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Bayesian linear regression

In a maximum likelihood approach for setting parameters in a linear model for
regression, we tune effective model complexity, the number of basis functions

• We control it based on the size of the data set

Adding a regularisation term to the log likelihood function means that the
effective model complexity can be controlled by the regularisation coefficient

• The choice of the number and form of the basis functions is still
important in determining the overall behaviour of the model
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Bayesian linear regression (cont.)

This leaves the issue of setting appropriate model complexity for the problem

• It cannot be decided simply by maximising the likelihood function

• This always leads to excessively complex models and over-fitting

Remark

Independent hold-out data can be used to determine model complexity

• This can be both computationally expensive and wasteful of data
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Bayesian linear regression (cont.)

We therefore turn to a Bayesian treatment of linear regression

• Avoids the over-fitting problem of maximum likelihood

• Leads to automatic methods of setting model complexity

We again focus on the case of a single target variable t
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Parameter distribution

The Bayesian treatment of linear regression starts by introducing
a prior probability distribution over the model parameters w1

The likelihood function p(t|w) is the exponential of a quadratic function of w

p(t|w) =
N∏

n=1

N (tn|wTφ(xn), β)

The corresponding conjugate prior is thus a Gaussian distribution of the form

p(w) = N (w|m0,S0) (1)

• Mean m0 and covariance S0

1There also is the noise precision parameter β, we first assume it is a known constant
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Parameter distribution (cont.)

The posterior distribution is ∝ to the product of likelihood function and prior

• Due to the choice of a conjugate prior, the posterior is Gaussian too23

p(w|t) ∝
( N∏

n=1

N (tn|wTφ(xn), β−1)
)

N (w|m0, S0)

∝ exp
(

−
β

2
(t −Φ)T (t −Φ)

)

exp
(

−
1

2
(w −m0)

TS−1
0 (w −m0)

)

The posterior distribution can be thus written directly in the form

p(w|t) = N (w|mN , SN) (2)

mN = SN(S
−1
0 m0 + βΦT t) (3)

S−1
N = S−1

0 − βΦT
Φ (4)

2We derived something similar when discussing Bayes’ theorem for Gaussian variables.
3This distribution is calculated by completing the square in the exponential and finding the

normalisation coefficient using the result for a normalised Gaussian.
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Parameter distribution (cont.)

Because the posterior distribution is Gaussian, mode and mean coincide

• The maximum posterior weight vector is given by wMAP = mN

If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean
mN of the posterior distribution reduces to the maximum likelihood value

wML = (ΦT
Φ)−1

Φ
Tt

Similarly, if N = 0, then again the posterior distribution reverts to the prior
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Parameter distribution (cont.)

Consider a simple form of the Gaussian distribution, zero-mean isotropic

• Only a single precision parameter α characterises it

p(w|α) = N (w|0,α−1I) (5)

The corresponding posterior distribution over w is p(w|t) = N (w|mN ,SN)

mN = βSNΦ
Tt (6)

S−1
N = αI+ βΦT

Φ (7)
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Parameter distribution (cont.)

The log of the posterior distribution is given by the
sum of the log likelihood and the log of the prior

• As a function of w, it takes the form

ln p(w|α) = −
β

2

N∑

n=1

(

tn − wTφ(xn)
)2

−
α

2
wTw + const (8)

Maximisation of this posterior distribution with respect to w is equivalent to

1

2

N∑

n=1

(

tn − wTφ(xn)
)2

+
λ

2
wTw, with λ = α/β

• the minimisation of the sum-of-squares error function

• with the addition of a quadratic regularisation term
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Parameter distribution (cont.)

To illustrate Bayesian learning in a linear basis function model, together with
the sequential update of a posterior distribution, we consider plain line fitting

Consider a single input variable x , a single target variable t and linear model

y(x ,w) = w0 + w1x

We generate a synthetic set of data from function f (x , a) = a0 + a1x

• with a0 = −0.3 and a1 = 0.5

For a selection of input points xn ∼ U(−1,+1), we first evaluate f (xn, a) and
then we add Gaussian noise ε ∼ N (0, 0.22) to get the target values tn

• The goal is to recover the values of a0 and a1 (thru w0 and w1)

• Under the assumption that the variance of the noise is known

β =
( 1

0.2

)2
= 25

• We fix α = 2.0 in the Gaussian prior p(w|α) = N (w|0,α−1I)
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Parameter distribution (cont.)

