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Probability theory

A key concept in the field of pattern recognition is that of uncertainty, it raises

◮ through noise on measurements

◮ through the finite size of data

Probability theory provides a consistent framework for the quantification and
manipulation of uncertainty and forms one of the central foundations of PRML
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Probability theory (cont.)

Imagine we have two boxes, one red and one blue, and in the red box we have
2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange

Suppose that we randomly pick one
of the boxes and from that box we
randomly select an item of fruit

◮ we check the fruit and we
replace it in its box

We repeat this process many times

40% of the time we pick the red box and 60% of the time we pick the bluebox

◮ We are equally likely to select any of the pieces of fruit from the box
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Probability theory (cont.)

The identity of the box that will be chosen is a random variable B

This random variable can take only two possible values

◮ either r , for red box or b, for blue box

The identity of the fruit that will be chosen is a random variable F

This random variable can take only two possible values

◮ either a, for apple or o, for orange

We define the probability of an event to be the fraction of times that event
occurs out of the total number of trials (in the limit that it goes to infinity)

◮ The probability of selecting the red box is 4/10

◮ The probability of selecting the blue box is 6/10
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Probability theory (cont.)

We write these probabilities as p(B = r) = 4/10 and p(B = b) = 6/10

Note that, by definition, probabilities must lie in the interval [0, 1]

◮ If the events are mutually exclusive and if they include all possible

outcomes, then the probabilities for those events must sum to one

We have defined our experiment and we can start asking questions

◮ What is the overall probability that the selection procedure picks an apple?

◮ Given that we have chosen an orange, what is the probability that the box
we chose was the blue one?

◮ ...

We can answer questions such as these, and indeed much more complex
questions associated with problems in pattern recognition, once we have
equipped ourselves with the two elementary rules of probability

◮ the sum rule and the product rule
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Probability theory (cont.)

To derive the rules of probability, consider the slightly more general example

◮ Two random variables X and Y

}

}
ci

rjyj

xi

nij

We shall suppose that:

◮ X can take any of the values xi , i = 1, . . . ,M

◮ Y can take any of the values yj , j = 1, . . . , L

Here, M = 5 and L = 3

Consider a total of N trials in which we sample both variable X and Y

◮ Let nij be the number of such trials in which X = xi and Y = yj

◮ Let ci be the number of trials in which X takes the value xi (irrespective
of the value that Y takes)

◮ Let rj be the number of trials in which Y takes the value yj (irrespective
of the value that X takes)
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Probability theory (cont.)

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi ,Y = yj ): It is the joint probability of X = xi and Y = yj

}

}

ci

rjyj

xi

nij

It is given by the number of points falling in the cell
(i , j) as a fraction of the total number N of points

p(X = xi ,Y = yj ) =
nij

N
(1)

We are implicitly considering the limit N → ∞
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Probability theory (cont.)

The probability that X takes the value xi irrespective of the value of Y is
p(X = xi ) and is given by the fraction of the total number of points in column i

p(X = xi ) =
ci

N
=

∑L

j=1 nij

N
=

L∑

j=1

nij

N
︸ ︷︷ ︸

p(X=xi ,Y=yj )

=
L∑

j=1

p(X = xi ,Y = yj ) (2)

p(X = xi ) is called the marginal probability because it obtained by
marginalising, or summing out, the other variables (i.e., Y )

}

}

ci

rjyj

xi

nij

The definition of marginal probability sets
the Sum rule of probability

p(X = xi ) =

L∑

j=1

p(X = xi ,Y = yj ) (3)
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Probability theory (cont.)
If we consider only those instances for which X = xi , then the fraction of such
instances for which Y = yj is written p(Y = yj |X = xi )

◮ It is the conditional probability of Y = yj given X = xi

}

}
ci

rjyj

xi

nij

It is obtained by finding the fraction of those points
in column i that fall in cell i , j

p(Y = yi |X = xi ) =
nij

ci
(4)

From Equation 1, 2 and 4, we derive the Product rule of probability

p(X = xi ,Y = yj ) =
nij

N
=

nij

ci
︸ ︷︷ ︸

p(Y=yj |X=xi )

ci

N
︸ ︷︷ ︸

p(X=xi )

= p(Y = yj |X = xi )p(X = xi ) (5)
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Probability theory (cont.)

