CK0146: Exercise 03a (2017.1)

Exercise Q.1 (Bernoullis, betas, and binomials). Let the table

summarise a sample of size 50 from a binomial distribution with N = 5 and unknown parameter μ

$$m \sim \operatorname{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}.$$

- 1) Plot the binomial distribution estimated by using frequency histograms.
- 2) Calculate the maximum likelihood estimate of μ and plot the resulting MLE distribution.
- 3) What is the maximum likelihood estimate of $P(m \ge 3)$?

A convenient choice for the prior distribution of μ is a beta distribution with parameters a = b = 2,

$$\mu \sim \text{Beta}(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}.$$

- 4) Plot the prior distribution of μ .
- 5) Write and plot the posterior distribution of μ .
- 6) What is the expected posterior of μ ?

Exercise Q.2 (MLE and MAP of model parameters). We have the location $\mathbf{x}_i \in \mathcal{R}^2$ of N artificial noses. The noses are used to smell/detect the presence of hazardous substances. We want to use knowledge about the position of the noses (\mathbf{x}_i) and data on whether they detected an odour or not $(y_i \in \{0, 1\})$ to locate the emission's source. The data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ are available here.

Let the unknown location of the source be $\mathbf{x} \in \mathcal{R}^2$. Each nose as a probability of detecting an odour that is dependent on its distance $\delta(\mathbf{x}_i, \mathbf{x})$ with the unknown source. Let the probability of the *i*-th nose to detect/miss (1/0) the odour be X_i , such that $Y_i \sim \text{Bern}(\mu_i)$ with $\mu_i = \exp(-\delta(\mathbf{x}_i, \mathbf{x}))$

$$p(Y_i|\mu_i) = \mu_i^{y_i} (1-\mu_i)^{1-y_i}, \quad y_i \in \{0,1\}.$$

We encode our belief on the location of the source by modelling its position as a random variable X, such that $X \sim \mathcal{N}(\mathbf{g}, \sigma^2 \mathbf{I}_2)$, for some σ and some \mathbf{g} between the noses who detected the odour¹.

Assuming that the X_i are independent, formally estimate **x** using

- a) Maximum likelihood: $\mathbf{x}_{MLE} = \operatorname{argmax} (p(\mathcal{D}|\mathbf{x})), \ p(\mathcal{D}|\mathbf{x}) = \prod_{i=1}^{N} p(y_i|\mu_i)$
- b) Maximum a posteriori: $\mathbf{x}_{MAP} = \operatorname{argmax} (p(\mathbf{x}|\mathcal{D})), \ p(\mathbf{x}|\mathcal{D}) \propto p(X|\mathbf{g}, \sigma^2 \mathbf{I}_2) \prod_{i=1}^{N} p(y_i|\mu_i)$

¹ You are free to defined your own strategy to choose $\mathbf{g} \in \mathcal{R}^2$ and σ .

Verify the solutions by plotting a discrete hypothesis space of \mathbf{x} , as depicted in the figure below.²

 $^{^2 \}rm Well,$ except that you do not know where the target \star is actually located.