UFC/DC CK0031/CK0248 2018.2

(CK0031/CK0248)

Department of Computer Science Federal University of Ceará, Fortaleza

Constrained optimisation

Francesco Corona

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

Constrained optimisation

We discuss two strategies for solving constrained minimisation problems

The penalty method

• Problems with both equality and inequality constraints

The augmented Lagrangian method

• Problems with equality constraints only

The two methods allow the solution of relatively simple problems

• Basic tools for more robust and complex algorithms

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

Constrained optimisation Numerical optimisation

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

Constrained optimisation (cont.)

Let $f: \mathbb{R}^n \to \mathbb{R}$ with $n \geq 1$ be a cost or objective function

The constrained optimisation problem

$$\min_{\mathbf{x} \in \Omega \subset \mathcal{R}^n} f(\mathbf{x}) \tag{1}$$

 Ω is a closed subset determined by equality or inequality constraints

Given functions $h_i: \mathbb{R}^n \to \mathbb{R}$, for $i = 1, \dots, p$

$$\Omega = \{ \mathbf{x} \in \mathcal{R}^n : h_i(\mathbf{x}) = 0, \text{ for } i = 1, \dots, p \}$$
(2)

Given functions $g_j: \mathbb{R}^n \to \mathbb{R}$, for $j = 1, \dots, g$

$$\hookrightarrow \Omega = \{ \mathbf{x} \in \mathcal{R}^n : g_j(\mathbf{x}) \ge 0, \text{ for } j = 1, \dots, q \}$$
(3)

p and q are natural numbers

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty methods.

Constrained optimisation (cont.)

More generally,

$$\min_{\mathbf{x} \in \Omega \subset \mathcal{R}^n} f(\mathbf{x}) \tag{4}$$

 Ω a closed subset determined by both equality and inequality constraints

$$\Omega = \left\{ \mathbf{x} \in \mathcal{R}^n : h_i(\mathbf{x}) = 0 \text{ for } \underbrace{i \in \mathcal{I}_h}_{i=1,\dots,p} \text{ and } g_j(\mathbf{x}) \ge 0 \text{ for } \underbrace{j \in \mathcal{I}_g}_{j=1,\dots,q} \right\}$$

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained

optimisation

48

Suppose that $f \in \mathcal{C}^1(\mathbb{R}^n)$ and that h_i and g_j are class $\mathcal{C}^1(\mathbb{R}^n)$, for all i, j

Points $\mathbf{x} \in \Omega \subset \mathcal{R}$ that satisfy all the constraints are feasible points

 \longrightarrow The closed subset Ω is the set of all feasible points

Constrained optimisation (cont.)

Consider a point $\mathbf{x}^* \in \Omega \subset \mathcal{R}^n$,

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega$$
 (6)

Point \mathbf{x}^* is said to be a **global minimiser** for the problem

Consider a point $\mathbf{x}^* \in \Omega \subset \mathcal{R}^n$,

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in B_r(\mathbf{x}^*) \cap \Omega$$
 (7)

Point \mathbf{x}^* is said to be a **local minimiser** for the problem

 \rightarrow $B_r(\mathbf{x}^*) \in \mathcal{R}^n$ is a ball centred in \mathbf{x}^* , radius r > 0

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method The augmented Lagrangian

Constrained optimisation (cont.)

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ with $n \geq 1$ be a cost or objective function

The general constrained optimisation problem

$$\min_{\mathbf{x} \in \mathcal{R}^n} f(\mathbf{x})$$

subjected to

$$\mathbf{h}_i(\mathbf{x}) = 0, \quad \text{for all } i \in \mathcal{I}_h$$

(5)

$$g_j(\mathbf{x}) \geq 0$$
, for all $j \in \mathcal{I}_q$

The two sets $\mathcal{I}_h = \{1, 2, \dots, p\}$ and $\mathcal{I}_g = \{1, 2, \dots, q\}$

- \rightarrow In Equation (3), we used $\mathcal{I}_h = \emptyset$
- \rightarrow In Equation (2), we used $\mathcal{I}_g = \emptyset$

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty meth

Constrained optimisation (cont.)

