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Linear models for classification

A class of regression models with simple analytical/computational properties

• The analogous class of models for solving classification problems

Remark

The goal in
classification

• Take a D-dimensional input vector x

• Assign it to one of K discrete
classes Ck , k = 1, . . . ,K

In the most common scenario, the classes are taken to be disjoint

• each input is assigned to one and only one class

Remark

The input space is divided
into decision regions

The boundaries of the decision regions

• decision boundaries

• decision surfaces
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Linear models for classification (cont.)

With linear models for classification, the decision surfaces are linear functions

• These decision surfaces are linear functions of the input vector x

• (D − 1)-dimensional hyperplanes, in the D-dimensional input space

Classes that can be separated well by linear surfaces are linearly separable
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Linear models for classification (cont.)

For regression problems, the target variable t was a vector of real numbers

• In classification, there are various ways of representing class labels

Two-class problems:
Binary representation

There is a single target variable t ∈ {0, 1}

• t = 1 represents class C1

• t = 0 represents class C2

It is the probability of class C1, with the
probability only taking values of 0 and 1

Multi-class problems:
1-of-K coding scheme

There is a K -long target vector t, such that

• If the class is Cj , all elements tk of t
are zero for k ̸= j and one for k = j

• tk is the probability that the class is Ck

K = 6 and Ck = 4, then t = (0, 0, 0, 1, 0, 0)T
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Linear models for classification (cont.)

The simplest approach to classification problems is through construction of a
discriminant function that directly assigns each vector x to a specific class

More powerful is to model the conditional probability distribution p(Ck |x)
in an inference stage, and use this distribution to make optimal decisions

• Discriminative modelling: p(Ck |x) can be modelled directly, using a
parametric model and optimising the parameters using a training set

• Generative modelling: We model the class-conditional densities p(x|Ck)
and the prior probabilities p(Ck ) for the classes, and we compute the
posterior probabilities using Bayes’ theorem

p(Ck |x) =
p(x|Ck )p(Ck )

p(x)
(1)
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Discriminant functions

We start with the construction of classifiers based on discriminant functions

In linear regression models

• The model prediction y(x,w) is a linear function of parameters w

• In the simplest case, the model is also linear in the inputs

y(x) = wT x+ w0, with y a real number

In classification problems, we would want to predict discrete class labels

• More generally, posterior probabilities that are in (0, 1)

We can achieve this with a generalisation of the linear regression model

y(x) = f (wT x+ w0) (2)

We transform the linear function of w using a nonlinear function f (·)
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Discriminant functions (cont.)

y(x) = f (wT x+ w0)

Function f (·) is the activation function and its inverse is the link function

Decision surfaces correspond to y(x) = constant so wT x+ w0 = constant

• Decision surfaces are linear functions of x, even if f (·) is nonlinear

Remark

This is the class of models known as generalised linear models

• They are not linear in the parameters, because of f (·)

• More complex analytical and computational properties

Discriminant
functions

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Discriminant functions

Two classes

Multiple classes

Least squares for
classification

Fisher’s linear discriminant

Relation to least squares

Fisher’s discriminant for
multiple classes

The perceptron

Outline

1 Discriminant functions
Two classes
Multiple classes
Least squares for classification
Fisher’s linear discriminant
Relation to least squares
Fisher’s discriminant for multiple classes
The perceptron

Discriminant
functions

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Discriminant functions

Two classes

Multiple classes

Least squares for
classification

Fisher’s linear discriminant

Relation to least squares

Fisher’s discriminant for
multiple classes

The perceptron

Two classes
Discriminant functions

Discriminant
functions

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Discriminant functions

Two classes

Multiple classes

Least squares for
classification

Fisher’s linear discriminant

Relation to least squares

Fisher’s discriminant for
multiple classes

The perceptron

Two classes

A simple linear discriminant function is a linear function of the input vector x

y(x) = wT x+ w0 (3)

• w is the weight vector

• w0 is a bias term

• −w0 is a threshold

An input vector x is assigned to class C1 if y(x) ≥ 0 and to class C2 otherwise

The corresponding decision boundary is defined by the relationship y(x) = 0

• (D − 1)-dimensional hyperplane within the D-dimensional input space
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Two classes (cont.)

Consider two points xA and xB on the decision boundary

{

y(xA) = wT xA = 0

y(xB ) = wT xB = 0
−→ wT (xA − xB ) = 0 −→ w ⊥ (xA − xB)

Vector w is orthogonal to every vector in the boundary

• w sets the orientation of the boundary

If x is a point of the decision surface, y(x) = 0 and wT x = −w0 and

wT x

||w||
= −

w0

||w||
(4)

which is the normal distance from the origin to the decision surface

• w0 sets the location of the decision boundary
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Two classes (cont.)

