UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative

Continuous inputs Maximum likelihood

Probabilistic generative models

Linear models for classification

Francesco Corona

Probabilistic generative models

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative models

Continuous inputs Maximum likelihood

Probabilistic discriminative models

Models with linear decision boundaries arise from assumptions about the data In the generative approach to classification, we firstly model the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$ and the class priors $p(\mathcal{C}_k)$, then

• we compute posterior probabilities $p(C_k|\mathbf{x})$ through Bayes' theorem

Probabilistic enerative models

UFC/DC ATAI-I (CK0146) PR (TIP8311)

Probabilistic generati nodels

Continuous inputs
Maximum likelihood

Probabilistic generative models

Probabilistic generative models

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative models

Continuous inputs

Maximum likelihood
solution

Probabilistic discriminative models (cont.)

Remark

For the two-class problem, the posterior probability of class \mathcal{C}_1 is

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{\underbrace{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}_{p(\mathbf{x}) = \sum_k p(\mathbf{x},C_k) = \sum_k p(\mathbf{x}|C_k)p(C_k)}} = \frac{1}{1 + \exp(-a)} = \sigma(a) \qquad (1)$$

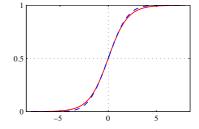
where we defined

$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
 (2)

 $\sigma(a)$ is the logistic sigmoid function (plotted in red)

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$
 (3)

or squashing function, because it maps $\mathbb R$ onto a finite interval



UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative

Continuous inputs

Maximum likelihood

Probabilistic discriminative models (cont.)

The logistic sigmoid satisfies the following symmetry property

$$\sigma(-a) = 1 - \sigma(a) \tag{4}$$

The inverse of the logistic sigmoid is known as logit function

$$a = \ln\left(\frac{\sigma}{1 - \sigma}\right) \tag{5}$$

It reflects the log of the ratio of probabilities for two classes

$$\ln \left(p(\mathcal{C}_1|\mathbf{x})/p(\mathcal{C}_2|\mathbf{x}) \right)$$

Probabilistic generative models

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generativ models

Continuous inputs Maximum likelihood

Probabilistic discriminative models (cont.)

For the case K > 2 classes, we have

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_{j=1}^K p(\mathbf{x}|C_j)p(C_j)} = \frac{\exp(a_k)}{\sum_{j=1}^K \exp(a_j)}$$
(6)

known as normalised exponential¹

We have defined the quantity a_k as

$$a_k = \ln \left(p(\mathbf{x}|\mathcal{C}_k) p(\mathcal{C}_k) \right) \tag{7}$$

$$\text{If } a_k >> a_j, \text{ for all } j \neq k, \text{ then } \begin{cases} \rho(\mathcal{C}_k | \mathbf{x}) & \simeq 1 \\ \rho(\mathcal{C}_j | \mathbf{x}) & \simeq 0 \end{cases}$$

What are the consequences of choosing the form of class-conditional densities?

Probabilistic generative models

UFC/DC ATAI-I (CK0146) PR (TIP8311)

obabilistic generative

Continuous inputs

Maximum likelihood solution

Probabilistic discriminative models (cont.)

$$\rho(\mathcal{C}_{1}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1}) + p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}$$

$$= \frac{1}{1 + \exp\left(-\ln\frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}\right)}$$

$$= \sigma\left(\ln\frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}\right)$$

We have written the posterior probabilities in an equivalent form that will have significance when $a(\mathbf{x})$ is a linear function of \mathbf{x}

• Here, the posterior probability is governed by a generalised linear model

Probabilistic generative models

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generativ

Continuous inputs

Maximum likelihood

Outline

1 Probabilistic generative models

Continuous inputs
Maximum likelihood solution

 $^{^{1}}$ lt is a generalisation of the logistic sigmoid and it is also known as the softmax function

UFC/DC ATAI-I (CK0146) PR (TIP8311)

Continuous inputs Probabilistic generative models

Probabilistic

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Continuous inputs

Continuous inputs (cont.)

$$\begin{split} & p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)} = \frac{1}{1 + \exp{(-a)}} = \sigma(a) \\ & \text{with two classes, and } a = \ln{\frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}}, \text{ we have} \end{split}$$

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + w_0) \tag{9}$$

where

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\mu_1 - \mu_2) \tag{10}$$

$$w_0 = -\frac{1}{2}\mu_1 \Sigma^{-1} \mu_1 + \frac{1}{2}\mu_2 \Sigma^{-1} \mu_2 + \ln \frac{\rho(C_1)}{\rho(C_2)}$$
 (11)

The quadratic terms in x from the exponents of the Gaussian densities have cancelled (due to the assumption of common covariance matrices) leading to

• a linear function of x in the argument of the logistic sigmoid

Probabilistic enerative models

UFC/DC ATAI-I (CK0146) PR (TIP8311)

Continuous inputs

Let us assume that the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$ are Gaussian

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_k)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu_k)\right)$$
(8)

and, we want to explore the form of the posterior probabilities $p(C_k|\mathbf{x})$

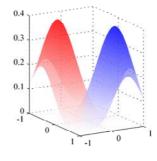
The Gaussians have different means μ_k but share the covariance matrix Σ

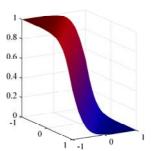
Probabilistic

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Continuous inputs (cont.)

