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Constrained optimisation

We discuss two strategies for solving constrained minimisation problems

The penalty method

• Problems with both equality and inequality constraints

The augmented Lagrangian method

• Problems with equality constraints only

The two methods allow the solution of relatively simple problems

• Basic tools for more robust and complex algorithms
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Constrained optimisation (cont.)

Definition

Let f : Rn → R with n ≥ 1 be a cost or objective function

The constrained optimisation problem

min
x∈Ω⊂Rn

f (x) (1)

Ω is a closed subset determined by equality or inequality constraints

Given functions hi : Rn → R, for i = 1, . . . , p

! Ω =
{

x ∈ Rn : hi (x) = 0, for i = 1, . . . , p
}

(2)

Given functions gj : Rn → R, for j = 1, . . . , g

! Ω =
{
x ∈ Rn : gj (x) ≥ 0, for j = 1, . . . , q

}
(3)

p and q are natural numbers
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Constrained optimisation (cont.)

More generally,
min

x∈Ω⊂Rn
f (x) (4)

Ω a closed subset determined by both equality and inequality constraints

Ω =
{
x ∈ Rn : hi (x) = 0 for i ∈ Ih

︸ ︷︷ ︸

i=1,...,p

and gj (x) ≥ 0 for j ∈ Ig
︸ ︷︷ ︸

j=1,...,q

}
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Constrained optimisation (cont.)

Definition

Let f : Rn → R with n ≥ 1 be a cost or objective function

The general constrained optimisation problem

min
x∈Rn

f (x)

subjected to

hi (x) = 0, for all i ∈ Ih

gj (x) ≥ 0, for all j ∈ Ig

(5)

The two sets Ih = {1, 2, . . . , p} and Ig = {1, 2, . . . , q}

! In Equation (3), we used Ih = ∅

! In Equation (2), we used Ig = ∅
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Constrained optimisation (cont.)

Suppose that f ∈ C1(Rn ) and that hi and gj are class C1(Rn ), for all i , j

Points x ∈ Ω ⊂ R that satisfy all the constraints are feasible points

! The closed subset Ω is the set of all feasible points

Consider a point x∗ ∈ Ω ⊂ Rn ,

f (x∗) ≤ f (x), ∀x ∈ Ω (6)

Point x∗ is said to be a global minimiser for the problem

Consider a point x∗ ∈ Ω ⊂ Rn ,

f (x∗) ≤ f (x), ∀x ∈ Br (x∗) ∩ Ω (7)

Point x∗ is said to be a local minimiser for the problem

! Br (x∗) ∈ Rn is a ball centred in x∗, radius r > 0 O
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Constrained optimisation (cont.)

A constraint is said to be active at x ∈ Ω if it is satisfied with equality

• Active constraints at x are the hi (x) = 0 and the gj (x) = 0

Let Ω be a non-empty, bounded and closed set in Rn

Weierstrass guarantees existence of a maximum and a minimum for f in Ω

! The general constrained optimisation problem admits a solution
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Constrained optimisation (cont.)

Example

Consider the minimisation of function f (x) under equality constraint h1(x)

Let
f (x) = 3/5x2

1 + 1/2x1x2 − x2 + 3x1

Let
h1(x) = x2

1 + x2
2 − 1 = 0

Ω x1

x2

x
∗

Global minimiser x∗ constrained to Ω

• Contour lines of the cost f (x)

• Admissibility set Ω ∈ R2
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Constrained optimisation (cont.)

Example

Minimise f (x) = 100(x2 − x2
1 )

2 + (1− x1)2, under inequality constraints

g1(x) = −34x1 − 30x2 + 19 ≥ 0

g2(x) = +10x1 − 05x2 + 11 ≥ 0

g3(x) = +03x1 + 22x2 + 08 ≥ 0

Ω

x1

x2

x
∗

Global minimiser x∗ constrained to Ω

• Contour lines of the cost f (x)

• Admissibility set Ω ∈ R2
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Constrained optimisation (cont.)

Definition

Strongly convexity

The condition for function f : Ω ⊆ Rn → R to be strongly convex in Ω

f is strongly convex if ∃ρ > 0 such that ∀(x,y) ∈ Ω and ∀α ∈ [0, 1]

f
[

αx+ (1 − α)y
]

≤ αf (x) + (1− α)f (y)
︸ ︷︷ ︸

Convexity

−α(1 − α)ρ||x− y||2 (8)

Strong convexity reduces to the usual convexity when ρ = 0
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Constrained optimisation (cont.)

