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The Gaussian distribution

The Gaussian or normal distribution, is a classic
model for the distribution of continuous variables

Definition
In the case of a single variable x , the Gaussian distribution can be written as

N (x |µ,σ2) =
1

(2πσ2)1/2
exp

(

−
1

2σ2
(x − µ)2

)

(1)

• µ is the mean and σ2 is the variance

In the case of a D-dimensional variable x, the Gaussian distribution is

N (x|µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x− µ)TΣ

−1(x− µ)
)

(2)

• µ is the D-dimensional mean vector

• Σ is the D × D covariance matrix

• |Σ| is the determinant of Σ
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The Gaussian distribution (cont.)

N (x|µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x− µ)TΣ

−1(x− µ)
)

(3)

Let us start by considering the geometric form of the Gaussian distribution

• The Gaussian depends on x through the quadric form

∆2 = (x− µ)TΣ−1(x − µ) (4)

• Quantity ∆ is the Mahalanobis distance from µ to x

• It reduces to the Euclidean distance when Σ = I

The Gaussian is constant on surfaces in x-space for which Eq. 4 is constant
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The Gaussian distribution - Eigenequation

Definition
For a square matrix A of size M ×M, the eigenvector equation is

Aui = λiui , with i = 1, . . . ,M

• ui is an eigenvector and λi is the corresponding eigenvalue

The eigenequation is a set of M simultaneous homogeneous linear equations

• The condition for a solution is the characteristic equation

|A− λi I| = 0

• This is an order M polynomial in λi so, M (non-distinct) solutions

• The rank of A equals the number of its nonzero eigenvalues

• Generally, the eigenvalues of a matrix are complex numbers

Rank(A) is defined as the number of linearly independent row/columns in A

• Given a set of vectors {a1, . . . , aK}, the set is said to be linearly
independent if

∑

k αkak = 0 holds only when all αk = 0

• No vector ak can be expressed as linear combination of the others
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The Gaussian distribution - Eigenequation (cont.)

A symmetric matrix A, a covariance of the Gaussian, is such that Aij = Aji

AT = A

The inverse of a symmetric matrix is also symmetric (A−1)T = A−1, with

AA−1 = A−1A = I
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The Gaussian distribution - Eigenequation (cont.)

Eigenvectors ui of a real symmetric matrix can be chosen to be orthonormal

uTi uj = Iij with Iij elements of I such that Iij =

{

1, if i = j

0, if i ̸= j

The eigenvalues λi of a symmetric matrix are real numbers

Evidence
Left multiply Aui = λiui by uTj to get uTj Aui = λiuTj ui and then by exchange

of indexes uTi Auj = λjuTi uj . Subtract the two equations (after transposing the

second one) and use the symmetry property of A to get (λi − λj )uTi uj = 0

• uTi uj = 0, for λi ̸= λj

If λi = λj , then any linear combination αui + βuj is also an eigenvector with
the same eigenvalue and we can select arbitrarily one linear combination and
pick the other one to be orthogonal to it

Since there are M eigenvalues, the corresponding M orthogonal eigenvectors
form a complete set and any M-vector can be expressed as linear combination



The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

The Gaussian distribution - Eigenequation (cont.)

Since the eigenvectors ui can be chosen to be orthogonal and of unit length,
we can take them to be the columns of an orthogonal M ×M matrix U

UUT = I
• Incidentally, note that also the rows of U are orthogonal, UTU = I

We can use U to transform a vector x into a new vector x̃, that is x̃ = Ux

• The length of the vector is preserved: x̃T x̃ = xTUTUx = xT x

• The angle between two vectors is preserved: x̃T ỹ = xTUTUy = xT y

Remark
Multiplication by U represents a rigid rotation of the coordinate system
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The Gaussian distribution - Eigenequation (cont.)

We can write the eigenequation Aui = λiui , with i = 1, . . . ,N, in terms of U

AU = UΛ

• Λ is a M ×M diagonal matrix, with diagonal diag(Λ) = (λ1, . . . , λM)T

• UTAU = UTU
︸ ︷︷ ︸

I

Λ =⇒ UTAU = Λ, matrix A is diagonalised by U

• UUT

︸ ︷︷ ︸

I

AUUT

︸ ︷︷ ︸

I

= UΛUT =⇒ A = UΛUT =⇒ A =
∑M

i=1 λiuiuTi

• A−1 = UΛ−1UT =⇒ A−1 =
∑M

i=1

1

λi

uiuTi

• |A| =
∏M

i=1 λi

• Trace(A) =
∑M

i=1 λi
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The Gaussian distribution (cont.)

Consider the eigenvector equation for a real symmetric covariance matrix Σ

Σui = λiui , with i = 1 . . . ,D (5)

Real eigenvalues and its eigenvectors
form an orthonormal set uTi uj = Iij =

{

1, if i = j

0, if i ̸= j
(6)

Σ can be expressed as an expansion
of its eigenvectors (⋆) Σ =

D∑

i=1

λiuiu
T
i (7)

The inverse covariance matrix Σ−1

can be expressed (⋆) as
Σ

−1 =
D∑

i=1

1

λi

uiu
T
i (8)
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The Gaussian distribution (cont.)

By substituting the inverse covariance matrix Σ−1 into the quadratic form ∆2

∆2 = (x− µ)TΣ−1(x − µ)

= (x− µ)T
( D∑

i=1

1

λi

uiu
T
i

)

(x − µ)

=
D∑

i=1

(x − µ)T uiuTi (x− µ)

λi

=
D∑

i=1

y2
i

λi
, with yi = uTi (x− µ) (9)
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The Gaussian distribution (cont.)

We interpret {yi} as a new coordinate system defined by orthonormal vectors
ui , that are shifted by µ and rotated with respect to original coordinates {xi}

• Forming the vector y = (y1, . . . , yD)T , we have

y = U(x− µ) (10)

U is an orthogonal matrix whose rows are uTi (i.e., UUT = I and UTU = I)
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The Gaussian distribution (cont.)

The quadratic form and thus the Gaussian is constant

on surfaces for which ∆2 =
∑D

i=1

y2
i

λi
is constant

x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ

For λi > 0, the surfaces are ellipsoids

• Centred in µ and axis along ui

• The scaling factors in the

directions of the axes are λ1/2
i

The red curve is the elliptical surface of a 2D Gaussian,
in which the density is exp (−1/2) of its value at x = µ
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The Gaussian distribution (cont.)

For the Gaussian to be well-defined, all of the eigenvalues λi of the covariance
matrix need be strictly positive1, otherwise it cannot be properly normalised

A Gaussian for which one or more eigenvalues are zero2 is singular

• It is confined to a subspace of lower dimensionality

1A matrix whose eigenvalues are strictly positive is called positive definite
2A matrix in which all of the eigenvalues are nonnegative is called positive semidefinite
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The Gaussian distribution - Jacobian factor

Under a change of variable, a density does not transform like a regular function

For a change of variables x = g(y), a function f (x) becomes f̃ (y) = f (g(y))

Definition
Consider a probability density px (x) that corresponds to a density py (y) wrt
a new variable y and notice that px (x) and py (y) are different densities

• Observations falling in a range (x , x + δx) have probability px (x)δx

• By transforming them, we make them fall in the range (y , y + δy)

• Observations falling in a range (y , y + δy) have probability py (y)δy

px (x)δx ≃ py (y)δy

py (y) = px (x)
∣
∣
∣

dx

dy

∣
∣
∣ = px (x)

∣
∣
∣

dg(y)

dy

∣
∣
∣ = px (x)|g ′(y)|
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The Gaussian distribution (cont.)

Consider now the Gaussian in the new coordinate system defined by {yi}

In going from x to y, we have a Jacobian matrix J

Jij =
∂xi

∂yj
= Uji (11)

Thus, the elements of the J are the elements of UT

Using the orthonormality property of U, the square of the determinant of J

|J2| = |UT |2 = |UT ||U| = |UTU| = |I| = 1 =⇒ |J| = 1 (12)

The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

The Gaussian distribution (cont.)