The value of y(x) gives a signed measure of perpendicular distance too

• The distance from the point x to the decision surface

Let x be any point and x⊥ its
orthogonal projection onto
the boundary

x = x⊥ + r
w

||w||
(5)

Multiplying both sides by wT and
adding w0 with y(x) = wT x+ w0

and y(x⊥) = wT x⊥ + w0 = 0,
we obtain

r =
y(x)

||w||
(6)

x2

x1

w

x

y(x)
∥w∥

x⊥

−w0

∥w∥

y = 0

y < 0

y > 0

R2

R1
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Two classes (cont.)

As with linear models for regression, it is sometimes convenient to use a more
compact notation and introduce an additional dummy input value x0 = 1

• We define w̃ = (w0,w) and x̃ = (x0, x), so that

y(x) = w̃T x̃ (7)

Remark

The decision surface is a now a D-dimensional hyperplane passing
through the origin of the (D + 1)-dimensional expanded input space
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Multiple classes

Now consider the extension of linear discriminants to the case of K > 2 classes

Consider the use of K − 1 classifiers, each of which solves a two-class problem

• Separate points in class Ck from points not in Ck
• It is a one-versus-the-rest classifier

R1

R2

R3

?

C1

not C1

C2

not C2

This approach leads to regions of the input
space that are ambiguously classified

• By definition, the green area cannot
be classified as both C1 and C2
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Multiple classes (cont.)

Consider K(K − 1)/2 classifiers, one for every possible pair of classes

• Separate points in class Ck from points in Cj ̸=k , with j = 1, . . . ,K

• It is a one-versus-one classifier

• Majority voting classifies them

R1

R2

R3

?C1

C2

C1

C3

C2

C3

Also this approach leads to
regions of the input space that
are ambiguously classified
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Multiple classes (cont.)

We can avoid these difficulties by considering a single K -class discriminant

• with K linear functions of the form

yk(x) = wT
k x+ wk0 (8)

A point x is then assigned to class Ck , if yk(x) > yj(x), for all j ̸= k

• The boundary between class Ck and class Cj is yk(x) = yj(x) or

(wk − wj )
T x+ (wk0 − wj0) = 0 (9)

• A (D − 1)-dimensional hyperplane

It has the same form of the decision boundary for the two-classes case
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Multiple classes (cont.)

The decision regions from such a discriminant are singly connected and convex

Ri

Rj

Rk

xA

xB

x̂

Consider two point xA and xB in region Rk

• Any point x̂ on the segment between
them can be expressed as a their convex
combination

x̂ = λxA + (1 − λ)xB , λ ∈ [0, 1] (10)

Because of the linearity of the discriminant
function

yk(x̂) = λyk(xA) + (1− λ)yk(xB ) (11)

Because xA and xB are in Rk , we have yk(xA) > yj(xA) and yk(xB ) > yj (xB ),
for all j ̸= k, and hence yk(x̂) > yj(x̂) so x̃ also lies within the region Rk
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Least squares for classification

In regression, models that are linear functions of the parameters
could be solved for the parameters using a simple closed-form

• Minimisation of the sum-of-squares error function

Question is, would this work also for classification problems?

• We consider a classification problem with K classes,
using a 1-of-K binary encoding for the target vector t

Remark

One justification is ‘least squares approximates the conditional
expectation E[t|x] on the target values given the input vector’

• Here, a vector of posterior class probabilities

These probabilities happen to be very approximated poorly

• They can take values outside (0, 1)
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Least squares for classification (cont.)

Each class Ck is described by its own linear model in the form

yk(x) = wT
k x+ wk0, k = 1, . . . ,K (12)

The K models can be grouped using vector notation to obtain

y(x) = W̃T x̃ (13)

• W̃ is a matrix whose k-th column comprises
the (D + 1)-dimensional vector w̃k = (wk0,wT

k )T

• x̃ is the corresponding augmented input vector
(1, xT )T with the dummy input x0 = 1

A new input x is assigned to the class for which yk = w̃T
k x̃ is largest

By minimising the sum-of-squares error function, get the parameter matrix W̃
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Least squares for classification (cont.)

