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Maximum likelihood, or least squares, can lead to severe over-fitting

• if complex models are trained
using data sets of limited size

Limiting the number of basis functions to avoid over-fitting has the side effect
of limiting the flexibility of the model to capture interesting trends in the data

Regularisation terms can control over-fitting for models with many parameters

• How to determine a suitable value
for the regularisation coefficient λ?

Seeking the solution that minimises the regularised error function with respect
to both the weight vector w and the regularisation coefficient λ is clearly not
the right approach since this leads to the unregularised solution with λ = 0
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Bias-variance decomposition (cont.)

Over-fitting is an unfortunate property of maximum likelihood

• It does not arise when we marginalise
over parameters in a Bayesian setting

It is instructive to first consider a frequentist viewpoint of model complexity

• bias-variance trade-off

We introduce the concept only in the context of linear basis function models



Bias-variance
decomposition

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Bias-variance
decomposition

Bias-variance decomposition (cont.)

When we discussed decision theory for regression problems, the decision stage
consists of choosing a specific estimate y(x) of the target t for each input x

We can do this using a loss L
(

t, y(x)
)

, so that the average/expected loss is

E[L] =

∫ ∫

L
(

t, y(x)
)

p(x, t)dxdt

Various loss functions for regression lead to a corresponding optimal prediction

• once we are given the conditional density p(t|x)
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Bias-variance decomposition (cont.)

A common loss function in regression problems is the squared loss function

L(t, y(x)) =
(

y(x)− t
)2

=⇒ E[L] =

∫ ∫ (

y(x) − t
)2

p(x, t)dxdt

Squared loss function (decision theory) ̸= sum-of-squares error function (ML)

Squared loss function

L(t, y(x)) =
(

y(x)−t
)2

• Optimal prediction h(x) is given
by conditional expectation E[t|x]

h(x) = E[t|x] =

∫

tp(t|x)dt (1)
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Bias-variance decomposition (cont.)

We also obtained: E[L] =
∫ (

y(x) − E[t|x]
)2
p(x)dx +

∫ (
E[t|x]− t

)2
p(x)dx

• It is minimised when y(x), in the first term, equals E[t|x]

The second term is independent of y(x), arises from the noise ε

• The variance of the distribution of t, averaged over x

• It is the intrinsic variability of the target variable

• The minimum achievable value of the expected loss
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Bias-variance decomposition (cont.)

The expected squared loss function can be written also in another form

E[L] =

∫ (

y(x)− h(x)
)2

p(x)dx +

∫ ∫ (

h(x) − t
)2

p(x, t)dxdt (2)

With an infinite supply of data and unlimited computational resources

• we could find the regression function h(x) to any accuracy

In practice, we only have a data set D with a finite number N of points

• h(x) is not know exactly
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Bias-variance decomposition (cont.)

If we model h(x) using a parametric function y(x,w) with parameter vector w

• the uncertainty in our model is expressed through
a posterior distribution over w (Bayesian perspective)

A frequentist treatment makes a point estimate of w based on the data set D

• the uncertainty of this estimate is expressed through
a large number of data sets each of size N and
each drawn independently from distribution p(t, x)

For any set D, we learn our algorithm and get a prediction function y(x;D)

• Different data sets, different functions

• Different functions, different values of the squared loss

The performance of a learning algorithm is assessed by averaging over sets
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Bias-variance decomposition (cont.)

E[L] =

∫ (

y(x)− h(x)
)2

p(x)dx +

∫ ∫ (

h(x) − t
)2

p(x, t)dxdt

Consider the integrand of first term of the expected squared loss, it becomes

(

y(x;D)− h(x)
)2

(3)

for a particular data set D and it has to be averaged over the ensemble of sets

Before taking its expectation wrt D, add and subtract quantity ED[y(x;D)]

(

y(x;D)− ED[y(x;D)] + ED[y(x;D)]− h(x)
)2

Bias-variance
decomposition

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Bias-variance
decomposition

Bias-variance decomposition (cont.)

