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Introduction

Many kinds of studies can be characterised as (repeated) experiments

• Under (essentially) identical conditions

• More or less a standard procedure

• Medical sciences: Effect of a drug that is to be provided

• Economic sciences: Prices of some commodities in time

• Agronomic sciences: Effect that a fertiliser has on yield

To get information about such phenomena we perform an experiment

• Each experiment ends with an outcome

The outcome can only be predicted with uncertainty
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Introduction (cont.)

Imagine that we have such an experiment

Experiments are s.t. we can describe a collection of every possible outcomes

• Already before the performance of the experiment

• If the experiment can be repeated under ‘identical’ conditions,
then we denote it a random experiment

• We denote the collection of every possible outcome of a random
experiment the sample space, or the experimental space
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Introduction (cont.)

Example

Toss of a coin

• Let the outcome ‘tails’ be denoted by T

• Let the outcome ‘heads’ be denoted by H

The toss of this coin is an example of a random experiment

• The outcome of the experiment is one of two symbols, T and H

• The sample space is the collection of these two symbols, {T, H}

We accept that the coin can be repeatedly tossed under the same conditions

�
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Introduction (cont.)

Example

Cast of two coloured dice

• Let the outcome be an ordered pair

• (Number of spots on red die, Number of spots on white die)

If we accept that these two dice can be repeatedly cast under the same exact
conditions, then the cast of these dice is an example of a random experiment

• The sample space is the set of 36 ordered pairs

• {(1, 1), · · · , (1, 6), (2, 1), · · · , (2, 6), · · · , (6, 6)}

�
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Introduction (cont.)

Let C denote the sample space, let c denote an element of C

• Let C represent a collection of elements of C

After performing the experiment, let the outcome be in C

 We say that the event C has occurred
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Introduction (cont.)

Imagine of having N repeated executions of the random experiment

• We can count the number f of times that event C occurred
(throughout the N executions)

• The number of occurrences (the frequency)

Ratio f /N is the relative frequency of event C (in the N experiments)
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Introduction (cont.)

Relative frequency can be quite erratic a quantity, for small values of N

• As N increases, we could start associating with event C a number, p

• p approximates the number about which relative frequency stabilises

We can start coming up with an interpretation of number p

• It is that number that relative frequency of event C will approximate
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Remark

Summarising, we cannot predict the outcome of a random experiment

We can approximate the relative frequency with which it will be in C

 For large N
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The number p associated with event C has received various names

• The probability of event C

• The probability measure of C

• The probability that the outcome (of random experiment) is in C

The context suggests appropriate choices of terminology
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Example

Cast of two coloured dice

• Let C = {(1, 1), · · · , (1, 6), (2, 1), · · · , (2, 6), · · · , (6, 6)}

• Let C be the collection of all pairs with sum equal 7

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (1, 6)}

Say we cast N = 1K times, let f = 150 be the frequency of sum equal 7

f /N =
150

1000
= 0.15

We can associate with event C a number p that is close to f /N

 p would define the probability of event C

�
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Introduction (cont.)

Remark

The provided interpretation of probability is referred to as frequentist

• It is subjected to the fact that an experiment can be repeated

• (Under the same ‘identical’ conditions)

The interpretation of probability can be extended to other situations

• By treating it as a subjective (rational?) measure of belief

The math properties of probability are consistent with either of the meanings

• Our development won’t depend up on the interpretation
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Introduction (cont.)

The course is about defining mathematical models for random experiments

First a model has to be developed with the theory set in place, then we can
start making inferences (draw conclusions) about the random experiment

Building such a model requires a theory of probability

• A satisfactory theory of probability is to be developed

• We shall use the concepts of sets and functions of sets
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Set theory

Typically, the concept of a set/collection of objects can be left undefined

• Yet, we need to minimise the risk of misunderstanding

• What collection of objects is under study?

• Particular sets can (must) be described

Example

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The set of the first 10 non-negative integers is sufficiently well described
to clarify that numbers 2/7 and −5 are not in it, while number 7 is in it

�
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Set theory (cont.)

If an object belongs to a set, it is said to be an element of that set

Example

Let C denotes the set of real numbers x such that 0 ≤ x ≤ 1

• 2/7 is an element of set C

The fact that 2/7 is an element of set C is denoted by 2/7 ∈ C

0 1

2/7

�

More generally, c ∈ C means that c is an element of set C
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Our concern is on sets that are, typically, sets of numbers

• We use the the language of ‘sets of points’

• More convenient than ‘sets of numbers’

In analytical geometry, to each point on the line (onto which origin- and
unit-point have been selected) corresponds one and only one number, x

� To each number x corresponds one and only one point on the line

The 1-to-1 correspondence between numbers and points on a line allows
us to speak of the ‘point x ’ meaning the ‘number x ’ (without ambiguity)
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Set theory (cont.)

On a planar rectangular system of coordinates and with x and y numbers,
to each symbol (x , y) there corresponds one and only one point in the plane

� To each point in the plane corresponds one and only one symbol (x , y)

Because of the one-to-one correspondence between numbers and points, we
can speak of the ‘point (x , y)’ instead of the ‘ordered number-pair x and y ’
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The same vocabulary can be used with a rectangular system of coordinates in
a space of three, four, five, six, seven, eight, nine, ten, ... or more dimensions

The ‘point (x1, x2, . . . , xn)’ means the ordered number n-tuple x1, x2, . . . , xn
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The bottom line: When describing sets, we speak of sets of points

• Sets whose elements are points

And, we want to be precise in describing our sets

• ... to avoid any ambiguity
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Set theory (cont.)