A constraint is said to be active at $\mathbf{x} \in \Omega$ if it is satisfied with equality

• Active constraints at **x** are the $h_i(\mathbf{x}) = 0$ and the $g_i(\mathbf{x}) = 0$

Let Ω be a non-empty, bounded and closed set in \mathbb{R}^n

Weierstrass guarantees existence of a maximum and a minimum for f in Ω

 \leadsto The general constrained optimisation problem admits a solution

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method The augmented

Constrained optimisation (cont.)

Example

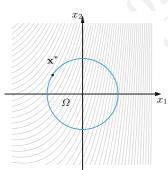
Consider the minimisation of function $f(\mathbf{x})$ under equality constraint $h_1(\mathbf{x})$

Let

$$f(\mathbf{x}) = 3/5x_1^2 + 1/2x_1x_2 - x_2 + 3x_1$$

Let

$$h_1(\mathbf{x}) = x_1^2 + x_2^2 - 1 = 0$$



Global minimiser \mathbf{x}^* constrained to Ω

- Contour lines of the cost $f(\mathbf{x})$
- Admissibility set $\Omega \in \mathbb{R}^2$

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained

optimisation

The augmented Lagrangian

Constrained optimisation (cont.)

Definition

Strongly convexity

The condition for function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ to be strongly convex in Ω

f is strongly convex if $\exists \rho > 0$ such that $\forall (\mathbf{x}, \mathbf{y}) \in \Omega$ and $\forall \alpha \in [0, 1]$

$$\underbrace{f\left[\alpha\mathbf{x} + (1-\alpha)\mathbf{y}\right] \le \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y})}_{Convexity} - \alpha(1-\alpha)\rho||\mathbf{x} - \mathbf{y}||^{2} \qquad (8)$$

Strong convexity reduces to the usual convexity when $\rho = 0$

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty meth
The augmented

Constrained optimisation (cont.)

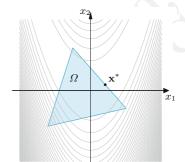
Example

Minimise $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$, under inequality constraints

$$g_1(\mathbf{x}) = -34x_1 - 30x_2 + 19 \ge 0$$

$$q_2(\mathbf{x}) = +10x_1 - 05x_2 + 11 > 0$$

$$g_3(\mathbf{x}) = +03x_1 + 22x_2 + 08 \ge 0$$



Global minimiser \mathbf{x}^* constrained to Ω

- Contour lines of the cost $f(\mathbf{x})$
- Admissibility set $\Omega \in \mathbb{R}^2$

Constrained optimisation

$^{\rm UFC/DC}_{\rm CK0031/CK0248}_{\rm 2018.2}$

Constrained optimisation

The penalty meth
The augmented

${\bf Constrained\ optimisation\ (cont.)}$

Propositio

Optimality conditions

Let $\Omega \subset \mathbb{R}^n$ be a convex set and let $\mathbf{x}^* \in \Omega$ be such that $f \in C^1[B_r(\mathbf{x}^*)]$

Suppose that \mathbf{x}^* is a local minimiser for constrained minimisation,

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \forall \mathbf{x} \in \Omega$$
 (9)

If f is convex in Ω and (9) is satisfied, then \mathbf{x}^* is a global minimiser

Suppose that we require Ω to be closed and f to be strongly convex

 \longrightarrow It can be shown that the minimiser \mathbf{x}^* is also unique

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method
The augmented

Constrained optimisation (cont.)

There are many algorithms for solving constrained minimisation problems

Many search for the stationary points of the Lagrangian function

→ The KKT or Karush-Kuhn-Tucker points

Definition

$$\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$

The Lagrangian function associated with the constrained minimisation

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x}) - \sum_{j \in \mathcal{I}_q} \mu_j g_j(\mathbf{x})$$
 (10)

 λ and μ are Lagrangian multipliers

$$\rightarrow$$
 $\lambda = (\lambda_i), for i \in \mathcal{I}_h$

$$\rightarrow \mu = (\mu_i), \text{ for } j \in \mathcal{I}_q$$

They are (weights) associated with the equality and inequality constraints

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained

optimisation

The penalty metho

Constrained optimisation (cont.)

