
Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions

Neural networks

Francesco Corona

FC - Fortaleza Feedforward network functions

Neural networks

Feed-forward network functions
Network training
Error back-propagation

Neural networks

We have considered models for regression and classification
that comprised linear combinations of fixed basis functions

◮ These models have useful analytical and computational properties

◮ Their applicability is however limited by the curse of dimensionality

For large-scale problems, it is necessary to adapt the basis functions to data

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Neural networks (cont.)

Support vector machines (SVMs) address this issue

◮ Basis functions that are centred on the training data points

◮ During training, only a subset of the functions are selected

One advantage of SVMs is that the objective function is convex

◮ although the training involves nonlinear optimisation

◮ the solution of the optimisation problem is attainable

The number of basis functions in the resulting models is generally much smaller
than the number of training points, although it is often still relatively large

◮ Typically, it increases with the size of the training set

Relevance vector machines (RVMs) also chooses a subset from a fixed
set of basis functions and this typically results in much sparser models

◮ Non-convex optimisation

◮ Probabilistic outputs

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Neural networks (cont.)

An alternative approach is to fix the number of basis functions in advance

◮ Allow them to be adaptive

Use parametric forms for the basis functions and adapt parameter values

The most successful model of this type in the context of PR and ML is the
feed-forward neural network, also known as the multi-layer perceptron

◮ Multiple logistic regression models (with continuous non-linearities)

◮ Not multiple layers of perceptrons (with discontinuous non-linearities)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Neural networks (cont.)

Often, the resulting model can be significantly more compact, and faster to
evaluate, than a support vector machine with same generalisation performance

◮ The price of compactness, as with RVMs, is a likelihood function, the basis
for network training, that is no longer a convex function of the parameters

It is often worth investing large computational resources during the training
phase in order to obtain a compact model that is fast at processing new data

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Neural networks (cont.)

We consider the functional form of the network model,
including the parameterisation of the basis functions

We discuss the determination of network parameters in a maximum
likelihood framework, which leads to a nonlinear optimisation problem

◮ It requires the evaluation of the derivatives of the log
likelihood function with respect to network parameters

◮ These can be readily obtained using the
technique of error back-propagation

Back-prop can be also used to evaluate Jacobian and Hessian matrices

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Neural networks (cont.)

We discuss approaches to regularisation of network training and their relations

We consider extensions to the neural network model, and describe a
general framework for modelling conditional probability distributions

◮ Mixture density networks

Finally, we discuss an approach to the Bayesian treatment of neural networks

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Outline

Feed-forward network functions

Network training
Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Error back-propagation
Evaluation of error function derivatives

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Neural networks

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions

The linear models for regression and classification are based on linear
combinations of fixed non-linear basis functions φj (x) and take the form

y(x,w) = f
(M∑

j=1

wjφj (x)
)

(1)

where f (·) is a non-linear activation function in the case
of classification and the identity in the case of regression

We want to extend this model by making the basis function φj (x) depend on
parameters and then allow these parameters to be adjusted during training

◮ along with the coefficients {wj}

There are many ways to construct parametric non-linear basis functions

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

A basis neural network model uses basis functions that follow the same form as

f
(M∑

j=1

wjφj (x)
)

Each basis function is itself a non-linear function of a linear combination of the
inputs, where the coefficients in the linear combination are adaptive parameters

A neural network can be thus described as a series of functional transformations

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

First we construct M linear combinations of the input variables x1, . . . , xD

aj =
D∑

i=1

(

w
(1)
ji xi

)

+ w
(1)
j0 , j = 1, . . . ,M (2)

◮ parameters w
(1)
ji are denoted as weights

◮ parameters w
(1)
j0 are denoted as biases

◮ quantities aj are known as activations

The superscript (1) indicates parameters in the first layer of the network

Each activation is transformed using a differentiable non-linear function

zj = h(aj) (3)

◮ function h(·) is known as activation function

◮ zj are outputs of the basis, or hidden units

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)
The outputs or hidden units zj are again linearly transformed

ak =
M∑

j=1

(

w
(2)
kj zj

)

