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Probability theory

A key concept in the field of data science is that of uncertainty

• through noise on measurements

• through the finite size of data

Probability theory provides a consistent framework for the quantification and
manipulation of uncertainty and forms one of the central foundations of PRML
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Probability theory (cont.)

Imagine we have two boxes,one red and one blue, and in the red box we have
2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange

Suppose that we randomly pick
one of the boxes and from that box
we randomly select an item of fruit

• we check the fruit and we
replace it in its box

We repeat this process many times

40% of the time we pick the red box and 60% of the time we pick the bluebox

• We are equally likely to select any of the pieces of fruit from the box
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Probability theory (cont.)

The identity of the box that will be chosen is a random variable B

This random variable can take only two possible values

• either r , for red box or b, for blue box

The identity of the fruit that will be chosen is a random variable F

This random variable can take only two possible values

• either a, for apple or o, for orange

Definition

We define the probability of an event to be the fraction of times that event
occurs out of the total number of trials (in the limit that it goes to infinity)

Example

• The probability of selecting the red box is 4/10

• The probability of selecting the blue box is 6/10

We write these probabilities as p(B = r) = 4/10 and p(B = b) = 6/10
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Probability theory (cont.)

Note that, by definition, probabilities must lie in the interval [0, 1]

• If the events are mutually exclusive and if they include all possible
outcomes, then the probabilities for those events must sum to one

Example

We have defined our experiment and we can start asking questions

• What is the overall probability that the selection procedure
picks an apple?

• Given that we have chosen an orange, what is the probability
that the box we chose was the blue one?

• ...

We can answer questions such as these, and indeed much more complex
questions associated with problems in pattern recognition, once we have
equipped ourselves with the two elementary rules of probability

• the sum rule and the product rule

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

Probability theory (cont.)

To derive the rules of probability, consider the slightly more general example

• Two random variables X and Y

}

}

ci

rjyj

xi

nij

We shall suppose that:

• X can take any of the values xi ,
i = 1, . . . ,M

• Y can take any of the values yj ,
j = 1, . . . ,L

Here, M = 5 and L = 3

Consider a total of N trials in which we sample both variable X and Y

• Let nij be the number of such trials in which X = xi and Y = yj

• Let ci be the number of trials in which X takes the value xi
(irrespective of the value that Y takes)

• Let rj be the number of trials in which Y takes the value yj
(irrespective of the value that X takes)
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Probability theory (cont.)

The probability that X will take the value xi and Y will take the value yj is
written p(X = xi ,Y = yj): It is the joint probability of X = xi and Y = yj

}
}

ci

rjyj

xi

nij

It is given by the number of points
falling in the cell (i , j) as a fraction
of the total number N of points

p(X = xi ,Y = yj) =
nij

N
(1)

We are implicitly in the limit N → ∞
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Probability theory (cont.)

The probability that X takes the value xi irrespective of the value of Y is
p(X = xi ) and is given by the fraction of total number of points in column i

p(X = xi ) =
ci

N
=

∑L
j=1 nij

N
=

L∑

j=1

nij

N
︸ ︷︷ ︸

p(X=xi ,Y=yj )

=
L∑

j=1

p(X = xi ,Y = yj) (2)

p(X = xi ) is called the marginal probability because it obtained by
marginalising, or summing out, the other variables (i.e., Y )

}

}

ci

rjyj

xi

nij

Definition

The definition of marginal probability
sets the Sum rule of probability

p(X = xi ) =
L∑

j=1

p(X = xi ,Y = yj)

(3)
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Probability theory (cont.)

If we consider only those instances for which X = xi , then the fraction of such
instances for which Y = yj is written p(Y = yj |X = xi )

• It is the conditional probability of Y = yj given X = xi

}

}

ci

rjyj

xi

nij

It is obtained by finding the fraction of
points in column i that fall in cell i , j

p(Y = yi |X = xi ) =
nij

ci
(4)

Definition

From Equation 1, 2 and 4, we derive the Product rule of probability

p(X = xi ,Y = yj ) =
nij

N
=

nij

ci
︸ ︷︷ ︸

p(Y=yj |X=xi )

ci

N
︸ ︷︷ ︸

p(X=xi )

= p(Y = yj |X = xi )p(X = xi )

(5)
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Probability theory (cont.)

Definition

The rules of probability

• sum rule
p(X ) =

∑

Y

p(X ,Y ) (6)

• product rule
p(X ,Y ) = p(Y |X )p(X ) (7)

To compact notation, p(⋆) denotes a distribution over a random variable ⋆ 1

• p(X ,Y ) is a joint probability, the probability of X and Y

• p(Y |X ) is a conditional probability, the probability of Y given X

• p(X ) is a marginal probability, the probability of X

1p(⋆ = ·) or simply p(·) denotes the distribution evaluated for the particular value ·
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Probability theory (cont.)

