Exercise Assignment II (2015.2 - T01) Deliver Deadline: October, 13th, 2015

- **Exercise 01** Prove mathematically that the Bernoulli distribution satisfies the following properties:
 - a) $\mathbb{E}[x] = \mu;$
 - b) $var[x] = \mu(1 \mu)$
- **Exercise 02** In this course's website there is a geneated dataset called data.dat. This dataset has m = 126 samples and n = 3 variables. So assume this dataset is a matrix **X**. Moreover, $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]$ where \mathbf{x}_i is the *i*-th column of **X**. Using these informations, do what is asked in the following items.
 - a) Compute, through implementation or through a computer program, the covariance matrix of \mathbf{X} .
 - b) Use the covariance matrix of \mathbf{X} to determine if the vector pair $(\mathbf{x}_1, \mathbf{x}_2)$ is correlated. If so, determine if it is negatively or posively correlated. Do a *scatter-plot* of the vector pair $(\mathbf{x}_1, \mathbf{x}_2)$.
 - c) Use the covariance matrix of \mathbf{X} to determine if the vector pair $(\mathbf{x}_2, \mathbf{x}_3)$ is correlated. If so, determine if it is negatively or posively correlated. Do a *scatter-plot* of the vector pair $(\mathbf{x}_2, \mathbf{x}_3)$.
 - d) Through the covariance matrix computed in 2.a, determine $var[\mathbf{x}_1]$, $var[\mathbf{x}_2]$ and $var[\mathbf{x}_3]$.
 - e) Through implementation, compute the mean of $\mathbf{x}_1, \mathbf{x}_2$ and \mathbf{x}_3 . After that, plot these vectors and pay attention to the shape of them. Which of these vectors has a Gaussian distribution. Why?

- **Exercise 03** Still using data.dat, plot the histogram of \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 . After that, do a histogram density estimation (through implementation) in each vector with the following bin widths Δ and plot the results.
 - a) $\Delta = 0.01;$
 - b) $\Delta = 0.05;$
 - c) $\Delta = 0.25;$
 - d) $\Delta = 0.50.$
- **Exercise 04** Still using data.dat, plot \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 . After that, Implement the K-nearest-neighbour density estimation for each vector with following values of K and plot the results.
 - a) K = 1;
 - b) K = 5;
 - c) K = 10;
 - d) K = 15.

Good luck!