Example

Notation C = {x : 0 ≤ x ≤ 1}

 ‘C is the mono-dimensional set of points x such that 0 ≤ x ≤ 1’

0 1

Notation C = {(x , y) : 0 ≤ x , y ≤ 1}

 ‘C is the bi-dimensional set of points (x , y) that are internal to, or on
the frontier of, a square whose facing vertices are (0, 0) and (1, 1)’

(1, 1)

(0, 0)

�
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Remark

When the dimensionality of sets is clear, no need to make reference to it
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A set C is said to be countable when either C is finite, or it has as many
elements as there are positive integers (aka, counting or natural numbers Z)

Example

• Sets C1 = {1, 2, . . . , 100} and C2 = {1, 3, 5, 7, . . . } are countable sets

• The interval of real numbers (0, 1] is not a countable set

�
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Set theory (cont.)

Some definitions, together with some illustrative examples

 An elementary algebra of sets
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Definition

If each element of some set C1 is also an element of some set C2, then we
say that set C1 is a subset of set C2

• This is denoted by writing C1 ⊂ C2

If C1 ⊂ C2 and also C2 ⊂ C1, then sets C1 and C2 have the same elements

• This is denoted by writing C1 = C2
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Set theory (cont.)

Example

Define the sets

• C1 = {x : 0 ≤ x ≤ 1}

• C2 = {x : −1 ≤ x ≤ 2}

C1

0 1
C2

−1 2

Each element of set C1 is also an element of set C2

Mono-dimensional set C1 is a subset of mono-dimensional set C2

 C1 ⊂ C2

�
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Set theory (cont.)

Example

Define the sets

• C1 = {(x , y) : 0 ≤ x = y ≤ 1}

• C2 = {(x , y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

1

1

The elements of C1 are points on one diagonal of square C2

 C1 ⊂ C2

�
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Definition

If a set C has no elements, it is said that C is the null set

• This is denoted by writing C = ∅
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Definition

The set of all elements that are in at least one of the sets C1 and C2

 The union of C1 and C2

• The union of C1 and C2 is denoted by writing C1 ∪C2

The set of all elements are in at least one of the sets C1,C2,C3, · · ·

 The union of the sets C1,C2,C3, · · ·

• If an infinite number of sets is considered, their union is indicated by

C1 ∪ C2 ∪ C3 ∪ · · · =
∞⋃

j=1

Cj

• If a finite number of sets is considered, their union is indicated by

C1 ∪ C2 ∪ C3 ∪ · · · ∪ Ck =
k⋃

j=1

Cj

We refer to the union
⋃∞

j=1 Cj as a countable union
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Set theory (cont.)

Example

Define the sets

• C1 = {x : x = 8, 9, 10, 11 or 11 < x ≤ 12}

• C2 = {x : x = 0, 1, · · · , 10}

Then,

C1 ∪ C2 = {x : x = 0, 1, · · · , 8, 9, 10, 11 or 11 < x ≤ 12}

= {x : x = 0, 1, · · · , 8, 9, 10 or 11 ≤ x ≤ 12}

�
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Set theory (cont.)

Example

Define the sets

• C1 = {x : 0 ≤ x ≤ 1}

• C2 = {x : −1 ≤ x ≤ 2}

C1

0 1
C2

−1 2

Then,
C1 ∪C2 = C2

�
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Example

Let C2 = ∅, then C1 ∪ C2 = C1 (for every set C1)

�

Example

For every set C , C ∪ C = C

�
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Example

Let

Ck =
{

x :
1

k + 1
≤ x ≤ 1

}

, k = 1, 2, 3, · · ·

Then,
∞⋃

k=1

Ck = {x : 0 < x ≤ 1}

The number zero is not in any of the sets Ck

 Number zero is also not in their union set

�
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Definition

The set of all elements that are in each of the sets C1 and C2

 The intersection of C1 and C2

• The intersection of C1 and C2 is denoted by writing C1 ∩ C2

The set of all elements that are in each of the sets C1,C2,C3, · · ·

 The intersection of sets C1,C2,C3, · · ·

• If an infinite number of sets is considered, intersection is indicated by

C1 ∩ C2 ∩ C3 ∩ · · · =
∞⋂

j=1

Cj

• If a finite number of sets is considered, intersection is indicated by

C1 ∩ C2 ∩ C3 ∩ · · · ∩ Ck =
k⋂

j=1

Cj

We refer to the intersection
⋂∞

j=1 Cj as a countable intersection
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Example

Define the sets

• C1 = {(0, 0), (0, 1), (1, 1)}

• C2 = {(1, 1), (1, 2), (2, 1)}

Then,
C1 ∩ C2 = {(1, 1)}

�

Example

Define the sets

• C1 = {(x , y) : 0 ≤ x + y ≤ 1}

• C2 = {(x , y) : 1 < x + y}

Then,
C1 ∩ C2 = ∅
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Example

For every C , C ∩ C = C and C ∩ ∅ = ∅

�

Example

Let

Ck =
{

x : 0 < x <
1

k

}

, k = 1, 2, 3, · · ·

Then,
∞⋂

k=1

Ck = ∅

�
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Example

Let C1 and C2 represent the point sets enclosed by two intersecting balls

Then, sets C1 ∪C2 and C1 ∩ C2 can be represented by the shaded regions

C1 C2 C1 C2

 Venn diagrams

�
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Definition

In some situations, the entirety of all elements of interest can be described

The set of all elements of interest is the space

• Spaces are denoted by calligraphic letters

• (such as C,D, · · · )
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Example

Multiple tosses of a coin

Tossing a coin four times, let x be the number of heads

• Number x is one of the numbers 0, 1, 2, 3, 4

Then, the space is set C = {0, 1, 2, 3, 4}

�

Example

Rectangles

Consider all possible rectangles of base x and height y

• Both x and y must be positive

Then, the space is set C = {(x , y) : x , y > 0}

�



Probability

theory

UFC/DC
ATML(CK0255)
PRV (TIP8412)

2017.2

Introduction

Set theory

Probability set
functions

Conditional
probability

Independence

Set theory (cont.)