We also have that the determinant |Σ| of the covariance matrix can
be written as the product of its eigenvalues, and thus we also have

|Σ| =
D∏

j=1

λj =⇒ |Σ|1/2 =
D∏

j=1

λ1/2
j (13)

Hence, the Gaussian distribution in the coordinate system {yi} becomes

p(y) = p(x)|J| =
D∏

j=1

1

(2πλj )1/2
exp

(

−
y2
j

2λj

)

(14)

Here, it is the product of D independent univariate Gaussian distributions

• The eigenvectors define a new set of shifted and rotated coordinates

• Here, the joint distribution factorises into independent distributions
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The Gaussian distribution (cont.)

Using a result derived for the normalisation of the univariate Gaussian,

∫

p(y)dy =
D∏

j=1

∫ +∞

−∞

1

(2πλj )1/2
exp

(

−
y2
j

2λj

)

dyj = 1 (15)

which is the integral of the distribution in the y coordinate system
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The Gaussian distribution (cont.)

We look at the moments of the Gaussian distribution (back to x-space)

The expectation of x under the Gaussian distribution is given by

E[x] =
1

(2π)D/2

1

|Σ|1/2

∫

exp
(

−
1

2
(x− µ)TΣ−1(x− µ)

)

xdx

=
1

(2π)D/2

1

|Σ|1/2

∫

exp
(

−
1

2
zTΣ−1z

)

(z+ µ)dz (16)

• We have changed variables using z = x+ µ

The exponent is an even function3 of the components z, which for integrals
taken in (−∞,+∞) will make the term in z in the factor (z+ µ) vanish4

E[x] = µ (17)

We refer to it as the mean vector of the Gaussian distribution

3A real-valued function is said to even if f (x) = f (−x), or f (x) − f (−x) = 0

4Also,
∫

x exp (−cx2)dx = −1/(2c) exp (−cx2)
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The Gaussian distribution (cont.)

There are D2 second order moments E[xi xj ] under the Gaussian distribution

E[xxT ] =
1

(2π)D/2

1

|Σ|1/2

∫

exp
(

−
1

2
(x− µ)TΣ−1(x− µ)

)

xxT dx

=
1

(2π)D/2

1

|Σ|1/2

∫

exp
(

−
1

2
zTΣ−1z

)

(z+ µ)(z+ µ)T dz(18)

• The cross-terms involving µzT and zµT will vanish by symmetry

• The term µµT is constant and can be taken outside the integral
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The Gaussian distribution (cont.)

As for the term involving zzT , using the eigenvector expansion of the
covariance matrix together with the completeness of the set of eigenvectors

z =
D∑

j=1

yjuj , with yj = uTj z (19)

1

(2π)D/2

1

|Σ|1/2

∫

exp
(

−
1

2
zTΣ−1z

)

zzTdz

=
1

(2π)D/2

1

|Σ|1/2

D∑

i=1

D∑

j=1

uiu
T
j

∫

exp
(

−
D∑

k=1

y2
k

2λk

)

yi yjdy

=
D∑

i=1

uiu
T
i λi = Σ (20)
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The Gaussian distribution (cont.)

We used the eigenvector equation Σui = λiui and the fact that the integral
on the right-hand side of the middle line vanishes by symmetry unless i = j

In the final line we used E[x2] =
∫ +∞
−∞ N (x |µ,σ2)x2dx = µ2 + σ2

and |Σ|1/2 =
∏D

j=1 λ
1/2
j , together with Σ =

∑D
i=1 λiuiuTi

As a result, we have
E[xxT ] = µµ

T +Σ (21)
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The Gaussian distribution (cont.)

For single random variables, we subtracted the mean
before taking second moments and define a variance

Similarly, in the multivariate case it is again convenient to subtract off
the mean, giving rise to the covariance of a random vector x defined by

cov[x] = cov[x, x] = E[(x− E[x])(xT − E[xT ])] (22)

For the specific case of a Gaussian distribution, we use of the first-order
moment E[x] = µ and the second-order moment E[xxT ] = µµT +Σ

cov[x] = Σ (23)

The parameter matrix Σ governs the covariance of x under the
Gaussian distribution, hence it is called the covariance matrix
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The Gaussian distribution (cont.)

The Gaussian distribution is widely used as a density model

• Though, it suffers from some significant limitations

Remark
Consider the number of free parameters D(D + 3)/2 in the distribution (⋆)

• A general symmetric covariance matrix Σ has D(D + 1)/2 independent
parameters (⋆) and there are another D independent parameters in µ

For large D, this number grows quadratically with D, and the computational
task of manipulating and inverting large matrices can become prohibitive

A way to address this problem is to use covariance matrices of restricted form
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The Gaussian distribution (cont.)

We can consider covariance matrices that are diagonal (Σ = diag(σ2
i ))

• A total of 2D independent parameters in the density model

• Axis-aligned ellipsoids of constant density

We can restrict covariance matrices to be proportional to the identity matrix
(Σ = σ2I, or isotropic covariance), we then get D+1 independent parameters

• Spherical surfaces of constant density

Such approaches limit the number of degrees of freedom in the distribution

• Inversion of the covariance matrix much faster

They also greatly restrict the form of the probability density and
limit its ability to capture interesting correlations in the data
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The Gaussian distribution (cont.)

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

• (a): general Σ

• (b): Σ = diag(σ2
i )

• (c): Σ = σ2I
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Conditional Gaussian distributions
The Gaussian distribution
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Conditional Gaussian distributions

Property of the Gaussian: If two sets of variables are jointly Gaussian, then the
conditional distribution of one set conditioned on the other is again Gaussian

Suppose x is a D-dimensional vector with Gaussian distribution N (x|µ,Σ)

• We partition x into two disjoint subsets xa and xb

Without loss of generality:

• xa comprises the first M components of x

• xb comprises the remaining (D −M) ones

•

x =

(
xa
xb

)

(24)
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Conditional Gaussian distributions (cont.)

We also define corresponding partitions of

• the mean vector µ

µ =

(
µa

µb

)

(25)

• the covariance matrix Σ

Σ =

(
Σaa Σab

Σba Σbb

)

(26)

Because of the symmetry ΣT = Σ, we have that
Σaa and Σbb are also symmetric and Σba = ΣT

ab
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Conditional Gaussian distributions (cont.)

In many situations, it is convenient to work with the precision matrix

Λ = Σ
−1 (27)

The corresponding partitioned precision matrix is given by the form

Λ =

(
Λaa Λab

Λba Λbb

)

(28)

Because the inverse of a symmetric matrix is also symmetric,
Λaa and Λbb are also symmetric and Λba = ΛT

ab (⋆)
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Conditional Gaussian distributions (cont.)

We begin by finding an expression for the conditional distribution p(xa|xb)

From the product rule of probability, this conditional distribution can be
evaluated from the joint distribution p(x) = p(xa, xb) by fixing xb and
normalising the result to obtain a valid probability distribution over xa

Instead of performing this normalisation explicitly, we can obtain the solution
more efficiently by using the quadratic form in the exponent of the Gaussian

−
1

2
(x− µ)TΛ(x− µ)

and reinstating the normalisation coefficient at the end of the manipulations
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Conditional Gaussian distributions (cont.)

We use the
partitioning:

x =

(
xa
xb

)

µ =

(
µa

µb

)

Λ =

(
Λaa Λab

Λba Λbb

)

−
1

2
(x− µ)TΛ(x− µ) =

1

2
(xa − µa)

T
Λaa(xa − µa)−

1

2
(xa − µa)

T
Λab(xb − µb)

−
1

2
(xb − µb)

T
Λba(xa − µa)−

1

2
(xb − µb)

T
Λbb(xb − µb)

We see that as a function of xa, this is again a quadratic form, and hence
the corresponding conditional distribution p(xa|xb) will be Gaussian

This distribution is completely characterised by its mean and its covariance,
and our goal is to identify expressions for the mean and covariance of p(xa|xb)
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Conditional Gaussian distributions (cont.)

We are given a quadratic form defining the exponent terms in a Gaussian

• We need to determine corresponding mean and covariance

The exponent in a general Gaussian distribution N (x|µ,Σ) can be written

−
1

2
(x− µ)TΣ−1(x− µ) = −

1

2
xTΣ−1x+ xTΣ−1

µ+ const (29)

where ‘const’ denotes terms which are independent on x (i.e., −
1

2
µTΣ−1µ)

If we take the general quadratic form and express it in the form given by the
right-hand side of Equation 29, then we can equate the matrix of coefficients
entering the second-order term in x to the inverse covariance matrix Σ−1 and
the coefficient of the linear term in x to Σ−1µ, from which we can obtain µ
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Conditional Gaussian distributions (cont.)