+ w
(2)
k0 , k = 1, . . . ,K (4)

where K denotes the total number of output unit activations
◮ parameters w

(2)
kj are denoted as weights

◮ parameters w
(2)
k0 are denoted as biases

The superscript (2) indicates parameters in the second layer of the network

Each output unit activation is transformed to give the network outputs yk

yk (x,w) =

yk=σ(ak)
︷ ︸︸ ︷

σ
(

ak
︷ ︸︸ ︷

M∑

j=1

(

w
(2)
kj h

(D∑

i=1

(

w
(1)
ji xi

)

+ w
(1)
j0

︸ ︷︷ ︸

aj

)

︸ ︷︷ ︸

zj=h(aj)

)

+ w
(2)
k0

)

(5)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

Output unit activations ak are transformed by an activation function σ(·)

◮ The choice of σ(·) is determined by the nature of the data

◮ More precisely, the assumed distribution of the target variables

For standard regression problems, the activation function is the identity function

yk = σ(ak) = ak

For (multiple) binary classification problems, the activation is a logistic sigmoid

yk = σ(ak) =
1

1 + exp (−ak)

For multi-class classification problems, the soft-max activation function is used

yk = σ(ak) =
exp (ak)

∑

j
exp (aj)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

yk (x,w) = σ
(M∑

j=1

w
(2)
kj h

(D∑

i=1

w
(1)
ji xi + w

1
j0

)

+ w
(2)
k0

)

Grouping together the set of weight and bias parameters into a vector w,
shows that the neural network model is simply a overall non-linear function

◮ from a set of input variables {xi}
D
i=1 to a set of output variables {yk}

K
k=1

By defining an additional input x0 = 1, the bias parameter can be absorbed

aj =
D∑

i=0

w
(1)
ji (6)

Similarly, defining z0 = 1 we can absorb also the second-layer bias parameter

yk (x,w) = σ
(M∑

j=0

w
(2)
kj h

(D∑

i=0

w
(1)
ji xi

))

(7)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

This function can be represented in the form of a (neural?) network diagram

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD

w
(2)
KM

w
(2)
10

hidden units

inputs outputs

Input information is combined, transformed and propagated thru the network

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

The neural network model comprises two stages of processing

◮ In that, each resembles a perceptron model

◮ Hence, the misname multi-layer perceptron

The key difference is that the neural network works with continuous sigmoidal
non-linearities, whereas the perceptron uses step-function non-linearities

◮ Feed-forward neural networks are differentiable models wrt the parameters

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

If the activation functions in all the hidden units are taken to be linear,
it is always possible to find an equivalent network without hidden units

◮ A linear combination of linear combination is a linear combination

The network architecture we described is the most commonly used one

◮ It is generalisable: Additional layers, recurrencies, ...

◮ It can sparsified: By-passes and skip-layer connections

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

The approximation properties of feed-forward network models are widely studied

◮ Neural networks are said to be universal approximators

Feed-forward network models can uniformly approximate any continuous
function on a compact (closed and bounded) domain to arbitrary accuracy

◮ Provided the network has a sufficiently large number of hidden units

◮ This is valid for a wide range of activation functions (not polynomials)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

N = 50 points uniformly sampled over (−1,+1), M = 3 hidden units

f (x) = x2 f (x) = sin(x)

f (x) = |x | f (x) = H(x)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

−2 −1 0 1 2

−2

−1

0

1

2

3

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Feedforward network functions (cont.)

Question is, how to find suitable values for the parameters from training data?

◮ Both maximum likelihood- and Bayesian-type approaches

It is important to note also that multiple distinct choices of the parameter
vector (the weights) can give rise to the same input-output mapping function

◮ We can for example interchange the values of the weights

◮ For two-layer networks, there are M!2M equivalent orderings

FC - Fortaleza Feedforward network functions

Network training
Feed-forward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training

We have viewed neural networks as a general class of parametric nonlinear
functions from a vector x of input variables to a vector y of output variables

A simple approach to the problem of determining the network parameters
is to make an analogy with the early discussion on polynomial curve fitting

◮ Minimisation of a sum-of-squares error function

Given a training set comprising a set of input vectors {xn}
N
n=1, together with a

corresponding set of target vectors {tn}
N
n=1, we can minimise the error function

E(w) =
1

2

N∑

n=1

||y(xn,w)− tn)||
2 (8)