Because w is bi-dimensional, we can plot the prior and posterior distribution
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Parameter distribution (cont.)

The plain Gaussian is not the only available form of prior over the parameters

• The Gaussian can be generalised

p(w|α) =
(q

2
(α/2)1/q

1

Γ(1/q)

)M
exp

(

−
α

2

M−1∑

j=0

|wj |
q
)

(9)

• It is not a conjugate prior to the likelihood function, unless q = 2

Finding the maximum of the posterior distribution over the parameters
corresponds to the minimisation of a regularised error function

1

2

N∑

n=1

(

tn − wTφ(xn)
)2

+
λ

2

M∑

j=1

|wj |
q
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Predictive distribution

In practice, we are not usually interested in the value of w itself

• We want to predictions of t for new values of x

This requires that we evaluate the predictive distribution defined by

p(t|t,α, β) =
∫

p(t|w, β)p(w|t,α, β)dw (10)

where t is the vector of target values from the training set4

• The conditional distribution of the target is p(t|✁✕
can be omitted

x,w, β)

• The posterior distribution of the weights is p(w|t,α, β)

4We omit the corresponding input vectors X from the rhs of the conditioning to simplify notation
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Predictive distribution (cont.)

Calculating the predictive distribution involves the convolution of Gaussians

p(t|t,α, β) =
∫

p(t|w, β)p(w|t,α, β)dw

• The conditional distribution of the target

p(t|w, β) = p(t|x,w, β) = N (t|y(x,w), β−1) with

{

y(x,w) = φ(x)Tw

β−1

• The posterior distribution of the weights

p(w|t,α, β) = N (w|mN , SN) with

{

mN = SN(S
−1
0 m0 + βΦT t)

S−1
N = S−1

0 − βΦTΦ

The mean of the convolution is the sum of the mean of the two Gaussians,
and the covariance of the convolution is the sum of their covariances
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Predictive distribution (cont.)

Using old results (Eq. 2.115, ⋆), the predictive distribution takes the form

p(t|x, t,α,β) = N (t|mT
Nφ(x), σ

2
N(x)) (11)

where the variance σ2
N (x) if the predictive distribution is

σ2
N (x) =

1

β
+ φ(x)SNφ(x) (12)

• the first term 1/β represents the noise on the data

• the second term reflects uncertainty associated with w

The noise process and the distribution of w are independent Gaussians

• their variances are additive
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Predictive distribution (cont.)

As more points are observed, the posterior distribution becomes narrower ⋆

• As a consequence, it can be shown that σ2
N+1(x) ≤ σ2

N (x)

In the limit N → ∞, second term in σ2
N (x) =

1

β
+ φ(x)SNφ(x) goes to zero

• The variance of the predictive distribution arises solely
from the additive noise governed by the parameter β
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Predictive distribution (cont.)

Illustration of the predictive distribution for Bayesian linear regression

• The sinusoidal data with additive Gaussian noise

Model fitted to data, linear combination of 9 Gaussian basis functions

• Different datasets of different sizes

• N = 1, N = 2, N = 4 and N = 25
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The red curve (one per N) is the mean of the Gaussian predictive distribution

• The red shaded region spans one standard deviation either side the mean
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The predictive uncertainty (the variance) depends on x , it is smallest in the
neighbourhood of the points and it decreases as more points are observed
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Predictive distribution (cont.)

So far, we showed only the point-wise predictive variance as a function of x

In order to gain insight into the covariance between predictions at different
values of x , we can draw samples from the posterior distribution over w

• We have a probabilistic model and we can generate new data
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Predictive distribution (cont.)

Plots of the functions y(x ,w), with sampled ws from the posterior distribution

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

Bayesian linear
regression

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Bayesian linear
regression

Parameter distribution

Predictive distribution

Equivalent kernel

Gaussian processes

Linear regression revisited

Gaussian processes for
regression

Learning the
hyper-parameters

Predictive distribution (cont.)