Definition

From the product rule and the symmetry property p(X ,Y ) = p(Y ,X ),
we obtain the following relationship between conditional probabilities

p(Y |X ) =
p(X |Y )p(Y )

p(X )
(8)

It is the Bayes’ theorem, plays a central role in statistical machine learning

Using the sum rule, the denominator in Bayes’ theorem can be expressed in
terms of the quantities appearing in the numerator

p(X ) =
∑

Y

p(X |Y )p(Y ) (9)

The denominator is a normalisation constant that ensures that the sum of the
conditional probability on the left-hand side of Eq. 8 over all values of Y is one
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Probability theory (cont.)

p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

Probability theory (cont.)

Example

Returning to the example involving the boxes of fruit

The probability of selecting either red or blue boxes are

• p(B = r) = 4/10 and p(B = b) = 6/10

This satisfies p(B = r) + p(B = b) = 4/10 + 6/10 = 1

Now suppose that we pick a box at random, say the blue box

Then the probability of selecting an apple is just the fraction of
apples in the blue box which is 3/4, so p(F = a|B = b) = 3/4
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Probability theory (cont.)

We can write all conditional probabilities for the type of fruit, given the box

p(F = a|B = r) = 1/4 (10)

p(F = o|B = r) = 3/4 (11)

p(F = a|B = b) = 3/4 (12)

p(F = o|B = b) = 1/4 (13)

Note that these probabilities are normalised so that

p(F = a|B = r) + p(F = o|B = r) = 1 (14)

p(F = a|B = b) + p(F = o|B = b) = 1 (15)
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Probability theory (cont.)

We can now use the sum and product rules of probability
to evaluate the overall probability of choosing an apple 2

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1

4
×

4

10
+

3

4
×

6

10
=

11

20
(16)

from which it follows (sum rule) that p(F = o) = 1− 11/20 = 9/20

2P(X ) =
∑

Y p(X , Y ) with p(X , Y ) = p(Y |X )p(X ) = p(Y , X ) = p(X |Y )p(Y )
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Probability theory (cont.)

Suppose instead we are told that a piece of fruit has been selected and it is an
orange, and we would like to know which box it came from

We want the probability distribution over boxes conditioned on the identity of
the fruit (P(B|F )), whereas the probabilities in Eq. 10-13 give the probability
distribution over fruits conditioned on the identity of the box (P(F |B))

We solve the problem of reversing the conditional probability (Bayes’ theorem)

p(B = r |F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

3

4
×

4

10
×

20

9
=

2

3
(17)

From which it follows (sum rule) that p(B = b|F = o) = 1− 2/3 = 1/3
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Probability theory (cont.)

We can provide an important interpretation of Bayes’ theorem as follows

• If we had been asked which box had been chosen before being told the
identity of the selected item of fruit, then the most complete information
we have available is provided by the probability p(B)

• We call this the prior probability because it is the probability available
before we observe the identity of the fruit

• Once we are told that the fruit is an orange, we can then use Bayes’
theorem to compute the probability p(B|F )

• We call this the posterior probability because it is the probability
obtained after we have observed the identity of the fruit

The prior probability of selecting the red box was 4/10 (the blue box is more
probable), and once we observed that the piece of selected fruit is an orange,
the posterior probability of the red box is 2/3 (the red box is more probable)
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Probability theory (cont.)

If the joint distribution of two variables factorises into the product of the
marginals, p(X ,Y ) = p(X )p(Y ), then X and Y are said to be independent

p(X ,Y ) = p(Y |X )p(X )

From the product rule, we see that p(Y |X ) = p(Y ), and so the conditional
distribution of Y given X is indeed independent of the value of X

p(Y |X ) =
p(X |Y )p(Y )

p(X )
= P(Y ) ⇐= P(X |Y ) = P(X )
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Probability densities

We wish now to consider probabilities with respect to continuous variables

If the probability of a real-valued variable x falling in the interval (x , x + δx) is
given by p(x)δx for δx → 0, then p(x) is called the probability density over x

Definition

xδx

p(x)
P (x)

The probability that x will lie in
the interval (a, b) is given by

p(x ∈ (a, b)) =

∫ b

a
p(x)dx (18)
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Probability densities (cont.)

Probabilities are nonnegative, and because the value of x must lie somewhere
on the real axis, the probability density p(x) must satisfy the two conditions

Definition

xδx

p(x)
P (x)

p(x) ≥ 0 (19)
∫ +∞

−∞
p(x)dx = 1 (20)
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Probability densities (cont.)

The probability that x lies in the interval (−∞, z) is given by
the cumulative distribution function, which is defined by

Definition

xδx

p(x)
P (x)

P(x) =

∫ z

−∞
p(x)dx (21)

The probability density p(x) can be expressed as the derivative
of a cumulative distribution function P(x): P′(x) = p(x)
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Probability densities (cont.)

If we have several continuous variables x1, . . . , xD , collected in vector x, then
we can define a joint probability density p(x) = p(x1, . . . , xD) such that the
probability of x falling in an infinitesimal volume δx containing x is p(x)δx

Remark

Also the multivariate probability density must satisfy

p(x) ≥ 0 (22)
∫

p(x)dx = 1 (23)

We can also consider joint probability distributions over
a combination of discrete and continuous variables

Note that if x is a discrete variable, then p(x) is sometimes called
a probability mass function because it can be regarded as a set
of ‘probability masses’ concentrated at the allowed values of x

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

Probability densities (cont.)