Definition

Let C be a space and let C be a subset of set C

The set of all elements of C that do not belong to C

 The complement of C (‘with respect to C’)

• The complement of C is indicated by C c

Special case, Cc = ∅
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Example

Let C = {0, 1, 2, 3, 4} and let C = {0, 1}

The complement of C (wrt C) is C c = {2, 3, 4}

�
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Example

Let C ⊂ C

We have that,

1 C ∪ C c = C

2 C ∩ C c = ∅

3 C ∪ C = C

4 C ∩ C = C

5 (C c)c = C

�
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Example

DeMorgan’s laws

Let C be a space and let Ci ⊂ C, with i = 1, 2

Then,

• (C1 ∩ C2)c = C c
1 ∪C c

2

• (C1 ∪ C2)c = C c
1 ∩C c

2

�(⋆)
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Most of the functions used in calculus map real numbers into real numbers

• Our concern is mostly with functions that map sets into real numbers

Such functions are functions of a set

• Set functions
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Example

Let C be a set in a mono-dimensional space

Let Q(C ) be equal to the number of points in C that are positive integers

Then, Q(C ) is a function of set C

• If C = {x : 0 < x < 5}, then Q(C ) = 4

• If C = {−2,−1}, then Q(C ) = 0

• If C = {x : −∞ < x < 6}, then Q(C ) = 5

�
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Example

Let C be a set in a bi-dimensional space

Let Q(C ) be the area of C , if C has a finite one

• Let Q(C ) remain unset, otherwise

Then, Q(C ) is a function of set C

• If C = {(x , y) : x2 + y2 ≤ 1}, then Q(C ) = π

• If C = {(0, 0), (1, 1), (0, 1)}, then Q(C ) = 0

• If C = {(x , y) : 0 ≤ x , 0 ≤ y , x + y ≤ 1}, then Q(C ) = 1/2

�
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Example

Let C be a set in a tri-dimensional space

Let Q(C ) be the volume of C , if C has a finite one

• Let Q(C ) remain unset, otherwise

Then, Q(C ) is a function of set C

• If C = {(x , y , z) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 3}, then Q(C ) = 6

• If C = {(x , y , z) : x2 + y2 + z2 ≥ 1}, then Q(C ) is undefined

�
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We introduce the notation

The symbol ∫

C

f (x)dx

indicates the ordinary, Reimannian, integral of f (x)

• over the mono-dimensional set C

The symbol ∫ ∫

C

g(x , y)dxdy

indicates the ordinary, Reimannian, integral of g(x , y)

• over the bi-dimensional set C
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Remark

Ordinary integrals have a bad habit: At times, they fail to exist

• Sets C and functions f (x) and g(x , y) must be chosen with care
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The symbol

• ∑

C

f (x)

indicates the sum extended over all points x ∈ C

The symbol

• ∑∑

C

g(x , y)

indicates the sum extended over all points (x , y) ∈ C
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Example

Let C be a set in a mono-dimensional space and let Q(C ) =
∑

C f (x)

0 2 4 6 8

0

0.2

0.4

x

f
(x

)

f (x) =






(1

2

)x
, x = 1, 2, 3, . . .

0, elsewhere

If C = {x : 0 ≤ x ≤ 3}, then

Q(C ) =
1

2
+

(1

2

)2
+

(1

2

)3
= 7/8
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Remark

The simplest of all series of non-negative terms is the geometric series

If 0 ≤ x < 1, then
∞∑

n=0

xn =
1

1− x

If x ≥ 1, the series diverges

If x 6= 1,

sn =
n∑

k=0

x k =
1− xn+1

1− x

Result follows if we let n → ∞

For x = 1,
1 + 1 + 1 + · · ·

which diverges
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Example

Let C be a set in a mono-dimensional space and let Q(C ) =
∑

C f (x)

0 0.5 1

0

0.5

1

x

f
(x

|p
=

1
/
3
)

f (x) =

{

px (1− p)1−x , x = 0, 1

0, elsewhere

If C = {0}, then

Q(C ) =
0∑

x=0

px (1− p)1−x = 1− p

If C = {x : 1 ≤ x ≤ 2}, then

Q(C ) = f (1|p) = p
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Example

Let C be a mono-dimensional set and let Q(C ) =
∫

c
f (x)dx

0 5

0

0.5

1

1.5

x

f
(x

)

f (x) = e−x

If C = {x : 0 ≤ x ≤ ∞}, then

Q(C ) =

∫ ∞

0
e−xdx = 1

If C = {x : 1 ≤ x ≤ 2}, then

Q(C ) =

∫ 2

1
e−xdx = e−1 − e−2
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0 5

0

0.5

1

1.5

x

f
(x

)

(a) C = {x : 0 ≤ x ≤ ∞}

0 5

0

0.5

1

1.5

x

f
(x

)

(b) C = {x : 1 ≤ x ≤ 2}
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If C1 = {x : 0 ≤ x ≤ 1} and C2 = {x : 1 < x ≤ 3}, then

0 5

0

0.5

1

1.5

x

f
(x

) Q(C1 ∪ C2) =

∫ 3

0
e−xdx

=

∫ 1

0
e−xdx +

∫ 3

1
e−xdx

= Q(C1) +Q(C2)
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Example

Let C be a set in a n-dimensional space and let

Q(C ) =

∫

· · ·

∫

C

(1)dx1dx2 · · · dxn

If C = {(x1, x2, . . . , xn) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1}, then

Q(C ) =

∫ 1

0

∫ xn

0
· · ·

∫ x3

0

∫ x2

0
dx1dx2 · · ·dxn−1dxn

=
1

n!
, with n! = n(n − 1) · · · 3 · 2 · 1
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Given an experiment, let C be the sample space (all possible outcomes)

• We want to assign probabilities to events (subsets of C)

What our collection of events should be?

