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Pattern recognition and machine learning

Pattern recognition is concerned w automatic discovery of regularities in data
through computer algorithms and the use of such regularities to take actions

Example

• Typical example is the classification of the data into different categories

A machine capable of recognising handwritten digits from images (28× 28
pixels) represented as input vectors (x, comprising 28× 28 = 784 numbers)

• Produce the identity of the digit (0, . . . , 9)

• Not a trivial task (variety of handwriting)
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Pattern recognition and machine learning (cont.)

Learning regularities in data and searching for patterns is a central problem

• Machine intelligence has a long and somehow successful history

The first generation of machine learning is the good old artificial intelligence

• Expert systems using knowledge extracted from humans (rules)

• Combinatorial explosion (lots of rules and exceptions to rules)

• 70’s and 80’s
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Pattern recognition and machine learning (cont.)

The second generation is basically neural networks/support vector machines

• Black-box statistical models focused on learning from data

• Prior knowledge is rather general assumptions (continuity)

• Hard to incorporate specific (complex) domain knowledge

• 80’s and 90’s

The third generation is integration of domain knowledge-statistical learning

• Probabilistic modelling and Bayesian framework

• Probabilistic graphical models and inference

• 00’s

This course is located right in the middle of the third generation of PRML
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The course in a nutshell - The core

• Linear models for regression: Linear basis function models, Bias-variance
decomposition, Bayesian linear regression, (Bayesian model comparison,
Evidence approximation)

• Linear models for classification: Discriminant functions, Probabilistic
generative models, Probabilistic discriminative models, (Laplace
approximation, Bayesian logistic regression)

• Neural networks: Feed-forward network functions, Network training,
Error back-propagation (the Hessian matrix), (Regularisation, Mixture
density models, Bayesian neural networks)

• Kernel methods: Dual representations, Building kernels, Radial basis
function networks, Gaussian processes, Maximum margin classifiers,
(Relevance vector machines)
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The course in a nutshell - The maybes

• Graphical models: Bayesian networks, Conditional independence,
(Random Markov fields, Inference)

• Mixture models and Expectation maximisation: K-means clustering,
Mixtures of Gaussians, (EM)
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The course in a nutshell - Can’t do without

• Probability theory: Generalities, Probability densities, Expectations
and covariances, Bayesian probabilities, the Gaussian distribution,
Curve fitting

• Decision theory: Generalities, Minimising the misclassification rate,
Minimising the expected loss, Reject option, Inference and decision,
Loss functions for regression

• Information theory: Generalities, Relative entropy and mutual
information

• Probability distributions: Binary variables and Multinomial distributions,
the Gaussian distribution, (the Exponential family), Nonparametric
density estimation

• (On modelling: Model selection and the curse of dimensionality)

Terminology
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Terminology

We have a large set of N input vectors {xi}Ni=1 (say, xi is the 784-vector
whose elements comprise the pixel values of an unrolled 28× 28 image)

We have also the corresponding output or target vectors {ti}Ni=1 (say, ti is the
binary 10-vector whose elements represent the identity of the digit)
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Terminology (cont.)

The sets {xi} and {ti} together are the training set, used to tune a model

• Tuning a model means determining optimal values for its parameters

The result of running a machine learning model is expressed as a function y(x)

• it takes a new input vector x (say, a new image), it processes it

• it generates an output vector y, encoded as the target vector

The precise form of y(x) is determined during the learning or training phase

Once the model is trained, it can determine the identity of new input vectors

• the test set

The ability to categorise correctly test examples is known as generalisation
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Terminology (cont.)

Applications in which the training data comprises examples of the input vectors
along with their corresponding target vectors are supervised learning problems

• Classification: The aim is to assign each input vector to one of a finite
number of discrete categories

• Regression: The aim is to assign each input vector to one or more
continuous variables
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Terminology (cont.)

Applications in which he training data consists of a set of input vectors x with
out any corresponding target values t are unsupervised learning problems

• Clustering: Discover groups of similar examples within the data

• Density estimation: Determine the distribution of data in the input space

• Visualisation: Project the data from a high-dimensional space to 2 or 3D
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Terminology (cont.)

Vectors are denoted by lower case bold letters x

• All vectors are assumed to be column vectors

• Superscript T denotes transposition

• xT is a row vector

• (x1, . . . , xD) is a row vector with D elements

• x = (x1, . . . , xD)T is again a column vector

Matrices are denoted by upper case bold letters M

• The M ×M identity matrix is IM , or simply I

• Elements Iij of I equal 1 if i = j , and 0 if i ̸= j
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Terminology (cont.)