Let x be some given point

Consider $\nabla h_i(\mathbf{x})$ and $\nabla q_i(\mathbf{x})$ associated with active constraints in \mathbf{x}

• Suppose that these gradients are linearly independent

Linear independence (constraint) qualification (LI(C)Q) in x

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method

Constrained optimisation (cont.)

Definition

Karush-Kuhn-Tucker conditions

A point \mathbf{x}^* is said to be a KKT point for \mathcal{L} if there exist $\boldsymbol{\lambda}^*$ and $\boldsymbol{\mu}^*$ such that the triplet $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ satisfies the Karush-Kuhn-Tucker conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) - \sum_{j \in \mathcal{I}_g} \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{I}_h$$

$$g_i(\mathbf{x}^*) \ge 0, \quad \forall j \in \mathcal{I}_g$$

$$\mu_i^* \geq 0, \quad \forall j \in \mathcal{I}_q$$

$$\mu_j^* g_j(\mathbf{x}^*) = 0, \quad \forall j \in \mathcal{I}_g$$

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method

Constrained optimisation (cont.)

Cheorem

First-order KKT conditions

Let \mathbf{x}^* be a local minimum for the constrained problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

subjected to

$$h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$$

$$g_j(\mathbf{x}) \geq 0, \forall j \in \mathcal{I}_q$$

Let functions f, h_i and g_j be $C^1(\Omega)$ and let the constraints be LIQ in \mathbf{x}^*

There exist λ^* and μ^* such that $(\mathbf{x}^*, \lambda^*, \mu^*)$ is a KKT point

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The augmented

Constrained optimisation (cont.)

In the absence of inequality constraints, the Lagrangian takes the form

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i \nabla h_i(\mathbf{x}^*)$$

The KKT conditions are known as Lagrange (necessary) conditions

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \forall i \in \mathcal{I}_h$$
(11)

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained

optimisation

The penalty method

The penalty method Constrained optimisation

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method
The augmented
Lagrangian

Constrained optimisation (cont.)

Remark

Sufficient conditions for a KKT point \mathbf{x} to be a minimiser of f in Ω

Moving the Hessian of the Lagrangian is required

Alternatively, we need strict convexity hypothesis on f and the constraints

In general, it is possible to reformulate a constrained optimisation problem

• As an unconstrained optimisation problem

The idea is to replace the original problem by a sequence of subproblems in which the constraints are represented by terms added to the objective

- → (Quadratic) Penalty function
- → Augmented Lagrangian

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty method

The penalty method

Consider solving the general constrained optimisation problem

$$\min_{\mathbf{x} \in \mathcal{R}^n} f(\mathbf{x})$$
subjected to
$$h_i(\mathbf{x}) = 0, \quad \forall i \in \mathcal{I}_h$$

$$q_i(\mathbf{x}) > 0, \quad \forall j \in \mathcal{I}_q$$

We reformulate it as an unconstrained optimisation problem

Definition

The modified penalty function, for a fixed penalty parameter $\alpha > 0$

$$\mathcal{P}_{\alpha}(\mathbf{x}) = f(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_h} h_i^2(\mathbf{x}) + \frac{\alpha}{2} \sum_{j \in \mathcal{I}_g} \left[\max \left\{ -g_j(\mathbf{x}), 0 \right\} \right]^2$$
(12)

The method adds a multiple of the square of the violation of each constraint

• Terms are zero when x does not violate the constrain

UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty metho

The augmented

The penalty method (cont.)

$$\mathcal{P}_{\alpha}(\mathbf{x}) = f(\mathbf{x}) + \frac{\alpha}{2} \sum_{i \in \mathcal{I}_h} h_i^2(\mathbf{x}) + \frac{\alpha}{2} \sum_{j \in \mathcal{I}_g} \left[\max \left\{ -g_j(\mathbf{x}), 0 \right\} \right]^2$$