The rules of probability

◮ sum rule

p(X ) =
∑

Y

p(X ,Y ) (6)

◮ product rule

p(X ,Y ) = p(Y |X )p(X ) (7)

To compact notation, p(⋆) denotes a distribution over a random variable ⋆ 1

◮ p(X ,Y ) is a joint probability, the probability of X and Y

◮ p(Y |X ) is a conditional probability, the probability of Y given X

◮ p(X ) is a marginal probability, the probability of X

1p(⋆ = ·) or simply p(·) denotes the distribution evaluated for the particular value ·
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Probability theory (cont.)

From the product rule and the symmetry property p(X ,Y ) = p(Y ,X ),
we obtain the following relationship between conditional probabilities

p(Y |X ) =
p(X |Y )p(Y )

p(X )
(8)

It is the Bayes’ theorem, plays a central role in statistical machine learning

Using the sum rule, the denominator in Bayes’ theorem can be expressed in
terms of the quantities appearing in the numerator

p(X ) =
∑

Y

p(X |Y )p(Y ) (9)

The denominator is a normalisation constant that ensures that the sum of the
conditional probability on the left-hand side of Eq. 8 over all values of Y is one
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Probability theory (cont.)

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)
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Probability theory (cont.)

Returning to the example involving the boxes of fruit

The probability of selecting either red or blue boxes are

◮ p(B = r) = 4/10 and p(B = b) = 6/10

This satisfies p(B = r) + p(B = b) = 4/10 + 6/10 = 1

Now suppose that we pick a box at random, say the blue box

Then the probability of selecting an apple is just the fraction of
apples in the blue box which is 3/4, so p(F = a|B = b) = 3/4
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Probability theory (cont.)

We can write all conditional probabilities for the type of fruit, given the box

p(F = a|B = r) = 1/4 (10)

p(F = o|B = r) = 3/4 (11)

p(F = a|B = b) = 3/4 (12)

p(F = o|B = b) = 1/4 (13)

Note that these probabilities are normalised so that

p(F = a|B = r) + p(F = o|B = r) = 1 (14)

p(F = a|B = b) + p(F = o|B = b) = 1 (15)
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Probability theory (cont.)

We can now use the sum and product rules of probability
to evaluate the overall probability of choosing an apple 2

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
×

4

10
+

3

4
×

6

10
=

11

20
(16)

from which it follows (sum rule) that p(F = o) = 1− 11/20 = 9/20

2P(X ) =
∑

Y p(X ,Y ) with p(X ,Y ) = p(Y |X )p(X ) = p(Y ,X ) = p(X |Y )p(Y )
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Probability theory (cont.)

Suppose instead we are told that a piece of fruit has been selected and it is an
orange, and we would like to know which box it came from

We want the probability distribution over boxes conditioned on the identity of
the fruit (P(B|F )), whereas the probabilities in Eq. 10-13 give the probability
distribution over fruits conditioned on the identity of the box (P(F |B))

We solve the problem of reversing the conditional probability (Bayes’ theorem)

p(B = r |F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
×

4

10
×

20

9
=

2

3
(17)

From which it follows (sum rule) that p(B = b|F = o) = 1− 2/3 = 1/3
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Probability theory (cont.)

We can provide an important interpretation of Bayes’ theorem as follows

◮ If we had been asked which box had been chosen before being told the
identity of the selected item of fruit, then the most complete information
we have available is provided by the probability p(B)

◮ We call this the prior probability because it is the probability available
before we observe the identity of the fruit

◮ Once we are told that the fruit is an orange, we can then use Bayes’
theorem to compute the probability p(B|F )

◮ We call this the posterior probability because it is the probability
obtained after we have observed the identity of the fruit

The prior probability of selecting the red box was 4/10 (the blue box is more
probable), and once we observed that the piece of selected fruit is an orange,
the posterior probability of the red box is 2/3 (the red box is more probable)
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Probability theory (cont.)