Example

• If C is a finite set, we could pick the set of all subsets of C
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We pick our collection of events in such a way that

1 It is sufficiently rich to incorporate all possible events (of interest)

2 It is closed under complements and countable unions of such events

The collection is, then, closed under countable intersections (DeMorgan)

A set of events thus defined is said to be a Borel σ-field of subsets

• To indicate it, we use symbol B

Example

Let C = {A, B, C, D}, set B = {∅, {A, B}, {C, D}, {A, B, C, D}} is a possible σ-field

• It contains the empty set

• It is closed under complements

• It is closed under countable unions of its elements

 It is closed under countable intersections of its elements

The pair (C,B) is called a measurable space
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We have a sample space C and we have a collection of events B

We can define the last component of a probability space

 The probability set function

To push in the definition, we use relative frequencies



Probability

theory

UFC/DC
ATML(CK0255)
PRV (TIP8412)

2017.2

Introduction

Set theory

Probability set
functions

Conditional
probability

Independence

Probability set functions (cont.)

The definition of probability consists of three axioms

• Motivation from three properties of relative frequency

Remark

Let C be a sample space and let C ⊂ C

• We repeat the experiment N times

• The relative frequency of C is fC = #{C}/N

#{C} is the number of times C occurred in N repetitions

 fC ≥ 0 and fC = 1

• The first two properties

Let C1 and C2 be two disjoint events then

 fC1∪C2
= fC1

+ fC2

• The third property

The three properties of relative frequencies form the axioms of probability

• The third axiom is given in terms of countable unions
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Definition 3.1

Probability

Let C be a sample space and let B be the set of events

Let P be a real-valued function defined on B

P is a probability set function, if P satisfies the three conditions

1 P(C ) ≥ 0, for all C ∈ B

2 P(C) = 1

3 If {Cn} is a sequence of events in B and Cm ∩ Cn = ∅ for all m 6= n,

 P
( ∞⋃

n=1

Cn

)

=
∞∑

n=1

P(Cn )
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A collection of events whose elements are pair-wise disjoint (third condition)

 mutually exclusive collection

A collection is exhaustive if the union of its events is the sample space

 

∞∑

n=1

P(Cn ) = 1

Mutually exclusive and exhaustive sets of events form a partition of C
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A probability set function informs on how probability is distributed

• Over the set of events B

 A distribution of probability

We refer to P as a probability (set) function



Probability

theory

UFC/DC
ATML(CK0255)
PRV (TIP8412)

2017.2

Introduction

Set theory

Probability set
functions

Conditional
probability

Independence

Probability set functions (cont.)

The next theorems give some more properties of a probability set function

In the statement of each of these theorems, P(C ) is taken to be a probability
set function defined on the collection of events B of some sample space C
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Theorem 3.1

For each event C ∈ B, P(C ) = 1− P(C c)

Proof

We have C = C ∪ C c and C ∩C c = ∅

From the second (P(C) = 1) and the third (P(
⋃∞

n=1 Cn ) =
∑∞

n=1 P(Cn),
for disjoint sets) condition of the probability definition, it follows that

1 = P(C ) + P(C c)

�
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Theorem 3.2

The probability of the null set is zero

P(∅) = 0

Proof

From Theorem 3.1,
P(C ) = 1− P(C c)

Take C = ∅ so that C c = C, thus

P(∅) = 1− P(C) = 1− 1 = 0

�
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Theorem 3.3

If C1 and C2 are events such that C1 ⊂ C2, then P(C1) ≤ P(C2)

Proof

C2 = C1 ∪ (C c
1 ∩C2) and C1 ∩ (C c

1 ∩ C2) = ∅

From Definition 3.1,

P(C2) = P(C1) + P(C c
1 ∩ C2)

From the first condition (P(C ) ≥ 0, for all C ∈ B) in Definition 3.1,

P(C c
1 ∩C2) ≥ 0

Hence, P(C2) ≥ P(C1)

�
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Theorem 3.4

For each C ∈ B, 0 ≤ P(C ) ≤ 1

Proof

Since ∅ ⊂ C ⊂ C, by Theorem 3.3, we have that

P(∅) ≤ P(C ) ≤ P(C) or 0 ≤ P(C ) ≤ 1

�
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Theorem 3.5

If C1 and C2 are events in C, then

P(C1 ∪C2) = P(C1) + P(C2)− P(C1 ∩ C2)

Proof

Sets C1 ∪ C2 and C2 can be represented by the union of non-relevant sets

C1 ∪ C2 = C1 ∪ (C c
1 ∩ C2) and C2 = (C1 ∩ C2) ∪ (C c

1 ∩ C2)

From the third condition (P(
⋃∞

n=1 Cn) =
∑∞

n=1 P(Cm ), for disjoint sets)

