CK0146 or TIP8311: Homework 02

Exercise 02.01 \checkmark (2.2 PRML). The form of the Bernoulli distribution given by Bern $(x|\mu) = \mu^x (1-\mu)^{1-\mu}$ is not symmetric between the two values of x. In some situations, it will be more convenient to use an equivalent formulation for which $x \in \{-1, +1\}$, in which case the distribution can be written

$$p(x|\mu) = \left(\frac{1-\mu}{2}\right)^{(1-x)/2} \left(\frac{1+\mu}{2}\right)^{(1+x)/2}, \quad \text{where } \mu \in [-1,+1].$$
(1)

Show that the distribution above is normalised and evaluate its mean, variance and entropy.

Exercise 02.02 \checkmark (2.13 PRML). Evaluate the Kullback-Leibler divergence

$$\mathbb{KL}[p|q] = -\int p(\mathbf{x}) \ln q(\mathbf{x}) d\mathbf{x} - \left[-\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x} \right] = -\int p(\mathbf{x}) \ln \left[\frac{q(\mathbf{x})}{p(\mathbf{x})} \right] d\mathbf{x}.$$

between two Gaussians $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $q(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{m}, \mathbf{L})$.

Exercise 02.03 \checkmark (2.15 PRML). Show that the entropy of the multivariate Gaussian $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$ is given by

$$\mathbb{H}[\mathbf{x}] = \frac{1}{2} \ln |\mathbf{\Sigma}| + \frac{D}{2} (1 + \ln (2\pi)), \tag{2}$$

where D is the dimensionality of \mathbf{x} .

Exercise 02.04 \checkmark (2.19 PRML). Show that a real symmetric matrix Σ having the eigenvector equation $\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$, where i = 1..., D, can be expressed as an expansion in the eigenvectors, with coefficients given by the eigenvalues, of the form $\Sigma = \sum_{i=1}^{D} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$.

Similarly, show that the inverse matrix Σ^{-1} has a representation of the form $\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^T$.

Exercise 02.05 \checkmark (2.21 PRML). Show that a real symmetric matrix of size $D \times D$ has D(D + 1)/2 independent parameters.

Exercise 02.06 \checkmark . Let $\Sigma^{(F)}$, $\Sigma^{(D)}$ and $\Sigma^{(I)}$ be three randomly generated $M \times M$ covariance matrixes of a Gaussian distribution. Let $\Sigma^{(F)}$ be of general form (*F*, for full), $\Sigma^{(D)}$ be diagonal (*D*) and $\Sigma^{(I)}$ be proportional to an identity matrix (*I*, for isotropic). In, addition, let $\mu^{(F)} = \mu^{(D)} = \mu^{(I)} \neq \mathbf{0}$ be the corresponding random mean vectors.

For M = 2,

- plot the contours of constant density for the three Gaussian distributions;
- show graphically (and atop of the iso-density contours) all of the eigenpairs $\{(\mathbf{u}_i^{(j)}, \lambda_i^{(j)}) : \forall i\}_{j \in \{F, D, I\}}$ of eigenvectors and associated eigenvalues of the respective covariance matrices.

For
$$M = 5$$
.

- evaluate the expressions for the mean and the (co)variance of the conditional distributions $p(x_1^{(j)}|\mathbf{x}_{2:D}^{(j)})$ and $p(\mathbf{x}_{1:2}^{(j)}|\mathbf{x}_{3:D}^{(j)})$ with $j \in \{F, D, I\}$, and plot their iso-density contours. For conditioning, let $\mathbf{x}_{2:D}^{(j)}$ and $\mathbf{x}_{3:D}^{(j)}$ be two random vectors;
- evaluate the expressions for the mean and the (co)variance of the marginal distributions $p(x_1^{(j)})$ and $p(\mathbf{x}_{1:2}^{(j)})$ again with $j \in \{F, D, I\}$, and plot their iso-density contours.

Exercise 02.07 \checkmark . You are given (download me here) a dataset $\mathcal{X} = \{(\mathbf{x}(n), c(n))\}_{n=1}^{N}$ consisting of N observations of some unknown 2D probability distribution $p(\mathbf{x})$ and associated class label c.

You are requested to estimate and visualise:

- the mono-dimensional probability distributions $p(x_1)$ and $p(x_2)$ using the i) histogram method (consider several values of the bin width Δ and qualitatively select a 'visually optimal' one); and the ii) K nearest neighbour method (again, consider several values of K and qualitatively select a 'visually optimal' one);
- the bi-dimensional probability distribution $p(\mathbf{x})$ using the i) K nearest neighbour method and ii) the kernel method with a Gaussian function. Again, for both estimators, consider several values of K and h, respectively, and qualitatively select a 'visually optimal' one.

You are also requested to build a K-NN classifier using the first 80% of the observations as *learning* set and the remaining 20% for validation. Consider several values of K and select the K associated with the best classification performance (use overall misclassification rate) on the validation set.