If both w and β are treated as unknowns, we can introduce a conjugate prior
distribution p(w, β) which will be given by a Gaussian-gamma distribution

• The resulting predictive distribution is a Student’s t-distribution
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Equivalent kernel

The posterior mean solution mN = βSNΦ
T t for the linear basis function

model has an interesting interpretation that sets the stage for kernel methods

Substituting mN = βSNΦ
T t into y(x,w) =

∑M−1
j=0 wjφj (x) = wTφ(x), we get

y(x,mN) = mT
Nφ(x) = βφ(x)TSNΦ

tt =
N∑

n=1

βφ(x)TSNφ(xn)tn (13)

A new expression for the predictive distribution, where S−1
N = S−1

0 − βΦTΦ

• The mean of the predictive distribution at a point x is a
linear combination of the training set target variables tn

y(x,mN) =
N∑

n=1

βφ(x)TSNφ(xn)
︸ ︷︷ ︸

k(x,xn)

tn
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Equivalent kernel (cont.)

The function k(x, x‘) is known as the smoother matrix or equivalent kernel

k(x, x‘) = βφ(x)TSNφ(x‘) (14)

Regression functions that make predictions by taking linear combinations
of the target values tn in the training set are known as linear smoothers

y(x,mN) =
N∑

n=1

k(x, xn)tn (15)

The dependence on the input values xn in the training set are through SN
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Equivalent kernel (cont.)

The kernel functions k(x , x ′) are collected in the smoother matrix

They can be plotted as a function of x ′ for different (3) values of x

Localised around x , so the mean y(x ,mN) of the predictive distribution at x

• is a weighted combination of the target values

• points close to x are given higher weight

Intuitively, local evidence is weighted more strongly that distant evidence
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Equivalent kernel (cont.)

Examples of equivalent kernels k(x , x ′) for x = 0 plotted as a function of x ′

• Polynomial basis functions (left) and sigmoidal basis functions (right)
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k is a localised function of x ′, though the corresponding basis function is not
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Equivalent kernel (cont.)

Further insight into the role of the equivalent kernel can be obtained by
considering the covariance between y(x) and y(x′), which is given5 by

cov
[

y(x), y(x′)
]

= cov
[

φ(x)Tw,wTφ(x′)
]

= φ(x)TSNφ(x
′)

= β−1k(x, x′) (16)

• From the form of the equivalent kernel, we see that the predictive
mean at nearby points will be highly correlated, whereas for more
distant pairs of points the correlation will be smaller

5We used p(w|t) = N (w|mN , SN ) and k(x, x‘) = βφ(x)TSNφ(x‘)
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Equivalent kernel (cont.)

The formulation of linear regression in terms of a kernel
function suggests an alternative approach to regression

Instead of introducing a set of basis functions, which implicitly determines an
equivalent kernel, we can instead define a localised kernel directly and use this
to make predictions for new input vectors x, given the observed training set

Remark

This leads to a practical framework for regression with Gaussian processes
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Equivalent kernel (cont.)

The effective kernel defines the weights by which the training set target
values are combined in order to make a prediction at a new value of x

It can be shown that these weights sum to one, in other words

N∑

n=1

k(x, x′) = 1, ∀x (17)

It can also be shown that the kernel function can be written

k(x, z) = ψ(x)Tψ(z) (18)

This is an inner product with respect to vector
ψ(x) of a set of nonlinear functions, with

ψ(x) = β1/2S1/2
N φ(x)
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Gaussian processes

We applied the concept of duality to a non-probabilistic model for regression

• We extend the role of kernels to probabilistic discriminative models

We considered linear regression models of the form y(x,w) = wTφ(x)

• w is a vector of parameters and φ(x) is a vector of fixed
nonlinear basis functions that depend on the input vector x

• We showed that a prior distribution over w induced a
corresponding prior distribution over functions y(x,w)

Given a training data set, we evaluated the posterior distribution over w

• To obtain a corresponding posterior distribution over regression functions

With noise, it implies a predictive distribution p(t|x) for new inputs x
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Gaussian processes (cont.)

In the Gaussian process viewpoint, we dispense with the parametric model
and instead define a prior probability distribution over functions directly

It is difficult to work with a distribution over the infinite space of functions

• For a finite training set we only need to consider the values of the function
at the discrete set of input values xn corresponding to the training set
and test set data points, and so in practice we can work in a finite space
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Linear regression revisited

To illustrate the Gaussian process viewpoint, we consider linear regression

• We re-derive the predictive distribution

• In terms of distributions over functions y(x,w)

Consider a model defined in terms of a linear combination of M fixed basis
functions given by the elements of the vector φ(x) = (φ0(x), . . . ,φM−1(x))T

y(x) = wTφ(x) (19)

where x is the input vector and w is the M-dimensional weight vector
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Linear regression revisited (cont.)

