#### UFC/DC CK0031/CK0248 2018.2

# (CK0031/CK0248)

Department of Computer Science Federal University of Ceará, Fortaleza

## Constrained optimisation

Francesco Corona

#### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

#### Constrained optimisation

### Constrained optimisation

We discuss two strategies for solving constrained minimisation problems

#### The penalty method

• Problems with both equality and inequality constraints

#### The augmented Lagrangian method

• Problems with equality constraints only

The two methods allow the solution of relatively simple problems

• Basic tools for more robust and complex algorithms

#### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

#### Constrained optimisation

## Constrained optimisation Numerical optimisation

#### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

#### Constrained optimisation

### Constrained optimisation (cont.)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  with  $n \geq 1$  be a cost or objective function

The constrained optimisation problem

$$\min_{\mathbf{x} \in \Omega \subset \mathcal{R}^n} f(\mathbf{x}) \tag{1}$$

 $\Omega$  is a closed subset determined by equality or inequality constraints

Given functions  $h_i: \mathbb{R}^n \to \mathbb{R}$ , for  $i = 1, \dots, p$ 

$$\Omega = \{ \mathbf{x} \in \mathcal{R}^n : h_i(\mathbf{x}) = 0, \text{ for } i = 1, \dots, p \}$$
(2)

Given functions  $g_j: \mathbb{R}^n \to \mathbb{R}$ , for  $j = 1, \dots, g$ 

$$\hookrightarrow \Omega = \{ \mathbf{x} \in \mathcal{R}^n : g_j(\mathbf{x}) \ge 0, \text{ for } j = 1, \dots, q \}$$
(3)

p and q are natural numbers

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The penalty methods.

#### Constrained optimisation (cont.)

More generally,

$$\min_{\mathbf{x} \in \Omega \subset \mathcal{R}^n} f(\mathbf{x}) \tag{4}$$

 $\Omega$  a closed subset determined by both equality and inequality constraints

$$\Omega = \left\{ \mathbf{x} \in \mathcal{R}^n : h_i(\mathbf{x}) = 0 \text{ for } \underbrace{i \in \mathcal{I}_h}_{i=1,\dots,p} \text{ and } g_j(\mathbf{x}) \ge 0 \text{ for } \underbrace{j \in \mathcal{I}_g}_{j=1,\dots,q} \right\}$$

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

#### Constrained

optimisation

48

Suppose that  $f \in \mathcal{C}^1(\mathbb{R}^n)$  and that  $h_i$  and  $g_j$  are class  $\mathcal{C}^1(\mathbb{R}^n)$ , for all i, j

Points  $\mathbf{x} \in \Omega \subset \mathcal{R}$  that satisfy all the constraints are feasible points

 $\longrightarrow$  The closed subset  $\Omega$  is the set of all feasible points

Constrained optimisation (cont.)

Consider a point  $\mathbf{x}^* \in \Omega \subset \mathcal{R}^n$ ,

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega$$
 (6)

Point  $\mathbf{x}^*$  is said to be a **global minimiser** for the problem

Consider a point  $\mathbf{x}^* \in \Omega \subset \mathcal{R}^n$ ,

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in B_r(\mathbf{x}^*) \cap \Omega$$
 (7)

Point  $\mathbf{x}^*$  is said to be a **local minimiser** for the problem

 $\rightarrow$   $B_r(\mathbf{x}^*) \in \mathcal{R}^n$  is a ball centred in  $\mathbf{x}^*$ , radius r > 0

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The penalty method The augmented Lagrangian

#### Constrained optimisation (cont.)

#### Definition

Let  $f: \mathbb{R}^n \to \mathbb{R}$  with  $n \geq 1$  be a cost or objective function

The general constrained optimisation problem

$$\min_{\mathbf{x} \in \mathcal{R}^n} f(\mathbf{x})$$

subjected to

$$\mathbf{h}_i(\mathbf{x}) = 0, \quad \text{for all } i \in \mathcal{I}_h$$

(5)

$$g_j(\mathbf{x}) \geq 0$$
, for all  $j \in \mathcal{I}_q$ 

The two sets  $\mathcal{I}_h = \{1, 2, \dots, p\}$  and  $\mathcal{I}_g = \{1, 2, \dots, q\}$ 

