; rk = rkil; jrk = jrkil;
end

x = xk; iter = k;

if (k==kmax & err > tol)

Jacobian

disp (’nllsGauNewtn stopped w\o reaching accuracy [KMAX]’);

end
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The Gauss-Newton method (cont.)

Neglecting S(x(*)) at step k amounts to approximating R(x)

The first-order Taylor expansion of R(x) at x*

Ry(x) = R[x(k>] +Jr [x(w} [x— x(k>] (36)
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The Gauss-Newton method (cont.)

Convergence of the method is not always guaranteed

e It depends on f and initial solution
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Gauss-Newton

The Gauss-Newton method (cont.)

Let x* be a stationary point for f(x)
Let Jr(x) be full rank in a suitable neighbourhood of x*
Then,

If S(x*) = 0 (if R(x) is linear or R(x*) = 0)
©® The Gauss-Newton method is locally quadratically convergent

® It coincides with the Newton’s method

If ||S(x*)||2 is small compared to the smallest positive eigenvalue of
Jr(x")TIr(x")
® (e.g., when R(x) is mildly non-linear or its residual R(x*) is small)
® Gauss-Newton converges linearly
If ||S(x)||2 is large compared to the smallest positive eigenvalue of
Jr(x")TIR(x")

® Gauss-Newton may not converge, even if x(?) is very close to x*

® (e.g., when R(x) is strongly non-linear or its residual R(x*) is large)
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The Gauss-Newton method (cont.)

Line-search can be used in combination with Gauss-Newton
o Replace x(*t1) = x(7) 4 §x(*) with x(*+1) = x(*) 4 o 5x ()

e Computation of step-lengths oy, is as per usual

If Jr (x(®) is full rank, matrix Jg (x(®))T Jg (x(*)) is symmetric and PD

o 0x(%) is a descent direction for f(x)

Under suitable assumptions on f(x), we get the globally convergent method

~» Damped Gauss-Newton method
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The Gauss-Newton method (cont.)

Compress an audio signal to a set of parameters

25 T T T T T T T T T

0.5
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directions
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The Gauss-Newton method (cont.)

08f

Heme . : : : : : : : : : ST Each peak or component is characterised by two coefficients
0 1 2 3 4 5 6 7 8 9 10
Golden section and Golden section and e The Centre’ af;
nterpotation The signal intensity is modelled as a sum of m Gaussian functions R e The (square of the) spread, Uz
Nelder and Mead 1 (t _ ﬂk)2 Nelder and Meac m
fi(tlag, on) = exp[— ]a t € lto,tr],k=1,...,m e a=f[a, -, al
202 tla,o) = t; ag, o)
famo? o2 f(tla, o) I;fk(7 k) Ok) « o =[on, - 0u)
Unconstrained The Gauss-Newton method (cont.) Unconstrained The Gauss-Newton method (cont.)
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CK0031/CK0248
2018.2 2018.2
Generate n = 2000 time-intensity pairs (;, y;)j—; with ¢; € (0,10)
~~ The sum of 5 Gaussian components
1 (t—a)?
S filtlan, o3) = ——exp [~ = 5]
—— Find a and o that minimise the residual sum of squares — QTFU% Tk
Newton direction Newton direction.
Quasi-Newton Quasi-Newton e Plus some little random noise

Gradient and
conjugate-gradient

Gauss-Newton

Levenber

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

n
2
min Zl [f(ti\& o) — y]
1=

From recorded audio intensities y; at sampling times ¢;

directions

Gradient and
conjugate-gradient
direction

Gauss-Newton

Marquardt

Golden section and
quadratic

Nelder and Meac

a = [2.3, 3.2, 4.8, 5.3, 6.6]; m = length(a);
sigma = [0.2, 0.3, 0.5, 0.2, 0.4];

gComp = @(t,a,sigma) exp(-((t-a)/(sigma*sqrt(2)))."2)/
(sigma*sqrt (pi*2));

n = 2000; t = linspace(0,10,n)’; y = zeros(n,1);
for k=1:m

y =y + gComp (t,a(k),sigma(k));