A more general view of network training, by giving a probabilistic interpretation

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

We start with regression problems, and we consider a single target t ∈ R

We assume that t has a Gaussian distribution with an x-dependent mean given
by the network output y(x,w) and precision β (inverse variance of the noise)

p(t|x,w) = N (t|y(x,w), β−1) (9)

This is now a fairly restrictive assumption, but the approach can be generalised

For such a conditional distribution p(t|x,w), it suffices to take the output unit
activation function to be the identity (yk = σ(ak) = ak , with k = 1)

◮ the network can approximate any continuous function from x to y

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

Given N independent identically distributed observations X = {x1, . . . , xN}
along with corresponding target values t = {t1, . . . , tn}, we construct the
corresponding likelihood function

p(t|X,w, β) =

N∏

n=1

p(tn|xn,w, β)

Taking the negative logarithm, we obtain the error function

β

2

N∑

n=1

(

y(xn,w)− tn

)2

−
N

2
lnβ +

N

2
ln 2π (10)

which can be used to learn the parameters w and β

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

Consider first the determination of w, where the maximisation of the likelihood
function is equivalent to the minimisation of the sum-of-squares error function1

E(w) =
1

2

N∑

n=1

(

y(xn,w)− tn

)2

(11)

The value of w found by minimising E(w) is wML, from maximum likelihood

The nonlinearity of the network function y(xn,w) causes the error E(w) to be
non-convex, with local maxima (local minima) of the likelihood (error function)

Having found wML, βML can be found by minimising the negative log likelihood

1

βML

=
1

N

N∑

n=1

(

y(xn,wML)− tn

)2

(12)

The evaluation of βML can start only after the iterative optimisation for wML

1We discard additive and multiplicative constants

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

With multiple target variables that are independent conditional on x and w

with shared β, the conditional distribution of the target values is given by

p(t|x,w) = N (t|y(x,w), β−1
I) (13)

Following the same argument, the maximum likelihood weights wML are
determined by minimising the sum-of-squares error function

E(w) =
1

2

N∑

n=1

||y(xn,w)− tn)||
2

For a number K of target variables, the noise precision is then given by

1

βML

=
1

NK

N∑

n=1

||y(xn,wML − tn)||
2 (14)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

For binary classification, a single target t ∈ {0, 1} with

◮ t = 1 for class C1

◮ t = 0 for class C2

A network having a single output and activation function the logistic sigmoid

y = σ(a) ≡
1

1 + exp (−a)
, so that 0 ≤ y(x,w) ≤ 1 (15)

We interpret y(x,w) as conditional probability p(C1|x), p(C2|x) = 1− y(x,w)

The conditional distribution of the target given the inputs is then a Bernoulli

p(t|x,w) = y(x,w)t
(

1− y(x,w)
)1−t

(16)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

If we consider a training set of independent observations, the error function
(the negative log likelihood) is the cross-entropy error function

E(w) = −
N∑

n=1

(

tn ln
(

y(xn,w) + (1− tn) ln
(
1− y(xn,w)

))
)

(17)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

If we have K separate binary classifications to perform, we can use a network
having K outputs each of which has a logistic sigmoid activation function

◮ Associated with each output is a binary class label
tk ∈ {0, 1}, with k = 1, . . . ,K

If we assume that the class labels are independent, given the input vector

◮ then the conditional distribution of the targets is

p(t|x,w) =
K∏

k=1

yk (x,w)tk
(

1− yk (x,w)
)1−tk

(18)

Taking the negative logarithm, the likelihood function gives the error function

E(w) = −
N∑

n=1

K∑

k=1

(

tnk ln
(

yk(xn,w) + (1− tnk) ln
(
1− yk (xn,w)

))
)

(19)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

If we consider a standard two-layer network, we see that the weight parameters
in the first layer of the network are shared between the various outputs

◮ in the linear model each classification problem is solved independently

The first layer of the network can be viewed as performing a nonlinear feature
extraction, and the sharing of features between the different outputs can save
on computation and can also lead to improved generalization

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

Multiclass classification: Inputs assigned to one of K mutually exclusive classes

◮ The binary target variables tk ∈ {0, 1} have 1-of-K coding scheme

◮ The network outputs are interpreted as yk (x,w) = p(tk = 1|x)

◮ The error function is

E(w) = −
N∑

n=1

K∑

k=1

tkn ln yk (xn,w) (20)

The output unit activation function is given by the softmax function

yk (x,w) =
exp (ak(x,w))

∑

j
exp (aj(x,w))

, with yk ∈ [0, 1] and
∑

k

yk = 1 (21)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Network training (cont.)