If the joint distribution of two variables factorises into the product of the
marginals, p(X ,Y ) = p(X )p(Y ), then X and Y are said to be independent

p(X ,Y ) = p(Y |X )p(X )

From the product rule, we see that p(Y |X ) = p(Y ), and so the conditional
distribution of Y given X is indeed independent of the value of X

p(Y |X ) =
p(X |Y )p(Y )

p(X )
= P(Y ) ⇐= P(X |Y ) = P(X )
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Probability densities

We wish now to consider probabilities with respect to continuous variables

If the probability of a real-valued variable x falling in the interval (x , x + δx) is
given by p(x)δx for δx → 0, then p(x) is called the probability density over x

xδx

p(x)
P (x)

The probability that x will lie in
the interval (a, b) is given by

p(x ∈ (a, b)) =

∫ b

a

p(x)dx (18)
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Probability densities (cont.)

Probabilities are nonnegative, and because the value of x must lie somewhere
on the real axis, the probability density p(x) must satisfy the two conditions

xδx

p(x)
P (x)

p(x) ≥ 0 (19)
∫ +∞

−∞

p(x)dx = 1 (20)
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Probability densities (cont.)

The probability that x lies in the interval (−∞, z) is given by
the cumulative distribution function, which is defined by

xδx

p(x)
P (x)

P(z) =

∫ z

−∞

p(x)dx (21)

The probability density p(x) can be expressed as the derivative
of a cumulative distribution function P(x): P ′(x) = p(x)
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Probability densities (cont.)

If we have several continuous variables x1, . . . , xD , collected in vector x, then
we can define a joint probability density p(x) = p(x1, . . . , xD) such that the
probability of x falling in an infinitesimal volume δx containing x is p(x)δx

Also the multivariate probability density must satisfy

p(x) ≥ 0 (22)
∫

p(x)dx = 1 (23)

We can also consider joint probability distributions over
a combination of discrete and continuous variables

Note that if x is a discrete variable, then p(x) is sometimes called
a probability mass function because it can be regarded as a set
of ‘probability masses’ concentrated at the allowed values of x
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Probability densities (cont.)

The sum and product rules of probability, and Bayes’ theorem, apply to the
case of probability densities, or to combinations of discrete/continuous variables

If x and y are two real variables, the sum and product rules take the form

p(x) =

∫

p(x , y)dy (24)

p(x , y) = p(y |x)p(x) (25)
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Expectations and covariances

One operation involving probabilities is finding weighted averages of functions

◮ The average value of some function f (x) under a probability distribution
p(x) is called the expectation of f (x) and will be denoted by E[f ]

For a discrete distribution, it is given by

E[f ] =
∑

x

p(x)f (x) (26)

so that the average is weighted by the relative probabilities of the values of x

In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f ] =

∫

p(x)f (x)dx (27)
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Expectations and covariances (cont.)

In either case, if we are given a finite number N of points drawn from the
probability distribution or probability density, then the expectation can be
approximated as a finite sum over these points

E[f ] ≃
1

N

N∑

n=1

f (xn) (28)

The approximation becomes exact in the limit N → ∞
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Expectations and covariances

Sometimes we will be considering expectations of functions of several variables

◮ we can use a subscript to indicate which variable is being averaged over

Ex [f (x , y)] denotes the average of function f (x , y) wrt the distribution of x

◮ Ex [f (x , y)] =
∑

x
p(x)f (x , y)

◮ Ex [f (x , y)] is a function of y

We can also consider a conditional expectation wrt a conditional distribution

Ex [f |y ] =
∑

x

p(x |y)f (x) (29)

with an analogous definition for continuous variables
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Expectations and covariances (cont.)

