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Non-parametric density estimation

So far, probability distributions with specific functional forms governed by a
number of parameters, whose values are to be computed from data

• This is called the parametric approach to density modelling

Limitation: The chosen density might be a poor model of the distro that
generates the data, which can result in poor predictive performance

• if the data generating process is multimodal, then this aspect of the
distribution can never be captured by the (unimodal) Gaussian

We consider some non-parametric approaches to density estimation
that make very few assumptions about the form of the distribution

• Focus mainly on simple frequentist methods
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Histograms

Let us start with the classic histogram methods for density estimation

• Already seen in the context of marginal/conditional distributions

• We explore the properties of histogram density models

• Focus on a single continuous variable x

Standard histograms simply partition x into distinct bins of width ∆i

• then count the number ni of observations of x falling in bin i

To turn this count into a normalised probability density, we divide ni
by the total number N of observations and by the width ∆i of the bins

• We get probabilities values for each bin

pi =
ni

N∆i

, such that

∫

p(x)dx = 1 (1)

This gives a model for density p(x) that is constant over the bin

• The bins are often chosen to have the same width ∆i = ∆
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Histograms (cont.)

Data (50 observations) is drawn from the distribution, corresponding
to the green curve, which is formed from a mixture of two Gaussians

Three density estimates with three different choices of bin width ∆

∆ = 0.04

0 0.5 1
0

5

∆ = 0.08

0 0.5 1
0

5

∆ = 0.25

0 0.5 1
0

5

• Small ∆, spiky density with
structure not in the distribution

• Large ∆, smooth density model
without underlying bi-modality

• Best from an intermediate ∆

Useful technique for getting a quick visualisation of the data in 1 or 2D

• Discontinuities, D variables divided in M bins each means MD bins
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Histograms (cont.)

Hardly useful in density estimation applications, but teaches lessons

• To estimate a probability density at a particular location, we should
consider points that lie within a local neighbourhood of that point

The notion of locality needs some form of distance measure

• For histograms, locality was defined by the bins’ width

• Locality should be neither too large nor too small
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Kernel density estimators

Suppose our observations have been drawn from some unknown probability
density p(x) in some D-dimensional space, which we consider Euclidean

• We wish to estimate the value of p(x)

Let us consider some small region R containing x

• The probability mass associated with this region is

P =

∫

R

p(x)dx (2)

Suppose that we have collected a set with N observations from p(x)

• Each point has a probability P of falling within R

The number of points K in R is distributed with a binomial distro

Bin(K |N,P) =
N!

K !(N − K)!
PK (1− P)1−K (3)
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Kernel density estimators (cont.)

Using results for binomial distribution

• the mean fraction of points in the region is E[K/N] = P

• the variance around this mean is var[K/N] = P(1 − P)/N

For large N, the distribution will be sharply peaked around its mean

K ≃ NP (4)

If we assume that the region R is sufficiently small (of volume V ) that the
probability density is roughly constant over the region, then we have

P ≃ p(x)V (5)

Combining the results, we obtain our density estimate in the form

p(x) =
K

NV
(6)
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Kernel density estimators (cont.)

p(x) =
K

NV

Either

• We can fix K and determine the value of V from the data

• We get the K -nearest-neighbour estimators

or

• We can fix V and determine the value if K from the data

• We get a class of kernel-based estimators

For N → ∞, both techniques converge to the true probability density

• Provided that V shrinks suitably with N and that K grows with N
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Kernel density estimators (cont.)

To start with we take the region R to be a small hypercube centred
on the point x at which we wish to determine the probability density

To count the number K of points falling within R, define the function

k(u) =

{

1, if |ui | ≤ 1/2 with i = 1, . . . ,D

0, otherwise
(7)

It represents a unit cube centred on the origin

• Function k(u) is an example of a kernel function

• In this context it is also called a Parzen window

If a data point xn lies inside a cube of side h centred on x,

then the quantity
k(x − xn)

h
will be one and zero otherwise

• The total number of points lying inside this cube will be

K =
N
∑

n=1

k
( x− xn

h

)

(8)
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Kernel density estimators (cont.)