end

y =y + 0.05%randn(n,1); % Little additive noise
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Solve the nonlinear least-squares problem of form
Gauss-Newton
. . 1 2 1 - 2 . .
min ®(x), with &(x)= 7‘ |R(x)H = _ E r2(x) M-command nllsGaulewtn (22 iterations)
Descent direction xER™M 2 2 4 g Descent directions
Step-length « i=1 Step-length a
Newton direction m Newton directions I x0 = [2.0,3.0,4.0,5.0,6.0,0.3,0.3,0.6,0.3,0.3];
Quasi-Newton 7‘i(x) = f(tllay 0’) —Yi = Zk:l fk(tz|ak7 Uk) — Y Quasi-Newton 2
direction directions ; tol = 3.0e-5;
Grad Gradient and | kmax = 200;
conju conjugate-gradient -
o e ‘We also have, ke e
6 [x,err,iter]=nllsGauNew (@gmR,@gmJR,x_0,tol ,kmax,t,y)
87‘1',7 ti — ag 5 x_a = x(1:m);
8ak*fk(ti‘akzak) M: x_sigma = x(m+1l:end);
Gauss-Newton 9 Gauss-Newton . i
Levenberg- 6Ti (tl - (lk) 1 Levenberg- 11 L/(szlgma*sqrt (2¢pi));
Marquardt :fk(ti\ak,ak) —=3 T 5 Marquardt 12w = 2%x_sigmax*sqrt (log(4));
doy, o 20},
k
Golden section and Golden section and
quadratic quadratic
interpolation interpolation
Nelder and Mead Nelder and Meac
Unconstramea  The Gauss-Newton method (cont.) Unconstrained
optimisation optimisation
UFC/DC UFC/DC
CKO0031/CK0248 CKO0031/CK0248
2018.2 I function [R]=gmR(x,t,y) 2018.2
3 x = x(:); m = round (0.5*%length(x));
a = x(1:m); sigma = x(m+1: end );
gauFun = Q@(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2)))."2)
7 /(sigma*sqrt (pi*2))];
Descent direction S Descent directions
Step-length 9 n = length(t); R = zeros(n,1); Step-length o
Newton dircctions 10 for k = lim; R = R + gauFun(t,a(k),signa(k)); end Nexiion Qs L b M dt
e R = Ry evenberg-iviarquar
e dre Nonlinear least-squares
conjugate. gradient | function [Jrl=gmJR(x,t,y) conjugnte-gradiont

directions

Gauss-Newton
Levenberg-

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

x = x(:); m = round (0.5*%length(x));
a = x(1:m); sigma = x(m+1: end);

gauFun = @(t,a,sigma) [exp(-((t-a)/(sigma*sqrt(2)))."2)
/(sigma*sqrt (pix*2))];

n = length(t); JR = zeros(mn,2*m); fk = zeros(n,m);

for k = 1:m; fk(:,k) = gauFun(t,a(k),sigma(k)); end

for k = 1:m; JR(:,k) = (fk(:,k).*(t-a(k))/sigma(k)"2)’; end
for k = 1:m

JR(C:,k+m) = (fk(:,k).*((t-a(k))."2/(k)"3-1/(2xsigma(k))))’;
end

directions

Gauss-Newton

Levenberg-
Marquardt

Golden section and
quadratic

interpolation

Nelder and Meac
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Levenberg-Marquardt

Levenberg-Marquardt is a trust-region method

min 700, with £() = J[RG0)|* = %; r2(x)

We can use the general trust-region formulation
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Gauss-Newton

Levenberg-

Levenberg-Marquardt (cont.)

Compute f[x““)}, Vf [x(k)} and Hy,

Solve  min_ fi(s
e, e (5)

Compute py,
If pr > 1

Set x(z+1) — x(k) 4 g(k)
else

Set x(k+1) = x(k)
endif

If pr <m
Set 6g+1 = 716k

Marquardt elseif m < pr < n2
Set 641 = 0
: Colden elseif pr, > n2 and ||s()]| = Ok
. SO LY Set 0;+1 = min{y28x,d}
N 1 T Nelder and Meac .
endif

Uneonstrained Levenberg-Marquardt (cont.) Unconstrained Levenberg-Marquardt (cont.)
optimisation optimisation
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Gauss-Newton

Levenberg-
Marquardt

At each step k, we solve

Je(s),  with Ju(s) = | R[] + 3m [xV]s]?

min
sER™:[[s[| <y

fi(x) is a quadratic approximation of f(x) about x(¥)

~» By approximating R(x) with its linear model

Ry (x) = R[x(k)} + JR[x(k)} [x— x(k)}

(37)