Expanding, we obtain

(

y(x;D)− ED[y(x;D)] + ED[y(x;D)]− h(x)
)2

=
(

y(x;D)− ED[y(x;D)]
)2

+
(

ED[y(x;D)] − h(x)
)2

+ 2
(

y(x;D)− ED[y(x;D)]
)(

ED[y(x;D)]− h(x)
)

(4)

And taking the expectation with respect to D, it gives

ED

[(

y(x;D)−h(x)
)2]

=
(

ED[y(x;D)]−h(x)
)2

+ED

[(

y(x;D)−ED[y(x;D)]
)2]
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Bias-variance decomposition (cont.)

ED

[(

y(x;D)− h(x)
)2]

=
(

ED[y(x;D)]− h(x)
)2

︸ ︷︷ ︸

(bias)2

+

ED

[(

y(x;D)− ED[y(x;D)]
)2]

︸ ︷︷ ︸

variance

(5)

The expected squared difference between y(x;D) and regression
function h(x) can be expressed as the sum of two terms

• The first term, squared bias, represents the extent to which the average
prediction over all data sets differs from the desired regression function

• The second term, variance, measures the extent to which the solutions
for individual data sets vary around their average, and hence measures the
extent to which function y(x;D) is sensitive to the particular data set

We shall provide some intuition to support these definitions
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Bias-variance decomposition (cont.)

ED

[(

y(x;D)−h(x)
)2]

=
(

ED[y(x;D)]−h(x)
)2

+ED

[(

y(x;D)−ED[y(x;D)]
)2]

Expected squared difference between y(x;D) and the regression function h(x)

• when considering only a single input value x

Substituting in E[L] =
∫
(y(x) − h(x))2p(x)dx +

∫ ∫
(h(x) − t)2p(x, t)dxdt

expected loss = (BIAS)2 + VARIANCE+ noise (6)

(BIAS)2 =

∫ (

ED[y(x;D)]− h(x)
)2

p(x)dx (7)

VARIANCE =

∫

ED

[(

y(x;D)− ED[y(x;D)]
)2]

p(x)dx (8)

noise =

∫ ∫ (

h(x) − t
)2

p(x, t)dxdt (9)
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Bias-variance decomposition (cont.)

We decomposed the expected loss into (integrated) bias, (integrated) variance
and a constant noise term, but our goal is the same: We want to minimise it

There is a trade-off between bias and variance:

• flexible models will have low bias and high variance

• rigid models will have high bias and low variance

(BIAS)2 =

∫ (

ED[y(x;D)]− h(x)
)2

p(x)dx

VARIANCE =

∫

ED

[(

y(x;D)− ED[y(x;D)]
)2]

p(x)dx

The model with optimal predictive capability is the one with the best balance
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Bias-variance decomposition (cont.)

Example

As an example, we consider the usual data from a sinusoidal function

• l = 1, . . . , L datasets D(l), each with N = 25 points, L = 100

• The points of each D(l) are iid from h(x) = sin (2πx)

For each D(l), we fit a model with 24 Gaussian basis (M = 25 parameters)

• We minimised the regularised error
1

2

∑N
n=1

(

tn − wTφ(xn)
)2

+
λ

2
wTw

• The resulting parameter vector is w =
(

λI+ΦTΦ

)−1
ΦT

t

• We use w(l) to get a predictive function y (l)

All this, for different values of the regularisation parameter λ
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• Large λ (left), low variance but high bias

• Small λ (right), low bias but high variance
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Bias-variance decomposition (cont.)

In this case, averaging many solutions turned out to be a beneficial procedure

y(x) =
1

L

L∑

l=1

y (l)(x) ! ED[y(x ;D)] (10)

The integrated1 squared bias and the integrated variance are given by

(BIAS)2 =
1

N

N∑

n=1

(

y(xn) − h(xn)
)2

!

∫ (

ED[y(x ;D)] − h(x)
)2

p(x)dx (11)

VARIANCE =
1

N

N∑

n=1

1

L

L∑

l=1

(

y (l)(xn)− y(xn)
)2

!

∫

ED

[(

y(x ;D)− ED[y(x ;D)]
)2]

p(x)dx (12)

1Integration over x weighted by the distribution p(x) is approximated
by a finite sum over points draw from that distribution
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Bias-variance decomposition (cont.)

Plot of squared bias and variance, together with their sum

• Also shown is the average test set error for a test set size of 1000 points

ln λ
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Minimum (BIAS)2 + VARIANCE
occurs around a value lnλ = −0.31

It is close to the value that gives
the minimum error on the test data