By making the coefficients larger, we penalise violations more severely

• This forces the minimiser closer to the feasible region

Consider the situation in which the constraints are not satisfied at \mathbf{x}

- The sums quantify how far point \mathbf{x} is from the feasibility set Ω
- A large α heavily penalises such a violation

If \mathbf{x}^* is a solution to the constrained problem, \mathbf{x}^* is a minimiser of \mathcal{P}

Conversely, under some regularity hypothesis for f, h_i and g_i ,

$$\lim_{\alpha \to \infty} \mathbf{x}^*(\alpha) = \mathbf{x}^*,$$

 $\mathbf{x}^*(\alpha)$ denotes the minimiser of $\mathcal{P}_{\alpha}(\mathbf{x})$

As $\alpha >> 1$, $\mathbf{x}^*(\alpha)$ is a good approximation of \mathbf{x}^*

Constrained optimisation

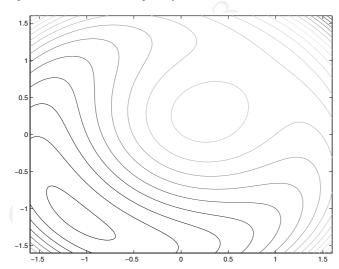
UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty method

The penalty method (cont.)

The plot of the contour of the penalty function for $\alpha = 1$



There is a local minimiser near (0.3, 0.3)'

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method
The augmented

The penalty method (cont.)

Example

Consider the minimisation of function $f(\mathbf{x})$ under equality constraint $h_1(\mathbf{x})$

Let

$$f(\mathbf{x}) = x_1 + x_2$$

Let

$$h_1(\mathbf{x}) = x_1^2 + x_2^2 - 2 = 0$$

Consider the quadratic penalty function

$$\mathcal{P}_{\alpha}(\mathbf{x}) = (x_1 + x_2) + \frac{\alpha}{2}(x_1^2 + x_2^2 - 2)^2$$

The minimiser is (-1, -1)'

Constrained optimisation

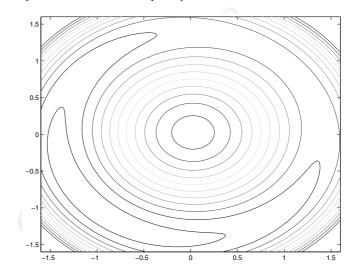
UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty method

The penalty method (cont.)

The plot of the contour of the penalty function for $\alpha = 10$



Points outside the feasible region suffer a much greater penalty

UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty method

The penalty method (cont.)

Not advised (instability) to minimise $\mathcal{P}_{\alpha}(\mathbf{x})$ directly for large values of α

Rather, consider an increasing and unbounded sequence of parameters $\{\alpha_k\}$

• For each α_k , calculate an approximation $\mathbf{x}^{(k)}$ of the solution $\mathbf{x}^*(\alpha_k)$ to the unconstrained optimisation problem $\min_{\mathbf{x} \in \mathcal{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$

$$\mathbf{x}^{(k)} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$$

• At step k, α_{k+1} is a chosen as a function of α_k (say, $\alpha_{k+1} = \delta \alpha_k$, for $\delta \in [1.5, 2]$) and $\mathbf{x}^{(k)}$ is used to initialise the minimisation at step k+1

In the first iterations there is no reason to believe that the solution to $\min_{\mathbf{x} \in \mathcal{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$ should resemble the correct solution to the original problem

• This supports the idea of searching for an inexact solution to $\min_{\mathbf{x} \in \mathcal{R}^n} \mathcal{P}_{\alpha_k}(\mathbf{x})$ that differs from the exact one, $\mathbf{x}^{(k)}$, a small ε_k