- $\rightarrow$  In Equation (3), we used  $\mathcal{I}_h = \emptyset$
- $\rightarrow$  In Equation (2), we used  $\mathcal{I}_g = \emptyset$

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The penalty meth

### Constrained optimisation (cont.)

A constraint is said to be active at  $\mathbf{x} \in \Omega$  if it is satisfied with equality

• Active constraints at **x** are the  $h_i(\mathbf{x}) = 0$  and the  $g_i(\mathbf{x}) = 0$ 

Let  $\Omega$  be a non-empty, bounded and closed set in  $\mathbb{R}^n$ 

Weierstrass guarantees existence of a maximum and a minimum for f in  $\Omega$ 

 $\leadsto$  The general constrained optimisation problem admits a solution

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The penalty method The augmented

#### Constrained optimisation (cont.)

#### Example

Consider the minimisation of function  $f(\mathbf{x})$  under equality constraint  $h_1(\mathbf{x})$ 

Let

$$f(\mathbf{x}) = 3/5x_1^2 + 1/2x_1x_2 - x_2 + 3x_1$$

Let

$$h_1(\mathbf{x}) = x_1^2 + x_2^2 - 1 = 0$$



Global minimiser  $\mathbf{x}^*$  constrained to  $\Omega$ 

- Contour lines of the cost  $f(\mathbf{x})$
- Admissibility set  $\Omega \in \mathbb{R}^2$

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

#### Constrained

optimisation

The augmented Lagrangian

### Constrained optimisation (cont.)

#### Definition

#### Strongly convexity

The condition for function  $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$  to be strongly convex in  $\Omega$ 

f is strongly convex if  $\exists \rho > 0$  such that  $\forall (\mathbf{x}, \mathbf{y}) \in \Omega$  and  $\forall \alpha \in [0, 1]$ 

$$\underbrace{f\left[\alpha\mathbf{x} + (1-\alpha)\mathbf{y}\right] \le \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y})}_{Convexity} - \alpha(1-\alpha)\rho||\mathbf{x} - \mathbf{y}||^{2} \qquad (8)$$

Strong convexity reduces to the usual convexity when  $\rho = 0$ 

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The penalty meth
The augmented

#### Constrained optimisation (cont.)

#### Example

Minimise  $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$ , under inequality constraints

$$g_1(\mathbf{x}) = -34x_1 - 30x_2 + 19 \ge 0$$

$$q_2(\mathbf{x}) = +10x_1 - 05x_2 + 11 > 0$$

$$g_3(\mathbf{x}) = +03x_1 + 22x_2 + 08 \ge 0$$



Global minimiser  $\mathbf{x}^*$  constrained to  $\Omega$ 

- Contour lines of the cost  $f(\mathbf{x})$
- Admissibility set  $\Omega \in \mathbb{R}^2$

### Constrained optimisation

## $^{\rm UFC/DC}_{\rm CK0031/CK0248}_{\rm 2018.2}$

### Constrained optimisation

The penalty meth
The augmented

### ${\bf Constrained\ optimisation\ (cont.)}$

#### Propositio

#### Optimality conditions

Let  $\Omega \subset \mathbb{R}^n$  be a convex set and let  $\mathbf{x}^* \in \Omega$  be such that  $f \in C^1[B_r(\mathbf{x}^*)]$ 

Suppose that  $\mathbf{x}^*$  is a local minimiser for constrained minimisation,

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \forall \mathbf{x} \in \Omega$$
 (9)

If f is convex in  $\Omega$  and (9) is satisfied, then  $\mathbf{x}^*$  is a global minimiser

Suppose that we require  $\Omega$  to be closed and f to be strongly convex

 $\longrightarrow$  It can be shown that the minimiser  $\mathbf{x}^*$  is also unique

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The penalty method
The augmented