The left-hand plot shows the class-conditional densities for two classes over 2D





The posterior probability $p(\mathcal{C}_1|\mathbf{x})$ is a logistic sigmoid of a linear function of \mathbf{x}

The surface in the right-hand plot is coloured using a proportion of red given by $p(C_1|\mathbf{x})$ and a proportion of blue given by $p(C_2|\mathbf{x}) = 1 - p(C_1|\mathbf{x})$

UFC/DC ATAI-I (CK0146) PR (TIP8311)

Continuous inputs

Continuous inputs (cont.)

Decision boundaries are surfaces with constant posterior probabilities $p(C_k|\mathbf{x})$

- Linear functions of x
- Linear in input space

Prior probabilities $p(C_k)$ enter only through the bias parameter w_0 so changes in priors have the effect of making parallel shifts of the decision boundary

• more generally of the parallel contours of constant posterior probability

Probabilistic generative models

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Continuous inputs

Continuous inputs (cont.)

If we relax the assumption of a shared covariance matrix and allow each class-conditional density $p(\mathbf{x}|\mathcal{C}_k)$ to have its own covariance matrix Σ_k ,

• then the earlier cancellations no longer occur, and we will obtain quadratic functions of x, giving rise to a quadratic discriminant

Probabilistic

UFC/DC ATAI-I (CK0146) PR (TIP8311)

Continuous inputs (cont.)

For the K-class case, using $p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_{j=1}^K p(\mathbf{x}|C_j)p(C_j)} = \frac{\exp{(a_k)}}{\sum_{j=1}^K \exp{(a_j)}}$ and $a_k = \ln (p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k))$, we have

$$a_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0} \tag{12}$$

$$\mathbf{w}_k = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k \tag{13}$$

$$w_{k0} = -\frac{1}{2}\mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \ln p(C_k)$$
 (14)

The $a_k(\mathbf{x})$ are again linear functions of \mathbf{x} as a consequence of the cancellation of the quadratic terms due to the shared covariances

The resulting decision boundaries (minimum misclassification rate) occur when two of the posterior probabilities (the two largest) are equal, and so they are defined by linear functions of x

· again we have a generalised linear model

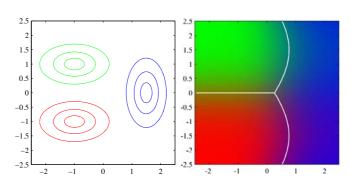
Probabilistic

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Continuous inputs (cont.)

Class-conditional densities for three classes each having a Gaussian distribution

• red and green classes have the same covariance matrix



The corresponding posterior probabilities and the decision boundaries

- Linear boundary between red and green classes, same covariance matrix
- Quadratic boundaries between other pairs, different covariance matrix

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative

Continuous inputs

Maximum likelihood

Maximum likeliho

Maximum likelihood solution Probabilistic generative models

Probabilistic generative models

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative

Continuous inputs

Maximum likelihood

Maximum likelihood solution (cont.)

Consider first the two-class case, each having a Gaussian density with shared covariance matrix Σ , and suppose we have data $\{\mathbf{x}_n, t_n\}_{n=1}^N$

$$\begin{cases} t_n=1, & \text{for } \mathcal{C}_1 \text{ with prior probability } p(\mathcal{C}_1)=\pi \\ t_n=0, & \text{for } \mathcal{C}_2 \text{ with prior probability } p(\mathcal{C}_2)=1-\pi \end{cases}$$

For a data point x_n from class C_1 (C_2), we have $t_n = 1$ ($t_n = 0$), thus

$$p(\mathbf{x}_n, C_1) = p(C_1)p(\mathbf{x}_n|C_1) = \pi \mathcal{N}(\mathbf{x}_n|\mu_1, \mathbf{\Sigma})$$

$$p(\mathbf{x}_n, C_2) = p(C_2)p(\mathbf{x}_n|C_2) = (1 - \pi)\mathcal{N}(\mathbf{x}_n|\mu_2, \mathbf{\Sigma})$$

For $t = (t_1, \dots, t_n)^T$, the likelihood function is given by

$$\rho(\mathtt{t},\mathtt{X}|\pi,\mu_1,\mu_2,\boldsymbol{\Sigma}) = \prod_{n=1}^N \left(\pi \mathcal{N}(\mathbf{x}_n|\mu_1,\boldsymbol{\Sigma})\right)^{t_n} \left((1-\pi)\mathcal{N}(\mathbf{x}_n|\mu_2,\boldsymbol{\Sigma})\right)^{1-t_n}$$

Probabilistic enerative models

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Continuous inputs

Maximum likelihood solution

Once we specified a parametric functional form for class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$, we can determine parameters and prior class probabilities $p(\mathcal{C}_k)$

• Maximum likelihood

This requires data comprising observations of x and corresponding class labels

Probabilistic generative models

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative

Continuous inputs

Maximum likelihood

Maximum likelihood solution (cont.)