We apply this procedure to the conditional Gaussian distribution p(xa|xb):

• The quadratic form in the exponent

−
1

2
(x− µ)TΛ(x− µ) =

1

2
(xa − µa)TΛaa(xa − µa)−

1

2
(xa − µa)TΛab(xb − µb)

−
1

2
(xb − µb)

T
Λba(xa − µa)−

1

2
(xb − µb)

T
Λbb(xb − µb)

We will denote mean and covariance of this distribution by µa|b and Σa|b

Remark
Consider the functional dependence on xa in which xb is regarded as constant
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Conditional Gaussian distributions (cont.)

−
1

2
(x− µ)TΛ(x− µ) =

1

2
(xa − µa)TΛaa(xa − µa)−

1

2
(xa − µa)TΛab(xb − µb)

−
1

2
(xb − µb)

T
Λba(xa − µa)−

1

2
(xb − µb)

T
Λbb(xb − µb)

• If we pick out all second-order terms in xa, we have

−
1

2
xTa Λaaxa (30)

• From which, the covariance of p(xa|xb) is given as

Σa|b = Λ
−1
aa (31)
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Conditional Gaussian distributions (cont.)

−
1

2
(x− µ)TΛ(x− µ) =

1

2
(xa − µa)

T
Λaa(xa − µa)−

1

2
(xa − µa)

T
Λab(xb − µb)

−
1

2
(xb − µb)

T
Λba(xa − µa)−

1

2
(xb − µb)

T
Λbb(xb − µb)

• Consider all terms that are linear in xa

xTa

(

Λaaµa −Λab(xb − µb)
)

(32)

It follows that the coefficient of xa in this expression must equal Σ−1
a|b

µa|b

µa|b = Σa|b

(

Λaaµa −Λab(xb − µb)
)

= µa −Λ
−1
aa Λab(xb − µb) (33)
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Conditional Gaussian distributions (cont.)

Mean and variance of conditional distribution p(xa|xb) are given in terms
of partitioned precision matrix of the original joint distribution p(xa, xb)

• We can express these results also in terms of partitioned covariance matrix

To do this ⋆, we make use of an identity for the inverse of a partitioned matrix

(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)

(34)

with M = (A− BD−1C)−1

M−1 is the Schur complement of

(
A B
C D

)−1

with respect to sub-matrix D
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Conditional Gaussian distributions (cont.)

Using the definition

(
Σaa Σab

Σba Σbb

)−1

=

(
Λaa Λab

Λba Λbb

)

(35)

and using

(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)

, M = (A−BD−1C)−1

we have that

Λaa = (Σaa −ΣabΣ
−1
bb Σba)

−1 (36)

Λab = −(Σaa −ΣabΣ
−1
bb Σ

−1
ba )−1

ΣabΣ
−1
bb (37)
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Conditional Gaussian distributions (cont.)

We get expressions for the mean and variance of the conditional
distribution p(xa|xb) in terms of the partitioned covariance matrix

µa|b = µa +ΣabΣ
−1
bb (xb − µb) (38)

Σa|b = Σaa −ΣabΣ
−1
bb Σba (39)

Compare Σa|b = Λ
−1
aa with Σa|b = Σaa −ΣabΣ

−1
bb Σba

• The conditional distribution p(xa|xb) takes a simpler form when
expressed in terms of the partitioned precision matrix than when
it is expressed in terms of the partitioned covariance matrix

The mean µa|b = µa +ΣabΣ
−1
bb (xb − µb) of conditional distribution p(xa|xb)

is a linear function of xb

The covariance Σa|b = Σaa −ΣabΣ
−1
bb Σba of conditional distribution p(xa|xb)

is independent of xb

• This is an example of Linear-Gaussian model
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Marginal Gaussian distributions

If a joint distribution p(xa, xb) is Gaussian, p(xa|xb),
the conditional distribution, is also Gaussian

We discuss the marginal distribution p(xa)

p(xa) =

∫

p(xa, xb)dxb (40)

and we shall see that this is also Gaussian

The strategy for evaluating this distribution efficiently focuses
on the quadratic form in the exponent of the joint distribution

• Goal: Identify mean and covariance of the marginal distribution p(xa)
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Marginal Gaussian distributions (cont.)

−
1

2
(x− µ)TΛ(x− µ) =

1

2
(xa − µa)

T
Λaa(xa − µa)−

1

2
(xa − µa)

T
Λab(xb − µb)

−
1

2
(xb − µb)

T
Λba(xa − µa)−

1

2
(xb − µb)

T
Λbb(xb − µb)

We need to integrate out xb , because p(xa) =
∫

p(xa, xb)dxb

Picking out those terms that involve xb, we have

−
1

2
xTb Λbbxb + xTb m = −

1

2
(xb −Λ

−1
bb m)TΛbb(xb −Λ

−1
bb m) +

1

2
mT

Λ
−1
bb m

(41)

with m = Λbbµb −Λba(xa − µa) (42)

The dependence on xb has been cast into the standard quadratic form of a
Gaussian distribution corresponding to the first term on the right-hand side
above, plus a term that does not depend on xb but that does depend on xa
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Marginal Gaussian distributions (cont.)

When we take the exponential of this quadratic form, we see that the
integration over xb required by p(xa) =

∫
p(xa, xb)dxb takes the form

∫

exp
(

−
1

2
(xb −Λ

−1
bb m)TΛbb(xb −Λ

−1
bb m)

)

dxb (43)

It is the integral over an unnormalised Gaussian, and so the
result will be the reciprocal of the normalisation coefficient

1

(2π)D/2

1

|Σ|1/2

which is independent of the mean, and it depends
only on the determinant of the covariance matrix
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Marginal Gaussian distributions (cont.)

By completing the square wrt xb, we can integrate out xb and the only term
remaining that depends on xa from the contributions on the left-hand side of

−
1

2
xTb Λbbxb + xbm = −

1

2
(xb −Λ

−1
bb m)TΛbb(xb −Λ

−1
bb m) +

1

2
mT

Λ
−1
bb m

is the last term on the right-hand side because m = Λbbµb −Λba(xa − µa)

We then combine this term with the remaining terms that depend on xa from

−
1

2
(x− µ)TΛ(x− µ) =

1

2
(xa − µa)TΛaa(xa − µa)−

1

2
(xa − µa)TΛab(xb − µb)

−
1

2
(xb − µb)

T
Λba(xa − µa)−

1

2
(xb − µb)

T
Λbb(xb − µb)

The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Marginal Gaussian distributions (cont.)

1

2

(

Λbbµb −Λba(xa − µa)
)T

Λ
−1
bb

(

Λbbµb −Λba(xa − µa)
)

−
1

2
xTa Λaaxa + xTa (Λaaµa +Λabµb) + const

= −
1

2
xTa (Λaa −ΛabΛ

−1
bb Λba)xa

+ xTa (Λaa −ΛabΛ
−1
bb Λba)µa + const (44)

where ‘const’ denotes quantities independent of xa
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Marginal Gaussian distributions (cont.)

Again, by comparison with the general exponent in a Gaussian

−
1

2
(x− µ)TΣ−1(x− µ) = −

1

2
xTΣ−1x+ xTΣ−1

µ+ const

• The covariance of the marginal distribution p(xa) is given by

Σa = (Λaa −ΛabΛ
−1
bb Λba)

−1 (45)

• The mean of the marginal distribution p(xa) is given by

µa = Σa(Λaa −ΛabΛ
−1
bb Λba)

−1
µa (46)

Covariance in terms of partitioned precision matrix Λ =

(
Λaa Λab

Λba Λbb

)

We can write this in terms of partitioned covariance matrix Σ =

(
Σaa Σab

Σba Σbb

)
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Marginal Gaussian distributions (cont.)