Summarising, there is a natural choice of both output unit activation function
and matching error function, according to the type of problem being solved

◮ For regression, we use linear outputs and a sum-of-squares error

◮ For (multiple independent) binary classifications, we use
logistic sigmoid outputs and a cross-entropy error function

◮ For multiclass classifications, we use softmax outputs with
the corresponding multiclass cross-entropy error function

For binary classification problems, we can use either a network with single
logistic sigmoid output, or alternatively we can use a network with two
outputs having a softmax output activation function

FC - Fortaleza Feedforward network functions

Parameter optimisation
Network training

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Parameter optimisation

The task of finding a weight vector w minimising the chosen function E(w)

w1

w2

E(w)

wA wB wC

∇E

Error function is a surface over weight space

A small step from w to w + δw leads to a
change in the function δE ≃ δwT∇E(w)

◮ Vector ∇E is the local gradient at w

◮ Vector ∇E(w) points in the direction
of greatest rate of increase of E(w)

Function E(w) is smooth continuous in w

◮ Its smallest value is at a point in the
weight space where gradient vanishes

∇E(w) = 0

Points where ∇E(w) = 0 are stationary (minima, maxima, and saddle points)

◮ We search for a vector w such that E(w) takes its smallest value

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Parameter optimisation (cont.)

The error function typically has a nonlinear dependence on weights and biases

◮ Typically, there are many points in weight space at which
the gradient either vanishes or is numerically very small

w1

w2

E(w)

wA wB wC

∇E

A minimum that corresponds to the smallest
value of E(w) for any weight vector is
a global minimum

Any other minima corresponding to higher
values of the error function E(w) are said
to be local minima

There is no hope of finding an analytical solution to the equation ∇E(w) = 0

◮ Iterative numerical procedures (widely studied, lots of literature)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Parameter optimisation (cont.)

Most techniques involve choosing some initial value w(0) for the weight vector
and then moving through weight space in a succession of steps of the form

w
(τ+1) = w

(τ) +∆w
(τ) (22)

Many algorithms use gradient information, and therefore require that the
value of ∇E(w) is evaluated after each step at the new weight vector w(τ+1)

To appreciate the importance of gradient information, we analyse a local
quadratic approximation to the error fuction based on a Taylor expansion

FC - Fortaleza Feedforward network functions

Local quadratic approximation
Network training

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Local quadratic approximation

Consider the Taylor expansion of E(w) around some point ŵ in weight space

E(w) ≃ E(ŵ) + (w − ŵ)Tb+
1

2
(w − ŵ)TH(w − ŵ) (23)

Vector b is defined to be the gradient of E evaluated at ŵ

b ≡ ∇E

∣
∣
∣
w=ŵ

(24)

The Hessian matrix H = ∇∇E has elements

(H)ij ≡
∂E

∂wi∂wj

∣
∣
∣
w=ŵ

(25)

The corresponding local approximation of the gradient is given by

∇E ≃ b+H(w − ŵ) (26)

Reasonable approximation of the error and its gradient for points w close to ŵ

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Local quadratic approximation (cont.)

For a w⋆ that is a minimum of a quadratic approximation of the error function

◮ There is no linear term: (w− w⋆)Tb = 0, because ∇E = 0 at w⋆

E(w) ≃ E(w⋆) +
1

2
(w − w

⋆)TH(w − w
⋆) (27)

◮ The Hessian is evaluated at point w⋆

To interpret this, consider the eigenvalue equation for the Hessian matrix

Hui = λiui (28)

The eigenvectors ui form a complete orthogonal set such that uT
i ui = δij

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Local quadratic approximation (cont.)

