
Assignment IV (2015.2 - T01)
Submission Deadline: November, 16th, 2015.

Instructions:

• Submission deadline: November, 16th, 2015.

• This assignment must be delivered as a report (with Introduction, Methodology, Results,
Conclusion and References).

• Source codes must be delivered as attachments.

• When answering the questions, books and papers citations are allowed as long as they
are listed in “references” section of the report.

• When submitting this assignment, please inform if you are registered or not in SIGAA.

• If you are registered in SIGAA, provide your university ID number when submitting the
assignment.
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Exercises

Exercise 01

This exercise explores Least Squares for Classification. This classifier has a linear model for 2
classes which is given as

y(x) = wTx + w0. (1)

In this exercise, it will be used a data set where the samples are divided in K = 2 classes
and it is divided in two parts. The first part, called data-I-samples-learning.txt, have the
samples used for training phase and the second part, called data-I-labels-learning.txt,
has the labels of each sample. Each row of data-I-samples-learning.txt is a sample and
each row of data-I-labels-learning.txt is this sample’s label. For instance, in the 5th row
of data-I-samples-learning.txt has a sample where

x5 =

(
3.5142
5.5719

)
and in the same line of data-I-labels-learning.txt (the 5th line) it is seen that

t = 1.

So the 5th sample has a label t = 1 i.e., it belongs to the first class C1.
Use data-I-samples-learning.txt and data-I-labels-learning.txt to find the optimum
w. Then, test your results using the second part of the dataset ( data-I-samples-testing.txt
and data-I-labels-testing.txt. Both follow the same idea of the first part of the data set).
For the results:

1.1) Give the sum-of-squares error (E) given as:

E =
1

2

N∑
n=1

(yn(x)− tn)2 ,

where N is the total number of samples and tn is the label of the n-th sample;

1.2) Plot the testing data samples along with the decision boundary.

1.3) Give the classification rates (in this case: percentage of correctly classificated samples).
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Figure 1: Scatter plot of the data used in Exercise 02.

Exercise 02

This exercise explores Fisher Linear Discriminant. Generate a data set where it has two classes.
The first class, C1, must have the mean vector

µ1 =

(
2.5
9

)
and the second class, C2, must have the mean vector

µ2 =

(
0
2

)
.

Both classes must share the same covariance matrix

Σ =

(
1 −1
−1 2

)
.

Each class must have 1000 samples. Figure 1 shows how the scatter plot of the generated data
set should look like.

2.1) Use Fisher’s Linear Discriminant ;

2.2) Plot the data after the execution of Fisher’s Linear Discriminant. Draw the decision
boundary.

2.3) Inform the classification accuracy (percentage of correctly classificated samples).
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Figure 2: Scatter plot of the data used in Exercise 04.

Exercise 03

Using the Perceptron Algorithm find the decision boundary in the data used in Exercise 01.
It is possible to find a decision boundary with the data available in Exercise 02? In both
situations, does the Perceptron Algorithm give good classification rates (at least 90% of the
testing samples classified correctly)? Justify your answer.

Exercise 04

The data set used in this exercise has a scatter plot shown in Figure 2. This data set has K = 3
classes. Use Probabilistic Generative Models in this exercise.

Note that this exercise is using multiclass approach. So consider a generative classification
model for K classes defined by prior class probabilities p(Ck) = πk where

πk =
Nk

N

where Nk is the number of samples assigned to class Ck and N is the total number of samples.
Suppose we are given a training data set {φn, t} where n = 1, . . . , N ; tn is a binary target
vector of length K that that uses 1-of-K coding scheme and φ is the input feature vector. In
this exercise, consider that all classes has the same covariance matrix Σ so that

p(φ|Ck) = N (φ|µk,Σ) .

The data sets: data-III-samples-learning.txt and data-III-labels-learning.txt

must be used for training phase. In this phase, estimate µ1 for C1, µ2 for C2 and µ3 for class
C3. Assume that all classes has the same covariance matrix Σ.
Use maximum likelihood solution for the mean

µk =
1

Nk

N∑
n=1

tnkφn
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and for the covariance matrix

Σ =
K∑
k=1

Nk

N
Sk,

Sk =
1

Nk

N∑
n=1

tnk(φn − µk)(φn − µk)T

where tnk is the element of the identity matrix where is in n-th row and k-th column. After build-
ing the whole model, use data-III-samples-testing.txt and data-III-labels-testing.txt

to calculate p(C1|x) and p(C2|x). Plot the decision boundaries (hyperplanes) along with the
scatter-plot of the data. Inform the classification rates.

Exercise 05

With the same data used in Exercise 04, use multiclass logistic regression and compare the
results with the algorithm used in the previous exercise. Recall that in this problem, tn uses
the 1-of-K coding scheme is used in the target vector tn. The likelihood function is given by

p (T|w1, . . . ,wK) =
N∏

n=1

K∏
k=1

p(Ck|φn)tnk

=
N∏

n=1

K∏
k=1

ytnk
nk

where ynk = yk(φn) and T ∈ RN×K is a matrix of target variables with elements tnk. Taking
the negative logarithm then gives

E(w1, . . . ,wK) = − ln (p(T|w1, . . . ,wK))

= −
N∑

n=1

K∑
k=1

tnk ln(ynk)

which is knows as the cross-entropy error function for the multiclass classification problem.

∇wk
∇wj

E(w1, . . . ,wK) = −
N∑

n=1

ynk (Ikj − ynj)φnφ
T
n .

As with the two-class problem, the Hessian matrix for the multiclass logistic regression model
is positive definite and so the error function has a unique minimum.
Multi class IRLS algorithm is given by

wnew
k =

(
ΦTRkΦ + λI

)−1
ΦTRkzk,

where Rk is a diagonal matrix with elements in the diagonal are ynk(1 − ynk), λ is a small
number between 0 and 1, I is the identity matrix and

zk = Φwold
k − (Rk)−1 (yk − tk)

where yk and tk are respectively the output and target vector for the k-th class.
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Exercise 06

In this course’s website there is a data set called iris.dat taken from UCI Machine Learning
Repository [1]. The data set is has 3 classes where each of these classes have 50 samples. Each
sample has 4 attributes. The last column of the data set are the labels of each sample. More
information about iris.dat is available at
https://archive.ics.uci.edu/ml/datasets/Iris.

6.1) Inform range, variance and standard deviaton of each attribute.

6.2) Use Principal Component Analysis (PCA) to reduce the dimensionality of the data to
2-D. Use the following PCA algorithm:

I) Remove the mean from the data.

II) Divide the data by its standard deviation.

III) Put all the data in a matrix X ∈ RN×M .

IV) Compute S = 1
N−1

XTX where N is the total number of samples (in this case:
N = 150).

V) Compute the eigen-value decomposition S = PΛPT , such that

Λ =


λ1 0 . . . 0
0 λ2 . . . 0

0 0
. . . 0

0 0 . . . λM

 ,

where λ1 > λ2 > . . . > λM are the eigenvalues of S. The matrix P ∈ RM×N is
organized as

P = (p1|p2| . . . |pM),

where pi is the i-th eigenvector associated with the i-th eigenvalue.

VI) Construct a matrix P̃ where is made of the two first columns of P

P̃ = (p1|p2)

VII) Compute the score matrix

T = XP̃

and use this new matrix T as 2-D data.

6.3) Find the decision boundary (in the new data) using Least Squares for Classification.

-

Good luck!
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