CK0146: Exercise 03b (2017.1)

Exercise Q.1 (The Gaussian distribution). You are given data $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N}$ in which the observations $\mathbf{x}_n \in \mathcal{R}^D$ are assumed to be drawn independently from a multivariate Gaussian distribution $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with unknown mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

- Scatterplot the N observations, for all $(D \times D)$ pairs of variables ;
- Estimate the parameters of the distribution by maximum likelihood.

Let $\hat{\mu}$ and Σ denote the estimated parameters. Let \mathbf{x}_a be a random vector consisting of the first M components of \mathbf{x} and let random vector \mathbf{x}_b comprise the remaining (D - M) components.

- Calculate the (estimated) mean vector $\hat{\mu}_{a|b}$, covariance matrix $\hat{\Sigma}_{a|b}$ and precision matrix $\hat{\Lambda}_{a|b}$ of the Gaussian distribution $p(\mathbf{x}_a|\mathbf{x}_b)$, for M = 2 and and for M = 1. You are free to set \mathbf{x}_b ;
- Plot the two resulting conditional Gaussian distributions.

The data are available for download here.

Exercise Q.2 (Density estimation). You are given data $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N}$ in which the observations $\mathbf{x}_n \in \mathcal{R}^D$ are assumed to be drawn independently from an unknown distribution $p(\mathbf{x})$.

• Estimate the unknown distribution using a mixture of K Gaussians and plot the result. You are free to choose the number K of Gaussian components in the mixture. Fit the distribution using either existing code or implement the maximum likelihood solution of the model yourself.

Comment on the results;

• Plot the unknown distribution as estimated using k-NN with values of $k = \{1, 2, 4, 8, 16, 32, 64\}$. Fit the distribution using your implementation of the nearest-neighbour density estimator.

Comment on the results.

The data are available for download here.