UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The Dirichlet distribution

Binary and multinomial variables

Probability distributions

Francesco Corona

Binary and nultinomial variable

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Multinomial variabl

The Dirichlet distributi

Probability distributions

Probability theory has a central role in pattern recognition problems We explore now some probability distributions and their properties

- Of great interest in their own right
- · Building blocks for complex models

Definition

One role for these distributions is to model the probability distribution $p(\mathbf{x})$ of a random variable \mathbf{x} , given some finite set $\mathbf{x}_1,\ldots,\mathbf{x}_N$ of observations

• This problem is known as density estimation

A problem that is fundamentally ill-posed, because there are infinitely many probability distributions that could have given rise to the observed finite data

• Any p(x) that is nonzero at each of x_1, \ldots, x_N is a potential candidate

Binary and nultinomial variable

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

The beta distribution

Multinomial variables
The Dirichlet distribution

Outline

Binary variables

The beta distribution

2 Multinomial variables

The Dirichlet distribution

Binary and ultinomial variables

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Multinomial variable

Probability distributions (cont.)

We begin by considering specific examples of parametric distributions

- Binomial and multinomial distribution for discrete variables
- The Gaussian distribution for continuous random variables

Parametric distributions because governed by a number of parameters

To use such models in density estimation problems, we need a procedure

• Determine the values for the model parameters, given observations

Remark

In a frequentist treatment, we set the parameters by optimising some criterion

• For instance, the likelihood function

In a Bayesian treatment we introduce prior distributions over the parameters

• Bayes' theorem to get the posterior

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Multinomial variable

Probability distributions (cont.)

We introduce the important concept of conjugate prior

- It is a prior that leads to a formally special posterior
- A posterior with the same functional form as the prior

The conjugate prior for the parameters of a multinomial distribution

A Dirichlet distribution

The conjugate prior for the mean of a Gaussian distribution

A Gaussian distribution

All these distributions are members of the exponential family

Binary and

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distri

Multinomial variables

Bina

Binary variables Probability distributions

Binary and nultinomial variable

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

The beta distribution

Probability distributions (cont.)

The parametric approach assumes a specific functional form for the distro

• It may turn out to be inappropriate for a particular application

An alternative approach is given by nonparametric density estimation

• the form of the distribution often depends on the size of the data Such models still contain parameters, but they control model complexity

Nonparametric methods: Histograms, near-neighbours, and kernels

Binary and nultinomial variable

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Multinomial vari

Binary variables

Consider a single binary variable $x \in \{0, 1\}$

Example

Think of an unfair coin, in which probability of tails and heads is different

- x describes the outcome of flipping the coin
- x = 1 represents heads
- x = 0 represents tails

The probability of x=1 is denoted by the parameter μ , with $0 \le \mu \le 1$

- $p(x = 1|\mu) = \mu$
- $p(x = 0|\mu) = 1 p(x = 1|\mu) = 1 \mu$

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribution

TI Division in the second

Binary variables (cont.)

The probability distro over x can be written as $Bern(x|\mu) = \mu^x (1-\mu)^{1-x}$

Bern
$$(x|\mu) = \mu^{x}(1-\mu)^{1-x} \Longrightarrow \begin{cases} x = 0, & \mu^{0}(1-\mu)^{1-0} = (1-\mu) \\ x = 1, & \mu^{1}(1-\mu)^{1-1} = \mu \end{cases}$$
 (1)

This is the Bernoulli distribution, so it is normalised $\sum_{x} \text{Bern}(x|\mu) = 1$ (*)

• with mean $\mathbb{E}[x] = \sum_x x \text{Bern}(x|\mu)$ and variance $\text{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2$

$$\mathbb{E}[x] = \mu \tag{2}$$

$$var[x] = \mu(1-\mu) \tag{3}$$

Binary and multinomial variab

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribut

Multinomial variables

Binary variables (cont.)

If we set the derivative of $\ln p(\mathcal{D}|\mu)$ with respect to μ equal to zero, we get

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \tag{6}$$

The maximum likelihood estimator of the mean of the Bernoulli distribution

• It is known as the sample mean, as always

Binary and tinomial variables

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

inary variables

The beta distribution

Multinomial variables
The Dirichlet distribution

Binary variables (cont.)

