UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel densit estimators

Nearest-neigl

Classification with k-N

Non-parametric density estimation Probability distributions

Francesco Corona

UFC/DC ATAI-I (CK0146) 2017.1

Histogran

Kernel densit

methods

Classification with k

Non-parametric density estimation

So far, probability distributions with specific functional forms governed by a number of parameters, whose values are to be computed from data

This is called the parametric approach to density modelling

Limitation: The chosen density might be a poor model of the distro that generates the data, which can result in poor predictive performance

 if the data generating process is multimodal, then this aspect of the distribution can never be captured by the (unimodal) Gaussian

We consider some non-parametric approaches to density estimation that make very few assumptions about the form of the distribution

· Focus mainly on simple frequentist methods

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel densi estimators

Nearest-neight methods

Classification with k-NI

Outline

Histograms

2 Kernel density estimators

3 Nearest-neighbour methods Classification with k-NN

UFC/DC ATAI-I (CK0146) 2017.1

Histograms

Kernel densit estimators

Nearest-neighbor methods

Classification with k-N

HistogramsNon-parametric density estimation

UFC/DC ATAI-I (CK0146) 2017.1

Histograms

Kernel densit estimators

Nearest-neighbornethods

Histograms

Let us start with the classic histogram methods for density estimation

- Already seen in the context of marginal/conditional distributions
- We explore the properties of histogram density models
- Focus on a single continuous variable x

Standard histograms simply partition x into distinct bins of width Δ_i

• then count the number n_i of observations of x falling in bin i

To turn this count into a normalised probability density, we divide n_i by the total number N of observations and by the width Δ_i of the bins

• We get probabilities values for each bin

$$p_i = \frac{n_i}{N\Delta_i},$$
 such that $\int p(x)dx = 1$ (1)

This gives a model for density p(x) that is constant over the bin

• The bins are often chosen to have the same width $\Delta_i = \Delta$

UFC/DC ATAI-I (CK0146) 2017.1

Histograms

Kernel densit estimators

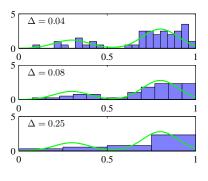
Nearest-neighbore methods

Classification with k-N

Histograms (cont.)

Data (50 observations) is drawn from the distribution, corresponding to the green curve, which is formed from a mixture of two Gaussians

Three density estimates with three different choices of bin width Δ



- Small Δ, spiky density with structure not in the distribution
- $\hbox{ Large Δ, smooth density model} \\ \hbox{ without underlying bi-modality}$
- ullet Best from an intermediate Δ

Useful technique for getting a quick visualisation of the data in 1 or 2D

• Discontinuities, D variables divided in M bins each means M^D bins

UFC/DC ATAI-I (CK0146) 2017.1

Histograms

Kernel densit

Nearest-neighbor

Classification with k-N

Histograms (cont.)

Hardly useful in density estimation applications, but teaches lessons

 To estimate a probability density at a particular location, we should consider points that lie within a local neighbourhood of that point

The notion of locality needs some form of distance measure

- For histograms, locality was defined by the bins' width
- Locality should be neither too large nor too small

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density estimators

Nearest-neighbor methods

Classification with k-NN

Kernel density estimation Non-parametric density estimation

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density estimators

Nearest-neighbou methods

Kernel density estimators

Suppose our observations have been drawn from some unknown probability density $p(\mathbf{x})$ in some D-dimensional space, which we consider Euclidean

• We wish to estimate the value of p(x)

Let us consider some small region ${\mathcal R}$ containing ${\boldsymbol x}$

The probability mass associated with this region is

$$P = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x} \tag{2}$$

Suppose that we have collected a set with N observations from p(x)

ullet Each point has a probability P of falling within ${\mathcal R}$

The number of points K in $\mathcal R$ is distributed with a binomial distro

$$Bin(K|N,P) = \frac{N!}{K!(N-K)!} P^{K} (1-P)^{1-K}$$
(3)

UFC/DC ATAI-I (CK0146) 2017.1

Histogran

Kernel density estimators

Nearest-neighbor methods

Classification with k-

Kernel density estimators (cont.)