P(C1∪C2) = P(C1)+P(C c
1 ∩C2) and P(C2) = P(C1∩C2)+P(C c

1 ∩C2)

Second equation is solved for P(C c
1 ∩ C2), result plugged into the first one

P(C1 ∪C2) = P(C1) + P(C2)− P(C1 ∩ C2)
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Remark

Inclusion-exclusion formula

Let

• p1 = P(C1) + P(C2) + P(C3)

• p2 = P(C1 ∩ C2) + P(C1 ∩ C3) + P(C2 ∩C3)

• p3 = P(C1 ∩ C2 ∩ C3)

Then, it can be shown that

P(C1 ∪ C2 ∪ C3) = p1 − p2 + p3,

This fact can be generalised: The inclusion-exclusion formula

P(C1 ∪ C2 ∪ · · · ∪Ck ) = p1 − p2 + p3 − · · ·+ (−1)k+1pk ,

pi is the sum of probabilities of all possible intersections comprising i sets

For k = 3, we have p1 ≥ p2 ≥ p3 and more generally p1 ≥ p2 ≥ · · · ≥ pk
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We shall show (Theorem 3.6) that

• p1 = P(C1) + P(C2) + · · ·+ P(Ck ) ≥ P(C1 ∪ C2 ∪ · · · ∪Ck )

 This expression is know as Boole’s inequality

For k = 2, we get 1 ≥ P(C1 ∪C2) = P(C1) + P(C2)− P(C1 ∩C2)

This gives us
P(C1 ∩C2) ≥ P(C1) + P(C2)− 1 (1)

 This expression is known as Bonferroni’s inequality
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The inclusion-exclusion formula provides other useful inequalities

p1 ≥ P(C1 ∪ C2 ∪ · · · ∪Ck ) ≥ p1 − p2

and
p1 − p2 + p3 ≥ P(C1 ∪ C2 ∪ · · · ∪Ck ) ≥ p1 − p2 + p3 − p4
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Example

Let the outcome of casting two coloured dice be an ordered pair

• (Number of spots on red die, Number of spots on white die)

The sample space is set C = {(1, 1), · · · , (1, 6), (2, 1), · · · , (2, 6), · · · , (6, 6)}

Let the probability function assign probability 1/36 to the (36) points in C

• (i.e., assume the dice are fair)

If

• C1 = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}

• C2 = {(1, 2), (2, 2), (3, 2)}

then,

• P(C1) = 5/36

• P(C2) = 3/36

• P(C1 ∪ C2) = 8/36

• P(C1 ∩ C2) = 0
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Example

Consider two coins, the outcome is the ordered pair

{(Face on coin one, Face on coin two)}

The sample space is set C = {(H, H), (H, T), (T, H), (T, T)}

A probability set function assign a probability of 1/4 to each element of C

Let

• C1 = {(H, H), (H, T)}, P(C1) = 1/2

• C2 = {(H, H), (T, H)}, P(C2) = 1/2

Then,

P(C1 ∩ C2) = 1/4

P(C1 ∪ C2) = 1/2 + 1/2− 1/4 = 3/4 (Theorem 3.5)
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Example

Equiprobable case

Let C be partitioned into k mutually disjoint subsets C1,C2, . . . ,Ck

• Let the union of subsets C1,C2, . . . ,Ck be the sample space C

Events C1,C2, . . . ,Ck are mutually exclusive and exhaustive

Suppose the random experiment is such that we can assume that each of
the mutually exclusive and exhaustive events Ci has the same probability

• It must be that P(Ci ) = 1/k , with i = 1, 2, . . . , k

• Events C1,C2, . . . ,Ck are equally probable
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Let (event) E be the union of r of such mutually exclusive events

E = C1 ∪ C2 ∪ · · · ∪ Cr , with r < k

Then,
P(E) = P(C1) + P(C2) + · · ·+ P(r) = r/k

The experiment can terminate in k number of ways (for such partition of C)

 The number of ways favourable to event E , r

In this sense, P(E) is equal to the number of ways r favourable to event E
divided by the total number of ways k in which the experiment can conclude
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Setting probability r/k to event E assumes that each of the mutually ex-
clusive and exhaustive events C1,C2, . . . ,Ck has the same probability 1/k

• The assumption of equiprobable events has become part of the model

• In some applications, this assumption is not realistic
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Remark

Counting rules

Suppose we have two experiments

• The first experiment can result in m outcomes

• The second one can result in n outcomes

The composite experiment (1-st experiment followed by 2-nd experiment)

• m · n outcomes, represented by m · n ordered pairs

The multiplication rule: It extends to more than two experiments
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Let A be a set with n elements

Suppose we are interested in k -tuples whose elements are elements of A

There are n · n · · · n
︸ ︷︷ ︸

k factors

= nk such k -tuples
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Suppose k ≤ n

We are interested in k -tuple whose members are distinct elements of A

There are,

• n elements from which to choose for the first member

• n − 1 elements from which to choose for the second member

• · · ·

• n − (k − 1) elements from which to choose for the k -th member
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By multiplication rule, there are n · (n − 1) · · · [n − (k − 1)]
︸ ︷︷ ︸

k factors

such k -tuples

• Each such k -tuple is called a permutation

We let symbol Pn
k to indicate the k permutations, picked from n elements

Pn
k = n(n − 1) · · · [n − (k − 1)] =

n(n − 1) · · · [n − (k − 1)] ·
(n − k)!

(n − k)!
=

n!

