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Linear models for regression

The focus so far on unsupervised learning, we turn now to supervised learning

• Regression

The goal of regression is to predict the value of one or more continuous target
variables t, given the value of some D-dimensional vector x of input variables

• e.g., polynomial curve fitting
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Linear models for regression (cont.)

x

t

0 1

−1

0

1

N = 10 training points, blue circles

• each comprising an observation of
the input variable x along with
corresponding target variable t

The unknown function sin(2πx) is
used to generate the data, green curve

• Goal: Predict the value of t,
for some new value of x

• w/o knowledge of the green curve

The input training data x was generated by choosing values of xn, for
n = 1, . . . ,N, that are spaced uniformly in the range [0, 1]

The target training data t was obtained by computing values sin(2πxn)
of the function and adding a small level of Gaussian noise
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Linear models for regression (cont.)

• We shall fit the data using a polynomial function of the form

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑

j=0

wjx
j (1)

• M is the polynomial order, xj is x raised to the power of j

• Polynomial coefficients w0, . . . ,wM are collected in vector w

The coefficients values are obtained by fitting the polynomial to training data

• By minimising an error function, a measure of misfit between function
y(x ,w), for any given value of w, and the training set data points

• A choice of error function is the sum of the squares of the errors between
predictions y(xn,w) for each point xn and corresponding target values tn

E(w) =
1

2

N∑

n=1

(

y(xn,w)− tn

)2
=⇒ w⋆ (2)
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Linear models for regression (cont.)

The goal in the curve fitting problem is to be able to make predictions for
the target variable t, given some new value of the input variable x and

• a set of training data comprising N input values x = (x1, . . . , xN)T

and their corresponding target values t = (t1, . . . , tN )T

Uncertainty over the target value is expressed using a probability distribution

• Given the value of x , the corresponding value of t is assumed to have a
Gaussian distribution with a mean the value y(x ,w) of the polynomial

p(t|x ,w, β) = N
(

t
∣
∣
∣y(x ,w), β−1

)

(3)

and some precision β (the precision is the reciprocal of the variance σ2)
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Linear models for regression (cont.)

The conditional distribution over t given x p(t|x ,w, β) = N
(

t
∣
∣
∣y(x ,w), β−1

)

• The mean is given by the polynomial function y(x ,w)

• The precision is given by β, with β−1 = σ2

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w,β)

We can use training data {x, t}
to determine the values of the
parameters µ and β of this
Gaussian

• Likelihood maximisation
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Linear models for regression (cont.)

Assuming that the data have been drawn independently from the conditional

distribution p(t|x ,w, β) = N
(

t
∣
∣
∣y(x ,w), β−1

)

, the likelihood function is

p(t|x,w,β) =
N∏

n=1

N
(

tn

∣
∣
∣y(xn,w), β−1

)

(4)

It is again convenient to maximise its logarithm, the log likelihood function

ln p(t|x,w,β) = −
β

2

N∑

n=1

(

y(xn,w)− tn

)2
+

N

2
lnβ −

N

2
ln (2π) (5)

Maximisation of log likelihood wrt w is minimisation of negative log likelihood

• This equals the minimisation of the sum-of-squares error function

E(w) =
1

2

N∑

n=1

(

y(xn,w) − tn

)2
=⇒ wML = w⋆
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Linear models for regression (cont.)

ln p(t|x,w,β) = −
β

2

N∑

n=1

(

y(xn,w)− tn

)2
+

N

2
lnβ −

N

2
ln (2π)

Determination of the maximum likelihood solution for β

• Maximising the log likelihood with respect to β gives

1

βML

=
1

N

N∑

n=1

(

y(xn,wML) − tn)
)2

(6)

• where again we decoupled the solution of w and β
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Linear models for regression(cont.)

Having an estimate of w and β we can make predictions for new values of x

• We have a probabilistic model that gives the probability distribution over t

We can make estimations that are much more than a plain point estimate of t

• We can make predictions in terms of the predictive distribution

p(t|x ,wML, βML) = N
(

t
∣
∣
∣y(x ,wML), β

−1
ML

)

(7)

• The probability distribution over t, rather than a point estimate
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Linear models for regression (cont.)

Polynomial fitting is only a specific example of a broad class of functions

• Linear regression models

They share the property of being linear functions of tuneable parameters

• In the simplest form, also linear functions of the input variables
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Linear models for regression (cont.)