The measure of how much variability there is in f (x) around its mean value
E[f (x)] is called the variance of f (x) and it is defined by

var[f ] = E

[(

f (x)− E[f (x)]
)2]

(30)

Expanding the square, we can show (⋆) that the variance can
also be written in terms of the expectations of f (x) and f (x)2

var[f ] = E[f (x)2]− E[f (x)]2 (31)

◮ The variance of the variable x itself (i.e., f (x) = x) is

var[x] = E[x2]− E[x]2 (32)
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Expectations and covariances (cont.)

For two random variables x and y , the extent to which x and y vary together is
called covariance and it is defined by

cov[x , y ] = Exy

[

(x − E[x])(y − E[y ])
]

= Exy [xy ] − E[x]E[y ] (33)

If x and y are independent, then their covariance vanishes (⋆)

For two vectors of random variables x and y, the covariance is a matrix

cov[x, y] = Ex,y

[

(x− E[x])(yT − E[yT ])
]

= Ex,y[xy
T ]− E[x]E[yT ] (34)
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Bayesian probabilities

We viewed probabilities as frequencies of repeatable random events

◮ It is the frequentist interpretation of probability

We can view probabilities also as quantification of uncertainty

◮ It is the Bayesian interpretation of probability

In the example of the boxes of fruit the observation of the identity of the fruit
provided relevant information that altered the probability of the chosen box

◮ Bayes’s theorem converted a prior probability (P(B = r) = 4/10) into a
posterior probability by incorporating the evidence by the observed data

p(B = r |F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

2

3
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Bayesian probabilities (cont.)

We can adopt a similar approach when making inference about quantities such
as the parameters w in the polynomial curve fitting example

◮ We first capture our assumptions about w, before observing the data in
the form of a prior probability p(w)

◮ The effect of the observed data D = {t1, . . . , tn} is expressed through the
conditional probability p(D|w)

◮ Then, we evaluate the uncertainty in w, after we have observed D in the
form of the posterior probability p(w|D)

p(w|D) =
p(D|w)p(w)

p(D)
(35)

The quantity p(D|w) is evaluated for the observed D and can be viewed as a
function of the parameter vector w, as such it is known as likelihood function

◮ It expresses how probable D is for different settings of the parameters w
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Bayesian probabilities (cont.)

The likelihood function p(D|w) plays a fundamental role

◮ In a frequentist setting, w is considered as a fixed parameter, whose value
is determined by some form of estimator, and error bars on this estimate
are obtained by considering the distribution of possible data sets D

◮ In the Bayesian setting, there is only a single data set D (namely the one
that is actually observed), and the uncertainty in the parameters is
expressed through a probability distribution over w given that data set

The likelihood p(D|w) is NOT a probability distribution
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Bayesian probabilities (cont.)

A widely used frequentist estimator is maximum likelihood, in which
w is set to the value that maximises the likelihood function p(D|w)

◮ This corresponds to choosing the value of w for which the
probability of the observed data set D is maximised

The negative log of the likelihood function is called an error function

◮ The negative logarithm is a monotonically decreasing function, maximising
the likelihood is equivalent to minimising the error
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Bayesian probabilities (cont.)

Given the definiton of likelihood, we state the Bayes’ theorem also in words

posterior ∝ likelihood × prior (36)

p(w|D) =
p(D|w)p(w)

p(D)

where all quantities are intended as functions of w and the denominator is a
normalisation constant ensuring that the posterior distribution is a valid pdf

Integrating both sides of the Bayes’ theorem with respect to w, we can express
the denominator in terms of the prior distribution and the likelihood function

p(D) =

∫

p(D|w)p(w)dw (37)
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The Gaussian distribution

We introduce an important probability distribution for continuous variables

◮ The normal or Gaussian distribution

For a single real-valued variable x , the Gaussian distribution is defined by

N (x |µ, σ2) =
1

(2πσ2)1/2
exp

( 1

2σ2
(x − µ)2

)

(38)

It is a function of the variable x and it is governed by two parameters

◮ µ, called the mean

◮ σ2 called the variance

The square root σ of the variance is the standard deviation

The reciprocal β =
1

σ2
of the variance is called the precision

FC - Fortaleza Probability theory



Probability theory
Polynomial fitting

Probability densities
Expectations and covariances
Bayesian probabilities
The Gaussian distribution

The Gaussian distribution (cont.)