(
Λaa Λab

Λba Λbb

)−1

=

(
Σaa Σab

Σba Σbb

)

(47)

Using again

(
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)

we have:

Σaa = (Λaa −ΛabΛ
−1
bb Λba) (48)

We obtain an intuitively satisfactory result that the marginal distribution p(xa)

E[xa] = µa (49)

cov[xa] = Σaa (50)
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Marginal Gaussian distributions (cont.)
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Bayes’s theorem for Gaussians
The Gaussian distribution
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Bayes’ theorem for Gaussian variables

We considered a Gaussian p(x) in which we partitioned vector x
into two subvectors x = (xa, xb) and then found expressions for

• the conditional distribution p(xa|xb) = N (x|µa|b ,Λ
−1
aa )

• the marginal distribution p(xa) = N (xa|µa,Σaa)

We also noted that the mean µa|b of the conditional distribution

p(xa|xb) is a linear function of xb, µa|b = µa +ΣabΣ
−1
bb (xb − µb)

A Gaussian marginal distribution p(x), Gaussian conditional distribution p(y|x)

• p(y|x) with mean a linear function of x and a covariance tindependent of x

We wish to find: • the marginal distribution p(y)

• the conditional distribution p(x|y)
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Bayes’ theorem for Gaussian variables (cont.)

We take the marginal and conditional distributions to be

p(x) = N (x|µ,Λ−1) (51)

p(y|x) = N (y|Ax+ b, L−1) (52)

• µ, A and b are parameters governing the means

• Λ and L are precision matrices

If x is M-dimensional and y is D-simensional, then A is D ×M
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Bayes’ theorem for Gaussian variables (cont.)

First we find an expression for the joint distribution over x and y, by defining

z =

(
x
y

)

(53)

and considering the log of the joint distribution p(z) = p(x, y) = p(y|x)p(x)

ln p(z) = ln p(x) + ln p(y|x)

= −
1

2
(x − µ)TΛ(x− µ)

−
1

2
(y − Ax− b)T L(y − Ax− b)

+ const (54)

with ‘const’ denoting terms independent of x and y

• It is again a quadratic function of the components of z

• Thus p(z) is again a Gaussian distribution
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Bayes’ theorem for Gaussian variables (cont.)

To find the precision of the Gaussian p(z), consider the second order terms of

ln p(z) = lnp(x) + ln p(y|x)

= −
1

2
(x− µ)TΛ(x− µ) −

1

2
(y − Ax− b)T L(y − Ax− b) + const

which can be written as

−
1

2
xT (Λ+ ATLA)x−

1

2
yTAy +

1

2
yTLAx+

1

2
xTATLy

=
1

2

(
x
y

)T (

Λ+ ATLA −ATL
−LA L

)(
x
y

)

= −
1

2
zTRz

So the Gaussian distribution over z has precision (inverse covariance) matrix R

The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Bayes’ theorem for Gaussian variables (cont.)

The covariance matrix is found by taking the inverse of the precision matrix

cov[z] = R−1 =

(
Λ−1 Λ−1AT

AΛ−1 L−1 + AΛ−1AT

)

(55)

• The matrix inversion formula seen earlier is used (⋆)
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Bayes’ theorem for Gaussian variables (cont.)

To find the mean of the Gaussian p(z), consider the linear terms of

ln p(z) = ln p(x) + ln p(y|x)

= −
1

2
(x− µ)TΛ(x− µ)−

1

2
(y − Ax− b)T L(y − Ax− b) + const

which can be written as

xTΛµ− xTATLb+ yTLb =

(
x
y

)T (

Λµ− ATLb
Lb

)

(56)
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Bayes’ theorem for Gaussian variables (cont.)

Using our earlier result in Equation 295, we find that the mean of z is

E[z] = R−1
(

Λµ− ATLb
Lb

)

(57)

We can now make use of Equation 556 for the covariance of z to get

E[z] =

(
µ

Aµ+ b

)

(58)

5−
1

2
(x − µ)TΣ

−1(x − µ) = −
1

2
xTΣ

−1x + xTΣ
−1

µ + const

6cov[z] = R−1 =

(

Λ
−1 Λ

−1AT

−AΛ−1 L−1 + AΛ−1AT

)
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Bayes’ theorem for Gaussian variables (cont.)

We turn now our attention to the marginal distribution p(y)

• which we have marginalised over x

The marginal distribution over a subset of components of the random vector
takes a simple form when expressed in terms of partitioned covariance matrix

E[xa] = µa and cov[xa] = Σaa

Use cov[z] = R−1 =

(
Λ−1 Λ−1L
AΛ−1 L−1 + AΛ−1AT

)

and E[z] =

(
µ

Aµ+ b

)

then

E[y] = Aµ+ b (59)

cov[y] = L−1AΛ−1AT (60)

are the searched mean and covariance of the marginal distribution p(y)
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Bayes’ theorem for Gaussian variables (cont.)

Finally, we seek an expression for the conditional p(x|y)

The conditional distribution is easier in terms of partitioned precision matrix

Σa|b = Λ
−1
aa and µa|b = µa −Σ

−1
aa Σab(xb − µb)

Use cov[z] = R−1 =

(
Λ−1 Λ−1L
AΛ−1 L−1 + AΛ−1AT

)

and E[z] =

(
µ

Aµ+ b

)

then

E[x|y] = (Λ+ ATLA−1)
(

ATL(y − b) +Λµ

)

(61)

cov[x|y] = (Λ+ ATLA)−1 (62)

are the searched mean and covariance of the conditional distribution p(x|y)
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Bayes’ theorem for Gaussian variables (cont.)

So what about the Bayes’ theorem?

The evaluation of the conditional p(x|y) is an example of Bayes’ theorem

• We can interpret the distribution p(x) as a prior over x

The conditional distribution p(x|y) is the corresponding posterior over x

• If y is observed

Having found the marginal and conditional distributions, we effectively
expressed the joint distribution p(z) = p(x)p(y|x) in the form p(x|y)p(y)



The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Maximum likelihood
The Gaussian distribution

The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Maximum likelihood for the Gaussian

Given data X = (x1, . . . , xN )T in which the observations {xn} are assumed to
be drawn independently from a multivariate Gaussian distribution, we can
estimate the parameters of the distribution by maximum likelihood

• The log likelihood function is

ln p(X|µ),Σ =
ND

2
ln (2π) −

N

2
ln |Σ|−

1

2

N∑

n=1

(xn − µ)TΣ
−1(xn − µ)

(63)

The likelihood function depends on the data set on thru terms

N∑

n=1

xn and
N∑

n=1

xnx
T
n (64)

These are the sufficient statistics for the Gaussian distribution
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Maximum likelihood for the Gaussian (cont.)

The derivative of log likelihood with respect to µ can be written as 7

∂

∂µ
ln p(X|µ,Σ) =

N∑

n=1

Σ
−1(xn − µ) (65)

Set to zero, it gets us the maximum likelihood estimate of the mean

µML =
1

N

N∑

n=1

xn (66)

which is, as expected, the mean of the observed set of data points

7We used
∂

∂x
(xT a) =

∂

∂x
(aT x) = a
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Maximum likelihood for the Gaussian (cont.)

Maximisation of the log likelihood function ln p(X|µ,Σ) wrt to Σ is tough (⋆)
As expected, the result takes the form

ΣML =
1

N

N∑

n=1

(xn − µML)(xn − µML)
T (67)

It involves µML as a result of the joint maximisation wrt µ and Σ, whereas the
solution for µML does not depend on ΣML (first solve for µML and then ΣML)
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Maximum likelihood for the Gaussian (cont.)

If we evaluate the expectations of the maximum likelihood solutions
under the true distribution, we obtain the following results

E[µML] = µ (68)

E[ΣML] =
N − 1

N
Σ (69)

• The expectation of the maximum likelihood estimate
for the mean is equal to the true mean, unbiased

• The maximum likelihood estimate for the covariance
underestimates the true covariance, it is biased

We correct the bias, by defining the estimator Σ̃

Σ̃ =
1

N − 1

N∑

n=1

(xn − µML)(xn − µML)
T (70)

which has an expectation that equals the true Σ
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Bayesian inference for the Gaussian

The maximum likelihood framework gives point estimates for µ and Σ

Now we develop a Bayesian treatment by introducing prior distributions

• over these parameters

We start simple, with a single Gaussian random variable x

• We will suppose that the variance σ2 is known

• We consider the task of inferring the mean µ

We are also given a set of N observations x = {x1, . . . , xn}
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Bayesian inference for the Gaussian (cont.)