Gauss-Newtor

Levenberg-
Marquardt

Golden section

quadratic
nterpolatior

Nelder and Meac

Often Jg (x) is not full rank, yet the method is well-posed

The method is suited for minimisation problems with strong non-linearities
or large residuals f(x*) = 1/2||R(x*))||? about the local minimiser x*

Hessian approximations are those of the Gauss-Newton method
The two methods share the same local convergence properties

Convergence rates when Levenberg-Marquardt iterations do converge

e Convergence rate is quadratic, if residual is small at local minimiser

e Convergence rate is linear, otherwise
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Derivative-free methods

‘We describe two simple numerical methods
e Minimisation of univariate real-valued functions
e Minimisation of multivariate real-valued functions

e (along a single direction)

We then describe the Nelder and Mead method

e Minimisation of functions of several variables
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Newton method

Line-search
Descent directions
Step-length o
Newton directions

Quasi-Newton
directions

Gradient and
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directions

Trust-region
Nonlinea
least-square
Gauss-Newton
Levenberg-
Marquardt
Derivative-free

Golden section and
quadratic
interpolation

Nelder and Mead

Golden section and quadratic interpolation

Let f : (a,b) = R be a continuous function with unique minimiser

z* € (a,b)

Set Ip = (a, b), for k > 0 generate a sequence of intervals Ij
I = (@®,59)

The intervals I are of decreasing length and each contains z*
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Golden section and quadratic interpolation (cont.)

For any given k, the next interval I;1; can be determined

1) Let C(k), d®) e I}, with c®) < d*) be two points such that

pk) _ g(k)  q(k) _ o(k)
AR — g pm) — g ¥
pk) — o (k) p(k) _ (k)
bR — () ) — gtk ¥
1 5
Let ¢ be the golden ratio ¢ = +v5 ~ 1.628

(38a)

(38b)
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Golden section and quadratic interpolation (cont.)

2) Using Equation 38a and 38b, we find point ¢®) and point d*)
®) — o®) 4 L) _ ok 39
¢\ =a" + E( —a'") (39a)

d®) = o® 4 L _ g0 (39b)
@

They are symmetrically placed about the mid-point of Ij

a1+ p(*)

*®) 4 p(k)
LA (S ST - (40)
2

2

Replace ¢(®) and d(®) in Equation (40)

b(k) — g(k)

Divide by the common factor 5
%)

Get the identity
P —p-1=0
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Golden section and quadratic interpolation (cont.)

QD) (o)

Ly

The generic iteration of the golden-section method

L

e ¢ is the golden ratio, while Lj = ¢(F) — (%)
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Golden section and quadratic interpolation (cont.)

Set a(® = g and b(® = b, the golden section method formulates as

For k=0,1,... until convergence
Compute ¢®) and d*) through Equation (39)

If £(e®) > £(d®)

set Iyy1 = (B0 plh+1)) = (c(B) p(R))
else

set Ipq = (alFHD) p(+1D)y = (k) q(k))
endif

It follows that
s I Dyyq = (C(k), b(’“)), then c(Ft1) — g(k)
N (a(®), d®) then dF+1) = ()
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Golden section and quadratic interpolation (cont.)

We need to set a stopping criterion

When the normalised size of the k-th interval is smaller than a tolerance &
p(k+1) _ o (k+1)
[cGH+D] + ‘d(k+1_)‘ <e (41)
The mid-point of the last interval I can be taken as solution

e This is an approximation of the minimiser x*
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Golden section and quadratic interpolation (cont.)

By using Equation (38a) and (38b), yields the expression
b0+ _ (D) = L) _ g 22 L0 ) (a9
k1
@ Pkt