From the form of Equation 38 and the plot of the univariate Gaussian with
mean µ and standard deviation σ, we see that it satsfies

N (x |µ, σ) > 0 (39)

In addition, the Gaussian distribution is normalised (⋆)

∫ +∞

−∞

N (x |µ, σ) = 1 (40)

N (x|µ, σ2)

x

2σ

µ

It satisfies the two requirements
for a valid probability density
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The Gaussian distribution (cont.)

We can find expectations of functions of x under the Gaussian (⋆)

◮ The average value of x is

E[x] =

∫ +∞

−∞

N (x |µ, σ)xdx = µ (41)

◮ The second order moment

E[x2] =

∫ +∞

−∞

N (x |µ, σ)x2
dx = µ2 + σ2 (42)

From Equation 41 and 42 follows that the variance of x is

var[x] = E[x2]− E[x]2 = σ2 (43)

The maximum of a distribution is called mode and for the
Gaussian it is found in the correspondence of the mean (⋆)

FC - Fortaleza Probability theory



Probability theory
Polynomial fitting

Probability densities
Expectations and covariances
Bayesian probabilities
The Gaussian distribution

The Gaussian distribution (cont.)

The Gaussian defined over a D-dimensional vector x of continuous variables

N (x|µ,σ2) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x− µ)TΣ−1(x− µ)

)

(44)

◮ the D-dimensional vector µ is the mean

◮ the D × D matrix Σ is the covariance

◮ |Σ| denotes the determinant of Σ
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The Gaussian distribution (cont.)

We have a dataset x = (x1, . . . , xN)
T of N observations of a scalar variable x

◮ The observations are drawn independently from a Gaussian distribution

◮ The mean µ and variance σ2 of the Gaussian distribution are unknown

We know that the joint probability of two independent events equals the
product of the marginal probabilities for each event separately

◮ Our data x are independently drawn from the same distribution (iid)

◮ We can write the probability of the data as a whole, given µ and σ2

p(x|µ, σ2) =
N∏

n=1

N (xn|µ, σ
2) (45)
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The Gaussian distribution (cont.)

Seen as a function of µ and σ2, this is the likelihood function for the Gaussian

x

p(x)

xn

N (xn|µ, σ
2)

The Gaussian distribution
(red curve)

The black points denote a data
set of values {xn}

The likelihood function is the
product of the blue values

One criterion for finding the parameters in a probability distribution using an
observed set of data is to find the parameters that maximise the likelihood

◮ Here, maximising the likelihood involves adjusting mean and variance
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The Gaussian distribution (cont.)

Instead of finding the values for the parameters µ and σ2 in the Gaussian by
maximising the likelihood, it is more convenient to maximise its logarithm3

◮ It simplifies the subsequent mathematics and helps numerically4

From Equation 38 and 45, the log likelihood can be written as

ln p(x|µ, σ2) = −
1

2σ2

N∑

n=1

(xn − µ)2 −
N

2
ln σ2 −

N

2
ln (2π) (46)

3Because the logarithm is a monotonically increasing function of its argument, maximisation of
the log of a function is equivalent to maximisation of the function itself

4The product of a large number of small probabilities can easily overflow the numerical
precision of the computer and this is resolved by calculating sums of the log probabilities
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The Gaussian distribution (cont.)

Maximising wrt to µ, we get the maximum likelihood solution for the mean (⋆)

◮ The sample mean

µML =
1

N

N∑

n=1

xn (47)

Maximising wrt to σ2, we get the maximum likelihood solution for the variance

◮ The sample variance

σ2
ML =

1

N

N∑

n=1

(xn − µML)
2 (48)

Note that we have to perform the joint maximisation of the log likelihood (wrt
both µ and σ2) but in the case of the Gaussian the solution of µ decouples
from that of σ2 and we can first evaluate Eq. 47 and use the result in Eq. 48
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The Gaussian distribution (cont.)