The sum and product rules, and Bayes’ theorem, apply to the case of
probability densities, or to combinations of discrete/continuous variables

Remark

If x and y are two real variables, the sum and product rules take the form

p(x) =

∫

p(x , y)dy (24)

p(x , y) = p(y |x)p(x) (25)
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Expectations and covariances

One operation involving probabilities is finding weighted averages of functions

• The average value of some function f (x) under a probability distribution
p(x) is called the expectation of f (x) and will be denoted by E[f ]

Definition

For a discrete distribution, it is given by

E[f ] =
∑

x

p(x)f (x) (26)

so that the average is weighted by the relative probabilities of the values of x

Definition

In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f ] =

∫

p(x)f (x)dx (27)
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Expectations and covariances (cont.)

In either case, if we are given a finite number N of points drawn from the
probability distribution or probability density, then the expectation can be
approximated as a finite sum over these points

E[f ] ≃
1

N

N∑

n=1

f (xn) (28)

The approximation becomes exact in the limit N → ∞
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Expectations and covariances

Sometimes we will be considering expectations of functions of several variables

• we can use a subscript to indicate which variable is being averaged over

Ex [f (x , y)] denotes the average of function f (x , y) wrt the distribution of x

• Ex [f (x , y)] =
∑

x p(x)f (x , y)

• Ex [f (x , y)] is a function of y

Definition

We can also consider a conditional expectation wrt a conditional distribution

Ex [f |y ] =
∑

x

p(x |y)f (x) (29)

with an analogous definition for continuous variables
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Expectations and covariances (cont.)

Definition

The measure of how much variability there is in f (x) around its mean value
E[f (x)] is called the variance of f (x) and it is defined by

var[f ] = E

[(

f (x)− E[f (x)]
)2]

(30)

Expanding the square, we can show (⋆) that the variance can
also be written in terms of the expectations of f (x) and f (x)2

var[f ] = E[f (x)2]− E[f (x)]2 (31)

• The variance of the variable x itself (i.e., f (x) = x) is

var[x ] = E[x2]− E[x ]2 (32)
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Expectations and covariances (cont.)

Definition

For two random variables x and y , the extent to which x and y vary together
is called covariance and it is defined by

cov[x , y ] = Exy

[

(x − E[x ])(y − E[y ])
]

= Exy [xy ]− E[x ]E[y ]
(33)

If x and y are independent, then their covariance vanishes (⋆)

For two vectors of random variables x and y, the covariance is a matrix

cov[x, y] = Ex,y

[

(x− E[x])(yT − E[yT ])
]

= Ex,y[xyT ]− E[x]E[yT ] (34)
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Bayesian probabilities

We viewed probabilities as frequencies of repeatable random events

• It is the frequentist interpretation of probability

We can view probabilities also as quantification of uncertainty

• It is the Bayesian interpretation of probability

Example

In the example of the boxes of fruit the observation of the identity of the fruit
provided relevant information that altered the probability of the chosen box

• Bayes’s theorem converted a prior probability (P(B = r) = 4/10) into a
posterior probability by incorporating the evidence by the observed data

p(B = r |F = o) =
p(F = o|B = r)p(B = r)

p(F = o)
=

2

3
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Bayesian probabilities (cont.)

We can adopt a similar approach when making inference about quantities such
as the parameters w in the polynomial curve fitting example

• We first capture our assumptions about w, before observing the data in
the form of a prior probability p(w)

• The effect of the observed data D = {t1, . . . , tn} is expressed through the
conditional probability p(D|w)

• Then, we evaluate the uncertainty in w, after we have observed D in the
form of the posterior probability p(w|D)

p(w|D) =
p(D|w)p(w)

p(D)
(35)

The quantity p(D|w) is evaluated for the observed D and can be viewed as a
function of the parameter vector w, as such it is known as likelihood function

• It expresses how probable D is for different settings of the parameters w
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Bayesian probabilities (cont.)

The likelihood function p(D|w) plays a fundamental role

• In a frequentist setting, w is considered as a fixed parameter, whose value
is determined by some form of estimator, and error bars on this estimate
are obtained by considering the distribution of possible data sets D

• In the Bayesian setting, there is only a single data set D (namely the one
that is actually observed), and the uncertainty in the parameters is
expressed through a probability distribution over w given that data set

Remark

The likelihood p(D|w) is NOT a probability distribution
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Bayesian probabilities (cont.)

A widely used frequentist estimator is maximum likelihood, in which
w is set to the value that maximises the likelihood function p(D|w)

• This corresponds to choosing the value of w for which the
probability of the observed data set D is maximised

Definition

The negative log of the likelihood function is called an error function

• The negative logarithm is a monotonically decreasing function,
maximising the likelihood is equivalent to minimising the error
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Bayesian probabilities (cont.)

