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Probability distributions

Probability theory has a central role in pattern recognition problems

We explore now some probability distributions and their properties

◮ of great interest in their own right

◮ building blocks for complex models

One role for these distributions is to model the probability distribution p(x)
of a random variable x, given a finite set x1, . . . , xN of observations

◮ This problem is known as density estimation

A problem that is fundamentally ill-posed, because there are infinitely many
probability distributions that could have given rise to the observed finite data

◮ any p(x) that is nonzero at each of x1, . . . , xN is a potential candidate
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Probability distributions (cont.)

We begin by considering specific examples of parametric distributions

◮ Binomial and multinomial distribution for discrete variables

◮ The Gaussian distribution for continuous random variables

Parametric distributions because governed by a number of parameters

To use such models in density estimation problems, we need a procedure

◮ Determine the values for the model parameters, given observations

In a frequentist treatment, we set the parameters by optimising some criterion

◮ For instance, the likelihood function

In a Bayesian treatment we introduce prior distributions over the parameters

◮ Bayes’ theorem to get the posterior
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Probability distributions (cont.)

We introduce the important concept of conjugate prior

◮ It is a prior that leads to a formally special posterior

◮ A posterior with the same functional form as the prior

The conjugate prior for the parameters of a multinomial distribution

◮ A Dirichlet distribution

The conjugate prior for the mean of a Gaussian distribution

◮ A Gaussian distribution

All these distributions are members of the exponential family
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Probability distributions (cont.)

The parametric approach assumes a specific functional form for the distribution

◮ It may turn out to be inappropriate for a particular application

An alternative approach is given by nonparametric density estimation

◮ the form of the distribution often depends on the size of the data

Such models still contain parameters, but they control model complexity

Nonparametric methods: Histograms, near-neighbours, and kernels
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The beta distribution

Binary variables

Consider a single binary variable x ∈ {0, 1}

Think of an unfair coin, in which probability of tails and heads is different

◮ x describes the outcome of flipping the coin

◮ x = 1 represents heads

◮ x = 0 represents tails

The probability of x = 1 is denoted by the parameter µ, with 0 ≤ µ ≤ 1

◮ p(x = 1|µ) = µ

◮ p(x = 0|µ) = 1− p(x = 1|µ) = 1− µ
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The beta distribution

Binary variables (cont.)

The probability distribution over x can be written as Bern(x |µ) = µx(1− µ)1−x

Bern(x |µ) = µ
x(1−µ)1−x =⇒

{

x = 0, µ0(1− µ)1−0 = (1− µ)

x = 1, µ1(1− µ)1−1 = µ
(1)

This is the Bernoulli distribution, so it is normalised
∑

x Bern(x |µ) = 1 (⋆)

◮ with mean E[x] =
∑

x
xBern(x |µ) and variance var[x] = E[x2]− E[x]2

E[x] = µ (2)

var[x] = µ(1− µ) (3)
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The beta distribution

Binary variables (cont.)

Now suppose we have a data set D = {x1, . . . , xN} of observed values of x

We can construct the likelihood function of the data

◮ It is a function of µ

Under the assumption of iid observations from p(x |µ)

p(D|µ) =

N∏

n=1

p(xn|µ) =

N∏

n=1

µ
xn (1− µ)1−xn (4)

We can estimate the value for µ by maximising the likelihood function

◮ Equivalently, we can maximise the log likelihood function

ln p(D|µ) =
N∑

n=1

ln p(xn|µ) =
N∑

n=1

(

xn lnµ+ (1− xn) ln (1− µ)
)

(5)

It depends on the N observations only through their sum
∑

n
xn
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The beta distribution

Binary variables (cont.)

If we set the derivative of ln p(D|µ) with respect to µ equal to zero, we get

µML =
1

N

N∑

n=1

xn (6)

The maximum likelihood estimator of the mean of the Bernoulli distribution

◮ It is also known as the sample mean

Denoting the number of observations x = 1 (heads) in the data set by m

µML =
m

N
(7)

The probability of landing heads is the fraction of heads in the data set
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The beta distribution

Binary variables (cont.)

If we toss the coin 3 times and observe heads 3 times, N = m = 3 and µML = 1

The maximum likelihood result would predict all future observations as heads

◮ Common sense suggests that this is unreasonable

◮ It is an extreme case of over-fitting

Setting a prior over µ and using Bayes to get a posterior give sensible results
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The beta distribution

Binary variables (cont.)

We can work out the distribution of the number m of observations of x = 1

◮ given that the data has size N

This is the binomial distribution and it is proportional to µm(1− µ)N−m

Bin(m|N, µ) =

(

N

m

)

µ
m(1− µ)N−m (8)

◮ It considers all possibile ways of obtaining m heads out of N coin flips

The term
(
N

m

)
(verbally, ‘N choose m’) gives the total number of ways of

choosing m objects out of a total of N identical objects and it equals (⋆)

(

N

m

)

≡
N!