A functional is denoted f [y ] where y(x) is some function of some variable x

The expectation of function f (x , y) wrt to a random variable x is Ex [f (x , y)]

• If the distribution of x is conditioned on another variable z the
corresponding conditional expectation is denoted Ex [f (x , y)|z ]

Variance is denoted var[f (x)], for vector variables the covariance is cov[x, y]
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Terminology (cont.)

N values x1, . . . , xN of a D-dim vector x = (x1, . . . , xD)T can be combined

• Into a matrix M, whose n-th row is the row vector xTn
• The (n, i) element of M is the i -th element of the n-th value xn

1-D variables a matrix is denoted by typewriter letters x: x is a column vector
whose n-th element is xn, it has dimensionality N (x has dimensionality D)

An example
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Polynomial curve fitting

We consider a simple regression problem to motive a number of key concepts

Suppose we observe a real-valued input variable x , and we wish to use
this observation to predict the value of a real-valued target variable t

• The data for this example is generated from the function
sin(2πx) with random noise included in the target values

Now suppose that we are given a training set comprising

• N observations of x , x ≡ (x1, . . . , xN)T

• N observations of t, t ≡ (t1, . . . , tN )T
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Polynomial curve fitting (cont.)

x

t

0 1

−1

0

1

Training data of N = 10 points, blue circles

• each comprising an observation of the
input variable x along with the
corresponding target variable t

The unknown function sin(2πx) is used to
generate the data, green curve

• Goal: Predict the value of t for some
new value of x

• without knowledge of the green curve

The input training data x was generated by choosing values of xn, for
n = 1, . . . ,N, that are spaced uniformly in the range [0, 1]

The target training data t was obtained by computing values sin(2πxn)
of the function and adding a small level of Gaussian noise
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Polynomial curve fitting (cont.)

Goal: Exploit the training set to make predictions of the value t
of the target variable, for some new value x of the input variable

• Implicitly, try to discover the underlying function sin(2πx)

This is intrinsically a difficult problem:

• We have to generalise from a finite data set

• The observed data are corrupted with noise

For a given x there is uncertainty as to the appropriate value for t

• Probability theory provides a framework for expressing
such uncertainty in a precise and quantitative manner

• Decision theory allows us to exploit this probabilistic
representation in order to make predictions that are
optimal, according to an appropriate criteria
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Polynomial curve fitting (cont.)

For the moment, however, we shall proceed informally

We consider a simple approach based on curve fitting

• We shall fit the data using a polynomial function of the form

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M
∑

j=0

wjx
j (1)

• M is the order of the polynomial, xj denotes x raised to the power of j

• The polynomial coefficients w0, . . . ,wM are collected in the vector w

The polynomial function y(x ,w)

• Nonlinear function
of the inputs x

• Linear function
of the coefficients w

Functions that are linear in the unknown parameters are called linear models
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Polynomial curve fitting (cont.)

The coefficients values are obtained by fitting the polynomial to training data

• By minimising an error function, a measure of misfit between function
y(x ,w), for any given value of w, and the training set data points

• A choice of error function is the sum of the squares of the errors between
predictions y(xn,w) for each point xn and corresponding target values tn

E(w) =
1

2

N
∑

n=1

(

y(xn,w) − tn
)2

(2)

• It is a nonnegative quantity that would be zero if and only if
function y(x ,w) were to pass through each training data point
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Polynomial curve fitting (cont.)

Error function E(w) corresponds to (one half of) the sum of the squares of the
displacements (vertical green bars) of each data point tn from function y(x ,w)

t

x

y(xn,w)

tn

xn

E(w) =
1

2

N
∑

n=1

(

y(xn,w)− tn
)2

To solve the curve fitting problem

• Choose the value of w for which
E(w) is as small as possible

(⋆) Because the error function is a quadratic function of the coefficients w, its
derivatives with respect to the coefficients will be linear in the elements of w

• The minimisation of E(w) has a unique solution, w⋆, found in closed form

• The resulting polynomial is given by the function y(x ,w⋆)
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Polynomial curve fitting (cont.)

Exercise

Consider the sum-of-squares error function given in Equation 2,

E(w) =
1

2

N
∑

n=1

(

y(xn,w)− tn
)2

,

in which the function y(x ,w) is given by the polynomial in Equation 1

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M
∑

j=0

wjx
j

Show that the coefficients w = wi that minimize this error function
are given by the solution to the following set of linear equations

M
∑

j=0

Aijwj = Ti

Substituting Eq. 1 into Eq. 2 and then differentiating wrt wi , we get

N
∑

n=1

(

M
∑

j=0

wjx
i
n − tn

)

xin = 0

Rearranging terms gives us the required results
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Polynomial curve fitting (cont.)