Now suppose we have a data set $\mathcal{D} = \{x_1, \dots, x_N\}$ of observed values of x

We can construct the likelihood function of the data

• It is a function of μ

Under the assumption of iid observations from $p(x|\mu)$

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$
 (4)

Remark

We can estimate the value for μ by maximising the likelihood function

• Equivalently, we can maximise the log likelihood function

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \left(x_n \ln \mu + (1 - x_n) \ln (1 - \mu) \right)$$
 (5)

It depends on the N observations only through their sum $\sum_{n} x_{n}$

Binary and ultinomial variables

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Multinomial variables

Binary variables (cont.)

Denoting the number of observations x = 1 (heads) in the data set by m

$$\mu_{ML} = \frac{m}{N} \tag{7}$$

The probability of landing heads is the fraction of heads in the data set

If we toss 3 times and observe heads 3 times, N=m=3 and $\mu_{ML}=1$

The maximum likelihood result would predict all future observations as heads

- Common sense suggests that this is unreasonable
- It is an extreme case of over-fitting

Setting a prior over μ and using Bayes to get a posterior give sensible results

ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables (cont.)

We can work out the distribution of the number m of observations of x = 1

given that the data has size N

This is the **binomial distribution** and it is proportional to $\mu^m(1-\mu)^{N-m}$

$$\mathsf{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m} \tag{8}$$

• It considers all possibile ways of obtaining m heads out of N coin flips

The term $\binom{N}{m}$ (verbally, 'N choose m') gives the total number of ways of choosing m objects out of a total of N identical objects and it equals (\star)

$$\binom{N}{m} \equiv \frac{N!}{(N-m)!m!} \tag{9}$$

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Binary variables (cont.)

(*) For iid events, the mean and variance of the binomial distribution are

$$\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m|N,\mu) = N\mu$$
 (10)

$$\operatorname{var}[m] \equiv \sum_{m=0}^{N} (m - \mathbb{E}[m])^{2} \operatorname{Bin}(m|N,\mu) = N\mu(1-\mu)$$
 (11)

 $m = x_1 + \cdots + x_N$ and for each x_n the mean is μ and variance is $\mu(1 - \mu)$

- The mean of the sum is the sum of the means
- The variance of the sum is the sum of variances

Binary variables (cont.) Binary and

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

The binomial distribution

- N = 10
- $\mu = 0.25$

$$Bin(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

The beta distribution

The maximum likelihood setting for parameter μ in the Bernoulli distribution (and binomial distribution) is the fraction of the observations having x = 1

Severe overfitting for small datasets

To go Bayesian, we need to set a prior distribution $p(\mu)$ over parameter μ

• Here we consider a special form of this prior distribution

The likelihood function takes the form of product of factors $\mu^{x}(1-\mu)^{1-x}$

• We can choose a prior proportional to powers of μ and $(1 - \mu)$

The posterior will be proportional to the product of prior and likelihood

• The posterior will have the same functional form as the prior

Having a posterior with the same functional form of the prior: Conjugacy

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribution

The Dirichlet distribution

The beta distribution (cont.)

We choose a prior distribution called the beta distribution

Beta
$$(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$
 (12)

• $\Gamma(\cdot)$ is the gamma function, $\Gamma(x) = \int_0^{+\infty} u^{x-1} e^{-u} du$

- ullet a and b are hyper-parameters controlling the distribution of μ
- The coefficient ensures normalisation (*)

$$\int_0^1 \operatorname{Beta}(\mu|a,b)d\mu = 1 \tag{13}$$

Binary and multinomial variables

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribution

Multinomial variable

The beta distribution (cont.)

Binary and tinomial variables

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

The beta distribution

Multinomial variables
The Dirichlet distribution

The beta distribution (cont.)

$$\mathsf{Beta}(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

Mean and variance of the beta distribution are given by

$$\mathbb{E}[\mu] = \frac{a}{a+b} \tag{14}$$

$$var[\mu] = \frac{ab}{(a+b)^2(a+b+1)}$$
 (15)

Binary and

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Multinomial variables

The beta distribution (cont.)

The posterior distribution of μ is obtained by multiplying the beta prior

$$\mathsf{Beta}(\mu|\mathsf{a},b) = \frac{\Gamma(\mathsf{a}+b)}{\Gamma(\mathsf{a})\Gamma(b)} \mu^{\mathsf{a}-1} (1-\mu)^{b-1}$$

by the binomial likelihood function $\text{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$,

$$p(\mu|m, l, a, b) \propto u^{(m+a)-1}(1-\mu)^{(l+b)-1}, \quad \text{with } l = N - m$$
 (16)

where we kept only factors depending on μ to get the expression above

• I = N - m is the number of tails, in the coin example

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribution

The Dirichlet distribution

The beta distribution (cont.)