Substitute K =
∑N

n=1 k
( x− xn

h

)

in p(x) =
K

NV
, the density at x is

p(x) =
1

N

N
∑

n=1

1

hD
k
( x− xn

h

)

(9)

hD = V is the volume of the hypercube of side h in D dimensions

We can interpret this equation, not a single cube centred on x,
but as the sum over N cubes centred on the N data points xn
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Kernel density estimators (cont.)

Remark
This density estimator shares some of the problems of the histograms

• Discontinuities, at the boundaries of the cubes

A smoother model is obtained by choosing a smoother kernel function
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Kernel density estimators (cont.)

Usual choice: The kernel function of the estimator is the Gaussian

p(x) =
1

N

n
∑

n=1

1

(2πh2)D/2
exp

(

−
||x− xn||2

2h2

)

(10)

h now denotes the standard deviation of Gaussian components

This density model is obtained by placing a Gaussian over each data point,
and then adding up the contributions over the whole dataset

• Divide by N to correctly normalise the density
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Kernel density estimators (cont.)

Kernel density model applied to the same data set used with histograms

Three density estimates with three different choices of h

h = 0.005

0 0.5 1
0

5

h = 0.07

0 0.5 1
0

5

h = 0.2

0 0.5 1
0

5

• Small h, noisy density with
structure not in the distribution

• Large h, smooth density model
without underlying bi-modality

• Best, from an intermediate h

Parameter h plays the role of a smoothing term, and there is a trade-off
between sensitivity to noise at small h and over-smoothing at large h
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Kernel density estimators (cont.)

We can choose any other kernel function k(u) subject to the conditions

k(u) ≥ 0 (11)
∫

k(u)du = 1 (12)

They ensure that the resulting probability distribution
is nonnegative everywhere and that integrates to one
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Nearest-neighbour methods

One of the difficulties with the kernel approach to density estimation
is that the parameter h governing the kernel width is fixed for all kernels

• In regions of high density, a large h may lead to over-smoothing

• Reducing h, may lead to noisy estimates where density is low

An optimal choice of h may be dependent on location within the space

p(x) =
K

NV

Instead of fixing V and determining K from data, we consider a fixed value of
K and use the data to find an appropriate value for V
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Nearest-neighbour methods (cont.)

Let B(x) be a small sphere centred on point x at which we wish to estimate
density p(x) and let the sphere grow until it contains K points

The density estimate is

p(x) =
K

NV

with V set to the volume
of the resulting sphere

This technique is known as
K-nearest neighbours

The value of K now governs the degree of smoothing and there is
an optimum choice for K that is neither too large nor too small
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Nearest-neighbour methods (cont.)

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5

The model produced by K -NN is not a true density model

• The integral over all space diverges (⋆)
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Classification with k-NN

The K -NN density estimator can be used for classification

1 We apply it to each class separately

2 We make use of the Bayes’ theorem

We got data, Nk points in class Ck with N total points st
∑

k Nk = N

If we wish to classify a new point x
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Classification with k-NN (cont.)

Pseudocode

1 Draw a sphere centred in x with K points, whatever their class

2 Say, the volume of the sphere is V and contains Kk class-Ck points

3 Use p(x) =
K

NV
to estimate the density associated with each class

p(x|ck) =
Kk

NkV
(13)

4 The unconditional density and the class prior are given by

p(x) =
K

NV
(14)

p(Ck) =
Nk

N
(15)

5 Combine Equation 13, 14 and 15 using Bayes’ theorem
to get the posterior probability of the class membership

p(Ck |x) =
p(x|Ck)p(Ck )

p(x)
=

Kk

K
(16)
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Classification with k-NN (cont.)

If we wish to minimise the probability of misclassification, we assign
the test point x to the class having the largest posterior probability

• The largest value of Kk/K

To classify x, we identify the K nearest points from the training set and assign
it to the class with largest number of representatives in this set

• Ties can be broken at random
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Classification with k-NN (cont.)

In the K -NN classifier, a new point (black), is classified according to the
majority class membership of the K closest training points (here, K = 3)

x1

x2

(a)
x1

x2

(b)

In the nearest-neighbour (K = 1) approach to classification, the decision
boundary is composed of hyperplanes that form perpendicular bisectors
of pairs of points from different classes
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