Proposition

Optimality conditions

Let Ω ⊂ Rn be a convex set and let x∗ ∈ Ω be such that f ∈ C1
[
Br (x∗)

]

Suppose that x∗ is a local minimiser for constrained minimisation,

∇f (x∗)⊤(x − x∗) ≥ 0, ∀x ∈ Ω (9)

If f is convex in Ω and (9) is satisfied, then x∗ is a global minimiser

Suppose that we require Ω to be closed and f to be strongly convex

! It can be shown that the minimiser x∗ is also unique
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Constrained optimisation (cont.)

There are many algorithms for solving constrained minimisation problems

Many search for the stationary points of the Lagrangian function

! The KKT or Karush-Kuhn-Tucker points

Definition

min
x∈Ω

f (x)

The Lagrangian function associated with the constrained minimisation

L(x,λ,µ) = f (x)−
∑

i∈Ih

λihi (x)−
∑

j∈Ig

µj gj (x) (10)

λ and µ are Lagrangian multipliers

! λ = (λi ), for i ∈ Ih

! µ = (µi ), for j ∈ Ig

They are (weights) associated with the equality and inequality constraints
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Constrained optimisation (cont.)

Definition

Karush-Kuhn-Tucker conditions

A point x∗ is said to be a KKT point for L if there exist λ∗ and µ∗ such
that the triplet (x∗,λ∗,µ∗) satisfies the Karush-Kuhn-Tucker conditions

∇xL(x∗,λ∗,µ∗) = ∇f (x∗)−
∑

i∈Ih

λ∗
i ∇hi (x

∗)−
∑

j∈Ig

µ∗
j ∇gj (x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

gi (x
∗) ≥ 0, ∀j ∈ Ig

µ∗
j ≥ 0, ∀j ∈ Ig

µ∗
j gj (x

∗) = 0, ∀j ∈ Ig
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Constrained optimisation (cont.)

Let x be some given point

Consider ∇hi (x) and ∇gj (x) associated with active constraints in x

• Suppose that these gradients are linearly independent

Linear independence (constraint) qualification (LI(C)Q) in x
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Constrained optimisation (cont.)

Theorem

First-order KKT conditions

Let x∗ be a local minimum for the constrained problem

min
x∈Rn

f (x)

subjected to

hi (x) = 0,∀i ∈ Ih

gj (x) ≥ 0,∀j ∈ Ig

Let functions f , hi and gj be C1(Ω) and let the constraints be LIQ in x∗

There exist λ∗ and µ∗ such that (x∗,λ∗,µ∗) is a KKT point
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Constrained optimisation (cont.)

In the absence of inequality constraints, the Lagrangian takes the form

L(x,λ) = f (x)−
∑

i∈Ih

λi∇hi (x
∗)

The KKT conditions are known as Lagrange (necessary) conditions

∇xL(x∗,λ∗) = ∇f (x∗)−
∑

i∈Ih

λ∗
i ∇hi (x

∗) = 0

hi (x
∗) = 0,∀i ∈ Ih

(11)

O
C
T
30
,
20
18

–
FC

–

Constrained

optimisation

UFC/DC
CK0031/CK0248

2018.2

Constrained
optimisation

The penalty method

The augmented
Lagrangian

Constrained optimisation (cont.)

Remark

Sufficient conditions for a KKT point x to be a minimiser of f in Ω

! Knowledge about the Hessian of the Lagrangian is required

Alternatively, we need strict convexity hypothesis on f and the constraints

In general, it is possible to reformulate a constrained optimisation problem

• As an unconstrained optimisation problem

The idea is to replace the original problem by a sequence of subproblems in
which the constraints are represented by terms added to the objective

! (Quadratic) Penalty function

! Augmented Lagrangian
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The penalty method

Consider solving the general constrained optimisation problem

min
x∈Rn

f (x)

subjected to

hi (x) = 0, ∀i ∈ Ih

gj (x) ≥ 0, ∀j ∈ Ig

We reformulate it as an unconstrained optimisation problem

Definition

The modified penalty function, for a fixed penalty parameter α > 0

Pα(x) = f (x) +
α

2

∑

i∈Ih

hi
2(x) +

α

2

∑

j∈Ig

[

max {−gj (x), 0}
]2

(12)

The method adds a multiple of the square of the violation of each constraint

• Terms are zero when x does not violate the constrain
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The penalty method (cont.)