We can expand (w −w⋆) as a linear combination of the eigenvectors

w −w
⋆ =

∑

i

αiui (29)

This can be regarded as equivalent to a change of coordinate system

◮ With origin w⋆ and axes rotated to align with the eigenvectors

◮ Rotation is through a orthogonal matrix whose columns are {ui}

Substituting w − w⋆ =
∑

i αiui into E(w) = E(w⋆) +
1

2
(w − w⋆)TH(w − w⋆)

and using Hui = λiui and uT
i ui = δij , the error function can be written as

E(w) = E(w⋆) +
1

2

∑

i

λiα
2
i (30)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Local quadratic approximation (cont.)

Matrix H is said to be positive definite if and only if

v
T
Hv > 0, for all v (31)

Because the eigenvectors {ui} form a complete set, an arbitrary v

v =
∑

i

ciui (32)

From Hui = λiui and uT
i ui = δij and manipulations and rearrangments

v
T
Hv =

∑

i

c
2
i λi (33)

and the Hessian is positive definite iff all its eigenvalues are positive

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Local quadratic approximation (cont.)

In the new coordinate system, whose basis vectors are given by eigenvectors ui

of the Hessian matrix, contours of constant E are ellipses centred on the origin

w1

w2

λ
−1/2
1

λ
−1/2
2

u1

w
⋆

u2
In the neighbourhood of a minimum w⋆,
the error function can be approximated
by a quadratic

The eigenvectors have lengths that are
inversely proportional to the square roots
of the corresponding eigenvalues λi

For a 1D weight space, a stationary point w⋆ is a minimum if ∂2E/∂w2|w⋆ > 0

In D-dimensions, the Hessian matrix, evaluated at w⋆ should be positive definite

FC - Fortaleza Feedforward network functions

Use of gradient information
Network training

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Use of gradient information

In the quadratic approximation to the error function

E(w) ≃ E(ŵ) + (w − ŵ)Tb+
1

2
(w − ŵ)TH(w − ŵ)

the error surface is specified by the quantities b and H

There is a total of W (W + 3)/2 independent elements (because matrix H is
symmetric), where W is the dimensionality of w (total number of parameters)

The location of the minimum of this quadratic approximation therefore depends
on O(W 2) parameters, and we should not expect to be able to locate the
minimum until we have gathered O(W 2) independent pieces of information

If we do not make use of gradient information, we would expect to have to
perform O(W 2) function evaluations, each of which would require O(W) steps

◮ Thus, the computational effort needed to find the
minimum using such an approach would be O(W 3)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Use of gradient information (cont.)

Now compare this with an algorithm that makes use of the gradient information

Because each evaluation of ∇E brings W items of information, we might
hope to find the minimum of the function in O(W) gradient evaluations

As we shall see, by using error backpropagation, each such evaluation takes
only O(W) steps and so the minimum can now be found in O(W 2) steps

For this reason, the use of gradient information forms the
basis of practical algorithms for training neural networks

FC - Fortaleza Feedforward network functions

Gradient descent optimisation
Network training

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Gradient descent optimisation

The basic approach to using gradient information is to choose weight updates
w(τ+1) = w(τ)+∆w(τ) to comprise a small step in direction of negative gradient

w
(τ+1) = w

(τ) − η∇E(w(τ)) (34)

where the quantity η > 0 is commonly known as the learning rate

After each step, gradient is re-evaluated for a new weight and process repeated

◮ The error function is defined with respect to the whole data set

◮ At each step, the whole set is processed to evaluate the gradient

◮ =⇒ Batch learning

At each step the weight vector is moved in the direction of the greatest rate of
decrease of the error function, gradient descent or steepest descent approach

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Gradient descent optimisation (cont.)

There are other approaches such as conjugate gradient and quasi-Netwon

methods, which are much more robust and fast than simple gradient descent

◮ Unlike gradient descent, these algorithms have the property that the error
function always decreases at each iteration unless the weight vector has
arrived at a local or global minimum

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Paramater optimisation
Local quadratic approximation
Use of gradient information
Gradient descent optimisation

Gradient descent optimisation (cont.)

