UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Probabilistic generative models

Linear models for classification

Francesco Corona

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Probabilistic generative models

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Probabilistic generative models

Models with linear decision boundaries arise from assumptions about the data

In the generative approach to classification, we firstly model the class-conditional densities $p(\mathbf{x}|C_k)$ and the class priors $p(C_k)$

• Then, we compute posterior probabilities $p(C_k|\mathbf{x})$ through Bayes' rule

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoor solution

Probabilistic generative models (cont.)

Remark

For two-class problems, the posterior probability of class \mathcal{C}_1 can be written as

$$p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{\underbrace{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}_{p(\mathbf{x}) = \sum_k p(\mathbf{x},\mathcal{C}_k) = \sum_k p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}} = \frac{1}{1 + \exp\left[-a(\mathbf{x})\right]} = \sigma[a(\mathbf{x})] \quad (1)$$

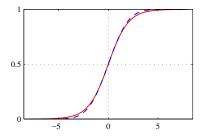
where we defined

$$a(\mathbf{x}) = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
(2)

 $\sigma(a)$ is the logistic sigmoid function (plotted in red)

$$\sigma(a) = \frac{1}{1 + \exp\left(-a\right)} \quad (3)$$

or squashing function, because it maps ${\mathbb R}$ onto a finite interval



UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Probabilistic generative models (cont.)

The logistic sigmoid satisfies the following symmetry property

$$\sigma(-a) = 1 - \sigma(a) \tag{4}$$

The inverse of the logistic sigmoid is known as logit function

$$a = \ln\left(\frac{\sigma}{1-\sigma}\right) \tag{5}$$

It reflects the log of the ratio of probabilities for two classes

$$\ln \frac{p(\mathcal{C}_1 | \mathbf{x})}{p(\mathcal{C}_2 | \mathbf{x})}$$

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Probabilistic generative models (cont.)

р

$$(\mathcal{C}_{1}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1}) + p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}$$

$$= \frac{1}{1 + \exp\left(-\ln\frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}\right)}$$

$$= \sigma\left(-\ln\frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}\right)$$

$$= \sigma\left(-\ln\frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}\right)$$

We have written the posterior probabilities in an equivalent form that will have significance when $a(\mathbf{x})$ is a linear function of \mathbf{x}

• Then, the posterior probability can be explicitly governed by a generalised linear model

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoor solution

Probabilistic generative models (cont.)

For the case K > 2 classes, we have

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_{j=1}^{K} p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)} = \frac{\exp\left[a_k(\mathbf{x})\right]}{\sum_{j=1}^{K} \exp\left[a_j(\mathbf{x})\right]}$$
(6)

known as normalised exponential¹

We have defined the quantity $a_k(\mathbf{x})$ as

$$a_k(\mathbf{x}) = \ln \left[p(\mathbf{x}|\mathcal{C}_k) p(\mathcal{C}_k) \right]$$
(7)

If
$$a_k >> a_j$$
, for all $j \neq k$, then
$$\begin{cases} p(\mathcal{C}_k | \mathbf{x}) &\simeq 1\\ p(\mathcal{C}_j | \mathbf{x}) &\simeq 0 \end{cases}$$

We are interested in the consequences of choosing some specific forms for the class-conditional densities $p(C_k|\mathbf{x})$

¹It is a generalisation of the logistic sigmoid and it is also known as the softmax function

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Outline

1 Probabilistic generative models

Continuous inputs Maximum likelihood solution

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Continuous inputs Probabilistic generative models

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Continuous inputs

Let us assume that the class-conditional densities $p(\mathbf{x}|C_k)$ are Gaussian

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}_k)\right)$$
(8)

The Gaussians have different means μ_k but share covariance matrix Σ

We want to explore the form of the posterior probabilities $p(C_k|\mathbf{x})$

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Continuous inputs (cont.)

$$p(\mathcal{C}_{1}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1}) + p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})} = \frac{1}{1 + \exp\left(-\underbrace{\ln\frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}}\right)}_{a(\mathbf{x})}$$

$$= \sigma\left(\underbrace{\ln\frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}}_{a(\mathbf{x})}\right)$$

$$= \sigma(\mathbf{w}^{T}\mathbf{x} + w_{0})$$
(9)

where

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\mu_1 - \mu_2) \tag{10}$$

$$w_0 = -\frac{1}{2}\mu_1 \Sigma^{-1} \mu_1 + \frac{1}{2}\mu_2 \Sigma^{-1} \mu_2 + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}$$
(11)

The quadratic terms in x from the exponents of the Gaussian densities have cancelled (due to the assumption of common covariance matrices) leading to

• a linear function of ${\boldsymbol x}$ in the argument of the logistic sigmoid

UFC/DC ATAI-I (CK0146) 2017.1

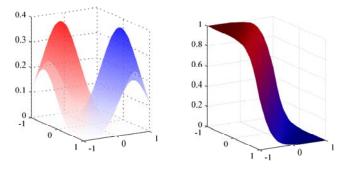
Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Continuous inputs (cont.)