Pα(x) = f (x) +
α

2

∑

i∈Ih

hi
2(x) +

α

2

∑

j∈Ig

[

max {−gj (x), 0}
]2

By making the coefficients larger, we penalise violations more severely

• This forces the minimiser closer to the feasible region

Consider the situation in which the constraints are not satisfied at x

• The sums quantify how far point x is from the feasibility set Ω

• A large α heavily penalises such a violation

If x∗ is a solution to the constrained problem, x∗ is a minimiser of P

Conversely, under some regularity hypothesis for f , hi and gi ,

lim
α→∞

x∗(α) = x∗,

x∗(α) denotes the minimiser of Pα(x)

As α >> 1, x∗(α) is a good approximation of x∗

O
C
T
30
,
20
18

–
FC

–

Constrained

optimisation

UFC/DC
CK0031/CK0248

2018.2

Constrained
optimisation

The penalty method

The augmented
Lagrangian

The penalty method (cont.)

Example

Consider the minimisation of function f (x) under equality constraint h1(x)

Let
f (x) = x1 + x2

Let
h1(x) = x2

1 + x2
2 − 2 = 0

Consider the quadratic penalty function

Pα(x) = (x1 + x2) +
α

2
(x2

1 + x2
2 − 2)2

The minimiser is (−1,−1)′
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The penalty method (cont.)

The plot of the contour of the penalty function for α = 1
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There is a local minimiser near (0.3, 0.3)′
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The penalty method (cont.)

The plot of the contour of the penalty function for α = 10

−1.5 −1 −0.5 0 0.5 1 1.5
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Points outside the feasible region suffer a much greater penalty

"
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The penalty method (cont.)

Not advised (instability) to minimise Pα(x) directly for large values of α

Rather, consider an increasing and unbounded sequence of parameters
{
αk

}

• For each αk , calculate an approximation x(k) of the solution x∗(αk )
to the unconstrained optimisation problem min

x∈Rn
Pαk (x)

x(k) = arg min
x∈Rn

Pαk (x)

• At step k , αk+1 is a chosen as a function of αk (say, αk+1 = δαk , for
δ ∈ [1.5, 2]) and x(k) is used to initialise the minimisation at step k +1

In the first iterations there is no reason to believe that the solution to
min
x∈Rn

Pαk (x) should resemble the correct solution to the original problem

• This supports the idea of searching for an inexact solution to
min
x∈Rn

Pαk (x) that differs from the exact one, x(k), a small εk O
C
T
30
,
20
18

–
FC

–

Constrained

optimisation

UFC/DC
CK0031/CK0248

2018.2

Constrained
optimisation

The penalty method

The augmented
Lagrangian

The penalty method (cont.)

1 % PENALTY Constrained optimisation with penalty function
2 % [X,ERR ,K]=PFUNCTION (F,GRAD_F ,H,GRAD_H ,G,GRAD_G ,X_0 ,TOL ,...
3 % KMAX ,KMAXD ,TYP)
4 % Approximate a minimiser of the cost function F
5 % under constraints H=0 and G>=0
6 %
7 % X0 is initial point , TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F , GRAD_H , and GRAD_G are the gradients of F, H, and G

10 % H and G, GRAD_H and GRAD_G can be initialised to []
11 %
12 % For TYP =0 solution by FMINSEARCH M-function
13 %
14 % For TYP >0 solution by a DESCENT METHOD
15 % KMAXD is maximum number of iterations
16 % TYP is the choice of descent directions
17 % TYP =1 and TYP =2 need the Hessian (or an approx. at k=0)
18 % [X,ERR ,K]=PFUNCTION (F,GRAD_F ,H,GRAD_H ,G,GRAD_G ,X_0 ,TOL ,...
19 % KMAX ,KMAXD ,TYP ,HESS_FUN )
20 % For TYP =1 HESS_FUN is the function handle associated
21 % For TYP =2 HESS_FUN is a suitable approx. of Hessian at k=0
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The penalty method (cont.)