Definition

Given the definition of likelihood, we state the Bayes’ theorem also in words

posterior ∝ likelihood× prior

p(w|D) =
p(D|w)p(w)

p(D)

(36)

where all quantities are intended as functions of w and the denominator is a
normalisation constant ensuring that the posterior distribution is a valid pdf

Integrating both sides of the Bayes’ theorem with respect to w, we can express
the denominator in terms of the prior distribution and the likelihood function

p(D) =

∫

p(D|w)p(w)dw (37)

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

The Gaussian distribution
Probability theory

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

The Gaussian distribution

We introduce an important probability distribution for continuous variables

• The normal or Gaussian distribution

Definition

For a single real-valued variable x , the Gaussian distribution is defined by

N (x |µ,σ2) =
1

(2πσ2)1/2
exp

(

−
1

2σ2
(x − µ)2

)

(38)

It is a function of the variable x and it is governed by two parameters

• µ, called the mean

• σ2 called the variance

The square root σ of the variance is the standard deviation

The reciprocal β =
1

σ2
of the variance is called the precision
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The Gaussian distribution (cont.)

From the form of Equation 38 and the plot of the univariate Gaussian with
mean µ and standard deviation σ, we see that it satisfies

N (x |µ,σ) > 0 (39)

In addition, the Gaussian distribution is normalised (⋆)

∫ +∞

−∞
N (x |µ,σ) = 1 (40)

N (x|µ,σ2)

x

2σ

µ

It satisfies the two
requirements for a valid
probability density
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The Gaussian distribution (cont.)

We can find expectations of functions of x under the Gaussian (⋆)

• The average value of x is

E[x ] =

∫ +∞

−∞
N (x |µ,σ)xdx = µ (41)

• The second order moment

E[x2] =

∫ +∞

−∞
N (x |µ,σ)x2dx = µ2 + σ2 (42)

From Equation 41 and 42 follows that the variance of x is

var[x ] = E[x2]− E[x ]2 = σ2 (43)

Definition

The maximum of a distribution is called mode and for the
Gaussian it is found in the correspondence of the mean (⋆)
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The Gaussian distribution (cont.)

Definition

The Gaussian defined over a D-dimensional vector x of continuous variables

N (x|µ,σ2) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x− µ)TΣ−1(x − µ)

)

(44)

• the D-dimensional vector µ is the mean

• the D ×D matrix Σ is the covariance

• |Σ| denotes the determinant of Σ
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The Gaussian distribution (cont.)

Example

We have a dataset x = (x1, . . . , xN)T of N observations of a scalar variable x

• The observations are drawn independently from a Gaussian distribution

• The mean µ and variance σ2 of the Gaussian distribution are unknown

We know that the joint probability of two independent events equals
the product of the marginal probabilities for each event separately

• Our data x are independently drawn from the same distribution (iid)

• We can write the probability of the data as a whole, given µ and σ2

p(x|µ, σ2) =
N∏

n=1

N (xn|µ, σ2) (45)
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The Gaussian distribution (cont.)

Seen as a function of µ and σ2, this is the likelihood function for the Gaussian

x

p(x)

xn

N (xn|µ,σ2)

The Gaussian distribution
(red curve)

The black points denote
a data set of values {xn}

The likelihood function is the
product of the blue values

Remark

One criterion for finding the parameters in a probability distribution using an
observed set of data is to find the parameters that maximise the likelihood

• Here, maximising the likelihood involves adjusting mean and variance
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The Gaussian distribution (cont.)

Instead of finding the values for the parameters µ and σ2 in the Gaussian by
maximising the likelihood, it is more convenient to maximise its logarithm3

• It simplifies the subsequent mathematics and helps numerically4

From Equation 38 and 45, the log likelihood can be written as

ln p(x|µ, σ2) = −
1

2σ2

N∑

n=1

(xn − µ)2 −
N

2
lnσ2 −

N

2
ln (2π) (46)

3Because the logarithm is a monotonically increasing function of its argument, maximisation of the
log of a function is equivalent to maximisation of the function itself

4The product of a large number of small probabilities can easily overflow the numerical precision of
the computer and this is resolved by calculating sums of the log probabilities

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

The Gaussian distribution (cont.)

Definition

Maximising wrt µ, we get the maximum likelihood solution for the mean (⋆)

• The sample mean

µML =
1

N

N∑

n=1

xn (47)

Definition

Maximising wrt σ2, we get the maximum likelihood solution for the variance

• The sample variance

σ2
ML =

1

N

N∑

n=1

(xn − µML)
2 (48)

Note that we have to perform the joint maximisation of the log likelihood (wrt
both µ and σ2) but in the case of the Gaussian the solution of µ decouples
from that of σ2 and we can first evaluate Eq. 47 and use the result in Eq. 48
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The Gaussian distribution (cont.)

One of the limitations of solutions using the maximum likelihood setting is that
the approach systematically underestimates the variance of the distribution

• It is an example of a phenomenon called bias (relates to over-fitting)

Maximum likelihood solutions µML and σ2
ML are functions of x1, . . . , xn

Definition

If we consider the expectations of these quantities wrt to the data (also
from a Gaussian with parameters µ and σ2) we can show (⋆) that

E[µML] = µ (49)

E[σ2
ML] =

(N − 1

N

)

σ2 (50)

so that on average the maximum likelihood estimate will obtain the correct
mean but will underestimate the true variance by a factor (N − 1/N)
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The Gaussian distribution (cont.)