#### Constrained optimisation (cont.)

There are many algorithms for solving constrained minimisation problems

Many search for the stationary points of the Lagrangian function

→ The KKT or Karush-Kuhn-Tucker points

#### Definition

$$\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$

The Lagrangian function associated with the constrained minimisation

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x}) - \sum_{j \in \mathcal{I}_q} \mu_j g_j(\mathbf{x})$$
 (10)

 $\lambda$  and  $\mu$  are Lagrangian multipliers

$$\rightarrow$$
  $\lambda = (\lambda_i), for i \in \mathcal{I}_h$ 

$$\rightarrow \mu = (\mu_i), \text{ for } j \in \mathcal{I}_q$$

They are (weights) associated with the equality and inequality constraints

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

#### Constrained

optimisation

The penalty metho

### Constrained optimisation (cont.)

Let x be some given point

Consider  $\nabla h_i(\mathbf{x})$  and  $\nabla q_i(\mathbf{x})$  associated with active constraints in  $\mathbf{x}$ 

• Suppose that these gradients are linearly independent

Linear independence (constraint) qualification (LI(C)Q) in x

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The penalty method

#### Constrained optimisation (cont.)

#### Definition

#### Karush-Kuhn-Tucker conditions

A point  $\mathbf{x}^*$  is said to be a KKT point for  $\mathcal{L}$  if there exist  $\boldsymbol{\lambda}^*$  and  $\boldsymbol{\mu}^*$  such that the triplet  $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$  satisfies the Karush-Kuhn-Tucker conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) - \sum_{j \in \mathcal{I}_g} \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{I}_h$$

$$g_i(\mathbf{x}^*) \ge 0, \quad \forall j \in \mathcal{I}_g$$

$$\mu_i^* \geq 0, \quad \forall j \in \mathcal{I}_q$$

$$\mu_j^* g_j(\mathbf{x}^*) = 0, \quad \forall j \in \mathcal{I}_g$$

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The penalty method

### Constrained optimisation (cont.)

#### Cheorem

#### First-order KKT conditions

Let  $\mathbf{x}^*$  be a local minimum for the constrained problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

subjected to

$$h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$$

$$g_j(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_q$$

Let functions f,  $h_i$  and  $g_j$  be  $C^1(\Omega)$  and let the constraints be LIQ in  $\mathbf{x}^*$ 

There exist  $\lambda^*$  and  $\mu^*$  such that  $(\mathbf{x}^*, \lambda^*, \mu^*)$  is a KKT point

#### UFC/DC CK0031/CK0248 2018.2

### Constrained optimisation

The augmented

#### Constrained optimisation (cont.)

In the absence of inequality constraints, the Lagrangian takes the form

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i \nabla h_i(\mathbf{x}^*)$$

The KKT conditions are known as Lagrange (necessary) conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \forall i \in \mathcal{I}_h$$
(11)

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

Constrained

optimisation

The penalty method

The penalty method Constrained optimisation

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method
The augmented
Lagrangian

#### Constrained optimisation (cont.)

#### Remark

Sufficient conditions for a KKT point  $\mathbf{x}$  to be a minimiser of f in  $\Omega$ 

Moving the Hessian of the Lagrangian is required

Alternatively, we need strict convexity hypothesis on f and the constraints

In general, it is possible to reformulate a constrained optimisation problem

• As an unconstrained optimisation problem

The idea is to replace the original problem by a sequence of subproblems in which the constraints are represented by terms added to the objective

- → (Quadratic) Penalty function
- → Augmented Lagrangian

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty method

### The penalty method

Consider solving the general constrained optimisation problem

$$\min_{\mathbf{x} \in \mathcal{R}^n} f(\mathbf{x})$$
subjected to
$$h_i(\mathbf{x}) = 0, \quad \forall i \in \mathcal{I}_h$$

$$q_i(\mathbf{x}) > 0, \quad \forall j \in \mathcal{I}_q$$

We reformulate it as an unconstrained optimisation problem

#### Definition

The modified penalty function, for a fixed penalty parameter  $\alpha > 0$ 

$$\mathcal{P}_{\alpha}(\mathbf{x}) = f(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_h} h_i^2(\mathbf{x}) + \frac{\alpha}{2} \sum_{j \in \mathcal{I}_g} \left[ \max \left\{ -g_j(\mathbf{x}), 0 \right\} \right]^2$$
(12)