1 function [x,err ,k]=pFunction (f,grad_f ,h,grad_h ,g,grad_g ,...
2 x_0 ,tol ,kmax ,kmaxd ,typ ,varargin )
3

4 xk=x_0 (:); mu_0 =1.0;
5

6 if typ ==1; hess =varargin {1};
7 elseif typ ==2; hess =varargin {1};
8 else ; hess =[]; end
9 if ~ isempty(h), [nh,mh]=size (h(xk)); end

10 if ~ isempty(g), [ng,mg]=size (g(xk)); end
11

12 err =1+ tol; k=0; muk=mu_0 ; muk2 =muk /2; told =0.1;
13

14 while err >tol && k<kmax
15 if typ ==0
16 options=optimset (’TolX ’,told );
17 [x,err ,kd]= fminsearch (@P,xk ,options ); err=norm (x-xk);
18 else
19 [x,err ,kd]= dScent(@P ,@grad_P ,xk ,told ,kmaxd ,typ ,hess );
20 err=norm (grad_P(x));
21 end
22

23 if kd <kmaxd ; muk =10* muk; muk2 =0.5* muk;
24 else muk =1.5* muk; muk2 =0.5* muk; end
25

26 k=1+k; xk=x; told =max ([tol ,0.10* told ]);
27 end
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The penalty method (cont.)

1 function y=P(x) % This function is nested inside pFunction
2

3 y=fun(x);
4 if ~ isempty(h); y=y+muk2 *sum ((h(x)).^2) ; end
5 if ~ isempty(g); G=g(x);
6 for j=1: ng
7 y=y+muk2 *max([-G(j) ,0])^2;
8 end
9 end

1 function y=grad_P(x) % This function is nested in pFunction
2

3 y=grad_fun (x);
4 if ~ isempty(h), y=y+muk*grad_h(x)*h(x); end
5 if ~ isempty(g), G=g(x); Gg=grad_g(x);
6 for j=1: ng
7 if G(j) <0
8 y=y+muk*Gg(:,j)*G(j);
9 end

10 end
11 end
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The augmented Lagrangian

Consider a minimisation problem with equality constraints only (Ig = ∅)

min
x∈Rn

f (x)

subjected to

hi (x) = 0,∀i ∈ Ih

Definition

Define the augmented Lagrangian objective function

LA(x,λ,α) = f (x)−
∑

i∈Ih

λihi (x) + α/2
∑

i∈Ih

hi
2(x) (13)

α > 0 is a suitable coefficient
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The augmented Lagrangian (cont.)

LA(x,λ,α) = f (x)−
∑

i∈Ih

λihi (x) + α/2
∑

i∈Ih

hi
2(x)

Constrained optimisation using the augmented Laplacian is iterative

α0 and λ(0) are set arbitrarily, then build a sequence of parameters αk → ∞

αk → ∞ is st {(x(k),λ(k))} converges to a KKT point for the Lagrangian

L(x,λ) = f (x)−
∑

i∈Ih

λihi (x)

At the k -th iteration, for a given αk and for a given λ(k), we compute

x(k) = arg min
x∈Rn

LA

[

x,λ(k),αk

]

(14)
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The augmented Lagrangian (cont.)

We get multipliers λ(k+1) from the gradient of the augmented Lagrangian

• We set it to be equal to zero

∇xLA

[

x(k),λ(k),αk

]

= ∇f
[

x(k)]−
∑

i∈Ih

{

λ(k)
i − αkhi

[

x(k)]
}

∇hi
[

x(k)]

By comparison with optimality condition

∇xL(x∗,λ∗) = ∇f (x∗)−
∑

i∈Ih

λ∗
i ∇hi (x

∗) = 0

hi (x
∗) = 0, ∀i ∈ Ih

We identify λ(k)
i as λ(k)

i − αkhi
[
x(k)

]
≃ λ∗

i

We thus define,

λ(k+1)
i = λ(k)

i − αkhi
[

x(k)] (15)

We get x(k+1) by solving with k replaced by k + 1

x(k) = arg min
x∈Rn

LA

[
x,λ(k),αk

]
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The augmented Lagrangian (cont.)