Definition

From Eq. 50 it follows that an unbiased estimate of the variance parameter is

σ̃2 =
N

N − 1
σ2
ML =

1

N − 1

N∑

n−1

(xn − µML)
2 (51)

Note that the bias of the maximum likelihood solution would anyway become
less significant as the number of points N increases, and for N → ∞ the
solution equals the true variance of the distribution that generated the data

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

Polynomial fitting
Probability theory

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

Polynomial fitting

x

t

0 1

−1

0

1

Training points N = 10 (blue circles)

• each comprising an observation of
the input variable x along with
corresponding target variable t

The unknown function sin(2πx) is
used to generate data (green curve)

• Goal: Predict the value of t for
some new value of x

• w/o knowledge of green curve

The input training data x was generated by choosing values of xn, for
n = 1, . . . ,N, that are spaced uniformly in the range [0, 1]

The target training data t was obtained by computing values sin(2πxn)
of the function and adding a small level of Gaussian noise
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Polynomial fitting (cont.)

• We shall fit the data using a polynomial function of the form

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑

j=0

wjx
j (52)

• M is the polynomial order, xj is x raised to the power of j

• Polynomial coefficients w0, . . . ,wM are collected in vector w

The coefficients values are obtained by fitting the polynomial to training data

• By minimising an error function, a measure of misfit between function
y(x ,w), for any given value of w, and the training set data points

• A choice of error function is the sum of the squares of the errors between
predictions y(xn,w) for each point xn and corresponding target values tn

E(w) =
1

2

N∑

n=1

(

y(xn,w)− tn

)2
=⇒ w⋆ (53)
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Polynomial fitting (cont.)

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

Polynomial fitting (cont.)

M

E
R

M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

Definition

The root mean squared error ERMS

ERMS =

√

2
E(w⋆)

N

The magnitude of the coeffs tends to
explode trying to (over)fit the data

||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M

for
of various order.

ve how the typical mag-
of the coefficients in-
dramatically as the or-

of the polynomial increases.

M = 0 M = 1 M = 6 M = 9

w⋆

0 0.19 0.82 0.31 0.35

w⋆

1 -1.27 7.99 232.37

w⋆

2 -25.43 -5321.83

w⋆

3 17.37 48568.31

w⋆

4 -231639.30

w⋆

5 640042.26

w⋆

6 -1061800.52

w⋆

7 1042400.18

w⋆

8 -557682.99

w⋆

9 125201.43
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Polynomial fitting (cont.)

One technique that is often used to control over-fitting is regularisation

• Add a penalty term to the error function E(w), to discourage the
coefficients from reaching large values

• The simplest such penalty term is the sum of squares of all of the
coefficients, to get a new error function

Ẽ(w) =
1

2

N∑

n=1

(

y(xn,w)− tn

)2
+

λ

2
||w||2 (54)

• where ||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M

• Coefficient λ trades off t between the regularisation term and the
standard sum-of-squares error
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Polynomial curve fitting (cont.)

Fitting the polynomial of order M = 9 to the data using a regularised error

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

• For lnλ = −18 (it’s a small value for λ), over-fitting is suppressed

• For lnλ = 0 (it’s a large value for λ), we obtain again a poor fit
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Polynomial fitting (cont.)

Example

We have expressed the problem of polynomial curve fitting

Error minimisation ⇒

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E(w) =
1

2

∑N
n=1

(

y(xn,w) − tn

)2

Ẽ(w) =
1

2

∑N
n=1

(

y(xn,w) − tn

)2
+

λ

2
||w||2

(55)

We return to it and view it from a probabilistic perspective
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Polynomial fitting revisited (cont.)

The goal in the curve fitting problem is to be able to make predictions for
the target variable t, given some new value of the input variable x and

• a set of training data comprising N input values x = (x1, . . . , xN)T

and their corresponding target values t = (t1, . . . , tN )T

Uncertainty over the target value is expressed using a probability distribution

Assumption

• Given the value of x , the corresponding value of t is assumed to have a
Gaussian distribution with a mean the value y(x ,w) of the polynomial

p(t|x ,w, β) = N
(

t
∣
∣
∣y(x ,w), β−1

)

(56)

and some precision β (the precision is the reciprocal of the variance σ2)
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Polynomial fitting revisited (cont.)

The conditional distribution on t given x is p(t|x ,w, β) = N
(

t
∣
∣
∣y(x ,w), β−1

)

• The mean is given by the polynomial function y(x ,w)

• The precision is given by β, with β−1 = σ2

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w,β)

We can use training data {x, t} to determine the values of the parameters µ
and β of this Gaussian distribution

• Likelihood maximisation
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Polynomial fitting revisited (cont.)