Consider a training data set {xn, tn}Nn=1 and define matrix T and matrix X̃

• The n-th column of T is vector tTn
• The n-th row of X̃ is vector x̃Tn

The sum-of-squares error function can be then written as

ED (X̃) =
1

2
Tr

(

(X̃W̃ − T)T (X̃W̃ − T)
)

(14)

By setting to zero the derivative of ED (W̃) wrt W̃ and rearranging

W̃ = (X̃T X̃)−1X̃TT = X̃†T (15)

where X̃† is the Moore-Penrose pseudo-inverse of the matrix X̃

The discriminant function is

y(x) = W̃T x̃ = TT (X̃†)T x̃ (16)
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Least squares for classification (cont.)

Property of least-squares solutions with multiple target variables

• If every target vector in the training set satisfies some linear constraint

aT tn + b = 0, for some constants a and b (17)

• then, model prediction for any value of x satisfies the same constraint

aTy(x) + b = 0 (18)

Using 1-of-K coding for K classes, the elements of the predictions y(x) will
sum to one for any value of x, though cannot be interpreted as probabilities

• the elements of y(x) are not constrained to be in (0, 1)

It gives an exact closed-form solution for the discriminant function parameters

Discriminant
functions

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Discriminant functions

Two classes

Multiple classes

Least squares for
classification

Fisher’s linear discriminant

Relation to least squares

Fisher’s discriminant for
multiple classes

The perceptron

Least squares for classification (cont.)

• More worrying is that least-squares solutions lack of robustness to outliers

• Outliers lead to large changes in the location of the decision boundary
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A synthetic set from two classes in a two-dimensional space (x1, x2)

• The magenta line is the decision boundary from least squares
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Least squares for classification (cont.)

A synthetic set from three classes in a two-dimensional input space (x1, x2)

• Linear decision boundaries can give excellent separation between classes
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Least squares corresponds to maximum likelihood under the assumption of a
Gaussian conditional distribution, and binary target vectors are not Gaussian
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Fisher’s linear discriminant

We view linear classification from the viewpoint of dimensionality reduction

Consider the two-classes case

We project the D-dimensional
input vector x down onto 1D

y = wT x (19)

For classification, we place
a threshold on y

• y ≥ −w0 −→ C1

• otherwise, −→ C2

Projection onto 1D leads to a considerable loss of information, in general

• Classes that are well separated in the original space
may become strongly overlapping in one dimension

Nevertheless, we can always adjust the components of the weight vector w
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Fisher’s linear discriminant (cont.)

The basic idea: Set w so that the projection maximises class separation

Consider a two-class problem

• N1 points of class C1

• N2 points of class C2

The mean vectors of the two classes

m1 =
1

N1

∑

n∈C1

xn

(20)

m2 =
1

N2

∑

n∈C2

xn

We need a measure of the separation of the classes, after projection onto w

An intuitive measure is separation
of projected class means

m2−m1 = wT (m2−m1) (21)

mk = wTmk (22)

mk : mean of projected Ck data
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Fisher’s linear discriminant (cont.)

m2 −m1 = wT (m2 −m1)

Pseudocode

This expression can be made arbitrarily large by increasing the magnitude of w

1 Constrain w to unit-length,
∑

i w
2
i = 1

2 Use Lagrange multipliers for the constrained maximisation

3 Find the solution, w ∝ (m2 −m1) (⋆1)

The optimal projection is along the line joining the original class means

1L = wT (m2 − m1) + λ(wTw − 1), then ∇L = m2 − m1 + 2λw = 0 to get
w = 1/(2λ)(m2 − m1)
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Fisher’s linear discriminant (cont.)

Projection onto the line
joining the class means

• Good separation in the
original 2D space

• Considerable class overlap
in the projection 1D space
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Fisher’s linear discriminant (cont.)

Fisher’s idea is to maximise a function that gives

• Large separation between projected class means

• Small variance within each projected class

Or, find a direction that minimises class overlap

The projection y = wT x transforms labelled points in x into a labelled set in y

The within-class variance
of the projected data s2k =

∑

n∈Ck

(yn −mk)
2 (23)

The total within-class variance
for the whole data (two-classes) s21 + s22 (24)

The between-class variance (m2 −m1)
2 (25)
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Fisher’s linear discriminant (cont.)

Definition

Fisher’s criterion: The ratio of between-class and within-class variance

J(w) =
(m2 −m1)2

s21 + s22
(26)

To make the dependence on w explicit2, we can write the Fisher’s criterion as

J(w) =
wTSBw

wTSWw
(27)

• SB is the between-class covariance matrix

SB = (m2 −m1)(m2 −m1)
T (28)

• SW is the total within-class covariance matrix

SW =
∑

n∈C1

(xn −m1)(xn −m1)
T +

∑

n∈C2

(xn −m2)(xn −m2)
T (29)

2J(w) =
wT (m1 − m2)(m1 − m2)

Tw

wT (SW1
+ SW2

)w
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Fisher’s linear discriminant (cont.)

