

Bias-variance decomposition

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Bias-variance decomposition

When we discussed decision theory for regression problems, the decision stage consists of choosing a specific estimate $y(\mathbf{x})$ of the target *t* for each input \mathbf{x}

We can do this using a loss $L(t, y(\mathbf{x}))$, so that the average/expected loss is

$\mathbb{E}[L] = \int \int L(t, y(\mathbf{x})) p(\mathbf{x}, t) d\mathbf{x} dt$

Various loss functions for regression lead to a corresponding optimal prediction

• once we are given the conditional density $p(t|\mathbf{x})$

Bias-variance decomposition (cont.)

Bias-variance decomposition (cont.)

decomposition UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Bias-variance

Bias-variance decomposition

We also obtained: $\mathbb{E}[L] = \int (y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}])^2 p(\mathbf{x}) d\mathbf{x} + \int (\mathbb{E}[t|\mathbf{x}] - t)^2 p(\mathbf{x}) d\mathbf{x}$ • It is minimised when $y(\mathbf{x})$, in the first term, equals $\mathbb{E}[t|\mathbf{x}]$

The second term is independent of $y(\mathbf{x})$, arises from the noise ε

- The variance of the distribution of t, averaged over \mathbf{x}
- It is the intrinsic variability of the target variable
- The minimum achievable value of the expected loss

Bias-variance decomposition (cont.)

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Bias-variance

decomposition

Bias-variance decomposition

A common loss function in regression problems is the squared loss function

$$L(t, y(\mathbf{x})) = (y(\mathbf{x}) - t)^2 \implies \mathbb{E}[L] = \int \int (y(\mathbf{x}) - t)^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

Squared loss function (decision theory) \neq sum-of-squares error function (ML)

Squared loss function $L(t, y(\mathbf{x})) = (y(\mathbf{x}) - t)^{2}$ Optimal prediction h(x) is given by conditional expectation E[t|x]

(1)

$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int t p(t|\mathbf{x}) dt$$

Bias-variance decomposition (cont.)

ATAL-I (CK0146) PR (TIP8311) 2016.2 Bias-variance

decomposition

Bias-variance

decomposition

UFC/DC

The expected squared loss function can be written also in another form

$$\mathbb{E}[L] = \int \left(y(\mathbf{x}) - h(\mathbf{x}) \right)^2 p(\mathbf{x}) d\mathbf{x} + \int \int \left(h(\mathbf{x}) - t \right)^2 p(\mathbf{x}, t) d\mathbf{x} dt \qquad (2)$$

With an infinite supply of data and unlimited computational resources

- we could find the regression function $h(\mathbf{x})$ to any accuracy

In practice, we only have a data set ${\mathcal D}$ with a finite number ${\it N}$ of points

• $h(\mathbf{x})$ is not know exactly

Bias-variance decomposition (cont.)

decomposition UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Bias-variance

Bias-variance decomposition

$$\mathbb{E}_{\mathcal{D}}\Big[\Big(y(\mathbf{x};\mathcal{D})-h(\mathbf{x})\Big)^2\Big] = \Big(\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})]-h(\mathbf{x})\Big)^2 + \mathbb{E}_{\mathcal{D}}\Big[\Big(y(\mathbf{x};\mathcal{D})-\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})]\Big)^2\Big]$$

Expected squared difference between $y(\mathbf{x}; D)$ and the regression function $h(\mathbf{x})$ • when considering only a single input value \mathbf{x}

Substituting in $\mathbb{E}[L] = \int (y(\mathbf{x}) - h(\mathbf{x}))^2 p(\mathbf{x}) d\mathbf{x} + \int \int (h(\mathbf{x}) - t)^2 p(\mathbf{x}, t) d\mathbf{x} dt$

expected loss =
$$(BIAS)^2 + VARIANCE + noise$$
 (6)

$$(\mathsf{BIAS})^2 = \int \left(\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] - h(\mathbf{x}) \right)^2 p(\mathbf{x}) d\mathbf{x}$$
(7)

VARIANCE =
$$\int \mathbb{E}_{\mathcal{D}} \left[\left(y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \right)^2 \right] p(\mathbf{x}) d\mathbf{x}$$
(8)

noise =
$$\int \int (h(\mathbf{x}) - t)^2 p(\mathbf{x}, t) d\mathbf{x} dt$$
 (9)

Bias-variance decomposition (cont.)

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Bias-variance

Bias-variance decomposition

As an example, we consider the usual data from a sinusoidal function

• l = 1, ..., L datasets $\mathcal{D}^{(l)}$, each with N = 25 points, L = 100

• The points of each $\mathcal{D}^{(l)}$ are iid from $h(x) = \sin(2\pi x)$

For each $\mathcal{D}^{(l)}$, we fit a model with 24 Gaussian basis (M = 25 parameters)

- We minimised the regularised error $\frac{1}{2}\sum_{n=1}^{N} \left(t_n \mathbf{w}^T \phi(\mathbf{x}_n)\right)^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$
- The resulting parameter vector is $\mathbf{w}=\left(\lambda\mathbf{I}+\mathbf{\Phi}^{\mathcal{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathcal{T}}\mathbf{t}$
- We use $\mathbf{w}^{(l)}$ to get a predictive function $y^{(l)}$

All this, for different values of the regularisation parameter $\boldsymbol{\lambda}$

Bias-variance decomposition (cont.)

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Bias-variance

We decomposed the expected loss into (integrated) bias, (integrated) variance and a constant noise term, but our goal is the same: We want to minimise it

There is a trade-off between bias and variance:

- flexible models will have low bias and high variance
- rigid models will have high bias and low variance

$$(\mathsf{BIAS})^{2} = \int \left(\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] - h(\mathbf{x}) \right)^{2} p(\mathbf{x}) d\mathbf{x}$$
$$\mathsf{VARIANCE} = \int \mathbb{E}_{\mathcal{D}} \left[\left(y(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] \right)^{2} \right] p(\mathbf{x}) d\mathbf{x}$$

The model with optimal predictive capability is the one with the best balance

Bias-variance decomposition UFC/DC

ATAI-I (CK0146) PR (TIP8311) 2016.2

Bias-variance decomposition

Bias-variance decomposition (cont.)

In this case, averaging many solutions turned out to be a beneficial procedure

$$\overline{y}(x) = \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x) \qquad \rightsquigarrow \mathbb{E}_{\mathcal{D}}[y(x;\mathcal{D})]$$
(10)

The integrated¹ squared bias and the integrated variance are given by

$$(\mathsf{BIAS})^{2} = \frac{1}{N} \sum_{n=1}^{N} \left(\overline{y}(x_{n}) - h(x_{n}) \right)^{2}$$

$$\rightsquigarrow \int \left(\mathbb{E}_{\mathcal{D}}[y(x;\mathcal{D})] - h(x) \right)^{2} p(x) dx \quad (11)$$

$$\mathsf{VARIANCE} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} \left(y^{(l)}(x_{n}) - \overline{y}(x_{n}) \right)^{2}$$

$$\rightsquigarrow \int \mathbb{E}_{\mathcal{D}} \left[\left(y(x;\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(x;\mathcal{D})] \right)^{2} \right] p(x) dx \quad (12)$$

¹Integration over x weighted by the distribution p(x) is approximated by a finite sum over points draw from that distribution