Assuming that the data have been drawn independently from the conditional

distribution p(t|x ,w, β) = N
(

t
∣
∣
∣y(x ,w), β−1

)

, the likelihood function is

p(t|x,w,β) =
N∏

n=1

N
(

tn

∣
∣
∣y(xn,w), β−1

)

(57)

It is again convenient to maximise its logarithm, the log likelihood function

ln p(t|x,w, β) = −
β

2

N∑

n=1

(

y(xn,w) − tn

)2
+

N

2
lnβ −

N

2
ln (2π) (58)

The optimisation is again with respect to both the polynomial coefficients
w and the precision parameter β of the Gaussian conditional distribution
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Polynomial fitting revisited (cont.)

ln p(t|x,w,β) = −
β

2

N∑

n=1

(

y(xn,w)− tn

)2
+

N

2
lnβ −

N

2
ln (2π)

Let us consider the determination of the maximum likelihood solution for w

• The last two terms can be omitted, as they do not depend on w

• Coefficient β/2 can be replaced with 1/2, because scaling the log
likelihood by a positive constant does not alter the location of
its maximum with respect to w

Definition

Maximisation of log likelihood wrt w is minimisation of negative log likelihood

• This equals the minimisation of the sum-of-squares error function

E(w) =
1

2

N∑

n=1

(

y(xn,w) − tn
)2

=⇒ wML = w⋆
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Polynomial fitting revisited (cont.)

ln p(t|x,w,β) = −
β

2

N∑

n=1

(

y(xn,w)− tn

)2
+

N

2
lnβ −

N

2
ln (2π)

Let us consider the determination of the maximum likelihood solution for β

Definition

• Maximising the log likelihood with respect to β gives

1

βML
=

1

N

N∑

n=1

(

y(xn,wML) − tn)
)2

(59)

• where again we decoupled the solution of w and β
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Polynomial fitting revisited (cont.)

Having an estimate of w and β we can make predictions for new values of x

• We have a probabilistic model that gives the probability distribution over t

We can make estimations that are much more than a plain point estimate of t

• We can make predictions in terms of the predictive distribution

p(t|x ,wML, βML) = N
(

t
∣
∣
∣y(x ,wML), β

−1
ML

)

(60)

• The probability distribution over t, rather than a point estimate
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Polynomial fitting revisited (cont.)

We can make a step forward towards a Bayesian treatment of the problem

• We introduce a prior distribution over the polynomial coefficients w

• We consider a Gaussian distribution5

N (w|µ,Σ) = N (w|0,α−1I)

=
( α

2π

)(M+1)/2
exp

(

−
α

2
wTw

)

= p(w|α) (61)

• µ = 0 and Σ = α−1I

• α is the precision of the distribution6

• Number of parameters in w, M + 1

5N (x|µ,σ2) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x − µ)TΣ

−1(x − µ)
)

6Variables such as α control the distribution of model parameters are called hyperparameters
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Polynomial fitting revisited (cont.)

p(w|α) = N (w|0,α−1I) =
( α

2π

)(M+1)/2
exp

(

−
α

2
wTw

)

p(t|x,w,β) =
N∏

n=1

N
(

tn

∣
∣
∣y(xn,w), β−1

)

Using Bayes’ theorem, the posterior distribution for w is proportional to
the product of the prior distribution and the likelihood function, thus

p(w|x, t,α,β) ∝ p(t|x,w, β)p(w|α) (62)

We can now determine w by finding its most probable value given the data

• that is, by maximising the posterior distribution

• this technique is maximum posterior or MAP
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Polynomial fitting revisited (cont.)

By taking the negative log of the posterior distribution over w and combining
with Eq. 58 (log likelihood function) and Eq. 61 (prior distribution over w),
we find that the maximum of the posterior is given by the minimum of

β

2

N∑

n=1

(

y(xn,w) − tn
)2

+
α

2
wTw (63)

Definition

Thus, maximising the posterior is equivalent to minimising the regularised
sum-of-squares error function with regularisation λ = α/β

Ẽ(w) =
1

2

N∑

n=1

(y(xn,w) − tn)2 +
λ

2
||w||2
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Bayesian polynomial fitting (cont.)

Remark

Though we included a prior p(w|α), we are still making point estimates of w

• Not yet a full Bayesian treatment

In our problem, we are given training data x and t, along with a new point x

• We wish to evaluate the posterior predictive distribution p(t|x , x, t)

Assuming parameters α and β fixed and known, the predictive distribution is

p(t|x , x, t) =
∫

p(t|x ,w)p(w|x, t)dw (64)

• p(t|x ,w) is p(t|x ,w,β) = N
(

t
∣
∣
∣y(x ,w), β−1

)

• p(w|x, t) is the posterior distribution over w

p(w|x, t,α, β) ∝ p(t|x,w, β)p(w|α)
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Bayesian polynomial fitting (cont.)