Constrained optimisation

$^{\rm UFC/DC}_{\rm CK0031/CK0248}_{\rm 2018.2}$

Constrained

The penalty method

The penalty method (cont.)

```
function [x,err,k]=pFunction(f,grad_f,h,grad_h,g,grad_g,...
                                x_0, tol, kmax, kmaxd, typ, varargin)
  xk=x_0(:); mu_0=1.0;
6 if typ==1; hess=varargin{1};
 7 elseif typ==2; hess=varargin{1};
 8 else; hess=[]; end
9 if ~isempty(h), [nh,mh]=size(h(xk)); end
10 if "isempty(g), [ng,mg]=size(g(xk)); end
12 err=1+tol; k=0; muk=mu_0; muk2=muk/2; told=0.1;
14 while err>tol && k<kmax
    options=optimset('TolX',told);
    [x,err,kd]=fminsearch(@P,xk,options); err=norm(x-xk);
    [x,err,kd]=dScent(@P,@grad_P,xk,told,kmaxd,typ,hess);
    err=norm(grad_P(x));
21 end
22
23 if kd<kmaxd: muk=10*muk: muk2=0.5*muk:
24 else muk=1.5*muk; muk2=0.5*muk; end
26 k=1+k; xk=x; told=max([tol,0.10*told]);
```

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

optimisation
The penalty met

The penalty method
The augmented

The penalty method (cont.)

```
1 % PENALTY Constrained optimisation with penalty function
2 % [X,ERR,K]=PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_O,TOL,...
                       KMAX, KMAXD, TYP)
     Approximate a minimiser of the cost function F
5 % under constraints H=O and G>=O
7 % XO is initial point, TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F, GRAD_H, and GRAD_G are the gradients of F, H, and G
10 % H and G, GRAD_H and GRAD_G can be initialised to []
12 % For TYP=0 solution by FMINSEARCH M-function
14 % For TYP>0 solution by a DESCENT METHOD
15 % KMAXD is maximum number of iterations
16 % TYP is the choice of descent directions
17 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
18 % [X,ERR,K]=PFUNCTION(F,GRAD_F,H,GRAD_H,G,GRAD_G,X_0,TOL,...
                         KMAX, KMAXD, TYP, HESS_FUN)
20 % For TYP=1 HESS_FUN is the function handle associated
21 % For TYP=2 HESS_FUN is a suitable approx. of Hessian at k=0
```

Constrained optimisation

$^{\rm UFC/DC}_{\rm CK0031/CK0248}_{\rm 2018.2}$

optimisation
The penalty method

The penalty method (cont.)

```
function y=P(x) % This function is nested inside pFunction

y=fun(x);
if ^isempty(h); y=y+muk2*sum((h(x)).^2); end
if ^isempty(g); G=g(x);
for j=1:ng
y=y+muk2*max([-G(j),0])^2;
end
end

function y=grad_P(x) % This function is nested in pFunction

y=grad_fun(x);
if ^isempty(h), y=y+muk*grad_h(x)*h(x); end
if ^isempty(g), G=g(x); Gg=grad_g(x);
for j=1:ng
if G(j)<0
y=y+muk*Gg(:,j)*G(j);
end
end
end</pre>
```

UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty methor
The augmented
Lagrangian

The augmented Lagrangian Constrained optimisation

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained

The penalty methor
The augmented
Lagrangian

The augmented Lagrangian (cont.)

$$\mathcal{L}_{A}(\mathbf{x}, \boldsymbol{\lambda}, \alpha) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_{h}} \lambda_{i} h_{i}(\mathbf{x}) + \alpha/2 \sum_{i \in \mathcal{I}_{h}} h_{i}^{2}(\mathbf{x})$$

Constrained optimisation using the augmented Laplacian is iterative α_0 and $\lambda^{(0)}$ are set arbitrarily, then build a sequence of parameters $\alpha_k \to \infty$ $\alpha_k \to \infty$ is st $\{(\mathbf{x}^{(k)}, \lambda^{(k)})\}$ converges to a KKT point for the Lagrangian

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_h} \lambda_i h_i(\mathbf{x})$$

At the k-th iteration, for a given α_k and for a given $\lambda^{(k)}$, we compute

$$\mathbf{x}^{(k)} = \underset{\mathbf{x} \in \mathcal{R}^n}{\text{arg min }} \mathcal{L}_A[\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k]$$
 (14)

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

optimisation
The penalty metho
The augmented

Lagrangian

Consider a minimisation problem with equality constraints only $(\mathcal{I}_g = \emptyset)$