After differentiating with respect to w3, we get that J(w) is maximised when

(wTSBw)SWw = (wTSWw)SBw (30)

The between-class covariance matrix shows that SBw is always in the direction
of (m2 −m1)4 and we can drop the scalar factors (wTSBw) and (wTSWw)5

Multiplying both sides of (wTSBw)SWw = (wTSWw)SBw by S−1
W , we obtain

w ∝ S−1
W (m2 −m1) (31)

3 ∂

∂w

( wTSBw

wT SW w

)

=
2

(wTSW w)2

[

(wTSW w)SBw − (wT SBw)SWw
]

4(m1 − m2)w is a scalar.

5We are not interested in the magnitude of w, only its direction.

Discriminant
functions

UFC/DC
ATAI-I (CK0146)
PR (TIP8311)

2016.2

Discriminant functions

Two classes

Multiple classes

Least squares for
classification

Fisher’s linear discriminant

Relation to least squares

Fisher’s discriminant for
multiple classes

The perceptron

Fisher’s linear discriminant (cont.)

This is the Fisher’s linear discriminant, although it is not a discriminant

To construct a discriminant and classify point x, we must define a threshold y0

• If y(x) ≥ y0 → C1

• If y(x) < y0 → C2
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Projection based on the
Fisher linear discriminant
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Relation to least squares

The least-squares approach to determining a linear discriminant is motivated
by making model predictions as close as possible to a set of target values

Fisher criterion pursues maximum class separation in the output space

Is there a relation between these two approaches?

• For the two-class problem, Fisher’s criterion
is a special case of least squares

• Fisher’s solution can be equivalent to the
least square solution for the weight

• We need to adopt a slightly different coding
scheme for the target variables
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Relation to least squares (cont.)

Consider a total number of patterns N

Let N1 be the number of patterns in class C1

• We take the target for class C1 to be N/N1

Let N2 be the number of patterns in class C2

• We take the target for class C2 to be −N/N2

The target value for class C1 approximates the
reciprocal of the prior probability for the class
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Relation to least squares (cont.)

We write the sum-of-squares error function

E(w,w0) =
1

2

N∑

n=1

[

(wT xn + w0)
︸ ︷︷ ︸

yn

−tn

]2
(32)

We set derivatives wrt w0 and w to zero

N∑

n=1

(wT xn + w0 − tn) = 0 (33)

N∑

n=1

(wT xn + w0 − tn)xn = 0 (34)
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Relation to least squares (cont.)

From
∑N

n=1 [(w
T xn + w0)− tn] = 0 and using the target scheme encoding

• The bias is given by
w0 = −wTm (35)

• where we have used

N∑

n=1

tn = N1
N

N1
− N2

N

N2
= 0 (36)

m =
1

N

N∑

n=1

xn =
1

N
(N1m1 + N2m2) (37)

m is the mean of the total data set
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Relation to least squares (cont.)

Using the target encoding, from
∑N

n=1 [(w
T xn + w0)− tn]xn = 0 we get

(

SW +
N1N2

N
SB

)

w = N(m1 −m2) (38)

• with SW =
∑

n∈C1
(xn −m1)(xn −m1)T +

∑

n∈C2
(xn −m2)(xn −m2)T

• with SB = (m2 −m1)(m2 −m1)T

• with w0 = −wTm

SB = (m2 −m1)(m2 −m1)T shows that SBw is in the direction of m2 −m1

w ∝ S−1
W (m2 −m1) (39)
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Relation to least squares (cont.)

The weight vector w coincides with what found from the Fisher’s criterion

• Vector x with y(x) = wT (x−m) > 0 is classified as belonging to class C1

• Vector x with y(x) = wT (x−m) ≤ 0 is classified as belonging to class C2
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Fisher’s discriminant for multiple classes

We consider a generalisation of the Fisher discriminant to K > 2 classes

• Assumption: Input dimensionality D is greater than class number K

We firstly introduce D′ > 1 linear features yk = wT
k x with k = 1, . . . ,D′

y = WT x (40)

• with y grouping {yk}

• with W grouping {wk}

We are not including any bias parameter term in the definition of y
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Fisher’s discriminant for multiple classes (cont.)