There still remains the problem of choosing the order M of the polynomial

• model comparison or model selection

Examples of the results of fitting polynomials of different order to the data

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

The constant (M = 0) and first order (M = 1) polynomials give poor fits to
data, and consequently a rather poor representation of the function sin(2πx)
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Polynomial curve fitting (cont.)

The third order (M = 3) polynomial gives a good fit to the function sin(2πx)

x

t

M = 3

0 1

−1

0

1
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Polynomial curve fitting (cont.)

A higher order polynomial (M = 9) gives an excellent fit to the training data

• The polynomial passes exactly through each data point and E(w⋆) = 0

x

t

M = 9

0 1

−1

0

1

However, the fitted curve oscillates wildly and gives a very poor representation
of the function sin(2πx), this is a behaviour that is known as over-fitting
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Polynomial curve fitting (cont.)

How to get good generalisation by making accurate predictions for new data?

We can obtain some quantitative insight into the dependence of the
generalisation performance on M by considering a separate test set

• 100 new points generated using the same procedure used to generate the
training set points, but with new choices for the random noise values

For each choice of M, we evaluate the residual value of E(w⋆) for the training
data, and we also evaluate the residual value of E(w⋆) for the test data set

It is sometimes more convenient to use the root-mean-square (RMS) error

ERMS =
√

2E(w⋆)/N (3)

The division by N allows a consistent comparison of datasets of different sizes
and square root ensures that ERMS is measured on the same scale/units as t
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Polynomial curve fitting (cont.)

Graphs of the training and test set RMS errors for various values of M

• The test error is a a measure of how well we are doing in
predicting the values of t for new data observations of x

M

E
R

M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

• Small values of M (0, 1 and 2) give
relatively large values of test set error

• Values of M in the range 3 ≤ M ≤ 8
give small values for the test set error

Low-order polynomials are rather inflexible and are incapable of capturing the
oscillations in the function sin(2πx), whereas high-order polynomials are too
flexible and capable of capturing also the oscillations in the additive noise
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Polynomial curve fitting (cont.)

For M = 9, the training set error goes to zero (intuitively, as this polynomial
contains 10 degrees of freedom corresponding to the 10 coeffs w0, . . . ,w9)

M

E
R

M
S
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1
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Test

• It can be tuned exactly to the 10
data points in the training set

• The test set error has become large

• The corresponding function y(x ,w⋆)
exhibits wild oscillations

Remark

Paradoxical: A polynomial of given order contains all lower order polynomials

• The M = 9 polynomial is at least as good as the M = 3 polynomial

Supposing that the best predictor would be the generating function sin(2πx)

• A power series expansion of sin(2πx) contains terms of all orders

• The results should improve monotonically as we increase M
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Polynomial curve fitting (cont.)

We can gain some insight into the problem by examining the values of the
coefficients w⋆ that are obtained by fitting polynomials of various order

• As M increases, the magnitude of the coefficients typically gets larger

For the M = 9 polynomial, the coefficients became finely tuned to the data

for
of various order.

ve how the typical mag-
of the coefficients in-
dramatically as the or-

of the polynomial increases.

M = 0 M = 1 M = 6 M = 9

w⋆

0 0.19 0.82 0.31 0.35

w⋆

1 -1.27 7.99 232.37

w⋆

2 -25.43 -5321.83

w⋆

3 17.37 48568.31

w⋆

4 -231639.30

w⋆

5 640042.26

w⋆

6 -1061800.52

w⋆

7 1042400.18

w⋆

8 -557682.99

w⋆

9 125201.43

• Large positive/negative
values, so the polynomial
matches each of the data
points exactly

• Between points the function
exhibits the large oscillations

Intuitively, what is happening is that the more flexible polynomials with larger
values of M are becoming increasingly tuned to the random noise on the target
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Polynomial curve fitting (cont.)

The behaviour of a model of given complexity (M = 9) as data size is varied

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

Over-fitting problem become less severe as the data size increases

• The larger the data set, the more complex (more flexible) the model that
we can afford to fit to the data

• One heuristic is ‘the number of data points should be no less than some
multiple (5 or 10) of the number of adaptive parameters in the model’
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Polynomial curve fitting (cont.)

Number of parameters is not necessarily the best measure of model complexity

• Why limit the number of parameters in a model according to the size of
the available training set?