The left-hand plot shows the class-conditional densities for two classes over 2D



The posterior probability $p(C_1|\mathbf{x})$ is a logistic sigmoid of a linear function of \mathbf{x}

The surface in the right-hand plot is coloured using a proportion of red given by $p(C_1|\mathbf{x})$ and a proportion of blue given by $p(C_2|\mathbf{x}) = 1 - p(C_1|\mathbf{x})$

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Continuous inputs (cont.)

Decision boundaries are surfaces with constant posterior probabilities $p(C_k|\mathbf{x})$

- Linear functions of x
- Linear in input space

Prior probabilities $p(C_k)$ enter only through the bias parameter w_0 , changes in priors have the effect of making parallel shifts of the decision boundary

• More generally, of the parallel contours of constant posterior probability

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihoo solution

Continuous inputs (cont.)

For the K-class case, using $p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_{j=1}^{K} p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)} = \frac{\exp(a_k)}{\sum_{j=1}^{K} \exp(a_j)}$ and $a_k = \ln(p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k))$, we have

$$a_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0} \tag{12}$$

$$\mathbf{w}_k = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k \tag{13}$$

$$w_{k0} = -\frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \ln p(C_k)$$
 (14)

The $a_k(\mathbf{x})$ are again linear functions of \mathbf{x} as a consequence of the cancellation of the quadratic terms due to the shared covariances

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Continuous inputs (cont.)

The resulting decision boundaries (minimum misclassification rate) occur when two of the posterior probabilities (the two largest) are equal, and so they are defined by linear functions of x

• Again, we have a generalised linear model

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Continuous inputs (cont.)

If we relax the assumption of a shared covariance matrix and allow each class-conditional density $p(\mathbf{x}|\mathcal{C}_k)$ to have its own covariance matrix Σ_k ,

 then the earlier cancellations no longer occur, and we will obtain quadratic functions of x, giving rise to a quadratic discriminant

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

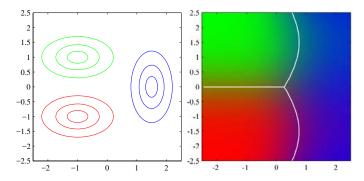
Continuous inputs

Maximum likelihoo solution

Continuous inputs (cont.)

Class-conditional densities for three classes each having a Gaussian distribution

• red and green classes have the same covariance matrix



The corresponding posterior probabilities and the decision boundaries

- · Linear boundary between red and green classes, same covariance matrix
- Quadratic boundaries between other pairs, different covariance matrix

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution Probabilistic generative models

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution

Once we specified a parametric functional form for class-conditional densities $p(\mathbf{x}|C_k)$, we can determine parameters and prior class probabilities $p(C_k)$

• Maximum likelihood

This requires data comprising observations of x and corresponding class labels

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution (cont.)

Consider first the two-class case, each having a Gaussian density with shared covariance matrix Σ , and suppose we have data $\{\mathbf{x}_n, t_n\}_{n=1}^N$

$$\begin{cases} t_n = 1, & \text{for } C_1 \text{ with prior probability } p(C_1) = \pi \\ t_n = 0, & \text{for } C_2 \text{ with prior probability } p(C_2) = 1 - \pi \end{cases}$$

For a data point \mathbf{x}_n from class \mathcal{C}_1 (\mathcal{C}_2), we have $t_n = 1$ ($t_n = 0$), thus

$$\begin{aligned} p(\mathbf{x}_n, \mathcal{C}_1) &= p(\mathcal{C}_1)p(\mathbf{x}_n | \mathcal{C}_1) = \pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) \\ p(\mathbf{x}_n, \mathcal{C}_2) &= p(\mathcal{C}_2)p(\mathbf{x}_n | \mathcal{C}_2) = (1 - \pi) \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) \end{aligned}$$

For $t = (t_1, \ldots, t_n)^T$, the likelihood function is given by

$$p(\mathbf{t}, \mathbf{X}|\pi, \mu_1, \mu_2, \mathbf{\Sigma}) = \prod_{n=1}^{N} \left(\pi \mathcal{N}(\mathbf{x}_n | \mu_1, \mathbf{\Sigma}) \right)^{t_n} \left((1 - \pi) \mathcal{N}(\mathbf{x}_n | \mu_2, \mathbf{\Sigma}) \right)^{1 - t_n}$$
(15)

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution (cont.)