The augmented Lagrangian

$$\min_{\mathbf{x} \in \mathcal{R}^n} f(\mathbf{x})$$
subjected to
 $h_i(\mathbf{x}) = 0, \forall i \in \mathcal{I}_h$

Definition

Define the augmented Lagrangian objective function

$$\mathcal{L}_{A}(\mathbf{x}, \lambda, \alpha) = f(\mathbf{x}) - \sum_{i \in \mathcal{I}_{h}} \lambda_{i} h_{i}(\mathbf{x}) + \alpha/2 \sum_{i \in \mathcal{I}_{h}} h_{i}^{2}(\mathbf{x})$$
(13)

 $\alpha>0\ is\ a\ suitable\ coefficient$

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

Constrained optimisation

The penalty method
The augmented
Lagrangian

The augmented Lagrangian (cont.)

We get multipliers $\lambda^{(k+1)}$ from the gradient of the augmented Lagrangian

• We set it to be equal to zero

$$\nabla_{\mathbf{x}} \mathcal{L}_{A} \left[\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k} \right] = \nabla f \left[\mathbf{x}^{(k)} \right] - \sum_{i \in \mathcal{I}_{h}} \left\{ \lambda_{i}^{(k)} - \alpha_{k} h_{i} \left[\mathbf{x}^{(k)} \right] \right\} \nabla h_{i} \left[\mathbf{x}^{(k)} \right]$$

By comparison with optimality condition

$$abla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{I}_h} \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

$$h_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{I}_h$$

We identify $\lambda_i^{(k)}$ as $\lambda_i^{(k)} - \alpha_k h_i \left[\mathbf{x}^{(k)} \right] \simeq \lambda_i^*$

We thus define,

$$\lambda_i^{(k+1)} = \lambda_i^{(k)} - \alpha_k h_i \left[\mathbf{x}^{(k)} \right]$$
 (15)

We get $\mathbf{x}^{(k+1)}$ by solving with k replaced by k+1

$$\mathbf{x}^{(k)} = \arg\min_{\mathbf{x} \in \mathcal{R}^n} \mathcal{L}_A[\mathbf{x}, \boldsymbol{\lambda}^{(k)}, \alpha_k]$$

UFC/DC CK0031/CK0248 2018.2

optimisation

The penalty method

The augmented

Lagrangian

The augmented Lagrangian (cont.)

Given α_0 (typically, $\alpha_0 = 1$), given ε_0 (typically $\varepsilon_0 = 1/10$), given $\overline{\varepsilon} > 0$, given $\mathbf{x}_0^{(0)} \in \mathbb{R}^n$ and given $\boldsymbol{\lambda}_0^{(0)} \in \mathbb{R}^p$, for $k = 0, 1, \ldots$ until convergence

Pseudo-cod ϵ

Compute an approximated solution

$$\mathbf{x}^{(k)} = \mathop{arg\;min}\limits_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}_Aig[\mathbf{x}, oldsymbol{\lambda}^{(k)}, lpha_kig]$$

(Using the initial point $\mathbf{x}_0^{(0)}$ and tolerance ε_k)

$$\begin{split} &If \left| \left| \nabla_{\mathbf{x}} \mathcal{L}_{A} [\mathbf{x}^{(k)}, \boldsymbol{\lambda}^{(k)}, \alpha_{k}] \right| \right| \leq \overline{\varepsilon} \\ &Set \ \mathbf{x}^{*} = \mathbf{x}^{(k)} \ (convergence) \\ &else \\ &Compute \ \lambda_{i}^{(k+1)} = \lambda_{i}^{(k)} - \mu_{k} h_{i} [\mathbf{x}^{(k)}] \\ &Choose \ \alpha_{k+1} > \alpha_{k} \\ &Choose \ \varepsilon_{k+1} < \varepsilon_{k} \\ &Set \ \mathbf{x}_{0}^{(k+1)} = \mathbf{x}^{(k)} \\ &Endif \end{split}$$