The likelihood function can be viewed as a function of µ and takes the form

p(x|µ) =
N∏

n=1

p(xn|µ) =
1

(2πσ2)
exp

(

−
1

2σ2

N∑

n=1

(xn − µ)2
)

(71)

It takes the form of the exponential of a quadratic form in µ and if we choose
a Gaussian prior p(µ), it is a conjugate distribution for the likelihood function

• The posterior is a product of two exponentials of quadratic functions of µ

• Thus, it is also a Gaussian
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Bayesian inference for the Gaussian (cont.)

We take our prior distribution to be

p(µ) = N (µ|µ0, σ
2
0) (72)

The posterior distribution is given by

p(µ|x) ∝ p(x|µ)p(µ) (73)

Some manipulations (⋆) involving completing the square in the
exponent allow to show that the posterior distribution is given by

p(µ|x) = N (µ|µN ,σ
2
N ) (74)

µN =
σ2

Nσ2
0 + σ2

0

µ0 +
Nσ2

Nσ2 + σ2
µML (75)

1

σ2
N

=
1

σ2
0

+
N

σ2
(76)

µML =
1

N

∑N
n=1 xn is the maximum likelihood estimate for µ, the sample mean
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Bayesian inference for the Gaussian (cont.)

Note that the mean of the posterior distribution p(µ|x) is a compromise
between the prior mean µ0 and the maximum likelihood solution µML

µN =
σ2

Nσ2
0 + σ2

0

µ0 +
Nσ2

Nσ2 + σ2
µML

• It reduces to the prior mean, if the number of observed data points N = 0

• For N → ∞, the posterior mean equals the maximum likelihood solution
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Bayesian inference for the Gaussian (cont.)

Consider the result for the variance of the posterior distribution p(µ|x)

1

σ2
N

=
1

σ2
0

+
N

σ2

It is most naturally expressed in terms of inverse variance, or precision

Precisions are additive, so the precision of the posterior is given by

• the precision of the prior, plus one contribution of the
data precision from each of the observed data poins
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Bayesian inference for the Gaussian (cont.)

1

σ2
N

=
1

σ2
0

+
N

σ2

As we increase the number of observed data points, the precision steadily
increases, giving a posterior distribution with steadily decreasing variance

• With no observed data points, we have the prior variance

• If N → ∞, variance σ2
N → 0 and the posterior distribution

becomes infinitely peaked around the ML solution µML
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Bayesian inference for the Gaussian (cont.)

Bayesian inference for the mean µ of a Gaussian with known variance σ

• Data from a Gaussian of mean 0.8 and variance 0.1

N = 0

N = 1

N = 2

N = 10

−1 0 1
0

5
The prior is chosen to have mean 0

In both prior and likelihood function,
the variance is set to the true value

• the prior distribution over µ, the
curve N = 0, itself Gaussian

• the posterior distribution for
increasing numbers N of points

We see that the maximum likelihood result of a point estimate for µ is
recovered precisely from the Bayesian formalism in the limit N → ∞

For finite N, in the limit σ2
0 → ∞ in which the prior has infinite variance then

the posterior mean is the ML result, while the posterior variance is σ2
N = σ2/N
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Bayesian inference for the Gaussian (cont.)

The analysis of Bayesian inference for the mean of a D-dimensional Gaussian
variable x with known covariance and unknown mean is straightforward (⋆)
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Bayesian inference for the Gaussian (cont.)

So far, we have assumed that the variance of the Gaussian distribution
over the data is known and our goal is to infer the mean

• Let us suppose that the mean is known and we wish to infer the variance

Calculations are simpler, if we choose a conjugate form for the prior

• The likelihood function for λ = 1/σ2 is

p(x|λ) =
N∏

n=1

N (xn|µ,λ−1) ∝ λN/2 exp
(

−
λ

2

N∑

n=1

(xn − µ)2
)

(77)

The corresponding conjugate prior should therefore be proportional to the
product of a power of λ and the exponential of a linear function of λ
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Bayesian inference for the Gaussian (cont.)

This corresponds to the gamma distribution, which is defined as

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp (−bλ) (78)

The gamma function Γ(·) assures a correct normalisation

λ

a = 0.1

b = 0.1

0 1 2
0

1

2

λ

a = 1

b = 1

0 1 2
0

1

2

λ

a = 4

b = 6

0 1 2
0

1

2

The integral of the gamma distribution is finite if a > 0
The distribution itself is finite for a ≥ 1

The mean and variance of the gamma distribution are

{

E[λ] = a/b

var[λ] = a/b2
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Bayesian inference for the Gaussian (cont.)

Consider a prior distribution Gam(λ|a0, b0), multiply by the likelihood function

• Obtain a posterior distribution

p(λ|x) ∝ λa0−1λN/2 exp
(

− b0λ−
λ

2

N∑

n=1

(xn − µ)2
)

(79)

• Recognise the Gamma distribution Gam(λ|aN , bN ), with

aN = a0 +
N

2
(80)

bN = b0 +
1

2

N∑

n=1

(xn − µ)2 = b0 +
N

2
σ2
ML (81)

where σ2
ML is the maximum likelihood estimator of the variance
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Bayesian inference for the Gaussian (cont.)

Note that there is no need to keep track of the normalisation
constants in the prior and in the likelihood function in

p(λ|x) ∝ λa0−1λN/2 exp
(

− b0λ−
λ

2

N∑

n=1

(xn − µ)2
)

Because, if required, the correct coefficient can be found
at the end using the normalised form of the gamma distro

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp (−bλ)

The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Bayesian inference for the Gaussian (cont.)

The effect of observing N points increases the value of coefficient a by N/2

aN = a0 +
N

2

We can interpret a0 in the prior in terms of 2a0 ‘effective’ prior observations

Similarly, N points contribute Nσ2
ML/2 to parameter b, σ2

ML is the variance

bN = b0 +
1

2

N∑

n=1

(xn − µ)2 = b0 +
N

2
σ2
ML

We interpret b0 in the prior as arising from the 2a0
‘effective’ prior observations having variance 2b0/(2a0) = b0/a0
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Bayesian inference for the Gaussian (cont.)

Suppose now that both mean and variance are unknown

To find a conjugate prior, consider the dependence of the likelihood on µ and λ

p(x|µ, λ) =
N∏

n=1

( λ

2π

)

exp
(

−
λ

2
(xn − µ)2

)

∝
(

λ1/2 exp
(

−
λµ2

2

))N
exp

(

λµ
N∑

n=1

xn −
λ

2

N∑

n=1

x2n

)

(82)

We wish to identify the prior distribution p(µ, λ) with the same functional
dependence on µ and λ as the likelihood function above
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Bayesian inference for the Gaussian (cont.)

p(µ, λ) ∝
(

λ1/2 exp
(

−
λµ2

2

))β
exp (cλµ − dλ)

= exp
(

−
βλ

2
(µ− c/β)2

)

λβ/2 exp
(

−
(

d −
c2

2β

)

λ
)

(83)

where c, d and β are constant

Because p(µ, λ) = p(µ|λ)p(λ), we can find p(µ|λ) and p(λ) by inspection

• p(µ|λ) is a Gaussian whose precision is a linear function of λ

• p(λ) is a gamma distribution
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Bayesian inference for the Gaussian (cont.)

The normalised prior takes the form

p(µ, λ) = N
(

µ|µo , (βλ)−1
)

Gam(λ|a, b) (84)

where we defined the new constants

• µ0 = c/β

• a = (1 + β)/2

• b = d − c2/2β

This distribution is called normal-gamma or Gaussian-gamma distribution

• It is not simply the product of an independent Gaussian prior over µ and
gamma prior over λ, because the precision of µ is a linear function of λ

• Even if we choose a prior in which µ and λ are independent, the posterior
distribution would exhibit coupling between precision of µ and value of λ
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Bayesian inference for the Gaussian (cont.)

Contour plot of the normal-gamma distribution

µ

λ

−2 0 2
0

1

2

Parameter values µ0 = 0, β = 2, a = 5 and b = 6
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Bayesian inference for the Gaussian (cont.)

In the case of a D-variate Gaussian distribution N (x|µ,Λ−1) over a variable x

• the conjugate prior distribution for the mean µ assuming
a known precision is again a Gaussian distribution

• the conjugate prior distribution for the precision matrix
Λ assuming a known mean is a Wishart distribution

W(Λ|W, ν) = B|Λ|(ν−D−1)/2 exp
(

−
1

2
Tr(W−1

Λ)
)

(85)

where ν is the number of degrees of freedom of the distribution,
W is a D × D scale matrix and Tr(·) denotes the trace of a matrix

The normalisation constant B is given by

B(W, ν) = |W|−ν/2
(

2νD/2πD(D−1)/4
D∏

i=1

Γ
( ν + 1− 1

2

))−1
(86)
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Bayesian inference for the Gaussian (cont.)