Using results for binomial distribution

- the mean fraction of points in the region is $\mathbb{E}[K/N] = P$
- the variance around this mean is var[K/N] = P(1-P)/N

For large N, the distribution will be sharply peaked around its mean

$$K \simeq NP$$
 (4)

If we assume that the region \mathcal{R} is sufficiently small (of volume V) that the probability density is roughly constant over the region, then we have

$$P \simeq p(\mathbf{x})V \tag{5}$$

Combining the results, we obtain our density estimate in the form

$$p(\mathbf{x}) = \frac{K}{NV} \tag{6}$$

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density estimators

Mearest-neighbou methods

Classification with k-N

$$p(\mathbf{x}) = \frac{K}{NV}$$

Either

- We can fix K and determine the value of V from the data
- We get the K-nearest-neighbour estimators

or

- We can fix V and determine the value if K from the data
- We get a class of kernel-based estimators

For $N \to \infty$, both techniques converge to the true probability density

Provided that V shrinks suitably with N and that K grows with N

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density estimators

Nearest-neighbour methods Classification with k-N

Kernel density estimators (cont.)

To start with we take the region $\mathcal R$ to be a small hypercube centred on the point $\mathbf x$ at which we wish to determine the probability density

To count the number K of points falling within \mathcal{R} , define the function

$$k(\mathbf{u}) = \begin{cases} 1, & \text{if } |u_i| \le 1/2 & \text{with } i = 1, \dots, D \\ 0, & \text{otherwise} \end{cases}$$
 (7)

It represents a unit cube centred on the origin

- Function $k(\mathbf{u})$ is an example of a kernel function
- In this context it is also called a Parzen window

If a data point x_n lies inside a cube of side h centred on x, then the quantity $\frac{k(x-x_n)}{h}$ will be one and zero otherwise

• The total number of points lying inside this cube will be

$$K = \sum_{n=1}^{N} k \left(\frac{\mathbf{x} - \mathbf{x}_n}{h} \right) \tag{8}$$

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density estimators

Nearest-neighbo methods

Classification with k-N

Substitute $K = \sum_{n=1}^{N} k\left(\frac{\mathbf{x} - \mathbf{x}_n}{h}\right)$ in $p(\mathbf{x}) = \frac{K}{NV}$, the density at \mathbf{x} is

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} k \left(\frac{\mathbf{x} - \mathbf{x}_{n}}{h} \right)$$
 (9)

 $h^D = V$ is the volume of the hypercube of side h in D dimensions

We can interpret this equation, not a single cube centred on x, but as the sum over N cubes centred on the N data points x_n

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density estimators

Nearest-neighbor

Classification with k-N

Kernel density estimators (cont.)

Remark

This density estimator shares some of the problems of the histograms

• Discontinuities, at the boundaries of the cubes

A smoother model is obtained by choosing a smoother kernel function

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density estimators

Nearest-neighboresthods

Classification with K-IV

Usual choice: The kernel function of the estimator is the Gaussian

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{n} \frac{1}{(2\pi h^2)^{D/2}} \exp\left(-\frac{||\mathbf{x} - \mathbf{x}_n||^2}{2h^2}\right)$$
(10)

h now denotes the standard deviation of Gaussian components

This density model is obtained by placing a Gaussian over each data point, and then adding up the contributions over the whole dataset

Divide by N to correctly normalise the density

UFC/DC ATAI-I (CK0146) 2017.1

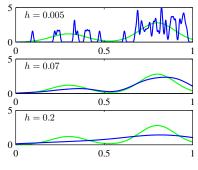
Histogram

Kernel density estimators

Nearest-neighbou methods

Kernel density model applied to the same data set used with histograms

Three density estimates with three different choices of h



- Small h, noisy density with structure not in the distribution
- Large h, smooth density model without underlying bi-modality
- Best, from an intermediate h

Parameter h plays the role of a smoothing term, and there is a trade-off between sensitivity to noise at small h and over-smoothing at large h

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density estimators

Nearest-neighboresthods

Classification with k-N

Kernel density estimators (cont.)

