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Support vector regression

We now extend SVMs to regression problems while preserving sparseness

In simple linear regression, we minimised a regularised error function

1

2

N
∑

n=1

(

y(xn)− tn

)2

+
λ

2
||w||2 (1)

The quadratic error function is replaced by an ε-insensitive error function

◮ which gives zero error if the absolute difference between
the prediction y(x) and the target t is less than a ε > 0
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Support vector regression (cont.)

An example of an ε-insensitive error function is given by

Eε

(

y(x− t)
)

=

{

0, if |y(x) − t| < ε

|y(x) − t| − ε, otherwise
(2)

0 z

E(z)

−ǫ ǫ

A linear cost associated with errors
outside the insensitive region

Outside the insensitive region, the
error increases linearly with distance
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Support vector regression (cont.)

We thus minimise a regularised error function given by

C

N
∑

n=1

Eε

(

y(xn)− tn

)

+
1

2
||w||2 (3)

C again denotes the (inverse) regularisation parameter

We can re-express the optimisation problem by introducing slack variables

◮ Two slack variables for each data point xn, ξn ≥ 0 and ξ̂n ≥ 0

◮ with ξn > 0, for points with tn > y(xn) + ε

◮ with ξ̂n > 0, for points with tn < y(xn)− ε
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Support vector regression (cont.)

y

y + ǫ

y − ǫ

y(x)

x

ξ̂ > 0

ξ > 0

◮ ξn > 0 for points with tn > y(xn) + ε

◮ ξ̂n > 0 for points with tn < y(xn)− ε

Points inside the ε-insensitive region have ξn = ξ̂n = 0
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Support vector regression (cont.)

Condition for a target point to lie inside the ε-tube is that yn − ε ≤ tn ≤ yn + ε

y

y + ǫ

y − ǫ

y(x)

x

ξ̂ > 0

ξ > 0

By introducing the slack variables, we
allow points to lie outside the tube

As long as the slacks are nonzero and

tn ≤ y(xn) + ε+ ξn (4)

tn ≥ y(xn)− ε− ξ̂n (5)

As a result the error function for support vector regression can be written as

C

N
∑

n=1

(ξn + ξ̂n) +
1

2
||w||2 (6)

to be minimised subject to the constraints ξn, ξ̂n ≥ 0 and Equation 4 and 5
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Support vector regression (cont.)

The corresponding Lagrange function with multipliers an, ân ≥ 0 and µn, µ̂n ≥ 0

L = C

N
∑

n=1

(ξn + ξ̂n) +
1

2
||w||2 −

N
∑

n=1

(µnξn + µ̂nξ̂n)

−
N
∑

n=1

an(ε+ ξn + yn − tn)−
N
∑

n=1

ân(ε+ ξ̂n − yn + tn) (7)
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Support vector regression (cont.)

Using the model y(x) = wTφ(x) + b and setting derivatives to zero, we get

∂L

∂w
= 0 ⇒ w =

N
∑

n=1

(an − ân)φ(xn) (8)

∂L

∂b
= 0 ⇒

N
∑

n=1

(an − ân) = 0 (9)

∂L

∂ξn
= 0 ⇒ an + µn = C (10)

∂L

∂ξ̂n
= 0 ⇒ ân + µ̂n = C (11)
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Support vector regression (cont.)

Eliminating w, b, ξn and ξ̂n from the Lagrangian and introducing the kernel
k(x, x′) = φ(x)Tφ(x′), the dual maximisation problem wrt {an} and {ân} is

L̃(a, ã) =
1

2

N
∑

n=1

N
∑

m=1

(an − ân)(am − âm)k(xn, xm)

− ε

N
∑

n=1

(an + ân) +

N
∑

n=1

(an − ân)tn (12)

subject to constraints an, ân ≥ 0 (Lagrange multipliers), the box constraints

0 ≤ an ≤ C (13)

0 ≤ ân ≤ C (14)

(from µn, µ̂n ≥ 0 together with an + µn = C and ân + µ̂n = C), plus

N
∑

n=1

(an − ân) = 0
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Support vector regression (cont.)

Predictions for new input points are obtained in terms of the kernel function,
again by substituting w =

∑

N

n=1
(an − ân)φ(xn) into y(x) = wTφ(x) + b

y(x) =

N
∑

n=1

(an − ân)k(x, xn) + b (15)
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Support vector regression (cont.)

The corresponding Karush-Kuhn-Tucker conditons

an(ε+ ξn + yn − tn) = 0 (16)

ân(ε+ ξ̂n − yn + tn) = 0 (17)

(C − an)ξn = 0 (18)

(C − ân)ξ̂n = 0 (19)

◮ an can be nonzero only if (ε+ ξn + yn − tn) = 0, the point must
lie on or above the upper boundary of the ε-tube where ξn ≥ 0

◮ ân can be nonzero only if (ε+ ξ̂n − yn + tn) = 0, the point must
lie on or below the lower boundary of the ε-tube where ξ̂n ≥ 0

◮ Constraints (ε+ ξn + yn − tn) = 0 and (ε+ ξ̂n − yn + tn = 0) are
incompatible because ξn, ξ̂n are both nonnegative and ε is strictly
positive, so for every point xn either an or ân or both must be zero
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Support vector regression (cont.)

The support vectors are points xn that contribute to prediction,
and thus they must be those for which either an 6= 0 or ân 6= 0

◮ They lie on the boundary of the ε-tube or outside the tube

◮ Points inside the tube are those for which an = ân = 0

Parameter b can be found considering a point for which 0 < an < C (thus with
ξn = 0) and for which ε+ yn − tn = 0, by using the model y(x) = wTφ(x) + b

b = tn − ε− w
T
φ(xn)

= tn − ε−
N
∑

m=1

(am − âm)k(xn, xm) (20)

A result can be found by considering a point for which 0 < ân < C (ξ̂n = 0)
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Support vector regression (cont.)

An application of support vector regression (Gaussian kernels) to the sine data
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