It is possible to show this posterior distribution is a Gaussian that can be
evaluated analytically and also the integration can be performed analytically

p(t|x , x, t) =
∫

p(t|x ,w)p(w|x, t)dw = N
(

t
∣
∣
∣m(x), s2(x)

)

(65)

The mean and variance of Gaussian posterior predictive distribution are

m(x) = βφ(x)TS
N∑

n=1

φ(xn)tn (66)

s2(x) = β−1 + φ(x)TSφ(x) (67)

We defined the vector φ(x) with elements φi (x) = xi , with i = 0, . . . ,M

The matrix S is such that

S−1 = αI+ β
N∑

n=1

φ(xn)φ(xn)T (68)
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Bayesian polynomial fitting (cont.)

m(x) = βφ(x)TS
N∑

n=1

φ(xn)tn

s2(x) = β−1 + φ(x)TSφ(x)

We see that the variance, but also the mean, of this predictive
distribution p(t|x , x, t) = N (t|m(x), s2(x)) depends on x

• The first terms in s2 represents the uncertainty in the
predicted value t due to the noise on the target variables

• It was already present in the maximum likelihood predictive
distribution p(t|x ,wML,βML) = N (t|y(x ,wML), β

−1
ML)

The second term arises from the uncertainty in the parameters
and it is a consequence of the Bayesian treatment
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Bayesian polynomial fitting (cont.)

The predictive distribution p(t|x , x, t) = N
(

t
∣
∣
∣m(x), s2(x)

)

, M = 9

• The red curve is the mean m(x) of the predictive distribution

• The red region corresponds to ±1 s around the mean

x

t

0 1

−1

0

1

• α = 5× 10−2

• β = 11.1, corresponding
to the known noise
variance
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Probabilities play a central role in modern pattern recognition

Probability theory can be expressed in terms of two equations

• The sum rule and the product rule

p(X ) =
∑

Y

p(X ,Y )

p(X ,Y ) = p(Y |X )p(X )

All probabilistic inference and learning manipulations here, no matter
how complex, amount to repeated application of these two equations

p(Y |X ) =
p(X |Y )p(Y )

p(X )

p(X ) =
∑

Y

p(X |Y )p(Y )

We formulate and solve probabilistic models by algebraic manipulation
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Graphical models (cont.)

It is advantageous to use visual displays of probability distributions

• Probabilistic graphical models

Probabilistic graphical models offer several useful properties:

• They provide a simple way to visualise the structure of a probabilistic
model and can be used to design and motivate new models

• Insights into the properties of the model, including conditional
independence properties, can be obtained by inspection of the graph

• The computations required to perform inference and learning in complex
models, can be expressed in terms of graphical manipulations, in which
underlying mathematical expressions are carried along implicitly
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Graphical models (cont.)

A graph comprises nodes (or vertices) connected by links (or edges or arcs)

Definition

In a probabilistic graphical model

• each node represents a random variable (or group of random variables)

• the links express probabilistic relationships between these variables

The graph captures how the joint distribution over all random variables can be
decomposed into a product of factors each depending only on variables’ subset
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Graphical models (cont.)

We discuss Bayesian networks, or directed graphical models, in which the
links of the graphs have a particular directionality indicated by arrows

The other major class of graphical models are Markov random fields, or
undirected graphical models, with links without directional significance
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Bayesian networks

To motivate the use of directed graphs to describe probability distributions,
consider any joint distribution p(a, b, c) over three variables a, b, and c7

By using the product rule of probability, we can write the joint distribution as

p(a, b, c) = p(c|a, b)p(a, b) (69)

A second application of the product rule to the second term on the RHS gives

p(a, b, c) = p(c|a, b) p(b|a)p(a)
︸ ︷︷ ︸

p(a,b)

(70)

7We do not need to specify anything further about these variables (discrete, continuous, ...)
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Bayesian networks (cont.)

Decomposition p(a, b, c) = p(c|a, b)p(b|a)p(a) holds for any joint distribution

We can represent the right-hand side as a probabilistic graphical model

a

b

c

1 We introduce a node for each of the
random variables a, b, and c

2 We associate each node with the
corresponding conditional distribution

3 For each conditional distribution, we add
directed links from nodes corresponding
to variables on which the distribution is
conditioned
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Bayesian networks (cont.)

a

b

c

p(a, b, c) = p(c|a, b)p(b|a)p(a)

• Factor p(c|a, b), links from nodes a and b
to node c

• Factor p(b|a), links from node a to node b

• Factor p(a), no incoming links

If there is a link from a node a to a node b, we say

• node a is the parent of node b

• node b is the child of node a

We make no formal distinction between node and variable it corresponds to

• We use the same symbol to refer to both

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

Bayesian networks (cont.)

The left-hand side of p(a, b, c) = p(c|a, b)p(b|a)p(a) is symmetrical with
respect to the three variables a, b, and c, whereas the right-hand side is not

Indeed, in making the decomposition, we chose a particular ordering (a, b, c)

• Had we chosen a different ordering, we would have obtained a different
decomposition (and hence also a different graphical representation)

• Awkward
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Bayesian networks (cont.)

Consider the joint distribution over K variables given by p(x1, . . . , xK )

By repeated application of the product rule of probability, this joint distribution
can be written as a product of conditional distributions, one for each variable

p(x1, . . . , xK ) = p(xK |x1, . . . , xK−1)p(xK−1|x1, . . . , xK−2) · · · p(x2|x1)p(x1)
(71)

For a choice of K , we can represent this as a directed graph with K nodes

• one node for each conditional distribution on the right-hand side

• each node has incoming links from all lower numbered nodes

This graph is fully connected, there is a link between every pair of nodes
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Bayesian networks (cont.)