A much more useful and richer class of functions arises by taking linear
combinations of a fixed set of some nonlinear functions of input variables

• Such functions are commonly know as basis functions

Such models are linear functions of the parameters (read, simple analytical
properties), and yet can be nonlinear with respect to the input variables
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Linear models for regression (cont.)

Given training data comprising N input observations {xn}Nn=1
and the corresponding responses target values {tn}Nn=1

• the goal is to predict the value of t for a new, unseen, value of x

Simplest approach:

Directly construct an appropriate function y(x)

• The value for new inputs x constitute the
predictions for the corresponding values of t

More generally:

We aim to model the predictive distribution p(t|x)

• This expresses our uncertainty about
the value of t for each value of x

• This allows to make predictions of t, for any
new value of x, that minimise the expected
value of a suitable loss function (squared loss)
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Linear basis function models

The simplest linear model for regression is one that
involves a linear combination of the input variables

y(x,w) = w0 + w1x1 + · · ·+ wDxD , with x = (x1, . . . , xD)
T (8)

This is often simply known as linear regression

Key property: This model is a linear function of the parameters w0, . . . ,wD

Key limitation: It is also a linear function of the input variables x1, . . . , xD
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Linear basis function models (cont.)

We immediately extend the class of models by considering linear
combinations of fixed nonlinear functions of the input variables

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (9)

Functions φj(x) of the input x are known as basis functions
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Linear basis function models (cont.)

y(x,w) = w0 +
M−1∑

j=1

wjφj(x)

The total number of parameters in the linear basis function model is M

The parameter w0 allow for any fixed offset in the data, it is called bias

• It is often convenient to define a dummy basis function φ0(x) = 1

y(x,w) =
M−1∑

j=0

wjφj (x) = wTφ(x) (10)

• w = (w0, . . . ,wM−1)T

• φ = (φ0, . . . ,φM−1)T
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Linear basis function models (cont.)

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x)

By using nonlinear basis functions, we allow the function
y(x,w) to be a nonlinear function of the input vector

• It is still a linear model, in w

The linearity simplifies the analysis of this class of models

Example

The example of polynomial regression is a particular example of this model on
a single input variable x , basis functions are powers of x , so that φj(x) = xj

y(x ,w) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑

j=0

wjx
j
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Linear basis function models (cont.)

There are many possible choices for the basis functions, the classic

φj (x) = exp
(

−
(x − µj )2

2s2

)

(11)

• the µj govern the location of the basis functions in input space

• the parameter s governs their spatial scale

This kind of functions are referred to as ‘Gaussian’ basis functions

• Though they are not required to have a probabilistic meaning

• Normalisation coefficients are unimportant, we multiply by wj
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Linear basis function models (cont.)

Another used possibility is the sigmoidal basis function of the form

φj (x) = σ
( x − µj

s

)

(12)

where the function σ(a) is the logistic sigmoid function, defined by

σ(a) =
1

1 + exp (−a)
(13)

Or, We could also use the hyperbolic tangent function tanh(a)

• It relates to the logistic sigmoid tanh(a) = 2σ(2a) − 1
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Linear basis function models (cont.)

Polynomials on the left, Gaussians in the centre, and sigmoids on the right
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The analysis here is independent of the particular choice of basis function set

• We shall not specify the particular form of the basis functions

Applicable when the vector φ(x) of basis functions is the identity φ(x) = x
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Maximum likelihood and least squares

We already fitted polynomial functions to data

• by minimising sum-of-squares error function

We also showed that this error function could be motivated probabilistically

• Maximum likelihood solution under an assumed Gaussian noise model

We return to this problem and consider the least squares approach in detail

• Especially, its relation to maximum likelihood
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Maximum likelihood and least squares (cont.)

We assume that the target variable t is given by

• a deterministic function y(x,w)

• with additive Gaussian noise
t = y(x,w) + ε (14)

Here ε is a zero-mean Gaussian random variable

• with inverse variance (precision) equal β

• ε ∼ N (0, β−1)

Given the value of x, the corresponding value of t has a Gaussian distribution
with a mean equal to the value y(x,w) of the deterministic function

p(t|x,w, β) = N (t|y(x,w), β−1) (15)
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Maximum likelihood and least squares (cont.)