(N −m)!m!
(9)
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The beta distribution

Binary variables (cont.)

m
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0
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0.3

The binomial distribution

◮ N = 10

◮ µ = 0.25

Bin(m|N, µ) =

(

N

m

)

µ
m(1−µ)N−m

FC - Fortaleza Binary and multinomial variables



Binary variables
Multinomial variables

The beta distribution

Binary variables (cont.)

(⋆) For iid events, the mean and variance of the binomial distribution are

E[m] ≡
N∑

m=0

mBin(m|N, µ) = Nµ (10)

var[m] ≡
N∑

m=0

(m − E[m])2Bin(m|N, µ) = Nµ(1− µ) (11)

m = x1 + · · ·+ xN and for each xn the mean is µ and variance is µ(1− µ)

◮ The mean of the sum is the sum of means

◮ The variance of the sum is the sum of variances
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The beta distribution

The beta distribution

The maximum likelihood setting for parameter µ in the Bernoulli distribution
(and binomial distribution) is the fraction of the observations having x = 1

◮ Severe overfitting for small datasets

To go Bayesian, we need to set a prior distribution p(µ) over parameter µ

◮ Here we consider a special form of this prior distribution

The likelihood function takes the form of product of factors µx(1− µ)1−x

◮ We can choose a prior proportional to powers of µ and (1− µ)

The posterior will be proportional to the product of prior and likelihood

◮ The posterior will have the same functional form as the prior

Having a posterior with the same functional form of the prior: Conjugacy
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The beta distribution

The beta distribution (cont.)
We choose a prior distribution called the beta distribution

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µ
a−1(1− µ)b−1 (12)

◮ Γ(·) is the gamma function, Γ(x) =
∫ +∞

0
ux−1e−udu

−5 −4 −3 −2 −1 0 1 2 3 4 5
−100

−50

0

50

100

x

Γ
(x

)

◮ a and b are hyper-parameters controlling the distribution of µ
◮ The coefficient ensures normalisation (⋆)

∫ 1

0

Beta(µ|a, b)dµ = 1 (13)
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The beta distribution

The beta distribution (cont.)

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µ
a−1(1− µ)b−1

Mean and variance of the beta distribution are given by

E[µ] =
a

a+ b
(14)

var[µ] =
ab

(a+ b)2(a + b + 1)
(15)
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The beta distribution

The beta distribution (cont.)
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The beta distribution

The beta distribution (cont.)

The posterior distribution of µ is obtained by multiplying the beta prior

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µ
a−1(1− µ)b−1

by the binomial likelihood function Bin(m|N, µ) =
(
N

m

)
µm(1− µ)N−m,

p(µ|m, l , a, b) ∝ u
(m+a)−1(1− µ)(l+b)−1

, with l = N −m (16)

where we kept only factors depending on µ to get the expression above

◮ l = N −m is the number of tails, in the coin example
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The beta distribution

The beta distribution (cont.)

The posterior distribution over the parameter µ has the same functional form
p(µ|m, l , a, b) ∝ u(m+a)−1(1− µ)(l+b)−1 as the beta prior distribution over µ

Beta(µ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
µ
a−1(1− µ)b−1

It is in fact another beta distribution with the obvious normalisation coeffcient

p(µ|m, l , a, b) =
Γ(m + a + l + b)

Γ(m + a)Γ(l + b)
u
m+a−1(1− µ)l+b−1 (17)
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The beta distribution

The beta distribution (cont.)

Γ(a+ b)

Γ(a)Γ(b)
µ
a−1(1− µ)b−1

︸ ︷︷ ︸

Beta(µ|a,b)

−→
Γ(m + a + l + b)

Γ(m + a)Γ(l + b)
u
m+a−1(1− µ)l+b−1

︸ ︷︷ ︸

p(µ|m,l,a,b)

Observing a dataset of m observations of x = 1 and l observations of x = 0 has
the effect to increase the value of hyper-parameters a and b in the prior over µ

◮ a −→ a+m

◮ b −→ b + l
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The beta distribution

The beta distribution (cont.)

The prior is a beta distribution with parameters a = 2 and b = 2, the likelihood
function is for N = m = 1 corresponding to a single observation x = 1 (l = 0)
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The posterior distribution is another beta distribution with a = 3 and b = 2
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The beta distribution

The beta distribution (cont.)