The method adds a multiple of the square of the violation of each constraint

• Terms are zero when x does not violate the constrain

#### UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty metho

The augmented

#### The penalty method (cont.)

$$\mathcal{P}_{\alpha}(\mathbf{x}) = f(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_h} h_i^2(\mathbf{x}) + \frac{\alpha}{2} \sum_{j \in \mathcal{I}_g} \left[ \max \left\{ -g_j(\mathbf{x}), 0 \right\} \right]^2$$

By making the coefficients larger, we penalise violations more severely

• This forces the minimiser closer to the feasible region

Consider the situation in which the constraints are not satisfied at  $\mathbf{x}$ 

- The sums quantify how far point  $\mathbf{x}$  is from the feasibility set  $\Omega$
- A large  $\alpha$  heavily penalises such a violation

If  $\mathbf{x}^*$  is a solution to the constrained problem,  $\mathbf{x}^*$  is a minimiser of  $\mathcal{P}$ 

Conversely, under some regularity hypothesis for f,  $h_i$  and  $g_i$ ,

$$\lim_{\alpha \to \infty} \mathbf{x}^*(\alpha) = \mathbf{x}^*,$$

 $\mathbf{x}^*(\alpha)$  denotes the minimiser of  $\mathcal{P}_{\alpha}(\mathbf{x})$ 

As  $\alpha >> 1$ ,  $\mathbf{x}^*(\alpha)$  is a good approximation of  $\mathbf{x}^*$ 

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty method

### The penalty method (cont.)

The plot of the contour of the penalty function for  $\alpha = 1$ 



There is a local minimiser near (0.3, 0.3)'

### Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method
The augmented

#### The penalty method (cont.)

#### Example

Consider the minimisation of function  $f(\mathbf{x})$  under equality constraint  $h_1(\mathbf{x})$ 

Let

$$f(\mathbf{x}) = x_1 + x_2$$

Let

$$h_1(\mathbf{x}) = x_1^2 + x_2^2 - 2 = 0$$

Consider the quadratic penalty function

$$\mathcal{P}_{\alpha}(\mathbf{x}) = (x_1 + x_2) + \frac{\alpha}{2}(x_1^2 + x_2^2 - 2)^2$$

The minimiser is (-1, -1)'

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty method

### The penalty method (cont.)

The plot of the contour of the penalty function for  $\alpha = 10$ 



Points outside the feasible region suffer a much greater penalty

#### UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty method

#### The penalty method (cont.)

Not advised (instability) to minimise  $\mathcal{P}_{\alpha}(\mathbf{x})$  directly for large values of  $\alpha$ 

Rather, consider an increasing and unbounded sequence of parameters  $\{\alpha_k\}$ 

• For each  $\alpha_k$ , calculate an approximation  $\mathbf{x}^{(k)}$  of the solution  $\mathbf{x}^*(\alpha_k)$  to the unconstrained optimisation problem  $\min_{\mathbf{x} \in \mathcal{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$ 

$$\mathbf{x}^{(k)} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$$

• At step k,  $\alpha_{k+1}$  is a chosen as a function of  $\alpha_k$  (say,  $\alpha_{k+1} = \delta \alpha_k$ , for  $\delta \in [1.5, 2]$ ) and  $\mathbf{x}^{(k)}$  is used to initialise the minimisation at step k+1

In the first iterations there is no reason to believe that the solution to  $\min_{\mathbf{x} \in \mathcal{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$  should resemble the correct solution to the original problem

• This supports the idea of searching for an inexact solution to  $\min_{\mathbf{x} \in \mathcal{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$  that differs from the exact one,  $\mathbf{x}^{(k)}$ , a small  $\varepsilon_k$ 

