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Bias-variance decomposition

The use of maximum likelihood, or least squares, can lead to severe over-fitting

» if complex models are trained
using data sets of limited size

Limiting the number of basis functions to avoid over-fitting has the side effect
of limiting the flexibility of the model to capture interesting trends in the data

Regularisation terms can control over-fitting for models with many parameters
> How to determine a suitable value
for the regularisation coefficient A7

Seeking the solution that minimises the regularised error function with respect
to both the weight vector w and the regularisation coefficient X is clearly not
the right approach since this leads to the unregularised solution with A =0
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Bias-variance decomposition (cont.)

The over-fitting phenomenon is an unfortunate property of maximum likelihood

> It does not arise when we marginalise
over parameters in a Bayesian setting

It is instructive to first consider a frequentist viewpoint of model complexity
> bias-variance trade-off

We introduce the concept only in the context of linear basis function models
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Bias-variance decomposition (cont.)

When we discussed decision theory for regression problems, the decision stage
consists of choosing a specific estimate y(x) of the target t for each input x

We can do this using a loss L(t, y(x)), so that the average/expected loss is

E[L] = / / L(t, y(x))p(x, t)dxdt

Various loss functions for regression lead to a corresponding optimal prediction

> once we are given the conditional density p(t|x)
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Bias-variance decomposition (cont.)

A common loss function in regression problems is the squared loss function

ey = (v —t) = E= [ [ (v ) plx )t

Squared loss function (decision theory) # sum-of-squares error function (ML)

» Optimal prediction h(x) is given by

Squared loss function pr |
the conditional expectation E[t|x]

L(t,y(x)) = X)—t ?
(t:y(x)) (y( ) ) h(x) = E[t|x] :/tp(t|x)dt (1)

FC - Fortaleza Bias-variance decomposition



Bias-variance decomposition

Bias-variance decomposition (cont.)

We also obtained: E[L] = / (y(x) — E[t]x])*p(x)dx + / (E[t[x] — £)2p(x)dx

It is minimised when y(x), in the first term, equals E[t|x]

The second term is independent of y(x), arises from the noise ¢
» The variance of the distribution of t, averaged over x
> It is the intrinsic variability of the target variable

» The minimum achievable value of the expected loss
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Bias-variance decomposition (cont.)

The expected squared loss function can be written also in another form

E[L] =/( (x )—h(x p(x) dx+// p(x t)dxdt  (2)

With an infinite supply of data and unlimited computational resources
» we could find the regression function h(x) to any accuracy
In practice, we only have a data set D with a finite number N of points

> h(x) is not know exactly
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Bias-variance decomposition (cont.)

If we model h(x) using a parametric function y(x,w) with parameter vector w

> the uncertainty in our model is expressed through
a posterior distribution over w (Bayesian perspective)

A frequentist treatment makes a point estimate of w based on the data set D

> the uncertainty of this estimate is expressed through
a large number of data sets each of size N and
each drawn independently from distribution p(t,x)

For any set D, we learn our algorithm and get a prediction function y(x; D)
» Different data sets, different functions
» Different functions, different values of the squared loss

The performance of a learning algorithm is assessed by averaging over sets
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Bias-variance decomposition (cont.)

E[L] :/( (x )—h(x p(x) dx+// p(x t)dxdt

Consider the integrand of the first term of the expected squared loss, it becomes

(v D)~ b)) 3)

for a particular data set D and it has to be averaged over the ensemble of sets

Before taking its expectation wrt D, add and subtract the quantity Ep[y(x; D)]

(y(x; D) — Eply(x; D)] + Eply(x; D)] — h(x))2
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Bias-variance decomposition (cont.)

Expanding, we obtain

(v D) = Eoly(x D)) + Enly (6 D) — h(x))
= (v D) ~ Eoly(x D))+ (Enly(x )] - h))’
+ 2(y(x; D) — Eply(x; D)]) ([ED[y(x; D) - h(X)) (4)

And taking the expectation with respect to D, it gives

£ (vt D)-h(x)) | = (Enly(x D)}—h(x)) +Ep [ (v0i D)-Enly(x D)) |
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Bias-variance decomposition (cont.)

£ [ (v D)) | = (Enly( D)) = 1)) +En[ (v(x D) ~ Enly(xi D)) |

(bias)? variance

(5

The expected squared difference between y(x; D) and the regression function
h(x) can be expressed as the sum of two terms

> The first term, squared bias, represents the extent to which the average
prediction over all data sets differs from the desired regression function

> The second term, variance, measures the extent to which the solutions for
individual data sets vary around their average, and hence measures the
extent to which function y(x; D) is sensitive to the particular data set

We shall provide some intuition to support these definitions
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Bias-variance decomposition (cont.)

£ [ (vt P)-h()) | = (Foly(x D)I—h(x)) +Ep [ (v0i D)-Eoly(x D)) |

Expected squared difference between y(x; D) and the regression function h(x)

» when considering only a single input value x

Substituting in E[L] = [ (y(x) — h(x))*p(x)dx + [ [ (h(x) — t)*p(x, t)dxdt

expected loss = (BIAS)? + VARIANCE + noise (6)
@S = [ (Enly( D] - h(x)) plx)cx @)
VARIANCE — / Eo[(y(: D)~ Enly(x D)])z] p(x)dx (8

noise = / / () — )" plx. t)dxat 9)
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Bias-variance decomposition (cont.)

We decomposed the expected loss into (integrated) bias, (integrated) variance
and a constant noise term, but our goal is the same: We want to minimise it

There is a trade-off between bias and variance:
» flexible models will have low bias and high variance

> rigid models will have high bias and low variance

(B119)* = [ (Enly(x D)) - hx)) plx)dx
VARIANCE = /[ED [(y(x; D) — Eply(x; D)])z] p(x)dx

The model with optimal predictive capability is the one with the best balance
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Bias-variance decomposition (cont.)

As an example, we consider the usual data from a sinusoidal function
» | =1,...,L datasets D), each with N = 25 points, L = 100
> The points of each D) are iid from h(x) = sin (27x)

For each D), we fit a model with 24 Gaussian basis (M = 25 parameters)

1 2 A
» We minimised the regularised error EZnN:I (t,, - wT¢(xn)) + EwTw

-1
> The resulting parameter vector is w = (AI + <1>T<I>) Tt

» We use w'/) to get a predictive function y{)

All this, for different values of the regularisation parameter A
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Bias-variance decomposition (cont.)

7
1 1 1
In\ =26 In\=-031
t t t
0 0 0
1 -1 -1
0 1 0 . 1 0 z 1

> Large A (left), low variance but high bias
» Small A (right), low bias but high variance
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Bias-variance decomposition (cont.)
In this case, averaging many solutions turned out to be a beneficial procedure

y(x) = LZy (x)  ~Eoly(x; D) (10)
The integrated® squared bias and the integrated variance are given by

18 2
(BIAS) = >~ (70) = h(x:))

w/([Ep[y(x;D)]—h(x))Zp(x)dx (11)

VARIANCE = %Z %Z (W) — 7(xn))2

n=1 I=1
- [ En[(vxiD) - Enlya D)) Jp(ax (12)

integration over x weighted by the distribution p(x) is approximated
by a finite sum over points draw from that distribution

FC - Fortaleza Bias-variance decomposition




Bias-variance decomposition

Bias-variance decomposition (cont.)

Plot of squared bias and variance, together with their sum

» Also shown is the average test set error for a test set size of 1000 points
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The minimum of
(BIAS)? + VARIANCE occurs
around a value In A\ = —0.31

It is close to the value that gives
the minimum error on the test data
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