Generalise the within-class covariance matrix to K classes, Nk cases per class

SW =
K∑

k=1

Sk (41)

•

Sk =
∑

n∈Ck

(xn −mk)(xn −mk)
T (42)

•

mk =
1

Nk

∑

n∈Ck

xn (43)
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Fisher’s discriminant for multiple classes (cont.)

Define the generalisation of the between-class covariance matrix to K classes

Consider first the total covariance matrix

ST =
N∑

n=1

(xn −m)(xn −m)T (44)

N =
∑

k Nk is the total number of points

m =
1

N

N∑

n=1

xn (45)

m above is the mean of the total data set
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Fisher’s discriminant for multiple classes (cont.)

Total covariance matrix can be decomposed into the sum of
within-class covariance matrix SW plus an additional matrix SB

ST = SW + SB (46)

We identify SB as a measure of between-class covariance

SB =
K∑

k=1

Nk(mk −m)(mk −m)T (47)

Covariance matrices SW and SB are defined in the original x-space
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We define similar matrices in the projected D′-dimensional y-space

SW =
K∑

k=1

∑

n∈Ck

(yn − µk)(yn − µk)
T (48)

SB =
K∑

k=1

Nk(µk − µ)(µk − µ)T (49)

Where the mean vectors µk and µ have been defined as always

µk =
1

Nk

∑

n∈Ck

yn µ =
1

N

N∑

k=1

Nkµk (50)
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Fisher’s discriminant for multiple classes (cont.)

Construct a scalar that is large when the between-class covariance is large and
also when the within-class covariance is small, there are many possible choices

J(W) = Tr(S−1
W SB) (51)

This criterion can be written as an explicit function of the projection matrix W

J(W) = Tr
(

(WSWWT )−1(WSBW
T )

)

(52)

The maximisation is given in the literature and involved, it leads to weights
given by the eigenvectors of S−1

W SB associated to its D′ largest eigenvalues
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The perceptron

Another example of a linear discriminant model is Rosenblatt’s perceptron

• It occupies an important place in the history of pattern recognition

It corresponds to a two-class model in which the input vector x is transformed
first by using a fixed nonlinear transformation, to give a feature vector φ(x)

The feature vector is used to construct a generalised linear model of the form

y(x) = f (wTφ(x)) (53)

The nonlinear activation function f (·) is given by a step function

f (a) =

{

+1, a ≥ 0

−1, a < 0
(54)

The feature vector φ(x) includes a bias component φ0(x) = 1

Convenient to use target values t = +1 for class C1 and t = −1 for class C2

• To match the behaviour of the activation function
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The perceptron (cont.)

The determination of w can be motivated by error function minimisation

• A natural choice of error function is total number of misclassified patterns

This does not lead to a simple algorithm because the error is a piecewise
constant function of w, with discontinuities wherever a change in w
causes the decision boundary to move across one of the data points

• Methods based on changing w using the gradient of the error function
cannot then be applied, because the gradient is zero almost everywhere

We consider an alternative error function, known as the perceptron criterion
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The perceptron (cont.)

y(wTφ(xn)) =

{

+1, wTφ(xn) ≥ 0

−1, wTφ(xn) < 0

We are seeking a weight vector w such that

• patterns xn in class C1 (t = +1) will have wTφ(xn) > 0

• patterns xn in class C2 (t = −1) will have wTφ(xn) < 0

We want all patterns satisfy wTφ(xn)tn > 0

The criterion associates zero error with a correctly classified pattern, whereas
for a misclassified patter xn it tries to minimise quantity −wTφ(xn)tn

EP (w) = −
∑

n∈M

wTφntn (55)

where φn = φ(xn) and M denotes the set of misclassified patters
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The perceptron (cont.)

EP (w) = −
∑

n∈M

wTφntn

Misclassified patterns contribute to the error with a linear function of w

We can apply a stochastic gradient algorithm to this error function

w(τ+1) = w(τ) − η∇EP (w) = w(τ) + ηφntn (56)

It changes the weight vector using a learning rate η at each step τ
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The perceptron (cont.)

Pseudocode

1 We cycle through the training patterns

2 We evaluate the perceptron function

3 If the pattern is correctly classified, the weights remain unchanged

4 If the pattern is wrongly classified, then
• For class C1, we add vector φ(x) to current w
• For class C2, we subtract vector φ(x) from current w
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The perceptron (cont.)
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The perceptron (cont.)

Remark

Issues with convergence, as a substantial number of iterations is required
and more worryingly guaranteed only for linearly separable classes

Issue with generalisation to more than two classes problems