The golden-section method converges linearly with rate

o 1 ~0618

quadratic quadratic
interpolation interpolation
Nelder and Mead Nelder and Mead
R Unconstrainea Olden section and quadratic interpolation (cont.)
optimisation optimisation
I function [xmin,fmin,iter]=gSection(fun,a,b,tol,kmax,varargin)
CKO%;C/CDISOMS > %GSECTION finds the minimum of a function cxo%gf/cDch)us
201/8 5 % XMIN=GSECTION (FUN,A,B,TOL,KMAX) approximates a min point of 201/8 5
% function FUN in [A,B] by using the golden section method
5 % If the search fails, an error message is returned
6 % FUN can be i) an inline function, ii) an anonymous function
7 % or iii) a function defined in a M-file
& % XMIN=GSECTION (FUN,A,B,TOL,KMAX,P1,P2,...) passes parameters
9 % Pi, P2,... to function FUN(X,P1,P2,...) e fun is either an anonymous or an inline function for function f
10 % [XMIN,FMIN,ITER]= GSECTION (FUN,...) returns the value of FUN . .
Descent directions 11 % at XMIN and number of iterations ITER done to find XMIN Descent directions e a and b are endpoints of the search interval
Step-length o 12 Step-length a; .
Newton directions 13 phi = (1+sqrt(5))/2; Newton directions e tol is the tolerance &
Quasi-Newton 1 iphi (1) = inv(phi); iphi(2) = inv (1+phi); Quasi-Newton ° . . . .
S S 15 = iphi(2)%(b-a) + a; d = iphi (1) %(b-a) + a; Sl kmax is the maximum allowed number of iterations
Gradient and 16 err = 1+tol; k = 0; Gradient and
conjugate-gradient _ ’ ’ conjugate-gradient
directions L7 directions
18 while err > tol & k < kmax
19 if (fun(c) >= fun(d)) e xmin contains the value of the minimiser
20 a = c; ¢ =d; d = iphi(1)*(b-a) + a;
21 else e fmin is the minimum value of f in (a, b)
Gauss-Newton 22 b =d; d = c; c = iphi(2)*(b-a) + a; Gauss-Newton . . . . . .
et 23 end . e iter is the number of iterations carried out by the algorithm
Marquardt 2 k = 1 + k; err = abs(b-a)/(abs(c)+abs(d)); Marquardt
25 end
26
Golden section and 57 ynin = 0.5%(a+b); fmin = fun(xmin); iter = k; Golden section and
quadratic “' B . . 0 o 0 quadratic
interpolation 8 if (iter == kmax & err > tol) interpolation
Nelder and Mead ) fprintf (’The method stopped after reaching the maximum number B el INeed]

of iterations , and without meeting the tolerance’);
end
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Golden section and quadratic interpolation (cont.)

Evolution of an isolated culture of 250 bacteria (Verhulst model)

2500

T 0e /3" for t >0

f(t) =

t denotes time (in days)

Find after how many days population growth rate is maximum

~» Where (when?) does function g(¢) = —f’(t) has its minimum

exp (t/3)

=-7500 —MmMm—————
9(t) [exp(t/3)+9]2
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Golden section and quadratic interpolation (cont.)

Function ¢(t) admits a global minimiser in [6, 7]

g = @(t) [-(7500%exp(t/3)) / (exp(t/3)+9)"2];

a=0; b = 10;
tol = 1.0e-8; kmax = 100;

[tmin gmin,iter]= gSection(g,a,b,tol,kmax);

Golden section: 38 iterations, t* ~ 6.59 and g(t*) ~ —208

t*
o ‘ 0.4
0.3
<-100 :
=" (50.2
-200 0.1 [
o(t) [
0 5 10 0 1 20 30
t N. of iterations [k]
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Golden section and quadratic interpolation (cont.)

The quadratic interpolation method is often used as alternative
e Let f be a continuous and convex function

e Let 2(0, () and z(? be three distinct points

We build a sequence of points z(*) with k& > 3 such that

e z(F+1) i the vertex (and thus the minimiser) of the parabola pék)

° pém interpolates f at (node points) z(*®), z(*=1) and z(+~2)
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Golden section and quadratic interpolation (cont.)

For k > 2, the order-2 Lagrange polynomial at such nodes
288 (z) =f[a*=D ]+
f[gg(k*Z)7 m(kfl)] [z — x(k*Z)]Jr
f[gc(k—?)7 =1 x(k‘)] [:c _ x(k—2)] [x _ x(k—l)]
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Golden section and quadratic interpolation (cont.)

i (@) =f [+ D]+
Fe, 2] [z — D] 1
a2 g1 0] [ = 4= [ — =D)]

In the order-2 Lagrange polynomial péb for k > 2, consider the quantities

flaj, @] = floi, ]

Ty — Iy

(43)

flaiyzg, o] =

The Newton divided differences
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Golden section and quadratic interpolation (cont.)

Consider n + 1 distinct points

n+1

{[% vi ()] }n

=0
There exists only one polynomial 11, € P, of order n or smaller that in-
terpolates them

Mp(zi) =yi, Vi=0,...,n

I, is said to be the interpolating polynomial of f, if y; = f(z;)

~ (for some continuous function f)

It is denoted by I, f
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Golden section and quadratic interpolation (cont.)