• It would seem more reasonable to choose model complexity according to
the problem complexity

We shall see that the least squares approach to finding the model parameters
represents a specific case of maximum likelihood, and that the over-fitting
problem can be understood as a general property of maximum likelihood

• By adopting a Bayesian approach,
the over-fitting problem can be avoided

We will see that there is no difficulty from a Bayesian perspective in employing
models for which the number of parameters greatly exceeds the data size

• In a Bayesian model, the effective number of parameters
adapts automatically to the size of the data set
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Polynomial curve fitting (cont.)

We continue with the current approach and consider how we can apply it to
data sets of limited size where we may wish to use relatively complex models

One technique that is often used to control over-fitting is regularisation

• It involves adding a penalty term to the error function E(w),
in order to discourage the coefficients from reaching large values

• The simplest such penalty term takes the form of a sum of squares of
all of the coefficients, leading to a modified error function of the form

Ẽ(w) =
1

2

N
∑

n=1

(y(xn,w)− tn)
2 +

λ

2
||w||2 (4)

• where ||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M

• Coefficient λ governs the relative importance of the regularisation term,
compared with the standard sum-of-squares error term

Again, the error function above can be minimised exactly in closed form (⋆)
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Polynomial curve fitting (cont.)

Exercise

Write down the set of coupled linear equations, analogous to

M
∑

j=0

Aijwj = Ti

satisfied by the coefficients wi which minimise the regularised
sum-of-squares error function given by Equation 4

Ẽ(w) =
1

2

N
∑

n=1

(y(xn,w) − tn)
2 +

λ

2
||w||2

For the regularised sum-of-squares error function given by Equation 4,
the corresponding linear equations are again obtained by differentiation

• They take the same form as Equation 26, but with Aij replaced by Ãij

Ãij = Aij + λIij
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Polynomial curve fitting (cont.)

Fitting the polynomial of order M = 9 to the data using a regularised error

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

• For lnλ = −18 (it’s a small value for λ), over-fitting is suppressed

• For lnλ = 0 (it’s a large value for λ), we obtain again a poor fit
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Polynomial curve fitting (cont.)

Coefficients w⋆ for M = 9 polynomials with varying regularisation parameter λ

various values for

graph at the bottom right in Fig-
We see that, as the value of

, the typical magnitude of

lnλ = −∞ lnλ = −18 lnλ = 0

w
⋆

0 0.35 0.35 0.13

w
⋆

1 232.37 4.74 -0.05

w
⋆

2 -5321.83 -0.77 -0.06

w
⋆

3 48568.31 -31.97 -0.05

w
⋆

4 -231639.30 -3.89 -0.03

w
⋆

5 640042.26 55.28 -0.02

w
⋆

6 -1061800.52 41.32 -0.01

w
⋆

7 1042400.18 -45.95 -0.00

w
⋆

8 -557682.99 -91.53 0.00

w
⋆

9 125201.43 72.68 0.01

• lnλ = −∞ corresponds to an
unregularised model (λ = 0)

• As λ increases, the magnitude
of the coefficients gets smaller

Regularisation has the effect of reducing the magnitude of the coefficients
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Polynomial curve fitting (cont.)

The impact of the regularisation term on the generalisation error can be seen
by plotting the RMS error (Equation 3) for both training and test sets, v lnλ

E
R

M
S

 

 

ln λ
−35 −30 −25 −20

0

0.5

1
Training
Test

λ controls the effective model complexity and sets the degree of over-fitting
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Polynomial curve fitting (cont.)

By minimising an error function, we must determine a suitable value of model
complexity, whether the polynomial order M or the regularisation coefficient λ

A way of achieving this is to take available data and then partition it into

• A training set, to determine w for different settings of model complexity

• A separate validation set, to find an optimal value of model complexity

Seeing the inherent data scarcity, this is too wasteful of valuable training data

One solution to this is to use a technique commonly known as cross-validation
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Polynomial curve fitting (cont.)

S-fold cross-validation allows a proportion (S − 1)/S of the available data to
be used for training while making use of all of the data to asses performance

run 1

run 2

run 3

run 4

For the S = 4 case, we take all of the available
data and the we partition it into S groups

• in the simplest case these are of equal size

S − 1 of the groups (white blocks) are used to
train a set of models, the remaining group (red
block) is used for evaluating their performance

This procedure is repeated for all S possible choices for the held-out group,
the red blocks, and performance scores from the S runs are averaged

When data is particularly scarce, it is appropriate to consider the case S = N,
where N is the total number of data points, leave-one-out cross-validation