(n − k)!
(2)
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Suppose that order is no longer important, we count the number of subsets
of k elements taken from A, instead of counting the number of permutations

We let symbol
(
n
k

)
indicate the total number of such subsets

Consider a subset of k elements from A

By multiplication rule, it gives us Pk
k
= k(k − 1) · · · 1

︸ ︷︷ ︸

k factors

permutations

• All such permutations are different from the permutations
obtained from other subsets of k elements from A

• Each permutation of k different elements from A must be
obtained from one of these subsets, of which there are

(
n
k

)

Hence, we have

Pn
k =

(n

k

)

k !  

(n

k

)

=
n!

k !(n − k)!
(3)
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Remark

Instead of subsets, we often prefer the terminology combinations

We say there are
(
n
k

)
combinations of k things picked from a set of n things

Remark

If the binomial is expanded, we get

(a + b)n = (a + b)(a + b) · · · (a + b) =
n∑

k=0

(n

k

)

ak bn−k

We can select the k factors from which to pick a in
(
n

k

)
ways

 
(
n
k

)
is called the binomial coefficient
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Example

Let a card be picked at random from an ordinary deck (52 playing cards)

The sample space C is the union of k = 52 outcomes

• We assume each has equal probability 1/52

• (13 cards for each of the 4 suits)

If E1 is the set of outcomes that are ♠, P(E1) = 13/52 = 1/4

• 1/4 is the probability of drawing a ♠

• There are r1 = 13 ♠s in the deck

If E2 is the set of outcomes that are K, P(E2) = 4/52 = 1/13

• 1/13 is the probability of drawing a K

• There are r2 = 4 Ks in the deck
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Instead of picking a single card, suppose we pick five of them

• At random, without replacement

• Order is not important

This is a subset of 5 elements drawn from a set of 52 elements

• By Equation 3, there are
(
n=52
k=5

)
possible draws

They should all be equally probable

• Each has probability 1/
(52
5

)

• (well-shuffled deck)
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Let E3 be the event of a flush (five cards of the same suit)

• There are
(4
1

)
suits to pick for a flush

• In each suit, there are
(13
5

)
possible hands

By the multiplication rule, the probability of a flush

P(E3) =
(4

1

)(13

5

)/(52

5

)

=
4× 1, 287

2, 598, 960
≈ 0.002
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Consider the probability of getting three cards of the same kind (event E4)

1 Select the kind,
(13
1

)
ways

2 Select the three,
(4
3

)
ways

3 Select the other two kinds,
(12
2

)
ways

4 Select one card from each of such last two kinds,
(4
1

)(4
1

)
ways

The probability of exactly three cards of the same kind

P(E4) =
(13

1

)(4

3

)(12

2

)(4

1

)2/(52

5

)

≈ 0.02
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Suppose E5 is the set of outcomes in which three cards are K and two are Q

1 Pick the K’s in
(4
3

)
ways

2 Pick the Q’s in
(4
2

)
ways

The probability of E5 is

P(E5) =
(4

3

)(4

2

)/(52

2

)

≈ 0.000009
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We have shown one way in which we can define a probability set function

• A set function that satisfies Definition 3.1

Suppose the sample space C consists of k distinct points

• (A mono-dimensional space, just for this discussion)

If the random experiment that ends in one of those k points is such that
it makes sense to assume that these points are equally probable, then

 We can assign 1/k to each point

 For C ⊂ C, we let

P(C ) =
number of points in C

k

=
∑

x∈C

f (x), where f (x) = 1/k , x ∈ C
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Probability set functions (cont.)

Example

In the cast of a die, we take C = {1, 2, 3, 4, 5, 6} and f (x) = 1/6, x ∈ C

• (If we believe that the die is unbiased)

‘Unbiased’: It warns us on the possibility that all points (six) might NOT
be equally probable in all these cases (and loaded dice do, in fact, exist)

Suppose that a die has been biased so that the relative frequencies of the
number in C appear to stabilise proportional to the number of up-face spots

 We may assign f (x) = x/21 with x ∈ C, and

P(C ) =
∑

x

f (x) [Definition (3.1)]

Then, for C = {1, 2, 3}

P(C ) =
3∑

x=1

f (x) =
1

21
+

2

21
+

3

21
=

6

21
= 2/7
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Probability set functions (cont.)

A sequence {Cn} of events is non-decreasing if Cn ⊂ Cn+1, for all n

 By definition, we have limn↑∞ Cn =
⋃∞

n=1 Cn

Consider limn↑∞ P(Cn), can we swap limit and P?

Yes, the result holds for decreasing sequences of events too
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Probability set functions (cont.)

Theorem

Continuity theorem of probability

Let {Cn} be a non-decreasing sequence of events, then

lim
n↑∞

P(Cn ) = P( lim
n↑Cn

Cn ) = P
( ∞⋃

n=1

Cn

)

(4)

Let {Cn} be a decreasing sequence of events, then

lim
n↑∞

P(Cn ) = P( lim
n↑∞

Cn ) = P
( ∞⋂

n=1

Cn

)

(5)
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Probability set functions (cont.)

Proof

We prove Equation (4) [Equation (5), (⋆)]

Define the sets (rings) as R1 = C1 and, for n > 1, Rn = Cn ∩ C c
n−1

It follows that

 
⋃∞

n=1 Cn =
⋃∞

n=1 Rn

 Rm ∩ Rn = ∅, for m 6= n

Also, P(Rn ) = P(Cn )− P(Cn−1)

Because of the third axiom of probability,

P
[

lim
n↑∞

Cn

]

= P
( ∞⋃

n=1

Cn

)

= P
( ∞⋃

n=1

Rn

)

=
∞∑

n=1

P(Rn) = lim
n↑∞

n∑

j=1

P(Rn)

= lim
n↑∞

{

P(C1) +

n∑

j=2

[

P(Cj )− P(Cj−1)
]}

= lim
n↑∞

P(Cn )

(6)
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Probability set functions (cont.)

