Support vector regression Sparse kernel methods

Francesco Corona

イロン イロン イヨン イヨン

Outline

Support vector regression

FC - Fortaleza Support vector regression

イロン イロン イヨン イヨン

Support vector regression Sparse kernel methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Support vector regression

We now extend SVMs to regression problems while preserving sparseness In simple linear regression, we minimised a regularised error function

$$\frac{1}{2}\sum_{n=1}^{N}\left(y(\mathbf{x}_n)-t_n\right)^2+\frac{\lambda}{2}||\mathbf{w}||^2 \tag{1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

I NOR

The quadratic error function is replaced by an ε -insensitive error function

which gives zero error if the absolute difference between the prediction y(x) and the target t is less than a ε > 0

An example of an ε -insensitive error function is given by

$$E_{\varepsilon}\left(y(\mathbf{x}-t)\right) = \begin{cases} 0, & \text{if } |y(\mathbf{x})-t| < \varepsilon\\ |y(\mathbf{x})-t| - \varepsilon, & \text{otherwise} \end{cases}$$
(2)

A linear cost associated with errors outside the insensitive region

Outside the insensitive region, the error increases linearly with distance

We thus minimise a regularised error function given by

$$C\sum_{n=1}^{N} E_{\varepsilon} \left(y(\mathbf{x}_n) - t_n \right) + \frac{1}{2} ||\mathbf{w}||^2$$
(3)

C again denotes the (inverse) regularisation parameter

We can re-express the optimisation problem by introducing slack variables

- Two slack variables for each data point \mathbf{x}_n , $\xi_n \ge 0$ and $\hat{\xi}_n \ge 0$
- with $\xi_n > 0$, for points with $t_n > y(\mathbf{x}_n) + \varepsilon$
- with $\hat{\xi}_n > 0$, for points with $t_n < y(\mathbf{x}_n) \varepsilon$

Points inside the ε -insensitive region have $\xi_n = \hat{\xi}_n = 0$

A B M A B M

Condition for a target point to lie inside the ε -tube is that $y_n - \varepsilon \leq t_n \leq y_n + \varepsilon$

By introducing the slack variables, we allow points to lie outside the tube

As long as the slacks are nonzero and

$$t_n \leq y(\mathbf{x}_n) + \varepsilon + \xi_n$$
 (4)

$$t_n \geq y(\mathbf{x}_n) - \varepsilon - \hat{\xi}_n$$
 (5)

As a result the error function for support vector regression can be written as

$$C\sum_{n=1}^{N} (\xi_n + \hat{\xi}_n) + \frac{1}{2} ||\mathbf{w}||^2$$
(6)

to be minimised subject to the constraints $\xi_n, \hat{\xi}_n \ge 0$ and Equation 4 and 5

The corresponding Lagrange function with multipliers $a_n, \hat{a}_n \geq 0$ and $\mu_n, \hat{\mu}_n \geq 0$

$$L = C \sum_{n=1}^{N} (\xi_n + \hat{\xi}_n) + \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} (\mu_n \xi_n + \hat{\mu}_n \hat{\xi}_n) - \sum_{n=1}^{N} a_n (\varepsilon + \xi_n + y_n - t_n) - \sum_{n=1}^{N} \hat{a}_n (\varepsilon + \hat{\xi}_n - y_n + t_n)$$
(7)

∃ 990

Using the model $y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$ and setting derivatives to zero, we get

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{n=1}^{N} (a_n - \hat{a}_n) \phi(\mathbf{x}_n) \tag{8}$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} (a_n - \hat{a}_n) = 0 \tag{9}$$

$$\frac{\partial L}{\partial \xi_n} = 0 \quad \Rightarrow \quad a_n + \mu_n = C \tag{10}$$

$$\frac{\partial L}{\partial \hat{\xi}_n} = 0 \quad \Rightarrow \quad \hat{a}_n + \hat{\mu}_n = C \tag{11}$$

