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We make a first connection between probability theory and graph theory

Belief networks (BNs) introduce structure into a probabilistic model

• Graphs are used to represent independence assumptions

• Details about the model can be ‘read’ from the graph

Probability operations (marginalisation/conditioning) as graph operations

• A benefit in terms of computational efficiency

Belief networks cannot capture all possible relations among variables

• They are a natural choice for representing ‘causal’ relations

They belong to the family of probabilistic graphical models
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Benefits of structure

The many possible ways random variables can interact is extremely large

• Without assumptions, we are unlikely to make a useful model

Consider a probabilistic model with N random variables xi , i = 1, . . . ,N

• We need to independently specify all entries of a table p(x1, . . . , xN )

Consider a probabilistic model consisting of N binary random variables xi

! It takes O(2N ) space (practical for small N only)

Consider computing a distribution p(xi ), we must sum over 2N−1 states

• Too long, even on the most optimistically fast computer
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Benefits of structure (cont.)

We deal with distributions on potentially hundreds to millions of variables

• This grow is infeasible in many application areas

• Structure is crucial for tractability of inference

We need a way to render specification/inference in such systems tractable

• We must constrain the nature of variable interactions

• This is only way with such distributions

The basic idea is to specify which variables are independent of others

! A structured factorisation of the joint distribution

Belief networks are a framework for representing independence assumptions
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Benefits of structure (cont.)

Example

Consider a joint probability distribution p(x1, . . . , x100) on a chain

p(x1, . . . , x100) =
99∏

i=1

φ(xi , xi+1),

for some positive function φ(·)

There exist algorithms that render computing a marginal p(x1) fast

"
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Benefits of structure (cont.)

Belief networks (BNs, or Bayes’ networks or Bayesian belief networks)

• A way to depict independence assumptions in a distribution

The application domain of the general framework is widespread

! Expert reasoning under uncertainty

! Machine learning

! · · ·
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Modelling independencies

Example

One morning Tracey leaves her house and realises that her grass is wet

• Is it due to overnight rain or did she forget the sprinkler on?

Then, she notices that the grass of her neighbour (Jack) is also wet

• This explains away s(omehow) that her sprinkler was left on

She concludes (logically) that overnight it has probably been raining

We can model the situation by defining the variables we wish to include

R ∈ {0, 1} : R = 1 It has been raining (R = 0, otherwise)

S ∈ {0, 1} : S = 1 Tracey’ sprinkler was on (S = 0, otherwise)

J ∈ {0, 1} : J = 1 Jack’s grass is wet (J = 0, otherwise)

T ∈ {0, 1} : T = 1 Tracey’s grass is wet (T = 0, otherwise)
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Modelling independencies (cont.)

Consider a model of Tracey’s world of grass, rain, sprinklers and neighbours

p(T , J ,R,S)

A distribution on the joint set of variables of interest (unorder is irrelevant)

• Each of the variables can take one of two states (binary)

For full model specification, we need the values for each of the 24 = 16 states

! (Minus the normalisation conditions for probabilities)

p(T = 0, J = 0,R = 0,S = 1) = ⋆

p(T = 0, J = 0,R = 1,S = 0) = ⋆

p(T = 0, J = 1,R = 0,S = 0) = ⋆

p(T = 1, J = 0,R = 0,S = 0) = ⋆

=

p(T = 1, J = 1,R = 1,S = 1) = ⋆

How many states do we really need to specify?
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Modelling independencies (cont.)

Consider the following decomposition of the joint probability distribution

p(T , J ,R,S) = p(T |J ,R,S)p(J ,R, S)

= p(T |J ,R,S)p(J |R,S)p(R,S)

= p(T |J ,R,S)p(J |R,S)p(R|S)p(S )

(1)

The joint distribution is factorised as product of conditional distributions
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Modelling independencies (cont.)

p(T , J ,R, S) = P(T |J ,R,S)p(J |R,S)p(R|S)p(S )

The first term p(T |J ,R,S) requires us to specify 23 = 8 values

• p(T = 1|J ,R,S) for the 8 joint states of (J ,R,S)

! p(T = 0|J ,R,S) = 1− p(T = 1|J ,R, S), by normalisation

• p(J = 1|R,S) for the 4 joint states of (R,S)

! p(J = 0|R,S) = 1− p(J = 1|R,S), by normalisation

• p(R = 1|S) for the 2 states of (S)

! p(R = 0|S) = 1− p(R = 1|S), by normalisation

• p(S = 1)

! p(S = 0) = 1− p(S = 0), by normalisation

This gives a total of 15 values

"



Belief networks

UFC/DC
CK0031/CK0248

2018.2

On structure

Independencies

Specifications

Belief networks

Conditional
independence

Impact of collisions

Path manipulations

d-Separation

Graphical and
distributional
in/dependence

Markov equivalence

Expressibility

Modelling independencies (cont.)