• the conjugate prior distribution assuming both mean µ and precision
Λ unknown is a normal-Wishart or Gaussian-Wishart distribution

p(µ,Λ|µ0, β,W, ν) = N
(

µ|µ0, (βΛ
−1)

)

W(Λ|W, ν) (87)
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Student’s t-distribution

The conjugate prior for the precision of a Gaussian is a gamma distribution

If we have a univariate Gaussian N (x |µ, τ−1) together with a gamma prior
Gam(τ |a, b) and we integrate out the precision, we obtain the marginal
distribution of x in the form

p(x |µ, a,b) =

∫ +∞

0
N (x |µ, τ−1)Gam(τ |a,b)dτ

=

∫ +∞

0

bae−bτ τ a−1

Γ(a)

( τ

2π

)1/2
exp

(

−
τ

2
(x − µ)2

)

dτ

=
ba

Γ(a)

( 1

2π

)1/2(

b +
(x − µ)2

2

)−a−1/2
Γ(a + 1/2) (88)

where we can make the change of variables z = τ
(

b + (x − µ)2/2
)
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Student’s t-distribution (cont.)

By convention, we define new parameters ν = 2a and λ = a/b to get

p(x |µ, a,b) = Stu(x |µ, λ, ν) =
Γ(

ν

2
+

1

2
)

Γ(
ν

2
)

( λ

πν

)1/2(

1 +
λ(x − µ)2

ν

)−ν/2−1/2

(89)
which is known as Student’s t-distribution with parameter λ being
the precision and parameter ν being called the degree of freedom

ν → ∞

ν = 1.0

ν = 0.1

−5 0 5
0

0.1

0.2

0.3

0.4

0.5
Student’s t-distribution for µ = 0, λ = 1
and for various values of ν

The limit ν → ∞ equals a Gaussian
distribution with mean µ and precision λ

For ν = 1, the t-distribution reduces to the
Cauchy distribution
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Student’s t-distribution (cont.)

∫ +∞

0
N (x |µ, τ−1)Gam(τ |a, b)dτ

The Student’s t-distribution is obtained by adding up an infinite number
of Gaussian distributions having the same mean but different precisions

• This can be interpreted as an infinite mixture of Gaussians

The result is a distribution that in general has longer ‘tails’ than a Gaussian

• the t-distribution has an important property called robustness

• it is less sensitive than the Gaussian to the presence of outliers
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Student’s t-distribution (cont.)

Maximum likelihood fits for a Gaussian (green) and a t-distribution (red)

(a)
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The Gaussian is strongly distorted by the presence of outlying points
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Student’s t-distribution (cont.)

Substituting parameters ν = 2a, λ = 1/b and η = τb/a, the t-distribution is

St(x |µ,λ, ν) =

∫ +∞

0
N

(

x |µ, (ηλ)−1
)

Gam(
η/ν

2
, ν/2)dη (90)

=
Γ(

ν

2
+

1

2
)

Γ(
ν

2
)

( λ

πν

)1/2(

1 +
λ(x − µ)2

ν

)−ν/2−1/2
(91)

We can also generalise this to a D-dimensional Gaussian N (x|µ,Λ) to get

St(x|µ,Λ, ν) =

∫ +∞

0
N

(

x|µ, (ηΛ)−1
)

Gam(
η/ν

2
, ν/2)dη (92)

=
Γ(

D

2
+

ν

2
)

Γ(
ν

2
)

|Λ|1/2

(πν)D/2

(

1 +
(x − µ)TΛ(x − µ)

ν

)−D/2−ν/2
(93)

The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Mixtures of Gaussians
The Gaussian distribution



The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Mixtures of Gaussians

While the Gaussian distribution has some important analytical properties, it
suffers from significant limitations when it comes to modelling real data sets

1 2 3 4 5 6
40

60

80

100
A Gaussian distribution fitted to the
data using maximum likelihood

This distribution fails to capture the
two clumps in the data and places
much of its probability mass in the
central region between the clumps
where the data are relatively sparse
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Mixtures of Gaussians (cont.)

1 2 3 4 5 6
40

60

80

100

A linear combination of two Gaussians
fitted using maximum likelihood

A linear superposition gives a better
characterisation of the data set

Superpositions, by taking linear combinations of basic distributions such as
Gaussians, can be formulated as probabilistic models (mixture distributions)
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Mixtures of Gaussians (cont.)

A Gaussian mixture distribution in one dimension

x

p(x)

Three Gaussians (blue, scaled by a
coefficient) and their sum (red)

We can get very complex densities

By using a sufficient number of Gaussians, and by adjusting their means and
covariances as well as the coefficients in the linear combination, almost any
continuous density can be approximated to arbitrary accuracy
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Mixtures of Gaussians (cont.)

Definition
We consider a linear superposition of K Gaussian densities of the form

p(x) =
K∑

k=1

πkN (x|µk ,Σk) (94)

Such a model is a mixture of Gaussians, each Gaussian density N (x|µk ,Σk)
is a component of the mixture, with its own mean µk and covariance Σk

The parameters πk in p(x) =
∑K

k=1 πkN (x|µk ,Σk) are mixing coefficients
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Mixtures of Gaussians (cont.)

A Gaussian mixture distribution in two dimensions

0.5 0.3
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1

• The contours at constant density for each of the mixture components

• The contours at constant density of the mixture distribution p(x)

• The surface plot of the mixture distribution p(x)

The numbers in the first plot are the mixing coefficients
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Mixtures of Gaussians (cont.)

If we integrate both sides of p(x) =
∑K

k=1 πkN (x|µk ,Σk) with respect to x
and note that both p(x) and the Gaussian components are normalised, we get

K∑

k=1

πk = 1 (95)

The requirements that p(x) ≥ 0 and N (x|µk ,Σk) ≥ 0 imply that 0 ≤ πk ≤ 1
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Mixtures of Gaussians (cont.)

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

πk ∈ [0, 1] and
∑

πk = 1: The mixing coefficients can be seen as probabilities

From sum and probabilities rules, the marginal density is given by

p(x) =
K∑

k=1

p(k)p(x|k) (96)

By p(k) = πk , we view coefficients as prior probabilities (of picking the k-th
component) and p(x|k) = N (x|µk ,Σk) the probability of x conditioned on k
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Mixtures of Gaussians (cont.)

A role is played by posterior probabilities (or responsibilities) p(k|x)

By the Bayes’ theorem, the posterior probabilities can be written as

γk (x) ≡ p(k|x)

=
p(k)p(x|k)

∑

l p(l)p(x|l)

=
πkN (x|µk ,Σk)

∑

l πlN (x|µl ,Σl)
(97)
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Mixtures of Gaussians (cont.)

The Gaussian mixture distribution is governed by the parameters π, µ and Σ

π ≡ {π1, . . . ,πK}

µ ≡ {µ1, . . . ,µK}

Σ ≡ {Σ1, . . . ,ΣK}

One way to set the values of the parameters is to use (log) maximum likelihood

ln p(X|π,µ,Σ) =
N∑

n=1

ln
( K∑

k=1

πkN (xn|µk ,Σk)
)

(98)

which is bad, very bad, because of the summation over k inside the logarithm

• No longer closed-form solution

• Iterative numerical optimisation

• Expectation maximisation
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Mixtures of Gaussians (cont.)

If we define a joint distribution over observed and latent variables, the
distribution of the observed variables alone is obtained by marginalisation

Complex marginal distributions over observed variables can be expressed in
terms of joint distributions over the space of observed and latent variables

• The introduction of latent variables allows complicated
distributions to be formed from simpler components

Remark
Mixture distributions can be interpreted in terms of discrete latent variables

• It is the case with the Gaussian mixture

Mixture models can be used in the problem of finding clusters in a point set
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Mixtures of Gaussians (cont.)

We motivated the Gaussian mixture model as a linear superposition of
Gaussians to provide a richer class of density models than the Gaussian

We formulate now Gaussian mixtures in terms of discrete latent variables

• This provides a deeper insight into this important distribution

• It also serves to motivate the expectation-maximisation algorithms
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Mixtures of Gaussians (cont.)