Eliminating **w**, *b*, ξ_n and $\hat{\xi}_n$ from the Lagrangian and introducing the kernel $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$, the dual maximisation problem wrt $\{a_n\}$ and $\{\hat{a}_n\}$ is

$$\tilde{L}(\mathbf{a}, \tilde{\mathbf{a}}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \hat{a}_n) (a_m - \hat{a}_m) k(\mathbf{x}_n, \mathbf{x}_m) \\ - \varepsilon \sum_{n=1}^{N} (a_n + \hat{a}_n) + \sum_{n=1}^{N} (a_n - \hat{a}_n) t_n \quad (12)$$

subject to constraints a_n , $\hat{a}_n \ge 0$ (Lagrange multipliers), the box constraints

$$0 \le a_n \le C \tag{13}$$

$$0 \le \hat{a}_n \le C \tag{14}$$

(from $\mu_n, \hat{\mu}_n \ge 0$ together with $a_n + \mu_n = C$ and $\hat{a}_n + \hat{\mu}_n = C$), plus

$$\sum_{n=1}^{N}\left(a_{n}-\hat{a}_{n}\right)=0$$

Predictions for new input points are obtained in terms of the kernel function, again by substituting $\mathbf{w} = \sum_{n=1}^{N} (a_n - \hat{a}_n)\phi(\mathbf{x}_n)$ into $y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$

$$y(\mathbf{x}) = \sum_{n=1}^{N} (a_n - \hat{a}_n) k(\mathbf{x}, \mathbf{x}_n) + b$$
(15)

→ □ → → 三 → → 三 → のへ(~

The corresponding Karush-Kuhn-Tucker conditons

$$a_n(\varepsilon + \xi_n + y_n - t_n) = 0 \tag{16}$$

$$\hat{a}_n(\varepsilon + \hat{\xi}_n - y_n + t_n) = 0 \tag{17}$$

$$(C-a_n)\xi_n=0\tag{18}$$

$$(C - \hat{a}_n)\hat{\xi}_n = 0 \tag{19}$$

- (同) (三) (三) - 三 三

- a_n can be nonzero only if (ε + ξ_n + y_n − t_n) = 0, the point must lie on or above the upper boundary of the ε-tube where ξ_n ≥ 0
- ▶ \hat{a}_n can be nonzero only if $(\varepsilon + \hat{\xi}_n y_n + t_n) = 0$, the point must lie on or below the lower boundary of the ε -tube where $\hat{\xi}_n \ge 0$
- Constraints (ε + ξ_n + y_n − t_n) = 0 and (ε + ξ̂_n − y_n + t_n = 0) are incompatible because ξ_n, ξ̂_n are both nonnegative and ε is strictly positive, so for every point x_n either a_n or â_n or both must be zero

The support vectors are points \mathbf{x}_n that contribute to prediction, and thus they must be those for which either $a_n \neq 0$ or $\hat{a}_n \neq 0$

- They lie on the boundary of the ε -tube or outside the tube
- Points inside the tube are those for which $a_n = \hat{a}_n = 0$

Parameter *b* can be found considering a point for which $0 < a_n < C$ (thus with $\xi_n = 0$) and for which $\varepsilon + y_n - t_n = 0$, by using the model $y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$

$$\dot{\boldsymbol{\phi}} = \boldsymbol{t}_n - \boldsymbol{\varepsilon} - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n)$$
$$= \boldsymbol{t}_n - \boldsymbol{\varepsilon} - \sum_{m=1}^N (\boldsymbol{a}_m - \hat{\boldsymbol{a}}_m) \boldsymbol{k}(\boldsymbol{x}_n, \boldsymbol{x}_m)$$
(20)

A result can be found by considering a point for which $0 < \hat{a}_n < C$ $(\hat{\xi}_n = 0)$

An application of support vector regression (Gaussian kernels) to the sine data