There is an on-line or sequential learning approach that has proven to be valid

◮ Error functions are based on maximum likelihood for iid observations

◮ The error functions are sums of terms, one from each observation

E(w) =

N∑

n=1

En(w) (35)

On-line gradient descent or sequential or stochastic gradient descent makes
an update to the weight vector based on one observation at a time, such that

w
(τ+1) = w

(τ) − η∇En(w
(τ)) (36)

FC - Fortaleza Feedforward network functions

Error back-propagation
Neural networks

Feed-forward network functions
Network training
Error back-propagation

Evaluation of error function derivatives

Error back-propagation

Error back-propagation is an efficient technique for evaluating the
gradient of an error function E(w) for a feed-forward neural network

It consists of a local message passing scheme where information
is sent alternately forwards and backwards through the network

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Evaluation of error function derivatives

Error back-propagation (cont.)

Most training algorithms involve an iterative procedure for minimisation of an
error function, with adjustments to the weights made in a sequence of steps

At each such step, we can distinguish between two distinct stages

First stage: Derivatives of the error function wrt weights must be evaluated

◮ The contribution of back-propagation is in providing
an efficient method for evaluating such derivatives

◮ Because it is at this stage that errors are propagated backwards through
the network, we use the term backpropagation for derivatives evaluation

Second stage: Derivatives are used to compute adjustments to the weights

◮ The simplest such technique involves gradient descent

It is important to recognise that the two stages are distinct

FC - Fortaleza Feedforward network functions

Evaluation of error-function derivatives
Error back-propagation

Feed-forward network functions
Network training
Error back-propagation

Evaluation of error function derivatives

Evaluation of error-function derivatives

We derive the back-propagation algorithm for a general network with arbitrary
feed-forward topology and arbitrary differentiable nonlinear activation functions

◮ For broad class of error functions

The results are illustrated using a simple layered network structure having a
single layer of sigmoidal hidden units together with a sum-of-squares error

Many error functions comprise a sum of terms, one for each training point

E(w) =

N∑

n=1

En(w) (37)

We consider the problem of evaluating ∇En(w) for one such term in E(w)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Evaluation of error function derivatives

Evaluation of error-function derivatives (cont.)

For a linear model with outputs yk as linear combinations of the inputs xi

yk =
∑

i

wkixi (38)

For an observation n and ynk = yk(xn,w), the error function contribution

En =
1

2

∑

k

(ynk − tnk)
2 (39)

The gradient of the error function with respect to the weights wji is given by

∂En

∂wji

= (ynj − tnj)xni (40)

It is a local computation, involving a product of an error and the input variable

◮ Logistic sigmoid activation functions and cross-entropy error function, and
softmax activation functions and cross-entropy error function share this

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Evaluation of error function derivatives

Evaluation of error-function derivatives (cont.)

In a general feed-forward net, each unit computes a weighted sum of its inputs

aj =
∑

i

wjizi (41)

◮ zi the activation of a unit, the input, that sends a connection to unit j

◮ wji is the weight of that connection

The result of the sum is transformed by a non-linear activation function h(·)

zj = h(aj) (42)

◮ zj is the activation of unit j

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Evaluation of error function derivatives

Evaluation of error-function derivatives (cont.)

For each input observation, the calculation of all activations of all hidden and
output units can be seen as a forward flow of information through the network

◮ Forward propagation

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Evaluation of error function derivatives

Evaluation of error-function derivatives (cont.)

Now consider the evaluation of the derivative of En with respect to a weight wji

◮ The error En depend on weight wji via the summed input aj to unit j

∂En

∂wji

=
∂En

∂aj

∂aj

∂wji

= δjzi (43)

◮ δj ≡
∂aj

∂wji

◮ zi ≡
∂aj

∂wji

The derivative is obtained by multiplying the δ for the unit at the output end of
the weight by z for the unit at the input end of the weight (for the bias z = 1)

FC - Fortaleza Feedforward network functions

Feed-forward network functions
Network training
Error back-propagation

Evaluation of error function derivatives

Evaluation of error-function derivatives (cont.)

Because δk = yk − tk for usual output-input activation functions

δj ≡
∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj
(44)

The sum rolls over all units k to which unit j sends connection

zi

zj

δj
δk

δ1

wji wkj

Back-propagation formula

δj = h
′(aj)

∑

k

wkjδk (45)

FC - Fortaleza Feedforward network functions

	Feed-forward network functions
	Network training
	Error back-propagation

