
Probabilistic
generative models

UFC/DC
ATAI-I (CK0146)

2017.1

Probabilistic generative
models

Continuous inputs

Maximum likelihood

solution

Probabilistic generative models
Linear models for classification

Francesco Corona



Probabilistic
generative models

UFC/DC
ATAI-I (CK0146)

2017.1

Probabilistic generative
models

Continuous inputs

Maximum likelihood

solution

Probabilistic generative models



Probabilistic
generative models

UFC/DC
ATAI-I (CK0146)

2017.1

Probabilistic generative
models

Continuous inputs

Maximum likelihood

solution

Probabilistic generative models

Models with linear decision boundaries arise from assumptions about the data

In the generative approach to classification, we firstly model the
class-conditional densities p(x|Ck) and the class priors p(Ck )

• Then, we compute posterior probabilities p(Ck |x) through Bayes’ rule
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Probabilistic generative models (cont.)

Remark

For two-class problems, the posterior probability of class C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
︸ ︷︷ ︸

p(x)=
∑

k p(x,Ck )=
∑

k p(x|Ck )p(Ck )

=
1

1 + exp [−a(x)]
= σ[a(x)] (1)

where we defined

a(x) = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
(2)

σ(a) is the logistic sigmoid
function (plotted in red)

σ(a) =
1

1 + exp (−a)
(3)

or squashing function, because
it maps R onto a finite interval
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Probabilistic generative models (cont.)

The logistic sigmoid satisfies the following symmetry property

σ(−a) = 1− σ(a) (4)

The inverse of the logistic sigmoid is known as logit function

a = ln
( σ

1− σ

)

(5)

It reflects the log of the ratio of probabilities for two classes

ln
p(C1|x)

p(C2|x)



Probabilistic
generative models

UFC/DC
ATAI-I (CK0146)

2017.1

Probabilistic generative
models

Continuous inputs

Maximum likelihood

solution

Probabilistic generative models (cont.)

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp
(

− ln
p(x|C1)p(C1)

p(x|C2)p(C2)
︸ ︷︷ ︸

a(x)

)

= σ

(

ln
p(x|C1)p(C1)

p(x|C2)p(C2)
︸ ︷︷ ︸

a(x)

)

We have written the posterior probabilities in an equivalent form
that will have significance when a(x) is a linear function of x

• Then, the posterior probability can be explicitly
governed by a generalised linear model
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Probabilistic generative models (cont.)

For the case K > 2 classes, we have

p(Ck |x) =
p(x|Ck )p(Ck )

∑K
j=1 p(x|Cj )p(Cj )

=
exp [ak(x)]

∑K
j=1 exp [aj(x)]

(6)

known as normalised exponential1

We have defined the quantity ak(x) as

ak(x) = ln
[

p(x|Ck )p(Ck )
]

(7)

If ak >> aj , for all j 6= k, then

{

p(Ck |x) ≃ 1

p(Cj |x) ≃ 0

We are interested in the consequences of choosing some
specific forms for the class-conditional densities p(Ck |x)

1It is a generalisation of the logistic sigmoid and it is also known as the softmax function
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Continuous inputs

Let us assume that the class-conditional densities p(x|Ck) are Gaussian

p(x|Ck) =
1

(2π)D/2

1

|Σ|1/2
exp

(

−
1

2
(x − µk)

T
Σ

−1(x− µk)
)

(8)

The Gaussians have different means µk but share covariance matrix Σ

We want to explore the form of the posterior probabilities p(Ck |x)
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Continuous inputs (cont.)

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
=

1

1 + exp
(

− ln
p(x|C1)p(C1)

p(x|C2)p(C2)
︸ ︷︷ ︸

a(x)

)

= σ

(

ln
p(x|C1)p(C1)

p(x|C2)p(C2)
︸ ︷︷ ︸

a(x)

)

= σ(wT x+ w0)

(9)

where

w = Σ
−1(µ1 − µ2) (10)

w0 = −
1

2
µ1Σ

−1
µ1 +

1

2
µ2Σ

−1
µ2 + ln

p(C1)

p(C2)
(11)

The quadratic terms in x from the exponents of the Gaussian densities have
cancelled (due to the assumption of common covariance matrices) leading to

• a linear function of x in the argument of the logistic sigmoid
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Continuous inputs (cont.)

The left-hand plot shows the class-conditional densities for two classes over 2D

The posterior probability p(C1|x) is a logistic sigmoid of a linear function of x

The surface in the right-hand plot is coloured using a proportion of red
given by p(C1|x) and a proportion of blue given by p(C2|x) = 1− p(C1|x)
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Continuous inputs (cont.)

Decision boundaries are surfaces with constant posterior probabilities p(Ck |x)

• Linear functions of x

• Linear in input space

Prior probabilities p(Ck ) enter only through the bias parameter w0, changes
in priors have the effect of making parallel shifts of the decision boundary

• More generally, of the parallel contours of constant posterior probability



Probabilistic
generative models

UFC/DC
ATAI-I (CK0146)

2017.1

Probabilistic generative
models

Continuous inputs

Maximum likelihood

solution

Continuous inputs (cont.)