Consider the components of the Lagrangian basis associated to nodes {z;}7_

n

r — T
piz) = ]I 2, i=0,...,

)
A -
j=0,4#1 7"

3

They are polynomials such that {¢;} is the only basis of Py satisfying

1,ifi=7
0, otherwise

592(1) (S an@i(iﬂj) = 6'ij _ {
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Golden section and quadratic interpolation (cont.)

The Lagrange polynomial is the interpolating polynomial 11, ()
n
Mn(z) = Y yivi()
i=0
It is expressed in Lagrange form, or wrt the Lagrange basis

n n
Mo(m) =Y wes(@) =Y ydy =y, i=0,...,n
i=0 i=0
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Golden section and quadratic interpolation (cont.)

By solving the first-order equation p’ék) [z(k‘q)} =0, we get

Fz=2), o k-D)]
Flat=2) 2G=D) (0] }

(D) = %{x““_z) + =D (44)

Next point in the sequence, by setting to zero the derivative of pék) (z)

We iterate until {x(k‘*'l) — xk‘ < g, for some tolerance € > 0
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Golden section and quadratic interpolation (cont.)

2 -15 -1 -0.5 0 0.5 1 15 2 25 3

The first step of the quadratic interpolation method

Nelder and Meac
Unconstrained Golden section and quadratic interpolation (cont.) Unconstrained Golden section and quadratic interpolation (cont.)
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§) = —7500— 2P/
9(t) [exp(t/S)-i—Q}2

fminbnd combines golden section and parabolic interpolation

g = Q(t) [-(7500*%exp(t/3))/(exp(t/3)+9) "2];
a = 0.0; b= 10.0;
tol = 1.0e-8; kmax = 100;

optionsQ = optimset (’TolX’, 1.0e-8)
[tminQ , gminQ,exitflagQ ,outputQ] = fminbnd(g,a,b,optionsQ);

Descent directions

\ direction
Quasi-Newton
directions
Gradient and
conjugate-gradien
direction

Gauss-Newton

Marquardt

Golden section and
quadratic
interpolation

Nelder and Meac

Quadratic interpolation

8 iterations, t* &~ 6.59 and f(t*) ~ —208

e optimset sets the tolerance value in structure optionsQ
e gminQ contains the evaluation of f at the minimiser tminQ
e exitflagQ indicates the termination state

e outputQ has number of iterations and function evaluations
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Golden section and quadratic interpolation (cont.)

The golden section and the quadratic interpolation method
e They are genuinely one-dimensional techniques
e They can be used to solve multidimensional optimisation problems

e They need be restricted to search along one dimensional directions
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Derivative-free methods
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Nelder and Mead

Let n > 1 and f : R® — R be a continuous function

The n-simplex with n 4+ 1 vertices x; € R"™ for i =0,...,n
n n
S:{yen%":yzz,\ixi7wz‘th,\izo:ZAl=1} (45)
=0 =0

Intrinsic assumption: Linearly independent vectors {(x; — x0)}/'_q

S is a segment in R, it is a triangle in R? and a tetrahedron in R?
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Nelder and Mead (cont.)

The Nelder and Mead method is a derivative-free minimisation method
o It generates a sequence of simplices {S(k)}kzo in R™

The simplices either run after or circumscribe the minimiser x* € R™ of f

The method uses simple operations

© Evaluations of f at the simplices’ vertices

® Geometrical transformations (reflections, expansions, contractions)
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e At the k-th iteration, the ‘worst’ vertex of simplex S(*) is identified
S e x%?? such that f[xgé)} = max f[xfk)]
Step-length 0<i<n 4
Newton direction
Quasi-Newton (k)

e x,, is substituted with a new point at which f takes a smaller value
zeadiont e The new point is got by reflecting/expanding/contracting the simplex

along the line joining xg\fj) and the centroid of the other vertices

. 1 .
8 = Ly o
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Descent directions

Nelder and Mead (cont.)