One of the limitations of our solutions using the maximum likelihood setting is
that the approach systematically underestimates the variance of the distribution

◮ It is an example of a phenomenon called bias (relates to over-fitting)

The maximum likelihood solutions µML and σ2
ML are functions of data x1, . . . , xn

If we consider the expectations of these quantities wrt to the data (also
coming from a Gaussian with parameters µ and σ2) we can show (⋆) that

E[µML] = µ (49)

E[σ2
ML] =

(N − 1

N

)

σ2 (50)

so that on average the maximum likelihood estimate will obtain the correct
mean but will underestimate the true variance by a factor (N − 1/N)
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The Gaussian distribution (cont.)

From Eq. 50 it follows that an unbiased estimate of the variance parameter is

σ̃2 =
N

N − 1
σ2
ML =

1

N − 1

N∑

n−1

(xn − µML)
2 (51)

Note that the bias of the maximum likelihood solution would anyway become
less significant as the number of points N increases, and for N → ∞ the
solution equals the true variance of the distribution that generated the data
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Polynomial fitting

x

t

0 1

−1

0

1

Training data of N = 10 points, blue circles

◮ each comprising an observation of the
input variable x along with the
corresponding target variable t

The unknown function sin(2πx) is used to
generate the data, green curve

◮ Goal: Predict the value of t for some
new value of x

◮ without knowledge of the green curve

The input training data x was generated by choosing values of xn, for
n = 1, . . . ,N, that are spaced uniformly in the range [0, 1]

The target training data t was obtained by computing values sin(2πxn)
of the function and adding a small level of Gaussian noise
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Polynomial fitting (cont.)

◮ We shall fit the data using a polynomial function of the form

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMx

M =

M∑

j=0

wjx
j (52)

◮ M is the polynomial order, x j is x raised to the power of j

◮ Polynomial coefficients w0, . . . ,wM are collected in vector w

The coefficients values are obtained by fitting the polynomial to training data

◮ By minimising an error function, a measure of misfit between function
y(x ,w), for any given value of w, and the training set data points

◮ A choice of error function is the sum of the squares of the errors between
predictions y(xn,w) for each point xn and corresponding target values tn

E(w) =
1

2

N∑

n=1

(

y(xn,w)− tn

)2

=⇒ w
⋆ (53)
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Polynomial fitting (cont.)

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1
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Polynomial fitting (cont.)

M

E
R

M
S

 

 

0 3 6 9
0

0.5

1
Training
Test The root mean squared error ERMS

ERMS =

√

2
E(w⋆)

N

The magnitude of the coefficients tends
to explode trying to (over)fit the data

||w||2 = w
T
w = w

2
0 + w

2
1 + · · ·+ w

2
M

for
of various order.

ve how the typical mag-
of the coefficients in-
dramatically as the or-

of the polynomial increases.

M = 0 M = 1 M = 6 M = 9

w
⋆

0
0.19 0.82 0.31 0.35

w
⋆

1
-1.27 7.99 232.37

w
⋆

2
-25.43 -5321.83

w
⋆

3
17.37 48568.31

w
⋆

4
-231639.30

w
⋆

5
640042.26

w
⋆

6
-1061800.52

w
⋆

7
1042400.18

w
⋆

8
-557682.99

w
⋆

9
125201.43
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Polynomial fitting (cont.)

One technique that is often used to control over-fitting is regularisation

◮ Add a penalty term to the error function E(w), to discourage the
coefficients from reaching large values

◮ The simplest such penalty term is the sum of squares of all of the
coefficients, to get a new error function

Ẽ(w) =
1

2

N∑

n=1

(

y(xn,w)− tn

)2

+
λ

2
||w||2 (54)

◮ where ||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M

◮ Coefficient λ trades off t between the regularisation term and the
standard sum-of-squares error
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Polynomial curve fitting (cont.)

Fitting the polynomial of order M = 9 to the data using a regularised error

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

◮ For lnλ = −18 (it’s a small value for λ), over-fitting is suppressed

◮ For lnλ = 0 (it’s a large value for λ), we obtain again a poor fit
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Polynomial fitting (cont.)