If we assume a squared loss function1, then the optimal prediction, for a
new value x, will be given by the conditional mean of the target variable

We have a Gaussian conditional distribution p(t|x,w, β) = N (t|y(x,w), β−1)

• The conditional average of t conditoned on x is

E[t|x] =
∫

tp(t|x)dt = y(x,w) (16)

• which is what we called the regression function

1With a squared loss function L(t, y
(

x)
)

=
(

y(x) − t
)2, the expected loss is

E[L] =
∫ ∫ (

y(x) − t
)2p(x, t)dxdt and we choose y(x) that minimises E(L)
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Maximum likelihood and least squares (cont.)

Consider a set of inputs X = {x1, . . . , xN} with target values t = {t1, . . . , tN}

We group the target variables {tn} into a column vector that we denote by t

Making the assumption that these points are drawn independently from the
distribution p(t|x,w, β) = N (t|y(x,w), β−1), we get the likelihood function

p(t|X,w,β) =
N∏

n=1

N (tn|wTφ(xn), β) (17)

• It is a function of the adjustable parameters w and β

• We used y(xn,w) =
∑M−1

j=0 wjφj(xn) = wTφ(xn)

Remark

In supervised learning, we are not trying to model the distribution of x

• x is always in the set of conditioning variables

• We can drop it from expression like p(t|x,w, β)
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Maximum likelihood and least squares (cont.)

Taking the logarithm of the likelihood function and using
the standard form for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

ln
(

N (tn|wTφ(xn), β−1)
)

=
N

2
lnβ −

N

2
ln 2π − βED(w) (18)

Where, as always, the sum-of-squares has been defined as

ED(w) =
1

2

N∑

n=1

(

tn − wTφ(xn)
)2

(19)

Having the likelihood function, we use maximum likelihood to get w and β
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Maximum likelihood and least squares (cont.)

Consider first the maximisation with respect to w

• The maximisation of the likelihood under a conditional Gaussian is
equivalent to the minimisation of the sum-of-squares error function ED(w)

• The gradient of the log likelihood function takes the form

∇ln p(t|w, β) = β
N∑

n=1

(

tn − wTφ(xn)
)

φ(xn) (20)

• Setting the gradient to zero gives

0 =
N∑

n=1

tnφ(xn)
T − wT

( N∑

n=1

φ(xn)φ(xn)
T
)

(21)

• Solving for w gives
wML = (ΦT

Φ)−1
Φ

T t (22)
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Maximum likelihood and least squares (cont.)

Normal equations for the LS problem: wML = (ΦTΦ)−1ΦT t

Matrix Φ is the N ×M design matrix, with elements Φnj = φj (xn)

Φ =

⎛

⎜
⎜
⎜
⎝

φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞

⎟
⎟
⎟
⎠

(23)

The Moore-Penrose pseudo inverse2 of matrix Φ is the quantity

Φ
† ≡ (ΦT

Φ)−1
Φ

T (24)

2Notion of matrix inverse for non-square matrices: If Φ square and invertible, Φ† = Φ
−1
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Maximum likelihood and least squares (cont.)

Let us now get some insight on the bias parameter w0, by making it explicit

• The error function ED(w) =
1

2

∑N
n=1

(

tn − wTφ(xn)
)2

becomes

ED (w) =
1

2

N∑

n=1

(

tn − w0 −
M−1∑

j=1

wjφj (xn)
)2

(25)

• We can set its derivative wrt w0 to be equal to zero and get

w0 =
1

N

N∑

n=1

tn

︸ ︷︷ ︸

t

−
M−1∑

j=1

wj

1

N

N∑

n=1

φj (xn)

︸ ︷︷ ︸

φj

= t −
M−1∑

j=1

wjφj (26)
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Maximum likelihood and least squares (cont.)

w0 = t −
M−1∑

j=1

wjφj with

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t =
1

N

∑N
n=1 tn

φj =
1

N

∑N
n=1 φj(xn)

The bias w0 compensates for the difference between the averages of the target
values {tn}Nn=1 in the training set and the weighted sum of the averages of the

basis functions {φj (xn)}
M−1
j=1 evaluated over the whole training set {xn}Nn=1
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Maximum likelihood and least squares (cont.)