Constrained optimisation

${ \begin{array}{c} {\rm UFC/DC} \\ {\rm CK0031/CK0248} \\ 2018.2 \end{array} }$

Constrained optimisation

The penalty methods
The augmented
Lagrangian

The augmented Lagrangian (cont.)

```
function [x,err,k]=aLgrng(f,grad_f,h,grad_h,x_0,lambda_0,...
                             tol, kmax, kmaxd, typ, varargin)
4 mu_0=1.0;
6 if typ==1; hess=varargin{1};
   elseif typ==2; hess=varargin{1};
 8 else; hess=[]; end
10 err=1+tol+1; k=0; xk=x_0(:); lambdak=lambda_0(:);
12 if ~isempty(h); [nh,mh]=size(h(xk)); end
14 muk=mu_0; muk2=muk/2; told=0.1;
16 while err>tol && k<kmax
    options=optimset ('TolX',told);
    [x,err,kd]=fminsearch(@L,xk,options); err=norm(x-xk);
21 [x,err,kd]=descent(@L,@grad_L,xk,told,kmaxd,typ,hess);
    err=norm(grad_L(x));
25 lambdak=lambdak-muk*h(x);
  if kd < kmaxd; muk = 10 * muk; muk2 = 0.5 * muk;</pre>
  else muk=1.5*muk; muk2=0.5*muk; end
29 k=1+k; xk=x; told=max([tol,0.10*told]);
```

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

The penalty method
The augmented
Lagrangian

The augmented Lagrangian (cont.)

The implementation of the algorithm

```
1 % ALGRNG Constrained optimisation with augmented Lagrangian
2 % [X,ERR,K]=ALGRNG(F,GRAD_F,H,GRAD_H,X_O,LAMEDA_O,...
3 % TOL,KMAX,KMAXD,TYP)
4 % Approximate a minimiser of the cost function F
5 % under equality constraints H=0
6 %
7 % X_O is initial point, TOL is tolerance for stop check
8 % KMAX is the maximum number of iterations
9 % GRAD_F and GRAD_H are the gradients of F and H
10 %
11 % For TYP=0 solution by FMINSEARCH M-function
12 % FOR TYP>0 solution by a DESCENT METHOD
13 % KMAXD is maximum number of iterations
14 % TYP is the choice of descent directions
15 % TYP=1 and TYP=2 need the Hessian (or an approx. at k=0)
```

Constrained optimisation

UFC/DC CK0031/CK0248 2018.2

optimisation
The penalty method
The augmented
Lagrangian

The augmented Lagrangian (cont.)

```
function y=L(x) % This function is nested inside aLgrng

y=fun(x);
if `isempty(h)
y=y=sum(lambdak'*h(x))+muk2*sum((h(x)).^2);
end
```

```
function y=grad_L(x) % This function is nested inside aLgrng

y=grad_fun(x);
if ~isempty(h)

y=y+grad_h(x)*(muk*h(x)-lambdak);
end
```

lambda_0 contains the initial vector $\lambda^{(0)}$ of Lagrange multipliers

UFC/DC CK0031/CK0248 2018.2

The augmented Lagrangian

The augmented Lagrangian (cont.)

```
1 fun = @(x) 0.6*x(1).^2 + 0.5*x(2).*x(1) - x(2) + 3*x(1);
2 grad_fun = @(x) [1.2*x(1) + 0.5*x(2) + 3; 0.5*x(1) - 1];
4 h = @(x) x(1).^2 + x(2).^2 - 1;
grad_h = 0(x) [2*x(1); 2*x(2)];
7 x_0 = [1.2, 0.2]; tol = 1e-5; kmax = 500; kmaxd = 100;
8 p=1; % The number of equality constraints
```

Stopping criterion: A tolerance set 10^{-5}

9 lambda_0 = rand(p,1); typ=2; hess=eye(2);

11 [xmin,err,k] = aLagrange(fun,grad_fun,h,grad_h,x_0,... 12 lambda_0 ,tol ,kmax ,kmax ,typ ,hess)

The unconstrained minimisation by quasi-Newton descent directions

• (with typ=2 and hess=eye(2))