Given α0 (typically, α0 = 1), given ε0 (typically ε0 = 1/10), given ε > 0,

given x
(0)
0 ∈ Rn and given λ

(0)
0 ∈ Rp , for k = 0, 1, . . . until convergence

Pseudo-code

Compute an approximated solution

x(k) = arg min
x∈Rn

LA

[

x,λ(k),αk

]

(Using the initial point x
(0)
0 and tolerance εk )

If
∣
∣
∣
∣∇xLA

[

x(k),λ(k),αk

]∣
∣
∣
∣ ≤ ε

Set x∗ = x(k) (convergence)
else

Compute λ(k+1)
i = λ(k)

i − µkhi
[
x(k)

]

Choose αk+1 > αk

Choose εk+1 < εk
Set x(k+1)

0 = x(k)

Endif
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The augmented Lagrangian (cont.)

The implementation of the algorithm

1 % ALGRNG Constrained optimisation with augmented Lagrangian
2 % [X,ERR ,K]=ALGRNG(F,GRAD_F ,H,GRAD_H ,X_0 ,LAMBDA_0 ,...
3 % TOL ,KMAX ,KMAXD ,TYP)
4 % Approximate a minimiser of the cost function F
5 % under equality constraints H=0
6 %
7 % X_0 is initial point , TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F and GRAD_H are the gradients of F and H

10 %
11 % For TYP =0 solution by FMINSEARCH M-function
12 % FOR TYP >0 solution by a DESCENT METHOD
13 % KMAXD is maximum number of iterations
14 % TYP is the choice of descent directions
15 % TYP =1 and TYP =2 need the Hessian (or an approx. at k=0)
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The augmented Lagrangian (cont.)

1 function [x,err ,k]=aLgrng(f,grad_f ,h,grad_h ,x_0 ,lambda_0 ,...
2 tol ,kmax ,kmaxd ,typ ,varargin)
3

4 mu_0 =1.0;
5

6 if typ ==1; hess =varargin {1};
7 elseif typ ==2; hess =varargin {1};
8 else ; hess =[]; end
9

10 err =1+ tol +1; k=0; xk=x_0 (:); lambdak=lambda_0 (:);
11

12 if ~ isempty(h); [nh,mh]=size (h(xk)); end
13

14 muk=mu_0 ; muk2 =muk /2; told =0.1;
15

16 while err >tol && k<kmax
17 if typ ==0
18 options=optimset (’TolX ’,told );
19 [x,err ,kd]= fminsearch (@L,xk ,options ); err=norm (x-xk);
20 else
21 [x,err ,kd]= descent(@L,@grad_L ,xk,told ,kmaxd ,typ ,hess );
22 err=norm (grad_L(x));
23 end
24

25 lambdak=lambdak -muk*h(x);
26 if kd <kmaxd ; muk =10* muk; muk2 =0.5* muk;
27 else muk =1.5* muk; muk2 =0.5* muk; end
28

29 k=1+k; xk=x; told =max ([tol ,0.10* told ]);
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The augmented Lagrangian (cont.)

1 function y=L(x) % This function is nested inside aLgrng
2

3 y=fun(x);
4 if ~ isempty(h)
5 y=y-sum(lambdak ’*h(x))+muk2 *sum ((h(x)).^2) ;
6 end

1 function y=grad_L(x) % This function is nested inside aLgrng
2

3 y=grad_fun (x);
4 if ~ isempty(h)
5 y=y+grad_h(x)*(muk*h(x)-lambdak);
6 end

lambda_0 contains the initial vector λ(0) of Lagrange multipliers
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The augmented Lagrangian (cont.)

Example

1 fun = @(x) 0.6* x(1) .^2 + 0.5* x(2) .*x(1) - x(2) + 3*x(1);
2 grad_fun = @(x) [1.2* x(1) + 0.5* x(2) + 3; 0.5* x(1) - 1];
3

4 h = @(x) x(1) .^2 + x(2) .^2 - 1;
5 grad_h = @(x) [2*x(1); 2*x(2) ];
6

7 x_0 = [1.2 ,0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;
8 p=1; % The number of equality constraints
9 lambda_0 = rand (p,1); typ =2; hess =eye (2);

10

11 [xmin ,err ,k] = aLagrange (fun ,grad_fun ,h,grad_h ,x_0 ,...
12 lambda_0 ,tol ,kmax ,kmax ,typ ,hess )

Stopping criterion: A tolerance set 10−5

The unconstrained minimisation by quasi-Newton descent directions

• (with typ=2 and hess=eye(2))