### Constrained optimisation

## $^{\rm UFC/DC}_{\rm CK0031/CK0248}_{\rm 2018.2}$

Constrained

The penalty method

### The penalty method (cont.)

```
function [x,err,k]=pFunction(f,grad_f,h,grad_h,g,grad_g,...
                                x_0, tol, kmax, kmaxd, typ, varargin)
  xk=x_0(:); mu_0=1.0;
6 if typ==1; hess=varargin{1};
 7 elseif typ==2; hess=varargin{1};
 8 else; hess=[]; end
9 if ~isempty(h), [nh,mh]=size(h(xk)); end
10 if "isempty(g), [ng,mg]=size(g(xk)); end
12 err=1+tol; k=0; muk=mu_0; muk2=muk/2; told=0.1;
14 while err>tol && k<kmax
    options=optimset('TolX',told);
    [x,err,kd]=fminsearch(@P,xk,options); err=norm(x-xk);
    [x,err,kd]=dScent(@P,@grad_P,xk,told,kmaxd,typ,hess);
    err=norm(grad_P(x));
21 end
22
23 if kd<kmaxd: muk=10*muk: muk2=0.5*muk:
24 else muk=1.5*muk; muk2=0.5*muk; end
26 k=1+k; xk=x; told=max([tol,0.10*told]);
```

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

optimisation
The penalty met

The penalty method
The augmented

#### The penalty method (cont.)

```
1 % PENALTY Constrained optimisation with penalty function
2 % [X,ERR,K]=PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_O,TOL,...
                       KMAX, KMAXD, TYP)
     Approximate a minimiser of the cost function F
5 % under constraints H=O and G>=O
7 % XO is initial point, TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F, GRAD_H, and GRAD_G are the gradients of F, H, and G
10 % H and G, GRAD_H and GRAD_G can be initialised to []
12 % For TYP=0 solution by FMINSEARCH M-function
14 % For TYP>0 solution by a DESCENT METHOD
15 % KMAXD is maximum number of iterations
16 % TYP is the choice of descent directions
17 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
18 % [X,ERR,K]=PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_0,TOL,...
                         KMAX, KMAXD, TYP, HESS_FUN)
20 % For TYP=1 HESS_FUN is the function handle associated
21 % For TYP=2 HESS_FUN is a suitable approx. of Hessian at k=0
```

### Constrained optimisation

## $^{\rm UFC/DC}_{\rm CK0031/CK0248}_{\rm 2018.2}$

optimisation
The penalty method

### The penalty method (cont.)

```
function y=P(x) % This function is nested inside pFunction

y=fun(x);
if ^isempty(h); y=y+muk2*sum((h(x)).^2); end
if ^isempty(g); G=g(x);
for j=1:ng
y=y+muk2*max([-G(j),0])^2;
end
end

function y=grad_P(x) % This function is nested in pFunction

y=grad_fun(x);
if ^isempty(h), y=y+muk*grad_h(x)*h(x); end
if ^isempty(g), G=g(x); Gg=grad_g(x);
for j=1:ng
if G(j)<0
y=y+muk*Gg(:,j)*G(j);
end
end
end</pre>
```

#### UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty methor
The augmented
Lagrangian

# The augmented Lagrangian Constrained optimisation

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty methor
The augmented
Lagrangian

### The augmented Lagrangian (cont.)

$$\mathcal{L}_{A}(\mathbf{x}, \boldsymbol{\lambda}, \alpha) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_{h}} \lambda_{i} h_{i}(\mathbf{x}) + \alpha/2 \sum_{i \in \mathcal{I}_{h}} h_{i}^{2}(\mathbf{x})$$

Constrained optimisation using the augmented Laplacian is iterative  $\alpha_0$  and  $\lambda^{(0)}$  are set arbitrarily, then build a sequence of parameters  $\alpha_k \to \infty$   $\alpha_k \to \infty$  is st  $\{(\mathbf{x}^{(k)}, \lambda^{(k)})\}$  converges to a KKT point for the Lagrangian