A Gaussian mix distribution is a linear superposition of Gaussian components

p(x) =
K∑

k=1

πkN (x|µk ,Σk) (99)

Let us introduce a K -dim binary random variable z with 1-of-K representation
in which an element zk is equal to 1 and all other elements are equal to 0

• Values of zk satisfy zk ∈ {0, 1} and
∑

k zk = 1

• There are K possible states for the vector z
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Mixtures of Gaussians (cont.)

We define a joint distribution p(x, z) = p(z)p(x|z), that is in terms of

• the marginal distribution p(z)

• the conditional distribution p(x|z)

x

z

The marginal distribution over z is specified in terms of mixing coefficients πk

p(zk = 1) = πk (100)

where parameters {πk} must satisfy

0 ≤ πk ≤ 1 and
K∑

k=1

πk = 1 (101)
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Mixtures of Gaussians (cont.)

Because z uses a 1-of-K representation, we write this distribution in the form

p(z) =
K∏

k=1

πzk
k (102)

The conditional distribution of x given a particular value for z is Gaussian

p(x|zk = 1) = N (x|µk ,Σk), or p(x|z) =
K∏

k=1

N (x|µk ,Σk)
zk (103)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x
is then obtained by summing the joint distribution over all possible states of z

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk ,Σk) (104)
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Mixtures of Gaussians (cont.)

If we have several observations x1, . . . , xN , then, since we have represented
the marginal distribution in the form p(x) =

∑

z p(x, z), it follows that

• for every observed point xn there is a corresponding latent variable zn

Definition
An equivalent formulation of Gaussian mixtures with an explicit latent variable

• We are now able to work with the joint distribution p(x, z) instead of
the marginal distribution p(x), which leads to significant simplifications
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Mixtures of Gaussians (cont.)

Another important quantity is the conditional probability z given x

Let γ(zk ) denote p(zk = 1|x), using Bayes’ theorem

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µkΣk)

∑K
j=1 πjN (x|µj ,Σj )

(105)

where πk is viewed as the prior probability of zk = 1 and the quantity
γ(zk) as corresponding posterior probability, once we have observed x

• Again, γ(zk ) can be viewed as the responsability that
component k takes for ‘explaining’ the observation x
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Mixtures of Gaussians (cont.)

We can depict samples from the joint distribution p(x, z) by plotting points at
the corresponding values of x and colouring them according to the value of z

• The Gaussian component was responsible for generating them

Similarly, samples from the marginal distribution p(x) are obtained by taking
the samples from the joint distribution and ignoring the values of z
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Mixtures of Gaussians (cont.)
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An example of 500 points as drawn from some mixture of 3 Gaussians

a Samples from the joint distribution p(z)p(x|z) in which the 3 states of z,
corresponding to 3 components of the mixture, are in red, green and blue

b The corresponding samples from the marginal distribution p(x), which is
obtained by simply ignoring the values of z and just plotting the x values

The data set in (a) is said to be complete, whereas that in (b) is incomplete
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Mixtures of Gaussians (cont.)

We can illustrate ‘responsibilities’ by evaluating, for every point, the posterior
probability for each component in the GMM distribution from which data arose

(c)

0 0.5 1

0

0.5

1
A point for which γ(zn1(2,3)) = 1 is red (blue, green)

A point for which γ(zn2) = γ(zn3) = 0.5
uses equal portions of blue and green

Responsibilities γ(znk ) associated with point xn can be represented by dyeing
the corresponding point with proportions of R, B, and G ink given by γ(znk )

The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Maximum likelihood
Mixtures of Gaussians



The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

Maximum likelihood

Suppose we have a data set of observations {x1, . . . , xN}

We wish to model this data using a mixture of Gaussians

• We can represent this data set as an N ×D matrix X,
in which the n-th row is given by xTn

• The corresponding latent variables can be represented
by a N × K matrix Z with rows zTn

If we assume that the points are drawn independently from the distribution,
the Gaussian mixture model can be expressed for the iid set using a PGM

xn

zn

N

µ Σ

π
The GMM distribution for N independent
and identically distributed data points {xn}

• with corresponding latent points {zn}
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Maximum likelihood

From p(x) =
∑K

k=1 πkN (x|µk ,Σk), the log likelihood function is given by

ln p(X|π,µ,Σ) =
N∑

n=1

ln
( K∑

k=1

πkN (xn|µk ,Σk)
)

(106)

The Gaussian mixture has components whose covariance matrices Σk = σ2
k I

8

Suppose that one of the components, the j-th, has its mean µj

exactly equal to one of the data points, the n-th, so that µj = xn

• The contribution of point xn to the likelihood is

N (xn|xn,σ2
j I) =

1

(2π)1/2
1

σj

(107)

• This term goes to infinity in the limit σj → ∞

• The whole log likelihood goes to infinity with it

8It is a computational simplification due to the presence of singularities when maximising the
likelihood, though the conclusions will hold for general covariance matrices Σk
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Maximum likelihood

This is not a great situation, because the maximisation of the log likelihood is
always not well posed when one of the Gaussians collapses onto a data point

• It does not happen with a single Gaussian

Remark
If a single Gaussian collapses onto a point, it contributes multiplicative factors
to the likelihood function arising from other points and these factors go to zero
exponentially fast, giving an overall likelihood that goes to 0 rather than ∞

If we have (at least) two components in the mixture, one of the components
can have a finite variance and therefore assign finite probability to all of the
points while the other component can shrink onto one specific point and
thereby contribute an ever increasing additive value to the log likelihood
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Maximum likelihood (cont.)

x

p(x) These singularities provide an example
of over-fitting, as it occurs with MLE

In applying MLE to the GMM we must
take steps to avoid finding pathological
solutions and seek good local maxima

• We can hope to avoid the singularities by using suitable heuristics, as
detecting when a Gaussian component is collapsing and resetting its
mean to a randomly chosen value while also resetting its covariance
to some large value, and then continuing with the optimisation
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Maximum likelihood (cont.)

A further issue in MLE solutions arises from the fact that for any given ML
solution, a K -component mixture have a total of K ! equivalent solutions

• The K ! ways of assigning K sets of parameters to K components

For any given (nondegenerate) point in the space of parameters there are a
further K !− 1 additional points all of which give rise to the same distribution

• The problem is known as identifiability
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Maximum likelihood (cont.)

Maximising the log likelihood function for a Gaussian mixture model

ln p(X|π,µ,Σ) =
N∑

n=1

ln
( K∑

k=1

πkN (xn|µk ,Σk)
)

is a more complex problem than for the case of a single Gaussian

The difficulty arises from the summation over k inside the log

• the log function no longer acts directly on the Gaussian

Set derivatives of log likelihood to zero: Does not give a closed form solution

• One approach is to apply gradient-based optimisation techniques, feasible

• An alternative approach known as the EM algorithm, broad applicability
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The expectation-maximisation, or EM algorithm is an elegant and powerful
method for finding maximum likelihood solutions for latent variables models

We motivate the EM algorithm in the context of the Gaussian mixture model
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EM for mixtures of Gaussians (cont.)

First, conditions that must be satisfied at a maximum of likelihood functions

Setting the derivatives of ln p(X|π,µ,Σ) =
∑N

n=1 ln
(
∑K

k=1 πkN (xn|µk ,Σk)
)

with respect to the means µk of the Gaussian components to zero

0 = −
N∑

n=1

πkN (xn|µk ,Σk)
∑

i πjN (xn|µj ,Σj )
︸ ︷︷ ︸

γ(znk )

Σk(xn − µk) (108)

where for the Gaussian distribution we made use of the form

N (x|µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x− µ)TΣ

−1(x− µ)
)

Posterior probabilities, or responsibilities γ(znk ) appear on the RHS
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EM for mixtures of Gaussians (cont.)

0 = −
N∑

n=1

πkN (xn|µk ,Σk)
∑

i πjN (xn|µj ,Σj )
︸ ︷︷ ︸

γ(znk )

Σk(xn − µk)

Multiplying by Σ
−1
k , assuming it is non-singular, and reordering

µk =
1

Nk

N∑

n=1

γ(znk )xn (109)

where together with γ(znk) =
πkN (xn|µk ,Σk)

∑

i πjN (xn|µj ,Σj )
, we defined

Nk =
N∑

n=1

γnk (110)

Nk is understood as effective number of points assigned to cluster k
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EM for mixtures of Gaussians (cont.)