We have expressed the problem of polynomial curve fitting

Error minimisation ⇒







E(w) =
1

2

∑N

n=1

(

y(xn,w)− tn

)2

Ẽ(w) =
1

2

∑N

n=1

(

y(xn,w)− tn

)2

+
λ

2
||w||2

(55)

We return to it and view it from a probabilistic perspective
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Polynomial fitting (cont.)

The goal in the curve fitting problem is to be able to make predictions for
the target variable t, given some new value of the input variable x and

◮ a set of training data comprising N input values x = (x1, . . . , xN)
T

and their corresponding target values t = (t1, . . . , tN)
T

Uncertainty over the target value is expressed using a probability distribution

◮ Given the value of x , the corresponding value of t is assumed to have a
Gaussian distribution with a mean the value y(x ,w) of the polynomial

p(t|x ,w, β) = N
(

t

∣
∣
∣y(x ,w), β−1

)

(56)

and some precision β (the precision is the reciprocal of the variance σ2)
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Polynomial fitting (cont.)

The conditional distribution over t given x is p(t|x ,w, β) = N
(

t

∣
∣
∣y(x ,w), β−1

)

◮ The mean is given by the polynomial function y(x ,w)

◮ The precision is given by β, with β−1 = σ2

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

We can use training data {x, t}
to determine the values of the
parameters µ and β of this
Gaussian distribution

◮ Likelihood maximisation
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Polynomial fitting (cont.)

Assuming that the data have been drawn independently from the conditional

distribution p(t|x ,w, β) = N
(

t

∣
∣
∣y(x ,w), β−1

)

, the likelihood function is

p(t|x,w, β) =
N∏

n=1

N
(

tn

∣
∣
∣y(xn,w), β−1

)

(57)

It is again convenient to maximise its logarithm, the log likelihood function

ln p(t|x,w, β) = −
β

2

N∑

n=1

(

y(xn,w)− tn

)2

+
N

2
ln β −

N

2
ln (2π) (58)

The optimisation is again with respect to both the polynomial coefficients w
and the precision parameter β of the Gaussian conditional distribution
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Polynomial fitting (cont.)

ln p(t|x,w, β) = −
β

2

N∑

n=1

(

y(xn,w)− tn

)2

+
N

2
ln β −

N

2
ln (2π)

Let us consider first the determination of the maximum likelihood solution for w

◮ The last two terms can be omitted, as they do not depend on w

◮ Coefficient β/2 can be replaced with 1/2, because scaling the log
likelihood by a positive constant does not alter the location of
its maximum with respect to w

Maximisation of log likelihood wrt w is minimisation of negative log likelihood

◮ This equals the minimisation of the sum-of-squares error function

E(w) =
1

2

N∑

n=1

(

y(xn,w)− tn

)2

=⇒ wML = w
⋆
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Polynomial fitting (cont.)

ln p(t|x,w, β) = −
β

2

N∑

n=1

(

y(xn,w)− tn

)2

+
N

2
ln β −

N

2
ln (2π)

Let us consider now the determination of the maximum likelihood solution for β

◮ Maximising the log likelihood with respect to β gives

1

βML

=
1

N

N∑

n=1

(

y(xn,wML)− tn)
)2

(59)

◮ where again we decoupled the solution of w and β
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Polynomial fitting (cont.)

Having an estimate of w and β we can make predictions for new values of x

◮ We have a probabilistic model that gives the probability distribution over t

We can make estimations that are much more than a plain point estimate of t

◮ We can make predictions in terms of the predictive distribution

p(t|x ,wML, βML) = N
(

t

∣
∣
∣y(x ,wML), β

−1
ML

)

(60)

◮ The probability distribution over t, rather than a point estimate
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Polynomial fitting (cont.)