If our goal is to predict the outcome of the next trial, we need
the predictive distribution of x , given the observed data set D

p(x = 1|D) =

∫ 1

0

p(x = 1|µ)p(µ|D)dµ =

∫ 1

0

µp(µ|D)dµ = E[µ|D] (18)

Using p(µ|D) =
Γ(m + a+ l + b)

Γ(m + a)Γ(l + b)
µm+a−1(1− µ)l+b−1 and E[µ] =

a

a + b

p(x = 1|D) =
m + a

m + a+ l + b
(19)

The total fraction of observations (real and fictitious prior) such that x = 1
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The Dirichlet distribution

Multinomial variables

Binary variables are for quantities that can take one of two possible values

For discrete variables that can take on one of K possible mutually
exclusive states there are various alternative ways of representation

◮ A particularly convenient scheme is called 1-of-K

The variable is represented by a K -dimensional vector x in which we have

◮ only one of the elements xk equals 1

◮ all of the other elements x6k equal 0

◮

∑K

k=1 xk = 1

For example, x = (0, 0, 1, 0, 0, 0)T with K = 6 states and observation x3 = 1
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The Dirichlet distribution

Multinomial variables (cont.)

Denote the probability of xk = 1 by the parameter µk with the constraint that
µk ≥ 0 and

∑

k
µk = 1 because they represent probabilities, we have that

◮ the distribution of x is given by

p(x|µ) =

K∏

k=1

µ
xk
k (20)

◮ where µ = (µ1, . . . , µK )
T

The distribution is a generalisation (K > 2) of the Bernoulli distribution

◮ It is normalised
∑

x

p(x|µ) =
K∑

k=1

µk = 1 (21)

◮

E[x|µ] =
∑

x

p(x|µ)x = (µ1, . . . , µK )
T = µ (22)

FC - Fortaleza Binary and multinomial variables



Binary variables
Multinomial variables

The Dirichlet distribution

Multinomial variables (cont.)

Consider a dataset D of N iid observations x1, . . . , xN , the likelihood function

p(D|µ) =

N∏

n=1

K∏

k=1

µ
xnk
k =

K∏

k=1

µ
(
∑

n xnk )

k =

K∏

k=1

µ
mk

k (23)

depends on the N points only through the K quantities mk =
∑

n
xnk

1

1It is the number of observations of xk = 1
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The Dirichlet distribution

Multinomial variables (cont.)

To find the maximum likelihood solution for µ, we maximise ln p(D|µ) wrt µk

K∑

k=1

mk lnµk + λ
( K∑

k=1

µk − 1
)

(24)

where we took into account of the constraint that µk must sum up to one

Setting the derivative wrt µk to zero, we get

µk = −
mk

λ
(25)

with λ = −N, by substitution in
∑

k µk = 1

µ
ML
k = −

mk

N
(26)

the fraction of xk = 1 cases out of N cases
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The Dirichlet distribution

Multinomial variables (cont.)

Consider the joint distribution of the quantities m1, . . . ,mK conditioned on the
parameters µ and on the total number N of observations, from Equation 23

Mult(m1,m2, . . . ,mK |µ,N) =

(

N

m1m2 · · ·mK

)
K∏

k=1

µ
mk

k (27)

which is known as the multinomial distribution

The normalisation coefficient is the number of ways of
partitioning N objects into K groups of size m1, · · · ,mK

(

N

m1m2 · · ·mK

)

=
N!

m1!m2! · · ·mK !
(28)

Note that variables mk are such that
∑

k
mk = N
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The Dirichlet distribution

A family of priors for the parameters {µk} of the multinomial distribution

◮ Again, by inspection of the form of the multinomial distribution

◮ Proportional to powers of µk

p(µ|α) ∝
K∏

k=1

µ
αk−1
k , with 0 ≤ µk ≤ 1 and

∑

k

µk = 1 (29)

µ1

µ2

µ3

α1, . . . , αk are the parameters of the distribution

α = (α1, . . . , αk)
T

Because of the sum constraint, the distribution
over the space of {µk} is confined to a simplex

◮ Bounded (K − 1)-dimensional linear manifold
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The Dirichlet distribution (cont.)

In normalised form, this is known as the Dirichlet distribution

Dir(µ|α) =
Γ(α0)

Γ(α1) . . . Γ(αK )

K∏

k=1

µ
αk−1
K with α0 =

K∑

k=1

αk (30)

The Dirichlet distribution over three variables, for various settings of {αk}
The horizontal axes represents coordinates in the plane of the simplex
The vertical axis corresponds to the density
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The Dirichlet distribution

The Dirichlet distribution (cont.)

Multiplying the prior Dir(µ|α) =
Γ(α0)

Γ(α1) . . . Γ(αK )

∏K

k=1 µ
αk−1
K by the likelihood

function Mult(m1,m2, . . . ,mK |µ,N) =
(

N

m1m2···mK

)∏K

k=1 µ
mk

k gives us

p(µ|D,α) =
Γ(α0 + N)

Γ(α1 +m1) . . . Γ(αK +mK )

K∏

k=1

µ
αk+mk−1
k = Dir(µ|α+m) (31)

◮ The posterior distribution for the parameters {µk}

p(µ|D,α) ∝ p(D|µ)p(µ,α) ∝
K∏

k=1

µ
αk+mk−1
k (32)

◮ Again, it takes the form of a Dirichlet distribution

◮ The normalisation is by comparison with Dir(µ|α)
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