Consider a prior distribution over w given by an isotropic Gaussian of the form

p(w) = N (w|0,α−1I) (20)

governed by hyperparameter α, precision (inverse variance) of the distribution

• For any given value of w, y(x) = wTφ(x) defines a function of x

The probability distribution over w induces
a probability distribution over functions y(x)

We wish to evaluate this function at specific values of x, say the training data

x1, . . . , xN
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Linear regression revisited (cont.)

We are interested in the joint distribution of function values y(x1), . . . , y(xN ),
which we denote by the vector y with elements yn = y(xn), for n = 1, . . . ,N

From y(x) = wTφ(x), this vector is given by

y = Φw (21)

Φ =

⎛

⎜
⎜
⎜
⎝

φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞

⎟
⎟
⎟
⎠
: Design matrix (Φnk = φk(xn))
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Linear regression revisited (cont.)

We find the probability distribution of y by seeing that y is a linear combo of
Gaussian distributed variables, the elements of w and thus is itself Gaussian

• We need to find its mean and covariance

E[y] = ΦE[w] = 0 (22)

cov[y] = E[yyT ] = ΦE[wwT ]ΦT =
1

α
ΦΦ

T = K (23)

• where K is the Gram matrix with elements

knm = k(xn , xm) =
1

α
φ(xn)Tφ(xm) (24)

This model provides us only with a particular example of a Gaussian process
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Linear regression revisited (cont.)

Remark

• A Gaussian process is a probability distribution over functions y(x) such
that the set of values of y(x) evaluated at an arbitrary set of points {xn}
jointly have a Gaussian distribution
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Linear regression revisited (cont.)

A key point about Gaussian processes is that the joint distribution over the
N variables y1, . . . , yN is specified completely by second-order statistics

• Mean: In most applications, we will not have any prior knowledge
about the mean of y(x) and so by symmetry we take it to be zero

This is equivalent to choosing the mean of the prior over weight
values p(w|α) to be zero in the basis function viewpoint

• Covariance: The specification of the Gaussian process is completed
by giving the covariance of y(x) evaluated at any two values of x

This is given by the kernel function E[y(xn)y(x)m] = k(xn , xm)
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Linear regression revisited (cont.)

For the specific case of a Gaussian process defined by the linear regression
model y(x) = wTφ(x) with a weight prior p(w|α) = N (w|0,α−1I),

• the kernel function is given by knm = k(xn , xm) =
1

α
φ(xn)Tφ(xn)
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Linear regression revisited (cont.)

We can also define the kernel function directly, rather than indirectly

• By-pass the choice of basis functions

• Draw samples of functions from the GP
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Gaussian processes for regression

In order to apply Gaussian process models to the problem of regression,
we need to take account of the noise on the observed target values

tn = yn + εn (25)

where yn = y(xn) and εn is a random noise variable whose
value is chosen independently for each observation n

We consider noise processes that have a Gaussian distribution, so that

p(tn|yn) = N (tn|yn, β−1) (26)

where β is a hyperparameter representing for the precision of the noise
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Gaussian processes for regression (cont.)

Because the noise is independent for each point, the joint distribution of the
target values t = (t1, . . . , tN )T conditioned on the values of y = (y1, . . . , yN)T

is given by an isotropic Gaussian of the form

p(t|y) = N (t|y,β−1IN) (27)

From the definition of Gaussian process, the marginal distribution p(y) is given
by a Gaussian whose mean is zero and whose covariance is a Gram matrix K

p(y) = N (y|0,K) (28)

The kernel function that determines K can be chosen to express the property
that, for points xn and xm that are similar, corresponding values y(xn) and
y(xm) will be more strongly correlated than for dissimilar points
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Gaussian processes for regression (cont.)

In order to find the marginal distribution p(t), conditioned on
the input values x1, . . . , xN , we need to integrate p(t|y) over y

p(t) =

∫

p(t|y)p(y)dy = N (t|0,C) (29)

where the covariance matrix C has elements

C(xn, xm) = k(xn , xm) + β−1δnm (30)

• δnm is a Kronecker delta (1 iff n = m, 0 otherwise)

The covariance matrix C reflects the fact that the two Gaussian sources
of randomness (one associated with y(x) and one to ε) are independent

• their covariances (K and β−1I) simply add



Bayesian linear
regression

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Bayesian linear
regression

Parameter distribution

Predictive distribution

Equivalent kernel

Gaussian processes

Linear regression revisited

Gaussian processes for
regression

Learning the
hyper-parameters

Gaussian processes for regression (cont.)