In general, consider a joint distribution defined over n binary variables

• We need to specify 2n − 1 probability values

The number of values that need to be specified scales exponentially

• It grows with the number of variables (in general)

This approach is impractical, in general, and motivates simplifications

The modeller often knows some constraints on the system

• We may assume that ...
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Conditional independence

Example

Whether Tracey’s grass (T ) is wet only depends (directly) on whether or
not it has been raining (R) and whether or not her sprinkler (S) was on

! We make a conditional independence assumption

! p(T |J ,R, S) = p(T |✁J ,R, S) (2)

It is also reasonable to assume that whether Jack’s grass (J ) is wet is influ-
enced (directly) only by whether or not it has been raining (R)

! p(J |R,S) = p(J |R, ✁S) (3)

The rain (R) is not (directly) influenced by the sprinkler (S)

! p(R|S) = p(R|✁S) (4)

p(T , J ,R,S)

= (T |J ,R,S)p(J |R,S)p(R|S)p(S )

= p(T |R, S)p(J |R)p(R)p(S ) (5)

This reduces to 4 + 2 + 1 + 1 = 8 the number of values to be specified
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Conditional independence (cont.)

We can also represent these conditional independencies graphically

p(T , J ,R, S) = p(T |R,S)p(J |R)p(R)p(S )

J

R

T

S
Each node in the graph represents a
variable in the joint distribution

Consider variables which feed in (parents) to another variable (children)

• They are the variables to the right of the conditioning bar

To complete the model, we need to specify the aforementioned 8 values

• The conditional probability tables (CPTs)
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Conditional independence (cont.)

p(T , J ,R, S) = p(T |R,S)p(J |R)p(R)p(S )

J

R

T

S

Prior probabilities for R and S

• p(R = 1) = 0.2

• p(S = 1) = 0.1

We can set the remaining probabilities

• p(J = 1|R = 1) = 1.0

• p(J = 1|R = 0) = 0.2 ⊗

• p(T = 1|R = 1, S = 0) = 1.0

• p(T = 1|R = 1, S = 1) = 1.0

• p(T = 1|R = 0, S = 1) = 0.9 ⊙

• p(T = 1|R = 0, S = 0) = 0.0

⊙ Small chance that the sprinkler did not wet the grass, though on

⊗ Jack’s grass is wet due to unknown effects, other than rain
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Inference

We made a full model of the environment (as it was described)

• We can start performing some inference

p(T , J ,R, S) = p(T |R,S)p(J |R)p(R)p(S )

Let us calculate the probability that the sprinkler had been left on

• Given that Tracey’s grass is wet

p(S = 1|T = 1)

We use conditional probability

p(S = 1|T = 1) =
p(S = 1,T = 1)

p(T = 1)
=

∑

J,R p(T = 1, J ,R, S = 1)
∑

J ,R,S p(T = 1, J ,R,S)

=

∑

J ,R p(J |R)p(T = 1|R,S = 1)p(R)p(S = 1)
∑

J,R,S p(J |R)p(T = 1|R,S)p(R)p(S )

=

∑

R p(T = 1|R,S = 1)p(R)p(S = 1)
∑

R,S p(T = 1|R,S)p(R)p(S )

(6)
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Inference (cont.)

p(S = 1|T = 1) =
(0.9 · 0.8 · 0.1) + (1 · 0.2 · 0.1)

0.9 · 0.8 · 0.1 + 1 · 0.2 · 0.1 + 0 · 0.8 · 0.9 + 1 · 0.2 · 0.9

= 0.3382

Consider the (posterior) belief that the sprinkler was left on

• It increases above the prior probability p(S = 1) = 0.1

• This is due to the evidence that the grass is wet
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Inference (cont.)

p(T , J ,R, S) = p(T |R,S)p(J |R)p(R)p(S )

Let us calculate the probability that Tracey’s sprinkler was left on

• Given that her grass and Jack’s grass are wet

p(S = 1|T = 1, J = 1)

We use conditional probability

p(S = 1|T = 1, J = 1) =
p(S = 1,T = 1, J = 1)

p(T = 1, J = 1)

=

∑

R p(T = 1, J = 1,R,S = 1)
∑

R,S p(T = 1, J = 1,R,S)

=

∑

R p(J = 1|R)p(T = 1|R,S = 1)p(R)p(S )
∑

R,S p(J = 1|R)p(T = 1)p(R)p(S )

(7)
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Inference (cont.)

p(S = 1|T = 1, J = 1) =
0.0344

0.2144
= 0.1604

Consider the (posterior) probability that the sprinkler was left on

• It is lower than it is given only that Tracey’s grass is wet (0.34)

• This is due to the extra evidence (Jack’s wet grass)

The fact that Jack’s grass is also wet increases the chance that it rained

"
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Modelling independencies (cont.)

Example

Sally comes home to find that the burglar alarm is sounding (A = 1)

! Has she been burgled (B = 1) or was it an earthquake (E = 1)?