µk =
1

Nk

N∑

n=1

γ(znk )xn

The mean µk for the k-th Gaussian component is obtained by taking a
weighted mean of all of the points in the data set

• The weighting factor for data point xn is the posterior probability
γ(znk) that component k was responsible for generating xn
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EM for mixtures of Gaussians (cont.)

Setting derivatives of ln p(X|π,µ,Σ) =
∑N

n=1 ln
(
∑K

k=1 πkN (xn|µk ,Σk)
)

wrt the covariance matrices Σk of the Gaussian components to zero

Σk =
1

Nk

N∑

n=1

γ(znk )(xn − µk)(xn − µk )
T (111)

which has the same form as the result for a single Gaussian fitted to data

• Again, each point is weighted by the corresponding posterior probability

Denominator is the effective number of points associated with the component
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EM for mixtures of Gaussians (cont.)

We maximise ln p(X|π,µ,Σ) =
∑N

n=1 ln
(
∑K

k=1 πkN (xn|µk ,Σk)
)

wrt the

mixing coefficients πk , taking into account of the constraint
∑K

k=1 πk = 1

Using Lagrange multipliers and maximising

ln p(X|π,µ,Σ) + λ
( K∑

k=1

πk − 1
)

(112)

gives us an expression with responsabilities

0 =
K∑

n=1

N (xn|µk ,Σk)
∑

j πkN (πk |µj ,Σk)
+ λ (113)
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EM for mixtures of Gaussians (cont.)

Multiplying both sides by πk and summing over k using constraint
∑K

k=1 πk = 1, we find that λ = N which can be used to eliminate λ

πk =
Nk

N
(114)

The mixing coefficient for the k-th component is the average
responsibility taken by that component for explaining data

The Gaussian
distribution

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

The Gaussian
distribution

Conditional Gaussian
distributions

Marginal Gaussian
distributions

Bayes’ theorem

Maximum likelihood

Bayesian inference

Student’s t-distribution

Mixtures of Gaussians

Maximum likelihood

Expectation-maximisation
for mixtures of Gaussians

k-means clustering

EM for mixtures of Gaussians (cont.)

µk =
1

Nk

N∑

n=1

γ(znk )xn

Σk =
1

Nk

N∑

n=1

γ(znk )(xn − µk)(xn − µk)
T

πk =
Nk

N

Remark
These do not make for a closed-form solution for the mixture parameters

• It suggest an iterative scheme for maximising the likelihood
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EM for mixtures of Gaussians (cont.)

We choose initial values for the means, covariances, and mixing coefficients

Then we alternate between two updates, until convergence

Pseudocode 2.1

• E-step or Expectation-step, the values of the parameters
are used to evaluate posterior probabilities

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µkΣk)

∑K
j=1 πjN (x|µj ,Σj )

• M-step or Maximisation-step, probabilities are used to
re-estimate means covariances and mixing coefficients

µk =
1

Nk

N∑

n=1

γ(znk )xn

Σk =
1

Nk

N∑

n=1

γ(znk )(xn − µk)(xn − µk )
T

πk =
Nk

N
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EM for mixtures of Gaussians (cont.)

At each update, the parameters resulting from an E-step followed
by an M-step are guaranteed to increase the log likelihood function

A mixture of two Gaussians, with centres initialised as in the k−means
example, and precision initialised to be proportional to the unit matrix

(a)−2 0 2

−2

0

2

Data points as green dots

Contours at one standard deviation
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EM for mixtures of Gaussians (cont.)

(b)−2 0 2

−2

0

2

Result of the first E-step

Points dyed with a proportion of ink equal
to the posterior probability of having been
generated by the component Gaussians

(c)

L = 1

−2 0 2

−2

0

2 Result of the first M-step

The mean of the blue Gaussian moves to
the mean of the dataset weighted by the
probabilities of the blue points

The covariance of the blue Gaussian
equals that of the blue points
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EM for mixtures of Gaussians (cont.)

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

The EM algorithm takes many more iterations to reach convergence compared
with k-means, and that each cycle requires significantly more computation

Remark
It is common to run k-means to find a suitable initialisation for a
Gaussian mixture model that is subsequently adapted using EM

• Covariances can be initialised to sample covariances of the clusters

• Mixing coefficients can be set to fractions of points in retrieved clusters
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k-means clustering

We consider the problem of identifying groups, or clusters, of data points

We have data {x1, . . . , xN} consisting of N observations

• x is a random D-dimensional Euclidean variable

Goal: Partition the data into some number K of clusters

• We suppose for the moment that the value of K is given

Definition
A cluster can be seen as a group of points whose inter-point distances
are small, compared with the distances to points outside of the cluster

To formalise this notion, introduce a set of D-dimensional vectors {µk}Kk=1

• µk is a prototype associated with the k-th cluster

We can think of the various µk as representing the centres of the clusters
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k-means clustering (cont.)

Given data {xn}Nn=1 and having defined cluster prototypes {µk}Kk=1

• Goal: Find an assignment of data points to clusters

• Goal: Find an optimal set of prototype vectors {µk}Kk=1

The set of vectors {µk}Kk=1 is such that the sum of the squares of
the distances of each point to its closest vector µk , is a minimum
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k-means clustering (cont.)

For each point xn, we introduce a set of binary indicator variables rnk ∈ {0, 1}
with k = 1, . . . ,K telling which of the K clusters the point xn is assigned to

• If xn is assigned to cluster k, then rnk = 1 and rnj = 0 for j ̸= k

• This scheme is known as 1-of-K coding

Definition
We define an objective function, sometimes called a distortion measure

J =
N∑

n=1

K∑

k=1

rnk∥xn − µk∥
2 (115)

A sum of squares of distances between each point and assigned prototype

• Find {rnk}Kk=1 and {µk}Kk=1 such that J is minimised
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k-means clustering (cont.)

We can do this through an iterative procedure in which each iteration involves
two successive steps corresponding to successive optimisations wrt rnk and µk

Pseudocode
The procedure starts by setting some initial values for µk

• 1-st phase: Minimise J with respect to the rnk , keeping µk fixed

• 2-nd phase: Minimise J with respect to the µk , keeping rnk fixed

The two-stage optimisation is repeated until convergence

These two stages of updating rnk and updating µk correspond respectively
to the E (expectation) and M (maximisation) steps of the EM algorithm

• We use E-step and M-step also in the context of the k-means algorithm
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k-means clustering (cont.)

Consider first the determination of the rnk , with the µk fixed

The objective J =
∑N

n=1

∑K
k=1 rnk∥xn − µk∥2 is a linear function of rnk

• This optimisation can be performed to give a closed form solution

The terms involving different n are independent and we can optimise for each
n separately by setting rnk to be 1 for whichever k gives minimum ∥xn − µk∥2

• We assign the n-th point xn to the closest cluster centre µk

rnk =

{

1, if k = argminj∥xn − µk∥2

0, otherwise
(116)
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k-means clustering (cont.)

Now consider the determination of the µk, with the rnk fixed

The objective J =
∑N

n=1

∑K
k=1 rnk∥xn − µk∥2 is a quadratic function of µk ,

and it can be minimised by setting its derivative with respect to µk to zero

2
N∑

n=1

rnk (xn − µk) = 0 (117)

Solving for µk

µk =

∑N
n=1 rnkxn

∑N
n=1 rnk

(118)

The denominator equals the number of points assigned to cluster k, and
overall we set µk equal to the mean of all points xn assigned to cluster k
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Green points are data {xn} in a 2D Euclidean
space and the initial choices for centres µ1

and µ2 are the red and blue crosses

(a)

−2 0 2

−2

0

2

• In the initial E step, each point is assigned either to the red cluster
or to the blue cluster, according to which cluster centre is nearer

• In the subsequent M step, each cluster centre is re-computed to
be the mean of the points assigned to the corresponding cluster

(b)
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k-means clustering (cont.)

Cost J after each E step (blue points) and M step (red points) of the k-means

J

1 2 3 4
0

500

1000

The algorithm has converged after the third M step, and the final EM cycle
produces no changes in either the assignments or the prototype vectors