Maximising the likelihood ln p(t|w, β) =
N

2
lnβ −

N

2
ln 2π − βED (w) wrt β

• We find that the inverse noise precision (the noise variance) is given by

1

βML

=
1

N

N∑

n=1

(

tn − wTφ(xn)
)2

(27)

• It is the residual variance of the targets around the regression function
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Geometry of least squares

Let us now analyse the geometrical interpretation of the least-squares solution

Consider an N-dimensional space whose axes are given by the tn

• t = (t1, . . . , tN )T is a vector in this space

Each basis function φj (xn), evaluated at
the N data points, can also be seen as a
vector in the same space, denoted by ϕj

ϕj corresponds to the j-th column of Φ,
φ(xn) corresponds to the n-th row of Φ

S
t

yϕ1

ϕ2

If the number M of basis functions is smaller than the number N of points,
then the M vectors ϕj will span a linear subspace S of dimensionality M
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Geometry of least squares (cont.)

Define the N-vector y whose n-th element is y(xn,w), n = 1, . . . ,N

• y is an arbitrary linear combination of the vectors ϕj

• it can live anywhere in this M-dimensional subspace

S
t

yϕ1

ϕ2

ED (w) =
1

2

∑N
n=1 (tn − wTφ(xn))2, the

sum-of-squares error is equal (up to a
factor 1/2) to the squared Euclidean
distance between y and t

A least-squares solution for w corresponds
to that choice of y that lies in subspace S
and that is closest to t

It can be shown that this solution is an orthogonal projection of t onto S (⋆)
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Regularised least squares

We introduced the idea of adding a
regularisation term to an error function
in order to control over-fitting

x

t

M = 9

0 1

−1

0

1

The magnitude of the coefficients tends
to explode trying to (over)fit the data

||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M

for
of various order.

ve how the typical mag-
of the coefficients in-
dramatically as the or-

of the polynomial increases.

M = 0 M = 1 M = 6 M = 9

w⋆

0 0.19 0.82 0.31 0.35

w⋆

1 -1.27 7.99 232.37

w⋆

2 -25.43 -5321.83

w⋆

3 17.37 48568.31

w⋆

4 -231639.30

w⋆

5 640042.26

w⋆

6 -1061800.52

w⋆

7 1042400.18

w⋆

8 -557682.99

w⋆

9 125201.43
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Regularised least squares (cont.)

• Add a penalty term to the error function E(w), to discourage the
coefficients from reaching large values

• The simplest such penalty term is the sum of squares
of all of the coefficients, to get a new error function

Ẽ(w) =
1

2

N∑

n=1

(

y(xn,w) − tn

)2

︸ ︷︷ ︸

ED(w)

+λ
1

2
||w||2

︸ ︷︷ ︸

EW (w)

(28)

• where ||w||2 = wTw = w2
0 + w2

1 + · · ·+ w2
M

• Coefficient λ trades off between the regularisation
term and the standard sum-of-squares error
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Regularised least squares (cont.)

• The total error function to be minimised became

ED (w) + λEW (w) (29)

• λ is the regularisation coefficient that controls
the relative importance of the data-dependent
error ED(w) and the regularisation term EW (w)

One of the simplest forms of regulariser is the
sum-of-squares of the weight vector elements

EW (w) =
1

2
wTw (30)
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Regularised least squares (cont.)

Consider the sum-of-squares error function

ED(w) =
1

2

N∑

n=1

(

tn − wTφ(xn)
)2

(31)

then, the total error function becomes

1

2

N∑

n=1

(

tn − wTφ(xn)
)2

+
λ

2
wTw (32)

Remark

This choice of regulariser is known in machine learning as weight decay

• In sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data

In statistics, it provides an example of a parameter shrinkage method

• It tends to shrink the parameter values towards zero
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Regularised least squares (cont.)

For the polynomial example, we developed a Bayesian treatment of the case

• We introduced a prior distribution over the polynomial coefficients w

A Gaussian prior N (x|µ,σ2) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x−µ)TΣ−1(x−µ)

)

• N (w|µ,Σ) = N (w|0,α−1I) =
( α

2π

)(M+1)/2
exp

(

−
α

2
wTw

)

= p(w|α)

With µ = 0 and Σ = α−1I, α is the precision of the prior distribution
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Regularised least squares (cont.)

p(w|α) = N (w|0,α−1I) =
( α

2π

)(M+1)/2
exp

(

−
α

2
wTw

)

p(t|x,w,β) =
N∏

n=1

N
(

tn

∣
∣
∣y(xn,w), β−1

)

Using Bayes’ theorem, the posterior distribution for w is proportional to
the product of the prior distribution and the likelihood function, thus

p(w|x, t,α,β) ∝ p(t|x,w, β)p(w|α)

We determined w by finding its most probable value given the data

• by maximising the posterior distribution

• maximum posterior or MAP
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Regularised least squares (cont.)