Soon, she finds that the radio broadcasts an earthquake alert (R = 1)

We write

p(B ,E ,A,R) = p(A|B ,E ,R)p(R|B ,E)p(E |B)p(B) (8)

However, the alarm is surely not directly influenced by radio reports

P(A|B ,E ,R) = p(A|B ,E ,✚R)

We can make other conditional independence assumptions

p(B ,E ,A,R) = p(A|B ,E)p(R|✚B ,E)P(E |✚B)p(B) (9)

Belief networks

UFC/DC
CK0031/CK0248

2018.2

On structure

Independencies

Specifications

Belief networks

Conditional
independence

Impact of collisions

Path manipulations

d-Separation

Graphical and
distributional
in/dependence

Markov equivalence

Expressibility

Modelling independencies (cont.)

p(B ,E ,A,R) = p(A|B ,E)p(R|E)P(E)p(B)

Graphical representation of the factorised joint and CPT specification

B

A

E

R

p(B = 1) = 0.01

p(E = 1) = 0.000001

A = 1 B E
(Alarm is on) (Burglar) (Earthquake)

0.9999 1 1

0.99 1 0

0.99 0 1

0.0001 0 0

R = 1 E
(Earthquake alert) (Earthquake)

1 1

0 0

The tables and graphical structure fully specify the distribution
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Modelling independencies (cont.)

What happens when we observe evidence?

Initial evidence

! The alarm is sounding

p(B = 1|A = 1) =

∑

E,R p(B = 1,E ,A = 1,R)
∑

B,E,R p(B ,E ,A = 1,R)

=

∑

E,R p(A = 1|B = 1,E)p(B = 1)p(E )p(R|E)
∑

B,E,R p(A = 1|B ,E)p(B)p(E )p(R|E)

≃ 0.99
(10)

Additional evidence

! The earthquake alarm is broadcasted

p(B = 1|A = 1,R = 1) ≃ 0.01

"
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Reducing specifications

Consider a discrete variable y with discrete parental variables x1, . . . , xn

x1 x2 x3 x4 x5

y

Formally, the structure of the graph
implies nothing about the form of
the parameterisation of the table

p(y |x1, . . . , x5)

If all variables are binary, then
25 = 32 states to specify

p(y |x1, . . . , x5)
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Reducing specifications (cont.)

Remark

Suppose that each parent xi variable has dim(xi ) states

Suppose that there are no constraint on the table

Then, p(y |x1, . . . , xn ) contains
[
dim(y)− 1

]∏

i dim(xi ) entries

If stored explicitly for each state, this is a potentially huge storage

• An alternative is to constrain the table

• Use a simpler parametric form
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Reducing specifications (cont.)

Divorcing parents

This is a decomposition with only a limited number of parental interactions

Assume all variables are binary

x1 x2 x3 x4 x5

z1 z2

y

Constrained case

• States that require specification

23 + 22 + 22 = 16

Unconstrained case

• States that require specification

25 = 32

p(y |x1, . . . , x5) =
∑

z1,z2

p(y |z1, z2)p(z1|x1, x2, x3)p(z2|x4, x5) (11)
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Reducing specifications (cont.)

Logical gates

For simple classes of conditional tables, use a logical OR gate on binary zi

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

y

p(y |z1, . . . , z5) =
{

1 if at least one zi = 1

0 otherwise
(12)

We can make table p(y |x1, . . . , x5)

• By including terms p(zi = 1|xi )

Consider the case in which each xi is binary

There are 2 + 2 + 2 + 2 + 2 = 10 quantities required for specifying p(y |x)



Belief networks

UFC/DC
CK0031/CK0248

2018.2

On structure

Independencies

Specifications

Belief networks

Conditional
independence

Impact of collisions

Path manipulations

d-Separation

Graphical and
distributional
in/dependence

Markov equivalence

Expressibility

Reducing specifications (cont.)

Remark

The graph description can be used to represent any noisy logical state

• The noisy OR or noisy AND

The number of parameters to specify the noisy gate grows linearly

• In the number of parents

"

The noisy-OR is particularly common in disease-symptom networks

• Many diseases x can give rise to the same symptom y

The probability that the symptom will be present is high

• Provided that at least one of the diseases is present
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Belief networks

Definition

Belief networks

A belief network is a particular probability distribution

! p(x1, . . . , xD ) =
D∏

i=1

p
[
xi |pa(xi )

]
(13)

pa(xi ) denotes the parental variables of variable xi

"

As a directed graph, a BN corresponds to a Directed Acyclic Graph (DAG)1

• The i-th node in the graph corresponds to factor p
[
xi
∣
∣pa(xi )

]

1DAG: A graph with directed edges such that by following a path from one node to
another along the direction of the edges no path will revisit a node.
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Belief networks (cont.)

Remark

Graphs and distributions

A subtle point is whether a BN corresponds to an instance of a distribution

p(x1, . . . , xD) =
D∏

i=1

p
[
xi |pa(xi )

]

• Requiring specification of the CPTs

Or, whether it refers to any distribution consistent with the graph structure

"

In the case of a graph-consistent distribution, one can distinguish two cases

! A BN distribution (with numerical specification)

! A BN graph (without numerical specification)

Important to clarify the scope of independence/dependence statements
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Belief networks (cont.)