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x})$$

At the k-th iteration, for a given  $\alpha_k$  and for a given  $\lambda^{(k)}$ , we compute

$$\mathbf{x}^{(k)} = \underset{\mathbf{x} \in \mathcal{R}^n}{\text{arg min }} \mathcal{L}_A[\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k]$$
 (14)

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

optimisation
The penalty metho
The augmented

Lagrangian

Consider a minimisation problem with equality constraints only  $(\mathcal{I}_g = \emptyset)$ 

The augmented Lagrangian

$$\min_{\mathbf{x} \in \mathcal{R}^n} f(\mathbf{x})$$
subjected to
 $h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$ 

#### Definition

Define the augmented Lagrangian objective function

$$\mathcal{L}_{A}(\mathbf{x}, \lambda, \alpha) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_{h}} \lambda_{i} h_{i}(\mathbf{x}) + \alpha/2 \sum_{i \in \mathcal{I}_{h}} h_{i}^{2}(\mathbf{x})$$
(13)

 $\alpha>0\ is\ a\ suitable\ coefficient$ 

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method
The augmented
Lagrangian

### The augmented Lagrangian (cont.)

We get multipliers  $\lambda^{(k+1)}$  from the gradient of the augmented Lagrangian

• We set it to be equal to zero

$$\nabla_{\mathbf{x}} \mathcal{L}_{A} \left[ \mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k} \right] = \nabla f \left[ \mathbf{x}^{(k)} \right] - \sum_{i \in \mathcal{I}_{h}} \left\{ \lambda_{i}^{(k)} - \alpha_{k} h_{i} \left[ \mathbf{x}^{(k)} \right] \right\} \nabla h_{i} \left[ \mathbf{x}^{(k)} \right]$$

By comparison with optimality condition

$$abla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{I}_h$$

We identify  $\lambda_i^{(k)}$  as  $\lambda_i^{(k)} - \alpha_k h_i \left[ \mathbf{x}^{(k)} \right] \simeq \lambda_i^*$ 

We thus define,

$$\lambda_i^{(k+1)} = \lambda_i^{(k)} - \alpha_k h_i \left[ \mathbf{x}^{(k)} \right]$$
 (15)

We get  $\mathbf{x}^{(k+1)}$  by solving with k replaced by k+1

$$\mathbf{x}^{(k)} = \arg\min_{\mathbf{x} \in \mathcal{R}^n} \mathcal{L}_A[\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k]$$

#### UFC/DC CK0031/CK0248 2018.2

optimisation

The penalty method

The augmented

Lagrangian

### The augmented Lagrangian (cont.)

Given  $\alpha_0$  (typically,  $\alpha_0 = 1$ ), given  $\varepsilon_0$  (typically  $\varepsilon_0 = 1/10$ ), given  $\overline{\varepsilon} > 0$ , given  $\mathbf{x}_0^{(0)} \in \mathbb{R}^n$  and given  $\boldsymbol{\lambda}_0^{(0)} \in \mathbb{R}^p$ , for  $k = 0, 1, \ldots$  until convergence

#### Pseudo-cod $\epsilon$

Compute an approximated solution

$$\mathbf{x}^{(k)} = \mathop{arg\;min}\limits_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}_Aig[\mathbf{x}, oldsymbol{\lambda}^{(k)}, lpha_kig]$$

(Using the initial point  $\mathbf{x}_0^{(0)}$  and tolerance  $\varepsilon_k$ )

$$\begin{split} &If \left| \left| \nabla_{\mathbf{x}} \mathcal{L}_{A} [\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k}] \right| \right| \leq \overline{\varepsilon} \\ &Set \ \mathbf{x}^{*} = \mathbf{x}^{(k)} \ (convergence) \\ &else \\ &Compute \ \lambda_{i}^{(k+1)} = \lambda_{i}^{(k)} - \mu_{k} h_{i} [\mathbf{x}^{(k)}] \\ &Choose \ \alpha_{k+1} > \alpha_{k} \\ &Choose \ \varepsilon_{k+1} < \varepsilon_{k} \\ &Set \ \mathbf{x}_{0}^{(k+1)} = \mathbf{x}^{(k)} \\ &Endif \end{split}$$