Theorem 3.6

Boole’s inequality

Let {Cn} be an arbitrary sequence of events

Then,

P
( ∞⋃

n=1

Cn

)

≤
∞∑

n=1

P(Cn) (7)

Proof

Let Dn =
⋃n

i=1 Ci , then {Dn} is an increasing sequence of events

• It goes up to
⋃∞

n=1 Cn

For all j , we have that Dj = Dj−1 ∪Cj

Hence, by Theorem (3.5)

P(Dj ) ≤ P(Dj−1) + P(Cj ) −→ P(Dj )− P(Dj−1) ≤ P(Cj )
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Probability set function (cont.)

In this case, the Dj s replace the Cj s in the expression in Equation (6)

Thus, using the inequality above in Equation (6) and P(C1) = P(D1)

P
( ∞⋃

n=1

Cn

)

= P
( ∞⋃

n=1

Dn

)

= lim
n↑∞

{

P(D1) +
n∑

j=2

[

P(Dj )− P(Dj−1)
]}

≤ lim
n↑∞

n∑

j=1

P(Cj ) =
∞∑

n=1

P(Cn )
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Conditional probability

In some random experiments, our interest is only in some of the outcomes

• The elements of a subset C1 of sample space C

 This means that our sample space is subset C1

With C1 as new sample space, we shall define a probability set function
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Conditional probability (cont.)

Let the probability set function P(C ) be defined on the sample space C

• Let C1 be a subset of C such that P(C1) > 0

We consider only outcomes of the experiment that are elements of C1

• We take C1 to be a sample space

Let C2 be another subset of C
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Conditional probability (cont.)

How to define the probability of event C2, relative to sample space C1?

• This probability is (will be) the conditional probability of event
C2, relative to the hypothesis of event C1 (once defined)

• More briefly, the conditional probability of C2, given C1

Such a conditional probability is indicated by the symbol P(C2|C1)
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Conditional probability (cont.)

Relative to sample space C1, how to define the probability of event C2?

As C1 is the sample space, the elements of C2 that are of interest are those
(if any) that are also elements of C1 (that is, the elements of C1 ∩ C2)

It is beneficial to define the symbol P(C2|C1) so that

• P(C1|C1) = 1

• P(C2|C1) = P(C1 ∩ C2|C1)
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Conditional probability (cont.)

The ratio of probabilities of events C1 ∩ C2 and C1, relative to space C1

and the ratio of probabilities of these events relative to space C, should be

P(C1 ∩C2|C1)

P(C1|C1)
=

P(C1 ∩ C2)

P(C1)
=

P(C1 ∩C2|C)

P(C1|C)
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Conditional probability (cont.)

• P(C1|C1) = 1

• P(C2|C1) = P(C1 ∩ C2|C1)

•

P(C1 ∩ C2|C1)

P(C1|C1)
=

P(C1 ∩ C2)

P(C1)

These three conditions imply the relation

P(C2|C1) =
P(C1 ∩ C2)

P(C1)

Such a relation is a fine definition of conditional probability of event C2

• Given event C1 and provided that P(C1) > 0
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Conditional probability (cont.)

Moreover

1 P(C2|C1) ≥ 0

2 Provided that C2,C3, . . . are mutually exclusive events

P
( ∞⋃

j=2

Cj |C1

)

=
∞∑

j=2

P(Cj |C1)

3 P(C1|C1) = 1

These are the conditions that a probability set function must satisfy

 P(C2|C1) is a probability function, defined for subsets of C1
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P(C2|C1) is the conditional probability function, relative to hypothesis C1

• Or, the conditional probability set function, given C1

This conditional probability function, given C1, is defined when P(C1) > 0
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Conditional probability (cont.)

P(C2|C1) =
P(C1 ∩ C2)

P(C1)

From the definition of the conditional probability set function,

P(C1 ∩ C2) = P(C1)P(C2|C1)

This relation is the multiplication rule for probabilities

The nature of the experiment, might suggests possible assumptions

 How P(C1) and P(C2|C1) can be assigned

Then, P(C1 ∩ C2) can be computed under these assumptions
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Conditional probability (cont.)

Example

A box contains eight stones, three of which are red and five are blue

• Two stones are randomly drawn successively, no replacement

What is the probability that

1 the first draw results in a red stone (event C1)?

2 the second draw results in a blue stone (event C2)?

It is reasonable to assign the following probabilities

• P(C1) = 3/8

• P(C2|C1) = 5/7

Given these assignments, we have

P(C1 ∩ C2) =
(
3/8

)

︸ ︷︷ ︸

P(C1)

(
5/7

)

︸ ︷︷ ︸

P(C2|C1)

= 15/56 = 0.2679
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Conditional probability (cont.)

The multiplication rule can be extended to three or more events

With three events, by the multiplication rule for two events

P(C1 ∩ C2 ∩ C3) = P
[
(C1 ∩ C2) ∩ C3)

]

= P(C1 ∩ C2)P(C3|C1 ∩ C2)

But, P(C1 ∩ C2) = P(C1)P(C2|C1), hence P(C1 ∩ C2) > 0

P(C1 ∩C2 ∩C3) = P(C1)P(C2|C1)P(C3|C1 ∩ C2)

�

Remark

The procedure can be used to extend the multiplication rule to 4+ events

• The expression for k events can be found by induction
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Conditional probability (cont.)