As usual, we maximise the log of the likelihood function

$$\sum_{n=1}^{N} \underbrace{t_n \ln(\pi) + (1 - t_n) \ln(1 - \pi)}_{\pi} + \underbrace{\underbrace{t_n \ln(\mathcal{N}(\mathbf{x}_n | \mu_1, \Sigma))}_{\mu_1, \Sigma} + \underbrace{(1 - t_n) \ln(\mathcal{N}(\mathbf{x}_n | \mu_2, \Sigma))}_{\mu_2, \Sigma}}_{\mu_2, \Sigma}$$
(16)

Probabilistic enerative mode

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative

Maximum likelihood

Maximum likelihood solution (cont.)

Consider first maximisation with respect to π , where the terms on π are

$$\sum_{n=1}^{N} \left(t_n \ln (\pi) + (1-t_n) \ln (1-\pi) \right) \tag{17}$$

Setting the derivative wrt π to zero and rearranging

$$\pi = \frac{1}{N} \sum_{n=1}^{N} t_n = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$
 (18)

Remark

The maximum likelihood estimate for π is the fraction of points in C_1

Probabilistic generative model

UFC/DC ATAI-I (CK0146) PR (TIP8311) 2016.2

Probabilistic generative

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution (cont.)

Lastly consider maximisation with respect to Σ , where the terms on Σ are

$$-\frac{1}{2}\sum_{n=1}^{N}t_{n}\ln|\Sigma| - \frac{1}{2}\sum_{n=1}^{N}t_{n}(\mathbf{x}_{n} - \mu_{1})^{T}\Sigma^{-1}(\mathbf{x}_{n} - \mu_{1})$$

$$-\frac{1}{2}\sum_{n=1}^{N}(1 - t_{n})\ln|\Sigma| - \frac{1}{2}\sum_{n=1}^{N}(1 - t_{n})(\mathbf{x}_{n} - \mu_{2})^{T}\Sigma^{-1}(\mathbf{x}_{n} - \mu_{2})$$

$$= -\frac{N}{2}\ln|\Sigma| - \frac{N}{2}\text{Tr}(\Sigma^{-1}\mathbf{S}) \quad (22)$$

where

$$S = \frac{N_1}{N} S_1 + \frac{N_2}{N} S_2 \tag{23}$$

$$S_1 = \frac{1}{N_1} \sum_{n \in C_1} (x_n - \mu_1)(x_n - \mu_1)^T$$
 (24)

$$\mathbf{S}_{2} = \frac{1}{N_{2}} \sum_{n \in C_{2}} (\mathbf{x}_{n} - \mu_{2}) (\mathbf{x}_{n} - \mu_{2})^{T}$$
 (25)

Probabilistic enerative models

UFC/DC ATAI-I (CK0146) PR (TIP8311)

models

Maximum likelihood solution (cont.)

Now consider maximisation with respect to μ_1 , where the terms on μ_1 are

$$\sum_{n=1}^{N} t_n \ln \left(\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) \right) = -\frac{1}{2} \sum_{n=1}^{N} t_n (\mathbf{x}_n - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_1) + \text{const} \quad (19)$$

Setting the derivative wrt μ_1 to zero and rearranging

$$\mu_1 = \frac{1}{N_1} \sum_{n=1}^{N} t_n \mathbf{x}_n \tag{20}$$

Remark

The maximum likelihood estimate of μ_1 is the mean of inputs \mathbf{x}_n in class \mathcal{C}_1

$$\mu_2 = \frac{1}{N_2} \sum_{n=1}^{N} t_n \mathbf{x}_n \tag{21}$$

Probabilistic

UFC/DC ATAI-I (CK0146) PR (TIP8311)

Probabilistic generative

Continuous inputs

Maximum likelihood

Maximum likelihood solution (cont.)

$$\boldsymbol{\Sigma} = \boldsymbol{\mathsf{S}} = \frac{N_1}{N} \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} (\boldsymbol{\mathsf{x}}_n - \boldsymbol{\mu}_1) (\boldsymbol{\mathsf{x}}_n - \boldsymbol{\mu}_1)^T + \frac{N_2}{N} \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} (\boldsymbol{\mathsf{x}}_n - \boldsymbol{\mu}_2) (\boldsymbol{\mathsf{x}}_n - \boldsymbol{\mu}_2)^T$$

Average of the covariance matrices associated with each class separately