
Information theory

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Information theory

Relative entropy and mutual
information

Information theory
Advanced topics in AI-I (CK0146)
Pattern recognition (TIP8311)

Francesco Corona

Information theory

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Information theory

Relative entropy and mutual
information

Outline

1 Information theory
Relative entropy and mutual information

Information theory

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Information theory

Relative entropy and mutual
information

Information theory

Information theory

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Information theory

Relative entropy and mutual
information

Information theory (cont.)

We introduce some concepts from information theory

Consider a discrete random variable x and ask:

• How much information is received when we
observe a specific value of this variable?

The amount of information can be understood as
the degree of surprise on learning the value of x

If we are told that a highly improbable event has occurred, we receive more
information than if we are told that some very likely event has occurred

• If we knew that the event was certain we would receive no information
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Information theory (cont.)

A measure of information content depends on the probability distribution p(x)

• We look for a quantity h(x) that is a monotonic function of
the probability p(x) and that expresses the information content

The form of h(·) can be found considering two events x and y

If x and y are unrelated, observing them both will lead to an information gain

• The gain should be the sum of information gained from each one alone

h(x , y) = h(x) + h(y)

Two unrelated events are statistically independent and p(x , y) = p(x)p(y)

• Information h(x) must be given by the logarithm of p(x)

h(x) = − log2 p(x) (1)

Information theory

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Information theory

Relative entropy and mutual
information

Information theory (cont.)

h(x) = − log2 p(x)

The negative sign ensures that information is positive or zero, with
low probability events x corresponding to high information content

The choice of basis for the logarithm is arbitrary

• Prevalent convention is to use the base of 2

• The units of h(x) are thus bits (binary digits)
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Information theory (cont.)

Suppose a sender sends the value of a random variable to a receiver

Definition

• The average amount of information that they transmits in the process
is obtained by taking the expectation of h(x), wrt the distribution p(x)

H[x ] =
∑

x

p(x)h(x) = −
∑

x

p(x) log2 p(x) (2)

• This important quantity is called entropy of x
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Information theory (cont.)

Consider a random variable x having 8 possible states, each equally likely

To communicate the value of x , we need to transmit a 3-bit long message

• Notice that the entropy of x is H[x ] = −8×
1

8
log2

1

8
= 3 [bits]

Consider a random variable x having 8 possible states {a, b, c, d, e, f , g , h}

• The respective probabilities of the states are (
1

2
,
1

4
,
1

8
,
1

16
,
1

64
,
1

64
,
1

64
,
1

64
)

• The entropy of x is

H[x ] = −
1

2
log2

1

2
−

1

4
log2

1

4
−

1

8
log2

1

8
−

1

16
log2

1

16
−

4

64
log2

1

64
= 2 [bits]

The nonuniform distribution has a smaller entropy than the uniform one
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Information theory (cont.)

How would we transmit the identity of the variable’s state to a receiver?

• As before, we could use a 3-bit number

However, to keep the average code length shorter, we could take advantage of
the nonuniform distribution by using shorter codes for more probable events

• We could set the following set of code strings
a

︷︸︸︷

0
︸︷︷︸

1/2

,

b
︷︸︸︷

10
︸︷︷︸

1/4

,

c
︷︸︸︷

110
︸︷︷︸

1/8

,

d
︷ ︸︸ ︷

1110
︸ ︷︷ ︸

1/16

,

e
︷ ︸︸ ︷

111100
︸ ︷︷ ︸

1/64

,

f
︷ ︸︸ ︷

111101
︸ ︷︷ ︸

1/64

,

g
︷ ︸︸ ︷

111110
︸ ︷︷ ︸

1/64

,

h
︷ ︸︸ ︷

111111
︸ ︷︷ ︸

1/64

to represent the states {a, b, c, d, e, f , g , h}

• The average length of code that has to be transmitted is

average code length =
1

2
×1+

1

4
×2+

1

8
×3+

1

16
×4+4×

1

64
×6 = 2 [bits]

Which is, again, equal to the entropy of the random variable x
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Information theory (cont.)

Note that shorter code strings cannot be used because it must be possible
to disambiguate a concatenation of such strings into its component parts

• For instance, 11001110 decodes uniquely into the state sequence {c, a, d}

11001110
︸ ︷︷ ︸

{c,a,d}

≡ 110
︸︷︷︸

c

0
︸︷︷︸

a

1110
︸ ︷︷ ︸

d

There is a theorem (noiseless coding theorem) that states that the entropy
is a lower bound on the number of bits needed to transmit the state of a RV

From now on, we switch to the use of natural logarithms in defining entropy

• the entropy will be measured in units of nats, instead of bits

• they differ simply by a factor of ln (2)
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Information theory (cont.)