For the K -class case, using p(Ck |x) =
p(x|Ck )p(Ck )

∑K
j=1 p(x|Cj )p(Cj )

=
exp (ak)

∑K
j=1 exp (aj )

and ak = ln (p(x|Ck )p(Ck )), we have

ak(x) = wT
k x+ wk0 (12)

wk = Σ
−1

µk (13)

wk0 = −
1

2
µ
T
k Σ

−1
µk + ln p(Ck ) (14)

The ak(x) are again linear functions of x as a consequence of the
cancellation of the quadratic terms due to the shared covariances
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Continuous inputs (cont.)

The resulting decision boundaries (minimum misclassification rate)
occur when two of the posterior probabilities (the two largest) are
equal, and so they are defined by linear functions of x

• Again, we have a generalised linear model
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Continuous inputs (cont.)

If we relax the assumption of a shared covariance matrix and allow each
class-conditional density p(x|Ck ) to have its own covariance matrix Σk ,

• then the earlier cancellations no longer occur, and we will obtain
quadratic functions of x, giving rise to a quadratic discriminant
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Continuous inputs (cont.)

Class-conditional densities for three classes each having a Gaussian distribution

• red and green classes have the same covariance matrix
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The corresponding posterior probabilities and the decision boundaries

• Linear boundary between red and green classes, same covariance matrix

• Quadratic boundaries between other pairs, different covariance matrix
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Maximum likelihood solution

Once we specified a parametric functional form for class-conditional densities
p(x|Ck), we can determine parameters and prior class probabilities p(Ck )

• Maximum likelihood

This requires data comprising observations of x and corresponding class labels
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Maximum likelihood solution (cont.)

Consider first the two-class case, each having a Gaussian density with
shared covariance matrix Σ, and suppose we have data {xn, tn}Nn=1

{

tn = 1, for C1 with prior probability p(C1) = π

tn = 0, for C2 with prior probability p(C2) = 1− π

For a data point xn from class C1 (C2), we have tn = 1 (tn = 0), thus

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ)

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N (xn|µ2,Σ)

For t = (t1, . . . , tn)
T , the likelihood function is given by

p(t, X|π,µ1,µ2,Σ) =
N∏

n=1

(

πN (xn|µ1,Σ)
)tn

(

(1− π)N (xn|µ2,Σ)
)1−tn

(15)
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Maximum likelihood solution (cont.)

As usual, we maximise the log of the likelihood function

N∑

n=1

tn ln (π) + (1 − tn) ln (1 − π)
︸ ︷︷ ︸

π

+

tn ln (N (xn|µ1,Σ))
︸ ︷︷ ︸

µ1,Σ

+(1− tn) ln (N (xn|µ2,Σ))
︸ ︷︷ ︸

µ2,Σ
︸ ︷︷ ︸

µ1,µ2,Σ

(16)
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Maximum likelihood solution (cont.)

Consider first maximisation with respect to π, where the terms on π are

N∑

n=1

(

tn ln (π) + (1− tn) ln (1− π)
)

(17)

Setting the derivative wrt π to zero and rearranging

π =
1

N

N∑

n=1

tn =
N1

N
=

N1

N1 + N2
(18)

Remark

The maximum likelihood estimate for π is the fraction of points in C1
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Maximum likelihood solution (cont.)

Now consider maximisation with respect to µ1, where the terms on µ1 are

N∑

n=1

tn ln
(

N (xn|µ1,Σ)
)

= −
1

2

N∑

n=1

tn(xn − µ1)
T
Σ

−1(xn − µ1) + const (19)

Setting the derivative wrt µ1 to zero and rearranging

µ1 =
1

N1

N∑

n=1

tnxn (20)

Remark

The maximum likelihood estimate of µ1 is the mean of inputs xn in class C1

µ2 =
1

N2

N∑

n=1

tnxn (21)
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Maximum likelihood solution (cont.)

Lastly consider maximisation with respect to Σ, where the terms on Σ are

−
1

2

N∑

n=1

tn ln |Σ| −
1

2

N∑

n=1

tn(xn − µ1)
T
Σ

−1(xn − µ1)

−
1

2

N∑

n=1

(1 − tn) ln |Σ| −
1

2

N∑

n=1

(1− tn)(xn − µ2)
T
Σ

−1(xn − µ2)

= −
N

2
ln |Σ| −

N

2
Tr(Σ−1S) (22)

where

S =
N1

N
S1 +

N2

N
S2 (23)

S1 =
1

N1

∑

n∈C1

(xn − µ1)(xn − µ1)
T (24)

S2 =
1

N2

∑

n∈C2

(xn − µ2)(xn − µ2)
T (25)
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Maximum likelihood solution (cont.)

Σ = S =
N1

N

1

N1

∑

n∈C1

(xn − µ1)(xn − µ1)
T +

N2

N

1

N2

∑

n∈C2

(xn − µ2)(xn − µ2)
T

Average of the covariance matrices associated with each class separately
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