Remark

Consider the examples of Tracey’s grass and that of the burglar

• We chose how to recursively factorise

p(T , J ,R,S) = (T |✁J ,R, ✁S)p(J |R, ✁S)p(R|S)p(S )

p(B ,E ,A,R) = p(A|B ,E)p(R|✚B ,E)P(E |✚B)p(B)

"
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Belief networks (cont.)

Consider the general of with a four-variable distribution

p(x1, x2, x3, x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4)

= p(x3|x4, x1, x2)p(x4|x1, x2)p(x1|x2)p(x2)
(14)

These two choices of factorisation are equivalently valid

x1 x2 x3 x4

x3 x4 x1 x2

The two associated graphs represent the same independence assumptions
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Belief networks (cont.)

Both graphs represent the same joint distribution p(x1, . . . , x4)

• They say nothing about the content of the CPTs

• They represent the same (lack of) assumptions

x1 x2 x3 x4

x3 x4 x1 x2
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Belief networks (cont.)

In general, different graphs may represent equal independence assumptions

! To make independence assumptions, the factorisation is crucial

We observe that any distribution may be written in the cascade form

! The cascade can be extended to many variables

! The result is always a DAG

This suggests an algorithm for constructing a BN on variables x1, . . . , xn

1 Write the n-node cascade graph

2 Label the nodes with the variables in any order

3 Independence statement corresponds to deleting some of the edges
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Definition

More formally, this intuition corresponds to an ordering of the variables

Without loss of generality, we write as x1, . . . , xn , from Bayes’ rule

p(x1, . . . , xn) = p(x1|x2, . . . , xn)p(x2, . . . , xn )

= p(x1|x2, . . . , xn)p(x2|x3, . . . , xn )p(x3, . . . , xn)

=
...

= p(xn )
n−1∏

i=1

p(xi |xi+1, . . . , xn)

(15)

The representation of any BN is thus a Direct Acyclic Graph (DAG)

"

Belief networks

UFC/DC
CK0031/CK0248

2018.2

On structure

Independencies

Specifications

Belief networks

Conditional
independence

Impact of collisions

Path manipulations

d-Separation

Graphical and
distributional
in/dependence

Markov equivalence

Expressibility

Belief networks (cont.)

Remark

Every probability distribution can be written down as a belief network

• Though it may correspond to a fully connected ‘cascade’ DAG

"

The role of a BN is that the structure of the DAG corresponds to a set of
conditional independence assumptions of variables on their ancestors

• Which ancestral parental variables are sufficient to specify each CPT

This does not mean that non-parental variables have no influence
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Belief networks (cont.)

Example

Consider the distribution p(x1|x2)p(x2|x3)p(x3)

• The DAG x1 ← x2 ← x3

This does not imply p(x2|x1, x3) = p(x2|x3)

"

The DAG specifies conditional independence statements

• CI statements of variables on their ancestors

• (which ancestors are direct ‘causes’ for the variable)

The ‘effects’ will generally be dependent on the variable

• (given by the descendants of the variable)
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Belief networks (cont.)

Remark

Dependencies and Markov blanket

Consider a distribution on a set of variables X and consider a variable xi ∈ X

Let the corresponding Belief network be represented by a DAG G

• Let MB(xi ) be the variables in the Markov blanket2 of xi

For any variable y not in the Markov blanket of xi , y ∈ X\
{

xi ∪MB(xi )
}

• We have that xi ⊥⊥ y|MB(xi )

2Markov blanket of a node: Parents and children, and the parents of its children.
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The Markov blanket of xi carries all information about xi

x1 x2 x3 x4 x5

z1 z2

y

MB(z1) = {x1, x2, x3, y, z2}

z1 ⊥⊥ x4|MB(z1)
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Belief networks (cont.)

The DAG corresponds to a statement of conditional independencies

• We need to define all elements of the CPTs p
[
xi
∣
∣pa(xi )

]

• This completes the specification of the BN

Once the structure is defined, then the entries of the CPTs can be expressed

A value for each state of xi (except one, normalisation) needs to be specified

• For every possible state of the parental variables pa(xi )

For a large number of parents, this kind of specification is intractable

• Tables can parameterised in a low-dimensional manner

• (Belief networks in machine learning)

Belief networks

UFC/DC
CK0031/CK0248

2018.2

On structure

Independencies

Specifications

Belief networks

Conditional
independence

Impact of collisions

Path manipulations

d-Separation

Graphical and
distributional
in/dependence

Markov equivalence

Expressibility

Conditional independence
Belief networks

Belief networks

UFC/DC
CK0031/CK0248

2018.2

On structure

Independencies

Specifications

Belief networks

Conditional
independence

Impact of collisions

Path manipulations

d-Separation

Graphical and
distributional
in/dependence

Markov equivalence

Expressibility

Conditional independence

A BN corresponds to sets of conditional independence assumptions

Is a set of variables conditionally independent of a set of other variables?

p(X ,Y|Z) = p(X |Z)p(Y|Z), or X ⊥⊥ Y|Z

This is not always immediately clear from the DAG whether
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Conditional independence (cont.)