For a discrete random variable X with states xi such that P(X = xi ) = p(xi )

H = −
∑

i

p(xi ) ln
(

p(xi )
)

(3)

Sharply peaked distributions will have a relatively low entropy
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Information theory (cont.)

Because 0 ≤ p(xi ) ≤ 1, the entropy is nonnegative, and it has a minimum

• It will be equal to 0, when one p(xi ) is 1 and all other p(xj ̸=i ) = 0

Example

The maximum entropy configuration can be found by maximising H

• A Lagrange multiplier enforces normalisation on probabilities

H̃ = −
∑

i

p(xi ) ln
(

p(xi )
)

+ λ
(∑

i

p(xi )− 1
)

(4)

• It is found when all of the p(xi ) are equal, with p(xi ) = 1/M

• The maximum value of entropy is H = ln (M)

• M is the total number of states of X
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Entropy is also defined for distributions p(x) over continuous variables x

We divide x into bins of width ∆ and, assuming that p(x) is continuous, we
use the mean value theorem which tells us that there must exist a value xi s.t.

∫ (i+1)∆

(i)∆
p(x)dx = p(xi )∆ (5)

• We can now quantise the continuous variable x by assigning
any value x to the value xi whenever x falls into the i -th bin

• The probability of observing a value xi is given by p(xi )∆

The entropy of this (still discrete) distribution takes the form

H∆ = −
∑

i

p(xi )∆ ln
(

p(xi )∆
)

= −
∑

i

p(xi )∆ ln p(xi )− ln∆ (6)

• We used
∑

i p(xi )∆ = 1, which follows from Equation 5
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Information theory (cont.)

H∆ = −
∑

i

p(xi ) ln
(

p(xi )∆
)

= −
∑

i

p(xi )∆ ln p(xi )− ln∆ (7)

Omitting the second term − ln∆ and considering the limit for ∆ → 0, we have
that the first term approaches the integral of p(x) ln p(x) in the limit, so that

Definition

− lim
∆→0

(∑

i

p(xi ) ln
(

p(xi )
)

∆
)

= −

∫

p(x) ln p(x)dx (8)

The quantity on the right-hand side is called differential entropy

The discrete and continuous forms of the entropy differ by a quantity ln∆
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Information theory (cont.)

Definition

For a density over multiple continuous variables x, the differential entropy is

H[x] = −

∫

p(x) ln p(x)dx (9)

Information theory

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Information theory

Relative entropy and mutual
information

Information theory (cont.)

For discrete distributions, maximum entropy configuration corresponded to
an equal distribution of probabilities across all possible states of the variable

For the maximum entropy configuration of a continuous variable x to be
well-defined, we must constrain the 1-st and 2-nd order moments of p(x)

• and, preserve normalisation

∫ +∞

−∞
p(x)dx = 1 (10)

∫ +∞

−∞
xp(x)dx = µ (11)

∫ +∞

−∞
(x − µ)2p(x)fx = σ2 (12)
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The constrained maximisation can be performed using Lagrange multipliers

• We maximise the following functional with respect to p(x):

−

∫ +∞

−∞
p(x) ln p(x)dx + λ1

(∫ +∞

−∞
p(x)dx − 1

)

+ λ2

(∫ +∞

−∞
xp(x)dx − µ

)

+ λ3

(∫ +∞

−∞
(x − µ)2p(x)dx − σ2

)

• We set the derivative to zero to get

p(x) = exp
(

− 1 + λ1 + λ2x + λ3(x − µ)2
)

(13)

The Lagrange multipliers are found by back substitution into the constraints
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Example

The result of the maximisation is given by the following functional of p(x)

p(x) =
1

(2πσ2)1/2
exp

(

−
(x − µ)2

2σ2

)

(14)

So, the distribution p(x) that maximises differential entropy is the Gaussian

• Note that we did not constraint p(x) to be nonnegative

• The result is already nonnegative, so there is no need

If we evaluate the differential entropy for the Gaussian, we get

H[x ] =
1

2

(

1 + ln (2πσ2)
)

(15)

which shows that entropy increases as the distribution gets fat

Differential entropy can be negative, for σ2 < 1/(2πe)
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Information theory (cont.)

We have a joint distribution p(x, y), and we draw pairs of values of x and y

If a value of x is already known, then the additional information needed
to specify the corresponding value of y is given by − ln p(y|x)

Definition

The average information needed to specify y given x is

H[y|x] = −

∫ ∫

p(x, y) ln p(y|x)dydx (16)

This quantity is called conditional entropy of y given x

Using the product rule, we see that conditional entropy satisfies

H[x, y] = H[y|x] + H[x] (17)

which is the differential entropy of the joint distribution p(x, y)

• H[x] is the differential entropy of the marginal distribution p(x)
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Relative entropy and mutual information

We can start relating the ideas of information theory to pattern recognition

Consider some unknown distribution p(x) and suppose that we
have modelled p(x) using an approximating distribution q(x)

• We use q(x) to construct a coding scheme for transmitting values of x

• As a result of using q(x) instead of the true distribution p(x), additional
amount of information (in nats) is required to specify the value of x

• The average amount of additional information needed is given by

KL[p||q] = −

∫

p(x) ln q(x)dx −
(

−

∫

p(x) ln p(x)dx
)

= −

∫

p(x) ln
(q(x)

p(x)

)

dx (18)

Relative entropy or Kullback-Liebler divergence between the distributions
p(x) and q(x), and it is not symmetrical quantity (i.e., KL[p||q] ̸= KL[q||p])
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Relative entropy and mutual information (cont.)