How to generate the initial simplex S(©)

We take a point X € R and a positive real number 7

Then, we set

xgo):i—i-nei, withi=1,...,n

{e;} are the vectors of the standard basis in R™

Levenberg " i=0 (\w\v‘\\n\r“
Marquardt i#M Marquardt
Golden section and Golden section and
quadratic qu tic
interpolation interpolatior
Nelder and Mead Nelder and Mead
Unconstramea  Nelder and Mead (cont.) Unconstramea Nelder and Mead (cont.)
optimisation optimisation
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The new point is chosen by firstly selecting
k . k
D nt d t D td t Xgn) B Oglilgn f[x,E )]
Step-length o While k£ > 0 and until convergence, select the ‘worst’ vertex of S Step-length a (k) 14 (k) (47)
Newton direction Newton direction Xy = maxf[xi }
ton Juasi-Newton a
atsaction xgg) = max f[xgk)] (46) divections
0<isn Gradiont and and secondly by defining the centroid point
directions et
Then, replace it by a new point to form the new simplex S (k+1) 1 ®)
xk) — = Z x; (48)
" i=o
iEM
C 1 Newton Gauss-Newton

Levenberg

Marquardt

Golden section and
quadratic

interpolation

Nelder and Mead

Marquardt

ection and

Nelder and Mead

This is the centroid of hyperplane H(*) passing through vertices {xi}"_g
iEM
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Thirdly, compute reflection x((p of xg\s) with respect to hyperplane H®)
< = (1—a)x® 4+ ozxg\?> (49)

The reflection coefficient a < 0 is typically set to be —1

(k)

Point x4’ lies on the straight line joining points x(®) and x
(k)
M

(k)
M

o It is on the side of X(*) far from x
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Nelder and Mead (cont.)

n = 2, the centroid is midpoint of edge of S(*) opposite to xg\s)
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Nelder and Mead (cont.)

We fourthly compare f [x(()k)} with f at the other vertices of the simplex
(k)

o Before accepting x4’ as the new vertex

We also try to move xgk) on the straight line joining X(*) and xs\];)

To set the new simplex $(*+1)

(1) Iff[x((lk)} < f[ng)] (reflection produced a minimum), then

x = 1 = )=® +4xB | with v < —14 (50)

e Then, iff[xgk)} < f[ng)], replace x s by xﬁrm

(k) (k)
M

e Otherwise, x;,” is replaced by x¢

We then proceed by incrementing k& by one

4Typically, y=-2
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Nelder and Mead (cont.)

(2) Iff[ng)] < f[xgo} < f[xfbk)], then xg‘f[) is replaced by xg‘k)

k is incremented by one
(3) Iff[x;(f)] < f[x&k)} < f[x%?], we compute
x() = 1 - g™ + pxi,  with g > 0° (51)

o Then, iff[xgg)] > f [xg\f{)} define the vertices §(++1)

1
(1 = C[R®) i) (52)

e Otherwise XS\Z) is replaced by xg

Then, we increment k

5with typically B =1/2
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Nelder and Mead (cont.)

(4) Iff[xgk)J > f[xg\f[)}, we compute
xg = (1-A)x® + px{), with 5> 0 (53)

. Iff[xgc)} > f[x%m define the vertices of §(k+1)

7

D) _ %[i(k) +x®]

(k)

S\Z) with X

e Otherwise we replace x

Then we increment k
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Nelder and Mead (cont.)

When the stopping criterion max ||x§k) — xﬁ,’f’”oo < ¢ is met

IR

(k)

~ Xy,  is retained as approximation of the minimiser

Convergence is guaranteed in very special cases only

Stagnation may occur, algorithm needs to be restarted
e The algorithm is nevertheless quite robust
e Tt is efficient for small dimensional problems

e Convergence rate depends on initial simplex
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Nelder and Mead (cont.)

The Rosenbrock function

f(@1,22) = 100(z2 — 2)? + (1 — 1)?

The global minimum is at x* = (1,1), and variation around x* is low
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Nelder and Mead (cont.)
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The simplex method
The M-command is fminsearch
Descent directions | x_0 = [-1.2,+1.0];
Step-length o 2
Newton direction 3 fun = @(x) (1-x(1))"2 + 100%(x(2)-x(1)"2)"2;
Quasi-Newton
direction: xstar = fminsearch (fun,x_0)

Gradient and

conjugate-gradient

directions | 7 xstar =
% 1.000022021783570 1.000042219751772

To obtain additional information on the minimum value of f

Gauss-Newton

Levenberg- 1

Marquardt 2 [xstar ,fval,exitflag ,output] = fminsearch (fun,x_0)
Golden section and

quadratic [ ]

interpolation

Nelder and Mead