As usual, we maximise the log of the likelihood function

$$\sum_{n=1}^{N} \underbrace{\frac{t_n \ln (\pi) + (1 - t_n) \ln (1 - \pi)}{\pi}}_{\pi} + \underbrace{\frac{t_n \ln (\mathcal{N}(\mathbf{x}_n | \mu_1, \Sigma))}{\mu_{1}, \Sigma} + \underbrace{(1 - t_n) \ln (\mathcal{N}(\mathbf{x}_n | \mu_2, \Sigma))}_{\mu_{2}, \Sigma}}_{\mu_{1}, \mu_{2}, \Sigma}$$
(16)

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution (cont.)

Consider first maximisation with respect to π , where the terms on π are

$$\sum_{n=1}^{N} \left(t_n \ln \left(\pi \right) + (1 - t_n) \ln \left(1 - \pi \right) \right)$$
(17)

Setting the derivative wrt π to zero and rearranging

$$\pi = \frac{1}{N} \sum_{n=1}^{N} t_n = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$
(18)

Remark

The maximum likelihood estimate for π is the fraction of points in \mathcal{C}_1

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution (cont.)

Now consider maximisation with respect to μ_1 , where the terms on μ_1 are

$$\sum_{n=1}^{N} t_n \ln \left(\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) \right) = -\frac{1}{2} \sum_{n=1}^{N} t_n (\mathbf{x}_n - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_1) + \text{const} \quad (19)$$

Setting the derivative wrt μ_1 to zero and rearranging

$$\mu_1 = \frac{1}{N_1} \sum_{n=1}^{N} t_n \mathbf{x}_n \tag{20}$$

Remark

The maximum likelihood estimate of μ_1 is the mean of inputs x_n in class C_1

$$\mu_2 = \frac{1}{N_2} \sum_{n=1}^{N} t_n \mathbf{x}_n \tag{21}$$

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution (cont.)

Lastly consider maximisation with respect to Σ , where the terms on Σ are

$$-\frac{1}{2}\sum_{n=1}^{N} t_n \ln |\Sigma| - \frac{1}{2}\sum_{n=1}^{N} t_n (\mathbf{x}_n - \mu_1)^T \Sigma^{-1} (\mathbf{x}_n - \mu_1) - \frac{1}{2}\sum_{n=1}^{N} (1 - t_n) \ln |\Sigma| - \frac{1}{2}\sum_{n=1}^{N} (1 - t_n) (\mathbf{x}_n - \mu_2)^T \Sigma^{-1} (\mathbf{x}_n - \mu_2) = -\frac{N}{2} \ln |\Sigma| - \frac{N}{2} \mathrm{Tr}(\Sigma^{-1} \mathbf{S})$$
(22)

where

$$\mathbf{S} = \frac{N_1}{N} \mathbf{S}_1 + \frac{N_2}{N} \mathbf{S}_2 \tag{23}$$

$$\mathbf{S}_{1} = \frac{1}{N_{1}} \sum_{n \in \mathcal{C}_{1}} (\mathbf{x}_{n} - \mu_{1}) (\mathbf{x}_{n} - \mu_{1})^{T}$$
(24)

$$\mathbf{S}_{2} = \frac{1}{N_{2}} \sum_{n \in C_{2}} (\mathbf{x}_{n} - \mu_{2}) (\mathbf{x}_{n} - \mu_{2})^{T}$$
(25)

UFC/DC ATAI-I (CK0146) 2017.1

Probabilistic generative models

Continuous inputs

Maximum likelihood solution

Maximum likelihood solution (cont.)

$$\Sigma = S = \frac{N_1}{N} \frac{1}{N_1} \sum_{n \in C_1} (x_n - \mu_1) (x_n - \mu_1)^T + \frac{N_2}{N} \frac{1}{N_2} \sum_{n \in C_2} (x_n - \mu_2) (x_n - \mu_2)^T$$

Average of the covariance matrices associated with each class separately