Example

Consider the four-variable case

p(x1, . . . , x4) = p(x1|x4)p(x2|x3, x4)p(x3)p(x4)

x1 x2 x3 x4

Are x1 and x2 independent, given the state of x4?
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Conditional independence (cont.)

p(x1, x2|x4) =
1

p(x4)

∑

x3

p(x1, x2, x3, x4)

=
1

p(x4)

∑

x3

p(x1|x4)p(x2|x3, x4)p(x3)p(x4)

= p(x1|x4)
∑

x3

p(x2|x3, x4)p(x3)

(16)

p(x2|x4) =
1

p(x4)

∑

x1,x3

p(x1, x2, x3, x4)

=
1

p(x4)

∑

x1,x3

p(x1|x4)p(x2|x3, x4)p(x3)p(x4)

=
∑

x3

p(x2|x3, x4)p(x3)

(17)

Combining the two results, we have P(x1, x2|x4) = p(x1|x4)p(x2|x4)

• Hence, variable x1 and x2 are independent conditioned on x4

"
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Conditional independence (cont.)

We would like to avoid doing such tedious manipulations

We would like to have some sort of algorithm for that

! Read the results directly from a graph

We can develop intuition towards building such algorithm
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Conditional independence (cont.)

Example

Consider the joint distribution of three variables

p(x1, x2, x3)

We can write the distribution in a total of six ways

p(x1, x2, x3) = p(xi1 |xi2 , xi3 )p(xi2 |xi3)p(xi3 ) (18)

(i1, i2, i3) is any of the six permutations of (1, 2, 3)

Each of the resulting factorisations produces a different DAG

• All of the DAGs represent the very same distribution

• None of the DAGs makes independence statement

If DAGs are cascades, no independence assumptions were made
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Minimal independence assumptions correspond to dropping any link

Say, we cut the link between x1 and x2

! This gives rise to four graphs

x1

x3

x2

(a) x1 → x2/x2 → x1

x1

x3

x2

(b) x1 → x2/x2 → x1

x1

x3

x2

(c) x1 → x2

x1

x3

x2

(d) x2 → x1
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Conditional independence (cont.)

x1

x3

x2

(a)

x1

x3

x2

(b)

x1

x3

x2

(c)

x1

x3

x2

(d)

Are theses graphs equivalent in representing some distribution?

p(x2|x3)p(x3|x1)p(x1)
︸ ︷︷ ︸

graph (c)

=
p(x2, x3)p(x3, x1)

p(x3)
= p(x1|x3)p(x2, x3)

= p(x1|x3)p(x3|x2)p(x2)
︸ ︷︷ ︸

graph (d)

= p(x1|x3)p(x2|x3)p(x3)
︸ ︷︷ ︸

graph (b)

(19)

(b), (c) and (d) represent the same conditional independence assumptions

• (given x3, x1 and x2 are independent x1 ⊥⊥ x2|x3)

DAG (a) is fundamentally different, p(x1, x2) = p(x1)p(x2)

• There is no way to transform p(x3|x1, x2)p(x1)p(x2) into the others

"
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Remark

Graphical dependence

Belief networks (graphs) are good for encoding conditional independence

• They are not appropriate for encoding dependence

Graph a → b may seem to encode a relation that a and b are dependent

• However, a specific numerical instance of a BN distribution could be
such that p(b|a) = p(b) for which we have a ⊥⊥ b

When a graph appears to show ‘graphical’ dependence, there can be in-
stances of the distributions for which dependence does not follow

"
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Impact of collisions

Definition

Collider

Given a path P, a collider is a node c on P with neighbours a and b on P
such that a → c ← b

"
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Impact of collisions (cont.)

d

b c

a

e

Variable d is a collider along path

a − b − d − c

but not along path

a − b − d − e

a b

c

e d

Variable d is a collider along path

a − d − e

but not along path

a − b − c − d

A collider is defined relative to a path
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Impact of collisions (cont.)

x

z

y

(a) z is a not collider

x

z

y

(b) z is a not collider

x

z

y

(c) z is a collider
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Impact of collisions (cont.)

In a general BN, how can we check if x ⊥⊥ y|z?
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Impact of collisions (cont.)

x

z

y

(a) x ⊥⊥ y|z

x

z

y

(b) x ⊥⊥ y|z

In these DAGs, x and y are independent, given z

(a) Since p(x , y|z) = p(x |z)p(y |z )

(b) Since p(x , y|z) ∝ p(z |x)p(x )
︸ ︷︷ ︸

f (x)

p(y |z)
︸ ︷︷ ︸

g(y)
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Impact of collisions (cont.)

x

z

y

(a) x⊤⊤y|z

In this DAG, x and y are graphically dependent, given z

(c) Since p(x , y|z) ∝ p(z |x , y)p(x )p(y)
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Impact of collisions (cont.)

x y

w

z

(a) x⊤⊤y|z

When we condition on z , x and y will be graphically dependent

p(x , y, |z) =
p(x , y , z )

p(z )
=

1

p(z )