We can make a step forward towards a Bayesian treatment of the problem

◮ We introduce a prior distribution over the polynomial coefficients w

◮ We consider a Gaussian distribution5

N (w|µ,Σ) = N (w|0, α−1
I) =

( α

2π

)(M+1)/2

exp
(

−
α

2
w

T
w
)

= p(w|α)

(61)

◮ µ = 0 and Σ = α−1I

◮ α is the precision of the distribution6

◮ Number of parameters in w, M + 1

5N (x|µ,σ2) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x − µ)TΣ−1(x − µ)

)

6Variables such as α control the distribution of model parameters are called hyperparameters
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Polynomial fitting (cont.)

p(w|α) = N (w|0, α−1
I) =

( α

2π

)(M+1)/2

exp
(

−
α

2
w

T
w
)

p(t|x,w, β) =
N∏

n=1

N
(

tn

∣
∣
∣y(xn,w), β−1

)

Using Bayes’ theorem, the posterior distribution for w is proportional to
the product of the prior distribution and the likelihood function, thus

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α) (62)

We can now determine w by finding its most probable value given the data

◮ that is, by maximising the posterior distribution

◮ this technique is maximum posterior or MAP
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Polynomial fitting (cont.)

By taking the negative log of the posterior distribution over w (above) and
combining with Eq. 58 (log likelihood function) and Eq. 61 (prior distribution
over w), we find that the maximum of the posterior is given by the minimum of

β

2

N∑

n=1

(

y(xn,w)− tn

)2

+
α

2
w

T
w (63)

Thus, maximising the posterior is equivalent to minimising the regularised
sum-of-squares error function with regularisation λ = α/β

Ẽ(w) =
1

2

N∑

n=1

(y(xn,w)− tn)
2 +

λ

2
||w||2
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Bayesian polynomial fitting (cont.)

Though we included a prior p(w|α), we are still making point estimates of w

◮ Not yet a full Bayesian treatment

In our problem, we are given training data x and t, along with a new point x

◮ We wish to evaluate the predictive distribution p(t|x , x, t)

Assuming parameters α and β fixed and known, the predictive distribution is

p(t|x , x, t) =

∫

p(t|x ,w)p(w|x, t)dw (64)

◮ p(t|x ,w) is p(t|x ,w, β) = N
(

t

∣
∣
∣y(x ,w), β−1

)

◮ p(w|x, t) is the posterior distribution over w

p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α)
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Bayesian polynomial fitting (cont.)

It is possible to show this posterior distribution is a Gaussian that can be
evaluated analytically and also the integration can be performed analytically

p(t|x , x, t) =

∫

p(t|x ,w)p(w|x, t)dw = N
(

t

∣
∣
∣m(x), s2(x)

)

(65)

The mean and variance of this Gaussian predictive distribution are

m(x) = βφ(x)TS
N∑

n=1

φ(xn)tn (66)

s
2(x) = β−1 + φ(x)TSφ(x) (67)

We defined the vector φ(x) with elements φi(x) = x i , with i = 0, . . . ,M

The matrix S is

S
−1 = αI+ β

N∑

n=1

φ(xn)φ(xn)
T (68)
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Bayesian polynomial fitting (cont.)

m(x) = βφ(x)TS
N∑

n=1

φ(xn)tn

s
2(x) = β−1 + φ(x)TSφ(x)

We see that the variance, but also the mean, of this predictive distribution
p(t|x , x, t) = N (t|m(x), s2(x)) depend on x

◮ The first terms is s2 represents the uncertainty in the predicted value t due
to the noise on the target variables

◮ It was already present in the maximum likelihood predictive distribution
p(t|x ,wML, βML) = N (t|y(x ,wML), β

−1
ML)

The second term arises from the uncertainty in the parameters and it is a
consequence of the Bayesian treatment
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Bayesian polynomial fitting (cont.)

The predictive distribution p(t|x , x, t) = N
(

t

∣
∣
∣m(x), s2(x)

)

, M = 9 polynomial

◮ The red curve is the mean m(x) of the predictive distribution

◮ The red region corresponds to ±1 s around the mean

x

t

0 1

−1

0

1

◮ α = 5× 10−2

◮ β = 11.1, corresponding to
the known noise variance
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