Matrícula (First-name Last-name)

CK0255/TIP8421: Homework B

Exercise A.1. Find the constant c such that the following expressions of p(x) are valid probability mass functions for the random variable X

- $p(x) = c(2/3)^x$ for $x = 1, 2, 3, \ldots$ and zero elsewhere.
- p(x) = cx for x = 1, 2, 3, 4, 5, 6 and zero else where.

Exercise A.2. Let the random variable X have the probability mass function $p_X(x) = (1/2)^x$ for x = 1, 2, 3, ...

- Determine the PMF $p_Y(y)$ of the random variable $Y = X^3$.
- Plot $p_X(x)$ and $p_Y(y)$.

Exercise A.3. Let the random variable X have the probability density function $f_X(x) = 1/3$ for $x \in (-1, 2)$ and zero elsewhere.

• Determine the PDF $f_Y(y)$ and the CDF $F_Y(y)$ of the random variable $Y = X^2$.

Exercise A.4. Let the random variable X have the PDF $f_X(x) = 1/\pi$ for $x \in (-\pi/2, \pi/2)$.

• Determine the PDF $f_Y(y)$ of the random variable $Y = \tan(X)$ and plot its graph.

Exercise A.5. A mode of a distribution of a RV X is a value x that maximises the PDF/PMF. Consider a random variable X whose CDF $F(x) = 1 - e^{-x} - xe^{-x}$ for $x \in [0, \infty)$ and zero elsewhere.

• Determine the PDF f(x) and the mode of the distribution.