∑

w

p(z |w)p(w |x , y)p(x )p(y)

≠ p(x |z)p(y |z)
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Impact of collisions (cont.)

p(x , y , |z) =
1

p(z )

∑

w

p(z |w)p(w |x , y)p(x )p(y) ≠ p(x |z)p(y |z)

The inequality holds due to the term p(w |x , y)

In special cases such as p(w |x , y) = const would x and y be independent

w becomes dependent on the value of z

• x and y are conditionally dependent on w

• They are conditionally dependent on z
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Impact of collisions (cont.)

x

z

y

(a) x ⊥⊥ y|z

x

z

y

(b) x ⊥⊥ y|z

Suppose there is a non-collider z , conditioned on the path between x and y

• This path does not induce dependence between x and y
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Impact of collisions (cont.)

x

z

y

(a) x⊤⊤y|z

x y

w

z

(b) x⊤⊤y|z

Suppose there is a path between x and y which contains a collider

Suppose this collider is not in the conditioned set, neither are its descendants

• This path does not make x and y dependent
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Impact of collisions (cont.)

A path between x and y with no colliders and no conditioning variables

! This path ‘d-connects’ x and y
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Impact of collisions (cont.)

d

b c

a

e

Variable d is a collider along the path

a − b − d − c

but not along the path

a − b − d − e

• Is a ⊥⊥ e|b?

a and e are not d-connected (no colliders on the path between them)

Moreover, there is a non-collider b which is in the conditioning set

! Hence, a and e are d-separated by b

! a ⊥⊥ e|b
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Impact of collisions (cont.)

a b

c

e d

Variable d is a collider along the path

a − d − e

but not along the path

a − b − c − d − e

• Is a ⊥⊥ e|c?

There are two paths between a and c

• (a − b − c − d − e and a − d − e)

Path a − d − e is not blocked

Although d is a collider on this path and d is not in the conditioning set

A descendant of the collider d is in the conditioning set (namely, node c)
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Impact of collisions (cont.)

Some properties of belief networks

Important to understand the effect of conditioning/marginalising a variable

• We state how these operations effect other variables in the graph

• We use this intuition to develop a more complete description
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Impact of collisions (cont.)

Consider A→ B ← C with A and C (unconditionally) independent

p(A,B ,C ) = p(C |A,B)p(A)p(B)

Conditioning of B makes them ‘graphically’ dependent

From a ‘causal’ perspective

This models the ‘causes’ A and B as a priori independent

! Both determining effect C

Remark

We believe the root causes are independent, given the observation

This tells us something about the state of both the causes

• Causes are coupled and made (generally) dependent

"
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Impact of collisions (cont.)

Conditioning/marginalisation effects on the graph of the remaining variables

A B

C
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Impact of collisions (cont.)

A B

C

→ A B

Marginalising over C makes A and B independent

• A and B are conditionally independent p(A,B) = p(A)p(B)

• In the absence of any info about effect C , we retain this belief
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Impact of collisions (cont.)

A B

C

→ A B

Conditioning on C makes A and B (graphically) dependent

• In general, p(A,B |C ) ≠ p(A|C )p(B |C )

Remark

The causes are a priori independent, knowing the effect, in general

This tells us about how the causes colluded to bring about the effect
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Impact of collisions (cont.)

A B

C

D

→ A B

Conditioning on D makes A and B (graphically) dependent

• In general, p(A,B |D) ≠ p(A|D)p(B |D)

D is a descendent of collider C
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A case in which there is a ‘cause’ C and independent ‘effects’ A and B

P(A|,B ,C ) = p(A|C )p(B |C )p(C )

A B

C
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Impact of collisions (cont.)

A B

C

→ A B

Marginalising over C makes A and B (graphically) dependent

In general, p(A,B) ≠ p(A)P(B)

Remark

Though we do not know the ‘cause’, the ‘effects’ will be dependent
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Impact of collisions (cont.)

A B

C

→ A B

Conditioning on C makes A and B independent

p(A,B |C ) = p(A|C )p(B |C )

Remark

If you know ‘cause’ C , you know everything about how each effect occurs

• independent of the other effect
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Impact of collisions (cont.)

A B

C

→ A B

This is also true from reversing the arrow from A to C

• A would ‘cause’ C and then C would ‘cause’ B

Conditioning on C blocks the ability of A to influence B
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Impact of collisions (cont.)

A B

C

= A B

C

= A B

C

=

These graphs express the same conditional independence assumptions
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Path manipulations for independence

We now understand when x is independent of y , conditioned on z (x ⊥⊥ y |z)

! We need to look at each path between x and y

Colouring x as red, y as green and the conditioning node z as yellow

! We need to examine each path between x and y

! We adjust the edges, following some intuitive results
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Path manipulations for independence (cont.)

Remark

x ⊥⊥ y |z

After the manipulations, if there is no undirected path between x and y

! Then, x and y are independent, conditioned on z
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Path manipulations for independence (cont.)