We worked with general joint distributions, so that decompositions and their
representations as fully connected graphs, are applicable to any distribution

It is the absence of links in the graph that conveys interesting information
about the properties of the class of distributions that the graph represents

x1

x2 x3

x4 x5

x6 x7

p(x1, · · · , x7) = p(x7|✚x1,✚x2,✚x3, x4, x5,✚x6)

p(x6|✚x1,✚x2,✚x3, x4,✚x5)

p(x5|x1,✚x2, x3,✚x4)

p(x4|x1, x2, x3)

p(x3|✚x1,✚x2)

p(x2|✚x1)

p(x1)

p(x1, . . . , x7) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)
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Bayesian networks (cont.)

We state in general terms the relationship between a given acyclic8

directed graph and the corresponding distribution over the variables

• The joint distribution defined by a graph is given by the product, over all
nodes of the graph, of a conditional distribution for each node conditioned
on the variables corresponding to the parents of that node in the graph

Thus, for a graph with K nodes, the joint distribution is given by

p(x) =
K∏

k=1

p(xk |pak) (72)

where pak denotes the set of parents of xk and x = {x1, . . . , xK}

Factorisation properties of the joint distribution for a directed graphical model

8We consider directed graphs subjected to an important restriction: No directed cycles
In other words, there are no closed paths within the graph such that we can move from node to node
along links following the direction of the arrows and end up back at the starting node
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We illustrate the use of directed graphs to describe probability distributions

• Bayesian polynomial regression model

The random variables in this model are:

• the vector of polynomial coefficients w

• the observed data =(t1, . . . , tN )T

The model contains input data x = (x1, , . . . , xN)T , the noise variance σ2, and
the hyper-parameter α representing the precision of the Gaussian prior over w

• All are parameters of the model, not random variables

Probability refresher

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Probability theory

Probability densities

Expectations and
covariances

Bayesian probabilities

The Gaussian distribution

Polynomial fitting

Polynomial fitting revisited

Bayesian polynomial fitting

Graphical models

Bayesian networks

Bayesian polynomial fitting

Bayesian polynomial fitting (cont.)

The joint distribution of the random variables is given by the product of the
prior p(w) and N conditional distributions p(tn |w), with n = 1, . . . ,N

w

t1 tN

p(t,w) = p(w)
N∏

n=1

p(tn|w) (73)

This joint distribution can represented
by a probabilistic graphical model

It inconvenient to write out multiple nodes of the form t1, . . . , tN explicitly
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Bayesian polynomial fitting (cont.)

The graphical notation to compactly express multiple nodes is called plate

• We draw a single representative node tn and then surround this with a
box, labelled with N indicating that there are N nodes of this kind

tn
N

w

p(t,w) = p(w)
N∏

n=1

p(tn|w)
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Bayesian polynomial fitting (cont.)

It is useful to make the parameters and its stochastic variables explicit

p(t,w|x,α,σ2) = p(w|α)
N∏

n=1

p(tn|w, xn,σ2)

which allows to make x and α explicit in the graphical representation

tn

xn

N

w

α

σ2

The graphical convention

• Random variables are denoted
by large open circles

• Deterministic parameters are
denoted by small solid circles
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Bayesian polynomial fitting (cont.)

Some of the random variables are set to the specific observed values

• In the example, variables {tn} from the training set

We denote observed variables by shading the corresponding nodes

tn

xn

N

w

α

σ2

Variables {tn} are observed, shaded

Variable w is not observed, unshaded

Variables that are not observed are called hidden or latent variables
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Bayesian polynomial fitting (cont.)

Because we observed the values {tn} we can evaluate the posterior distribution
of the polynomial coefficients w, it involves an application of Bayes’ theorem

p(w|T) ∝ p(w)
N∏

n=1

p(tn |w) (74)
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Bayesian polynomial fitting (cont.)

Model parameters like w are generally of little interest as such

Suppose we are given a new input x̂ and we wish to find the corresponding
probability distribution for target t̂, conditioned on the observed data

tn

xn

N

w

α

t̂
σ2

x̂

The joint distribution of all random variables
in this model, conditioned on the deterministic
parameters is

p(t̂, t,w|x̂ , x,α, σ2)

=
( N∏

n=1

p(tn|xn,w, σ2)
)

p(w|α)p(t̂ |x̂,w, σ2)

(75)
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Bayesian polynomial fitting (cont.)

The joint distribution p(t̂, t,w|x̂ , x,α,σ2) of the random variables, conditioned

on the deterministic parameters is
(
∏N

n=1 p(tn|xn,w, σ2)
)

p(w|α)p(t̂ |x̂,w, σ2)

tn

xn

N

w

α

t̂
σ2

x̂

The (posterior) predictive distribution for t̂ is
obtained, from the sum rule of probability, by
integrating out the model parameters w

p(t̂|x̂, x, t,α, σ2) ∝

∫

p(t̂, t,w|x̂, x,α, σ2)dw

The random variables in t are explicitly set to the specific observed values