The KL divergence satisfies KL(p||q) ≥ 0, with equality iff p(x) = q(x)

xa bxλ

chord

xλ

f(x)
A function f (x) is convex if every
chord lies on or above the function

• Any x ∈ [a, b] is xλ = λa+ (1− λ)b,
with 0 ≤ λ ≤ 1

• The corresponding point on the chord
is λf (a) + (1 − λ)f (b)

• The corresponding value of the
function is f (xλ) = f (λa + (1− λ)b)

Convexity of function f (x) then implies
f (λa+ (1− λ)b) ≤ λf (a) + (1 − λ)f (b)

• f (x) is strictly convex if the equality is satisfied only for λ ∈ {0, 1}
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Relative entropy and mutual information (cont.)

Using convexity conditions, we can show that a convex function f (x) satisfies

f
( M∑

i=1

λi xi

)

≤
M∑

i=1

λi f (xi ) (19)

where λi ≥ 0 and
∑

i λi = 1 for any set of points {xi} (Jensen’s inequality)

Interpret the λi as the probability distribution over a discrete variable x taking
values in {xi}, Jensen’s inequality is written with E[·] denoting expectations as

f (E[x ]) ≤ E[f (x)] (20)

For continuous variables, Jensen’s inequality takes the form

f
(∫

xp(x)dx
)

≤

∫

f (x)p(x)dx (21)

Information theory

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Information theory

Relative entropy and mutual
information

Relative entropy and mutual information (cont.)

f
(∫

xp(x)dx
)

≤

∫

f (x)p(x)dx

We can apply Jensen’s inequality above to the Kullback-Liebler divergence

KL[p||q] = −

∫

p(x) ln
(q(x)

p(x)

)

dx

Using that −ln(x) is a convex function and the normalisation
∫

q(x)dx = 1

KL(q||p) = −

∫

p(x) ln
(q(x)

p(x)

)

dx ≥ − ln

∫

q(x)dx = 0 (22)

In fact − ln (x) is strictly convex, and the equality holds only if q(x) = p(x)
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Relative entropy and mutual information (cont.)

Suppose that we have some data generated from an unknown distribution p(x)

• Our goal is to model (approximate) p(x)

• We use a parametric distribution q(x|θ)

The set of adjustable parameters θ govern the approximating distribution q(x)

Parameters θ could be determined by minimising the KL divergence KL[p||q]

• Not directly though, because we do not know p(x)

• We only have observed a finite set of data {xn}Nn=1

We approximate the expectation wrt to p(x) by a finite sum over the data

KL[p||q] ≃
1

N

N∑

n=1

(

− ln q(xn|θ) + ln p(xn)
)

(23)
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Relative entropy and mutual information (cont.)

KL[p||q] ≃
N∑

n=1

(

− ln q(xn|θ) + ln p(xn)
)

The second term is independent of θ and the first term is negative log
likelihood for θ under the distribution q(x|θ), evaluated from the data

Remark

• Minimising KL divergence is maximising the likelihood function
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Relative entropy and mutual information (cont.)

Consider the joint distribution p(x, y) between two sets of variables x and y

• If the sets are independent the joint distribution will factorise
into the product of the respective marginal distributions

p(x, y) = p(x)p(y)

• If the sets are not independent, we can evaluate
how close they are to being independent

Definition

KL divergence between the joint distribution and the product of the marginals

I [x, y] ≡ KL[p(x, y)||p(x)p(y)]

= −

∫ ∫

p(x, y) ln
(p(x)p(y)

p(x, y)

)

dxdy (24)

which is a quantity called mutual information between the variables x and y
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Relative entropy and mutual information (cont.)

I [x, y] ≡ KL[p(x, y)||p(x)p(y)]

= −

∫ ∫

p(x, y) ln
(p(x)p(y)

p(x, y)

)

dxdy

From the properties of the KL divergence, we have that I (x, y) ≥ 0

• with equality iff x and y are independent

Remark

We have that mutual information is related to conditional entropy

I [x, y] = H[x]− H[x|y] = H[y]− H[y|x] = I [y, x] (25)

Mutual information is the reduction in the uncertainty about x

• by the virtue that the value of y is given, and viceversa