The posterior distribution over the parameter μ has the same functional form $p(\mu|m,l,a,b) \propto u^{(m+a)-1}(1-\mu)^{(l+b)-1}$ as the beta prior distribution over μ

$$\mathsf{Beta}(\mu|a,b) = rac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

It is in fact another beta distribution with the obvious normalisation coeffcient

$$p(\mu|m,l,a,b) = \frac{\Gamma(m+a+l+b)}{\Gamma(m+a)\Gamma(l+b)} u^{m+a-1} (1-\mu)^{l+b-1}$$
 (17)

Binary and multinomial variab

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribution

Multinomial variables

The Dirichlet distribution

The beta distribution (cont.)

The prior is a beta distribution with parameters a = 2 and b = 2

The likelihood is for N=m=1, for a single observation x=1 (l=0)

The posterior distribution is another beta distribution with a=3 and b=2

Binary and ultinomial variables

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables
The beta distribution

Multinomial variables
The Dirichlet distribution

The beta distribution (cont.)

$$\underbrace{\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}}_{\text{Beta}(\mu|a,b)} \longrightarrow \underbrace{\frac{\Gamma(m+a+l+b)}{\Gamma(m+a)\Gamma(l+b)}u^{m+a-1}(1-\mu)^{l+b-1}}_{p(\mu|m,l,a,b)}$$

Observing m observations of x=1 and l observations of x=0 has the effect to increase the value of hyper-parameters a and b in the prior over μ

- $a \longrightarrow a + m$
- $b \longrightarrow b + I$

Binary and multinomial variable

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribution

Multinomial variable
The Dirichlet distribution

The beta distribution (cont.)

If our goal is to predict the outcome of the next trial, we need the predictive distribution of x, given the observed data set $\mathcal D$

$$p(x=1|\mathcal{D}) = \int_0^1 p(x=1|\mu)p(\mu|\mathcal{D})d\mu = \int_0^1 \mu p(\mu|\mathcal{D})d\mu = \mathbb{E}[\mu|\mathcal{D}] \quad (18)$$

Using
$$p(\mu|\mathcal{D}) = \frac{\Gamma(m+a+l+b)}{\Gamma(m+a)\Gamma(l+b)} \mu^{m+a-1} (1-\mu)^{l+b-1}$$
 and $\mathbb{E}[\mu] = \frac{a}{a+b}$

$$p(x=1|\mathcal{D}) = \frac{m+a}{m+a+l+b} \tag{19}$$

The total fraction of observations (real and fictitious prior) such that x = 1

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribution

Ti Divisioniai variable

Multinomial variables Probability distributions

Binary and

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables
The beta distribution

Multinomial variable

Multinomial variables (cont.)

Denote the probability of $x_k=1$ by the parameter μ_k with the constraint that $\mu_k\geq 0$ and $\sum_k \mu_k=1$ because they represent probabilities, we have that

• the distribution of x is given by

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{\mathbf{x}_k} \tag{20}$$

• where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)^T$

The distribution is a generalisation (K > 2) of the Bernoulli distribution

• It is normalised

$$\sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu}) = \sum_{k=1}^{K} \mu_k = 1 \tag{21}$$

 $\mathbb{E}[\mathbf{x}|\boldsymbol{\mu}] = \sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu})\mathbf{x} = (\mu_1, \dots, \mu_K)^T = \boldsymbol{\mu}$ (22)

Binary and nultinomial variable

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Multinomial variables
The Dirichlet distribution

Multinomial variables

Binary variables are for quantities that can take one of two possible values

For discrete variables that can take on one of K possible mutually exclusive states there are various alternative ways of representation

A particularly convenient scheme is called 1-of-K

The variable is represented by a K-dimensional vector \mathbf{x} in which we have

- only one of the elements x_k equals 1
- all of the other elements $x_{k'}$ equal 0
- $\sum_{k=1}^{K} x_k = 1$

For example, $\mathbf{x} = (0, 0, 1, 0, 0, 0)^T$ with K = 6 states and observation $x_3 = 1$

Binary and

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The beta distribution

Multinomial variable
The Dirichlet distribution

Multinomial variables (cont.)

Consider a dataset \mathcal{D} of N iid observations $\mathbf{x}_1, \dots, \mathbf{x}_N$, the likelihood function

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{(\sum_n x_{nk})} = \prod_{k=1}^{K} \mu_k^{m_k}$$
 (23)

depends on the N points only through the K quantities $m_k = \sum_n x_{nk}^{-1}$

 $^{^{1}}$ It is the number of observations of $x_{k}=1$

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

Multinomial variables
The Dirichlet distribution

Multinomial variables (cont.)