One widely used kernel function for Gaussian processes is the exponential
of a quadratic form with the addition of constant and linear terms to give

k(xn , xm) = θ0 exp
(

−
θ1

2
||xn − xm||2

)

+ θ2 + θ3x
T
n xm (31)

The term involving θ3 corresponds to a parametric
model that is a linear function of the input variables.
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Gaussian processes for regression (cont.)

From a GP prior with covariance function k(xn, xm), we can sample functions
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Gaussian processes for regression (cont.)

A sampled function (blue line) drawn from the Gaussian process prior over
functions is evaluated at a set of points {xn} to give points {yn} (red dots)

x

t

−1 0 1
−3

0

3

The corresponding values of {tn}
(green dots) are obtained by adding
independent Gaussian noise to each
point in {yn}
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Gaussian processes for regression (cont.)

Our goal in regression is to make predictions of target variables for new inputs

• given a set of training data

Let us suppose that tN = (t1, . . . , tN )T for input values x1, . . . , xN , comprise
the observed training data set and our goal is to predict the variable tN+1

• for a new input vector xN+1

This requires that we evaluate the predictive distribution p(tN+1|tN)

• This distribution is conditioned also on the variables x1, . . . , xN and xN+1
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Gaussian processes for regression (cont.)

To find the conditional distribution p(tN+1|tN ), we begin by writing down the
joint distribution p(tN+1), tN+1 is the vector tN+1 = (t1, . . . , tN , tN+1)T

We then apply results from the Gaussian distribution to obtain the conditional

t1

t2

m(x2)

−1 0 1

−1

0

1 One training t1 and one test point t2

• Contours of the joint
distribution p(t1, t2)

We condition on (fix) the value of t1

• We obtain p(t2|t1)

The conditional distribution p(tN+1|t) will also be a Gaussian distribution
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Gaussian processes for regression (cont.)

From p(t) =
∫

p(t|y)p(y)dy, the joint distribution over t1, . . . , tN+1 is

p(tN+1) = N (tN+1|0,CN+1) (32)

where CN+1 is a (N + 1)× (N + 1) covariance matrix with elements given by

C(xn, xm) = k(xn , xm) + β−1δnm

Because this joint distribution is Gaussian, we can apply the results from the
Gaussian distribution to characterise this conditional Gaussian distribution
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Gaussian processes for regression (cont.)

Remembering that when two sets of variables are jointly Gaussian
also the conditional distribution of one set conditioned is Gaussian

For an arbitrary vector x with Gaussian distribution N (x|µ,Σ)

• We first partitioned x into two disjoint subsets xa and xb

x =

(
xa
xb

)

• We partitioned mean vector µ and covariance matrix Σ

µ =

(
µa

µb

)

Σ =

(
Σaa Σab

Σba Σbb

)

From these, we obtained the expressions for the mean and covariance of the
conditional distribution p(xa|xb) in terms of the partitioned covariance matrix

µa|b = µa +ΣabΣ
−1
bb (xb − µb)

Σa|b = Σaa −ΣabΣ
−1
bb Σba
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Gaussian processes for regression

We first partition the covariance matrix of the joint distribution

CN+1 =

(
CN k
kT c

)

(33)

• CN is a N × N covariance matrix with elements given by

C(xn, xm) = k(xn , xm) + β−1δnm , with n,m = 1, . . . ,N

• Vector k has elements k(xn, xN+1) for n = 1, . . . ,N

• Scalar c = k(xN+1 , xN+1) + β−1
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Gaussian processes for regression (cont.)

Using expressions from the conditional Gaussian distribution on p(tn|t) yields

m(xN+1) = kTC−1
N t (34)

σ2(xN+1) = c − kTC−1
N k (35)

Because vector k is a function of test point input value xN+1, the predictive
distribution is a Gaussian whose mean and variance both depend on xN+1
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Gaussian processes for regression (cont.)