The graphical rules we define here differ from those provided earlier

We considered the effect on the graph having eliminated a variable

• (via conditioning or marginalisation)

Rules for determining independence, from graphical representation

• The variables remain in the graph
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Path manipulations for independence (cont.)

x y

z

u

⇒ x y

z

u

Suppose z is a collider (bottom path)

• We keep undirected links between the neighbours of the collider
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Path manipulations for independence (cont.)

x y

w

z

u

⇒

x y

w

z

u

Suppose z is a descendant of a collider (this could induce dependence)

• We retain the links, making them undirected
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Path manipulations for independence (cont.)

x y

z

u

⇒ x y

z

u

Suppose there is a collider not in the conditioning set (upper path)

• We cut the links to the collider variables

Here, the upper path between x and y is blocked
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Path manipulations for independence (cont.)

x y

z

u

⇒ x y

z

u

Suppose there is a non-collider from the conditioning set (bottom path)

• We cut the link between the neighbours of this non-collider

• Those that cannot induce dependence between x and y

Here, the bottom path is blocked
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Path manipulations for independence (cont.)

x y

z

u

⇒ x y

z

u

Neither path contributes to dependence, hence x ⊥⊥ y |z

• Both paths are blocked
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Path manipulations for independence (cont.)

x u

z

y

w

⇒

x u

z

y

w

Suppose w is a collider that is not in the conditioning set

Suppose z is a collider in the conditioning set

This means that there is no path between x and y

• Hence, x and y are independent, given z
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d-separation

We need a formal treatment that is amenable to implementation

• The graphical description is intuitive

This is straightforward to get from intuitions

We define the DAG concepts of the d-separation and d-connection

• They are central to determining conditional independence

• (in any BN with structure given by the DAG)
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d-separation (cont.)

Definition

d-connection and d-separation

Let G be a directed graph in which X , Y and Z are disjoint sets of vertices

Then, X and Y are d-connected by Z in G if and only if there exists an
undirected path U between some vertex in X and some vertex in Y such
that for every collider c on U , either c or a descendant of c is in Z and
no non-collider on U is in Z

X and Y are d-separated by Z in G if and only if they not d-connected by
Z in G
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d-separation (cont.)

One may also phrase this differently as follows

‘For every variable x ∈ X and y ∈ Y, check every path U between x and y,
a path U is said to be blocked if there is a node w on U such that either :

• w is a collider and neither w nor any of its descendants is in Z

• w is not a collider on U and w is in Z

If all such paths are blocked, then X and Y are d-separated by Z

If variables sets X and Y are d-separated by Z, then they are independent
conditional on Z in all probability distributions such a graph can represent’
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d-separation (cont.)

Remark

Bayes ball

The Bayes ball is a linear time complexity algorithm

Given a set of nodes X and Z the Bayes ball determines the set of nodes Y
such that X ⊥⊥ Y|Z

• Y is called the set of irrelevant nodes for X given Z
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We have that X and Y d-separated by Z leads to X ⊥⊥ Y|Z

• In all distributions consistent with the BN structure

Consider any instance of distro P factorising according to the BN structure

Write down a list Lp of all CI statements that can be obtained from P

1 If X and Y are d-separated by Z, list Lp must contain the statement

X ⊥⊥ Y|Z

2 List Lp could contain more statements than those from the graph
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Graphical and distributional in/dependence
(cont.)

Example

Consider the network graph p(a , b, c) = p(c|a, b)p(a)p(b)

• This is representable by the DAG a → c ← b

Then, a ⊥⊥ b is the only graphical independence statement we can make

Consider a distribution consistent with p(a , b, c) = p(c|a, b)p(a)p(b)

For example, on binary variables dom(a) = dom(b) = dom(c) = {0, 1}

p[1](c = 1|a, b) = (a − b)2

p[1](a = 1) = 0.3

p[1](b = 1) = 0.4

Numerically, we must have a ⊥⊥ b for this distribution p[1]
• L[1] contains only the statement a ⊥⊥ b
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(cont.)

We can also consider the distribution

p[2](c = 1|a, b) = 0.5

p[2](a = 1) = 0.3

p[2](b = 1) = 0.4

Here, L[2] = {a ⊥⊥ b, a ⊥⊥ c, b ⊥⊥ c}
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Graphical and distributional in/dependence
(cont.)

A question is whether or not d-connection similarly implies dependence

• Do all distributions P, consistent with the BN possess the
dependencies implied by the graph?
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Graphical and distributional in/dependence
(cont.)

Example

Consider the BN equation p(a, b, c) = p(c|a, b)p(a)p(b)

• a and b are d-connected by c

• So, a and b are dependent, conditioned on c, graphically

Consider instance, p[1]
• Numerically, a⊤⊤b|c

• The list of dependence statements for p[1] contains the graphical
dependence statement

Consider For instance p[2]
• The list of dependence statements for p[2] is empty
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Graphical and distributional in/dependence
(cont.)