To find the maximum likelihood solution for μ , we maximise $\ln p(\mathcal{D}|\mu)$ wrt μ_k

$$\sum_{k=1}^{K} m_k \ln \mu_k + \lambda \left(\sum_{k=1}^{K} \mu_k - 1 \right)$$
 (24)

where we took into account of the constraint that μ_k must sum up to one

Setting the derivative wrt μ_k to zero, we get

$$\mu_k = -\frac{m_k}{\lambda} \tag{25}$$

with $\lambda = -\mathit{N}$, by substitution in $\sum_k \mu_k = 1$

$$\mu_k^{ML} = \frac{m_k}{N} \tag{26}$$

the fraction of $x_k = 1$ cases out of N cases

Binary and multinomial variab

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

The beta distribution

The Dirichlet distribution

The Dirichlet distribution

A family of priors for the parameters $\{\mu_k\}$ of the multinomial distribution

- Again, by inspection of the form of the multinomial distribution
- Proportional to powers of μ_k

$$p(\mu|\alpha) \propto \prod_{k=1}^K \mu_k^{\alpha_k - 1}, \quad \text{with } 0 \leq \mu_k \leq 1 \text{ and } \sum_k \mu_k = 1$$
 (29)

 $\alpha_1, \ldots, \alpha_k$ are the parameters of the distribution

$$\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_k)^T$$

Because of the sum constraint, the distribution over the space of $\{\mu_k\}$ is confined to a simplex

• Bounded (K-1)-dimensional linear manifold

Binary and

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

The beta distribution

Multinomial variable
The Dirichlet distribution

Multinomial variables (cont.)

Consider the joint distribution of the quantities m_1, \ldots, m_K conditioned on the parameters μ and on the total number N of observations, from Equation 23

$$\mathsf{Mult}(m_1, m_2, \dots, m_K | \mu, N) = \binom{N}{m_1 m_2 \cdots m_K} \prod_{k=1}^K \mu_k^{m_k}$$
 (27)

which is known as the multinomial distribution

Remark

The normalisation coefficient is the number of ways of partitioning N objects into K groups of size m_1, \dots, m_K

$$\binom{N}{m_1 m_2 \cdots m_K} = \frac{N!}{m_1! m_2! \cdots m_K!} \tag{28}$$

Note that variables m_k are such that $\sum_k m_k = N$

Binary and

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

The beta distribution

Multinomial variable

The Dirichlet distribution (cont.)

In normalised form, this is known as the Dirichlet distribution

$$Dir(\mu|\alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\dots\Gamma(\alpha_K)} \prod_{k=1}^K \mu_K^{\alpha_k - 1} \quad \text{with } \alpha_0 = \sum_{k=1}^K \alpha_k$$
 (30)

The Dirichlet distribution over three variables, for various settings of $\{\alpha_k\}$ The horizontal axes represents coordinates in the plane of the simplex The vertical axis corresponds to the density

Binary and ultinomial variables

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Binary variables

The Dirichlet distribution

The Dirichlet distribution (cont.)

Multiplying prior $\operatorname{Dir}(\mu|\alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\dots\Gamma(\alpha_K)} \prod_{k=1}^K \mu_K^{\alpha_k-1}$ and likelihood function $\operatorname{Mult}(m_1,m_2,\dots,m_K|\mu,N) = \binom{N}{m_1m_2\dots m_K} \prod_{k=1}^K \mu_k^{m_k}$ gives us

$$p(\mu|\mathcal{D},\alpha) = \frac{\Gamma(\alpha_0 + N)}{\Gamma(\alpha_1 + m_1) \dots \Gamma(\alpha_K + m_K)} \prod_{k=1}^K \mu_k^{\alpha_k + m_k - 1} = \text{Dir}(\mu|\alpha + \mathbf{m})$$
(31)

• The posterior distribution for the parameters $\{\mu_k\}$

$$p(\mu|\mathcal{D},\alpha) \propto p(\mathcal{D}|\mu)p(\mu,\alpha) \propto \prod_{k=1}^{K} \mu_k^{\alpha_k + m_k - 1}$$
 (32)

- Again, it takes the form of a Dirichlet distribution
- ullet The normalisation is by comparison with $\mathsf{Dir}(\mu|lpha)$