Illustration of Gaussian process regression applied to the sinusoidal data set

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Three right-most points were omitted

Green curve: The sine function from
which data points (blue) are obtained
by sampling and adding Gaussian noise

Red line: The mean of the Gaussian
process predictive distribution

• ± two standard deviations

Note how the uncertainty increases in the region to the right of the data points
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Gaussian processes for regression (cont.)

The only restriction on the kernel function is that the covariance
matrix C(xn, xm) = k(xn, xm) + β−1δnm must be positive definite

• If λi is an eigenvalue of K, then the
associated eigenvalue of C will be λi + β−1

It is therefore sufficient that the kernel matrix k(xn , xm) be positive
semidefinite for any pair of points xn and xm, so that λi ≥ 0

• any eigenvalue λi that is zero will still give rise
to a positive eigenvalue for C because β > 0

This is the same restriction on the kernel function discussed earlier

• We can exploit all of the techniques to construct suitable kernels
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Gaussian processes for regression (cont.)

Mean m(xN+1) = kTC−1
N t of the predictive distribution is a function of xN+1

m(xN+1) =
N∑

n=1

ank(xN , xN+1), an is the n-th component of C−1
N t (36)

For a kernel function k(xn , xm) depends only on the distance
||xn − xm||, we obtain an expansion in radial basis functions
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Gaussian processes for regression (cont.)

m(xN+1) = kTC−1
N t

σ2(xN+1) = c − kTC−1
N t

The results above define the predictive distribution for Gaussian
process for regression with an arbitrary kernel function k(xn , xm)

In the particular case in which the kernel function k(xn , xm) is defined in terms
of a finite set of basis functions, we can derive the results for linear regression

• from a Gaussian process view point (⋆)

For such models, we can therefore obtain the predictive distribution either

• by taking a parameter space viewpoint and using linear regression results

• by taking a function space viewpoint and using the GP model result
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Gaussian processes for regression (cont.)

The central computational operation in GP is the inversion of a N ×N matrix

• Standard methods require O(N3) computations

In the basis function model, we have to invert a matrix SN of size M ×M

• O(M3) computational complexity

For both, matrix inversion must be performed once for the given training set

Remark

For each new test point, both require a vector-matrix multiply, which has cost
O(N2) for Gaussian process models and O(M2) for linear basis models

If the number M of basis functions is smaller than the number N of points,
it is computationally more efficient to work in the basis function framework
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Learning the hyper-parameters

Predictions of a GP model depends partly on the choice of covariance function

In practice, rather than fixing the covariance function, we may prefer to use a
parametric family of functions and then infer the parameter values from data

These parameters govern such things as length scale of correlations and the
precision of noise, they are hyper-parameters in a standard parametric model
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Learning the hyper-parameters (cont.)

Remark

Techniques for learning the hyper-parameters are based on the evaluation of
the likelihood function p(t|Θ) where Θ are the hyper-parameters of the GP

The simplest approach is to make a point estimate of Θ by maximising the
log likelihood function (e.g., by gradient-based optimisation algorithms as CG)
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Learning the hyper-parameters (cont.)

The log likelihood function for a Gaussian process regression model is
evaluated using the standard form for a multivariate Gaussian distro

ln p(t|Θ) = −
1

2
Tr|CN |−

1

2
tTC−1

N t−
N

2
ln (2π) (37)

For nonlinear optimisation, we also need the gradient of the log
likelihood function with respect to the parameter vector Θ

∂ln p(t|Θ)

∂θi
= −

1

2
Tr
(

C−1
N

∂CN

∂θi

)

+
1

2
tTC−1

N

∂CN

∂θi
C−1
N t (38)

In general, ln p(t|Θ) is a non-convex function, it might have multiple maxima
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Learning the hyper-parameters (cont.)

Optionally, we could introduce a prior over Θ and maximise the log posterior

• Again, by using gradient-based methods

Remark

In a fully Bayesian treatment, we would need to evaluate marginals over Θ
weighted by the product of the prior p(Θ) and the likelihood function p(t|Θ)

• In general, however, exact marginalisation will be intractable

• We must resort to approximations
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Learning the hyper-parameters (cont.)

The Gaussian process regression model gives a predictive distribution
whose mean and variance are functions of the input vector x

However, we have assumed that the contribution to the predictive variance
arising from the additive noise, governed by the parameter β, is a constant

For hetero-scedastic problems, the noise variance itself will also depend on x

To model this, we can extend the Gaussian process framework by introducing
a second Gaussian process to represent the dependence of β on the input x