Graphical dependence statements are not necessarily found in all distribu-
tions consistent with the belief network

X and Y d-connected by Z does NOT lead to X⊤⊤Y|Z in all distributions
consistent with the belief network
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Graphical and distributional in/dependence
(cont.)

Example

Variables t and f are d-connected by variable g

b g f

st

Are the variables t and f unconditionally independent (t ⊥⊥ f |∅)?

There are two colliders, g and s, they are not in the conditioning set (empty)

• Hence, t and f are d-separated

• Therefore, they are unconditionally independent
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Graphical and distributional in/dependence
(cont.)

b g f

st

What about t ⊥⊥ f |g?

There is a path between t and f

• For this path all colliders are in the conditioning set

• Hence, t and f are d-connected by g

Thus, t and f are graphically dependent conditioned on g

"
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(cont.)

Example

Variables b and f are d-separated by variable u

b g f

st u

Is {b, f } ⊥⊥ u|∅?

The conditioning set is empty

Every path from either b or f to u contains a collider

b and f are unconditionally independent of u
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Markov equivalence in BNs

We studied how to read conditional independence relations from a DAG

We determine whether two DAGs represent the same set of CI statements

• A relatively simple rule

It works even when we do not know what they are!

Definition

Markov equivalence

Two graphs are Markov equivalent if they both represent the same set of
conditional independence statements

This definition holds for both directed and undirected graphs
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Markov equivalence in BNs (cont.)

Example

Consider the belief network with edges A→ C ← B

• The set of conditional independence statements is A ⊥⊥ B |∅

For the belief network with edges A→ C ← B and A→ B

• The set of conditional independence statements is empty

The two belief networks are not Markov equivalent

"



Belief networks

UFC/DC
CK0031/CK0248

2018.2

On structure

Independencies

Specifications

Belief networks

Conditional
independence

Impact of collisions

Path manipulations

d-Separation

Graphical and
distributional
in/dependence

Markov equivalence

Expressibility

Markov equivalence in BNs (cont.)

Pseudo-code

Determine Markov equivalence

Define an immorality in a DAG

• A configuration of three nodes A, B and C

• C is child of both A and B, with A and B not directly connected

Define the skeleton of a graph

• Remove the directions of the arrows

Two DAGS represent the same set of independence assumption if and only
if they share the same skeleton and the same immoralities

• Markov equivalence
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Markov equivalence in BNs (cont.)

x1

x3

x2

(a)

x1

x3

x2

(b)

x1

x3

x2

(c)

x1

x3

x2

(d)

(b), (c) and (d) are equivalent

• They share the same skeleton with no immoralities

(a) has an immorality

• It is not equivalent to the others
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Expressibility of BNs

Belief networks fit with our notion of modelling ‘causal’ independencies

• They cannot necessarily represent all the independence properties

• (graphically)

Consider the DAF used to represent two successive experiments

h

t1

y1

t2

y2

t1 and t2 are two treatments

y1 and y2 are two outcomes of interest

• h: Underlying health status of the patient

The first treatment has no effect on the second outcome

! Hence, there is no edge from y1 and y2
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Expressibility of BNs (cont.)

Now consider the implied independencies in the marginal distribution

p(t1, t2, y1, y2)

They are obtained by marginalising the full distribution over h

There is no DAG containing only the vertices t1, y1, t2, y2

• No DAG represents the independence relations

It does not imply some other independence relation not implied in the figure
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Expressibility of BNs (cont.)

Consequently, any DAG on vertices t1, y1, t2 and y2 alone will either fail to
represent an independence relation of p(t1, y2, t2, y2), or will impose some
additional independence restriction that is not implied by the DAG

In general, consider p(t1, y1, t2, y2) = p(t1)p(t2)
∑

h p(y1|t1, h)p(y2|t2, h)p(h)

• Cannot be expressed as product of functions on a limited set of
variables

CI conditions t1 ⊥⊥ (t2, y2) and t2 ⊥⊥ (t1, y1) hold in p(t1, t2, y1, y2)

• They are there encoded in the form of the CPTs

We cannot see this independence

• Not in the structure of the marginalised graph

• Though it can be inferred in a larger graph

p(t1, t2, y1, y2, h)
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Expressibility of BNs (cont.)

Consider the BN with link from y2 to y1

We have,
t1 ⊥⊥ t2|y2

For p(t1, y1, t2, y2) = p(t1)p(t2)
∑

h p(y1|t1, h)p(y2|t2, h)p(h)

Similarly, consider the BN with y1 → y2

The implied statement t1 ⊥⊥ t2|y1 is also not true for that distribution
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Expressibility of BNs (cont.)

BNs cannot express all CI statements from that set of variables

• The set of conditional independence statements can be increased

• (by considering additional variables however)

This situation is rather general

Graphical models have limited expressibility of independence statements
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Expressibility of BNs (cont.)

BNs may not always be the most appropriate framework

• Not to express one’s independence assumptions

A natural consideration

• Use a bi-directional arrow when a variable is marginalised

h

t1

y1

t2

y2

t1

y1

t2

y2

One could depict the marginal distribution using a bi-directional edge