## Constrained optimisation

## ${ \begin{array}{c} {\rm UFC/DC} \\ {\rm CK0031/CK0248} \\ 2018.2 \end{array} }$

Constrained optimisation

The penalty methods
The augmented
Lagrangian

### The augmented Lagrangian (cont.)

```
function [x,err,k]=aLgrng(f,grad_f,h,grad_h,x_0,lambda_0,...
                             tol, kmax, kmaxd, typ, varargin)
4 mu_0=1.0;
6 if typ==1; hess=varargin{1};
   elseif typ==2; hess=varargin{1};
 8 else; hess=[]; end
10 err=1+tol+1; k=0; xk=x_0(:); lambdak=lambda_0(:);
12 if ~isempty(h); [nh,mh]=size(h(xk)); end
14 muk=mu_0; muk2=muk/2; told=0.1;
16 while err>tol && k<kmax
    options=optimset ('TolX',told);
    [x,err,kd]=fminsearch(@L,xk,options); err=norm(x-xk);
21 [x,err,kd]=descent(@L,@grad_L,xk,told,kmaxd,typ,hess);
    err=norm(grad_L(x));
25 lambdak=lambdak-muk*h(x);
  if kd < kmaxd; muk = 10 * muk; muk2 = 0.5 * muk;</pre>
  else muk=1.5*muk; muk2=0.5*muk; end
29 k=1+k; xk=x; told=max([tol,0.10*told]);
```

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

The penalty method
The augmented
Lagrangian

#### The augmented Lagrangian (cont.)

The implementation of the algorithm

```
1 % ALGRNG Constrained optimisation with augmented Lagrangian
2 % [X,ERR,K]=ALGRNG(F,GRAD_F,H,GRAD_H,X_O,LAMEDA_O,...
3 % TOL,KMAX,KMAXD,TYP)
4 % Approximate a minimiser of the cost function F
5 % under equality constraints H=0
6 %
7 % X_O is initial point, TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F and GRAD_H are the gradients of F and H
10 %
11 % For TYP=0 solution by FMINSEARCH M-function
12 % FOR TYP>0 solution by a DESCENT METHOD
13 % KMAXD is maximum number of iterations
14 % TYP is the choice of descent directions
15 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
```

### Constrained optimisation

#### UFC/DC CK0031/CK0248 2018.2

optimisation
The penalty method
The augmented
Lagrangian

### The augmented Lagrangian (cont.)

```
function y=L(x) % This function is nested inside aLgrng

y=fun(x);
if `isempty(h)
y=y=sum(lambdak'*h(x))+muk2*sum((h(x)).^2);
end
```

```
function y=grad_L(x) % This function is nested inside aLgrng

y=grad_fun(x);
if ~isempty(h)

y=y+grad_h(x)*(muk*h(x)-lambdak);
end
```

lambda\_0 contains the initial vector  $\lambda^{(0)}$  of Lagrange multipliers

UFC/DC CK0031/CK0248 2018.2

## The augmented Lagrangian

### The augmented Lagrangian (cont.)

```
1 fun = @(x) 0.6*x(1).^2 + 0.5*x(2).*x(1) - x(2) + 3*x(1);
2 grad_fun = @(x) [1.2*x(1) + 0.5*x(2) + 3; 0.5*x(1) - 1];
4 h = @(x) x(1).^2 + x(2).^2 - 1;
grad_h = 0(x) [2*x(1); 2*x(2)];
7 x_0 = [1.2, 0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;
8 p=1; % The number of equality constraints
```

Stopping criterion: A tolerance set  $10^{-5}$ 

9 lambda\_0 = rand(p,1); typ=2; hess=eye(2);

11 [xmin,err,k] = aLagrange(fun,grad\_fun,h,grad\_h,x\_0,... 12 lambda\_0 ,tol ,kmax ,kmax ,typ ,hess)

The unconstrained minimisation by quasi-Newton descent directions

• (with typ=2 and hess=eye(2))