By taking the negative log of the posterior distribution over w and combining
with the log likelihood function and prior distribution over w, we found that

• the maximum of the posterior is given by the minimum of

β

2

N∑

n=1

(

y(xn,w)− tn

)2
+

α

2
wTw

Thus, maximising the posterior is equivalent to minimising the regularised
sum-of-squares error function with regularisation λ = α/β

Ẽ(w) =
1

2

N∑

n=1

(y(xn,w) − tn)2 +
λ

2
||w||2

Though we included a prior p(w|α), we are still making point estimates of w
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Regularised least squares (cont.)

1

2

N∑

n=1

(

tn − wTφ(xn)
)2

+
λ

2
wTw

It has the advantage that the error function remains a quadratic function of w

• Its exact minimiser can be found in closed form

We first set the gradient of the total error function with respect to w to zero

• Then, we solve for w to get

w =
(

λI+Φ
T
Φ

)−1
Φ

Tt (33)

This result is an extension of the least-squares solution w =
(

ΦTΦ

)−1
ΦT t
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Regularised least squares (cont.)

A more general regulariser gives a regularised error in the form

1

2

N∑

n=1

(

tn − wTφ(xn)
)2

+
λ

2

M∑

j=1

|wj |
q (34)

where q = 2 corresponds to the classical quadratic regulariser

q = 0.5 q = 1 q = 2 q = 4

Remark

The case of q = 1 is know as the lasso in the statistics literature

• If λ is sufficiently large, some of the coefficients wj are driven to zero

• Sparse model in which the corresponding basis functions play no role
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To see this (⋆), note that minimising Eq. 34 is equivalent to minimising the
conventional, un-regularised, sum-of-squares error subject to the constraint

M∑

j=1

|wj |
q ≤ η (35)

for an appropriate value of parameter η (related, using Lagrange multipliers)

w1

w2

w
⋆

w1

w2

w
⋆

The contours of the unregularised error function (blue)

• The constraint region for the quadratic regulariser (q = 2)

• The constraint region for the lasso regulariser (q = 1)
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Regularised least squares (cont.)

Regularisation allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting effective model complexity

The problem of determining the optimal model complexity is shifted

• from finding the appropriate number of basis functions

• to determining a suitable value of the coefficient λ
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We have only discussed the case of a single target variable t

It happens that in some applications we wish to predict K > 1 target variables

• We denote collectively multivariate targets by the target vector t

The task can be approached by introducing a different set of basis functions
for each component of t, leading to multiple, independent regression problems

• A more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (36)

• y is a K -dimensional column vector

• W is a M × K matrix of parameters

• φ(x) is a M-dimensional column vector with elements φj (x) (φ0(x) = 1)
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Multiple outputs (cont.)

Suppose, the conditional distribution of the target to be an isotropic Gaussian

p(t|x,W,β) = N (t|WTφ(x), β−1I) (37)

If we have a set of observations t1, . . . , tN , we can combine these
into a matrix T of size N × K such that the n-th row is given by tTn

Similarly, we can combine the input vectors x1, . . . , xN into matrix X

The log likelihood function is then given by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(x), β−1I)

=
NK

2
ln
( β

2π

)

−
β

2

N∑

n=1

||tn −WTφ(xn)||2 (38)
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Multiple outputs (cont.)

The minimisation of this function with respect to W gives

WML =
(

Φ
T
Φ

)−1
Φ

T T (39)

For each target variable tk , we have

wk =
(

Φ
T
Φ

)−1
Φ

T tk = Φ
†tk (40)

where tk is a N-dimensional vector with component tnk , for n = 1, . . . ,N

• The solution decouples between different target variables

We need compute a single pseudo-inverse matrix Φ†, shared by all vectors wk
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Multiple outputs (cont.)

The extension to general Gaussian noise distributions
having arbitrary covariance matrices is straightforward (⋆)

Again, this leads to a decoupling into K independent regression problems

This result is unsurprising because:

1 the parameters W define only the mean of the Gaussian noise distribution

2 the maximum likelihood solution for the mean of a
multivariate Gaussian is independent of the covariance