We can choose any other kernel function $k(\mathbf{u})$ subject to the conditions

$$k(\mathbf{u}) \geq 0 \tag{11}$$

$$\int k(\mathbf{u})d\mathbf{u} = 1 \tag{12}$$

They ensure that the resulting probability distribution is nonnegative everywhere and that integrates to one

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel densi estimators

Nearest-neighbour methods

Classification with & N

Nearest-neighbour methods Non-parametric density estimation

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel density

Nearest-neighbour methods

Classification with k-NI

Nearest-neighbour methods

One of the difficulties with the kernel approach to density estimation is that the parameter h governing the kernel width is fixed for all kernels

- ullet In regions of high density, a large h may lead to over-smoothing
- Reducing h, may lead to noisy estimates where density is low

An optimal choice of h may be dependent on location within the space

$$p(\mathbf{x}) = \frac{K}{NV}$$

Instead of fixing V and determining K from data, we consider a fixed value of K and use the data to find an appropriate value for V

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel densit

Nearest-neighbour methods

Classification with k-N

Nearest-neighbour methods (cont.)

Let $\mathcal{B}(\mathbf{x})$ be a small sphere centred on point \mathbf{x} at which we wish to estimate density $p(\mathbf{x})$ and let the sphere grow until it contains K points

The density estimate is

$$p(\mathbf{x}) = \frac{K}{NV}$$

This technique is known as K-nearest neighbours

with *V* set to the volume of the resulting sphere

The value of K now governs the degree of smoothing and there is an optimum choice for K that is neither too large nor too small

UFC/DC ATAI-I (CK0146) 2017.1

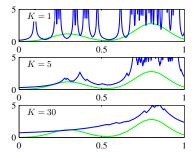
Histogram

Kernel densit

Nearest-neighbour methods

Classification with k-N

Nearest-neighbour methods (cont.)



The model produced by K-NN is not a true density model

The integral over all space diverges (*)

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel densi

Nearest-neighbo methods

Classification with k-NN

Classification with *k*-NN

The K-NN density estimator can be used for classification

- We apply it to each class separately
- We make use of the Bayes' theorem

We got data, N_k points in class C_k with N total points st $\sum_k N_k = N$ If we wish to classify a new point \mathbf{x}

UFC/DC ATAI-I (CK0146) 2017.1

Classification with k-NN

Classification with k-NN (cont.)

Pseudocode

- Draw a sphere centred in x with K points, whatever their class
- 2 Say, the volume of the sphere is V and contains K_k class- C_k points
 - Use $p(x) = \frac{K}{MV}$ to estimate the density associated with each class

$$p(\mathbf{x}|c_k) = \frac{K_k}{N_k V} \tag{13}$$

The unconditional density and the class prior are given by

$$p(\mathbf{x}) = \frac{K}{NV}$$

$$p(C_k) = \frac{N_k}{N}$$
(14)

$$p(C_k) = \frac{N_k}{N} \tag{15}$$

6 Combine Equation 13, 14 and 15 using Bayes' theorem to get the posterior probability of the class membership

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})} = \frac{K_k}{K}$$
(16)

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel densi estimators

Nearest-neighbo methods

Classification with k-NN

Classification with *k*-NN (cont.)

If we wish to minimise the probability of misclassification, we assign the test point \boldsymbol{x} to the class having the largest posterior probability

• The largest value of K_k/K

To classify x, we identify the K nearest points from the training set and assign it to the class with largest number of representatives in this set

· Ties can be broken at random

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

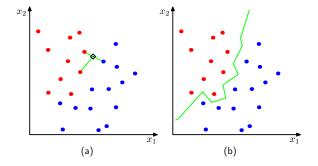
Kernel densi

Nearest-neighbo

Classification with k-NN

Classification with *k*-NN (cont.)

In the K-NN classifier, a new point (black), is classified according to the majority class membership of the K closest training points (here, K=3)



In the nearest-neighbour (K=1) approach to classification, the decision boundary is composed of hyperplanes that form perpendicular bisectors of pairs of points from different classes

UFC/DC ATAI-I (CK0146) 2017.1

Histogram

Kernel dens

Nearest-neighbornethods

Classification with k-NN