Example

Four playing cards drawn from an ordinary deck successively, at random

• No replacement

The probability of a ♠, a ♥, a ♦ and a ♣ in that order

(
13/52

)(
13/51

)(
13/50

)(
13/49

)
= 0.0044
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Conditional probability (cont.)

Consider k mutually exclusive and exhaustive events C1,C2, . . . ,Ck

• P(Ci ) > 0, for i = 1, 2, . . . , k

 C1,C2, . . . ,Ck form a partition of C

The events C1,C2, . . . ,Ck need not be equally likely

Let C be some another event such that P(C ) > 0

C occurs with one, and only one, of events C1,C2, . . . ,Ck

C = C ∩ (C1 ∪ C2 ∪ · · · ∪ Ck )

= (C ∩ C1) ∪ (C ∩ C2) ∪ · · · ∪ (C ∩ Ck )



Probability

theory

UFC/DC
ATML(CK0255)
PRV (TIP8412)

2017.2

Introduction

Set theory

Probability set
functions

Conditional
probability

Independence

Conditional probability (cont.)

Given that C ∩ Ci , i = 1, 2, . . . , k are mutually exclusive

P(C ) = P(C ∩C1) + P(C ∩ C2) + · · ·+ P(C ∩Ck )

However,
P(C ∩ Ci ) = P(Ci )P(C |Ci ), i = 1, 2, . . . , k

So,

P(C ) = P(C1)P(C |C1) + P(C2)P(C |C2) + · · ·+ P(Ck )P(C |Ck )

=
k∑

i=1

P(Ci )P(C |Ci )

This result is known as law of total probability
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Conditional probability (cont.)

From the definition of conditional probability, by the law of total probability

P(Cj |C ) =
P(C ∩ Cj )

P(C )
=

P(Cj )P(C |Cj )
∑k

i=1 P(Ci )P(C |Ci )
(8)

This is known as the Bayes’ rule

Get the conditional probability of Cj , given C , from the probabilities of
C1,C2, . . . ,Ck and the conditional probabilities of C , given Ci , i = 1, 2, . . . , k
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Conditional probability (cont.)

Example

• Box C1 contains three red stones and seven blue stones

• Box C2 contains eight red stones and two blue stones

All stones are identical in size, shape and weigth

Assume (reasonably?) that

1 the probability of selecting box C1 is P(C1) = 1/3

2 the probability of selecting box C2 is P(C2) = 2/3

A box is picked a random and then a stone is picked from it at random

• Suppose the stone is red

• We indicate this event by C
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Conditional probability (cont.)

By considering the boxes’ content, we assign the conditional probabilities

1 P(C |C1) = 3/10

2 P(C |C2) = 8/10

The conditional probability of box C1, given a red stone is picked

P(C1|C ) =
P(C1)P(C |C1)

P(C1)P(C |C1) + P(C2)P(C |C2)

=
(1/3)(3/10)

(1/3)(3/10) + (2/3)(8/10)

≈ 0.16

 P(C2|C ) ≈ 0.84
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Conditional probability (cont.)

Probabilities P(C1) = 1/3 and P(C2) = 2/3 are called prior probabilities

• Assumed to be due to the random mechanism used to pick boxes

If a stone is picked and observed to be red, conditional probabilities P(C1|C ) =
3/19 and P(C2|C ) = 16/19 are then updated to posterior probabilities
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Conditional probability (cont.)

C2 has a larger proportion of red stones (8/10) than C1 (3/10), by intuition

• P(C2|C ) should be larger than P(C2)

• P(C1|C ) should be smaller than P(C1)

The chances of having picked box C2 are higher once a red stone is observed

• (than before the stone is taken)

Bayes’ rule provides a method of determining those probabilities
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Conditional probability (cont.)

Example

Plants C1, C2 and C3 produce 10%, 50% and 40% of the company’s product

• Plant C1 is small with only 1% of faulty products

• Plant C2 and C3 produce items that are 3% and 4% faulty

Products are shipped to central control where one piece is selected at random

• Then, it is found faulty (event C )

What is the (conditional) probability that the piece comes from plant C1?

We can assign the prior probabilities of getting a(ny) piece from the plants

• P(C1) = 0.1

• P(C2) = 0.5

• P(C3) = 0.4
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Conditional probability (cont.)

As for the conditional probabilities of faulty pieces, they are assigned as

• P(C |C1) = 0.01

• P(C |C2) = 0.03

• P(C |C3) = 0.04

The posterior probability of C1, given a faulty piece, is thus given by

P(C1|C ) =
P(C1 ∩ C )

P(C )
=

(0.1)(0.01)

(0.1)(0.01) + (0.5)(0.03) + (0.4)(0.04)
= 1/32

�
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Independence

The occurrence of event C1 may not alter the probability of event C2

 P(C1|C2) = P(C2), for P(C1) > 0

Such events C1 and C2 are said to be independent

The multiplication rule comes to be

P(C1 ∩ C2) = P(C1)P(C2|C1) = P(C1)P(C2) (9)

This implies, when P(C2) > 0, that

P(C1|C2) =
P(C1 ∩ C2)

P(C2)
=

P(C1)P(C2)

P(C2)
= P(C1)
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Independence (cont.)

If P(C1) > 0 and P(C2) > 0, then independence is equivalent to

P(C1 ∩C2) = P(C1)P(C2) (10)

What if P(C1) = 0 and P(C2) = 0?

• Either way, the RHS is zero

• The LHS is zero also because C1 ∩ C2 ⊂ C1 and C1 ∩C2 ⊂ C2
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Independence (cont.)

Definition

Let C1 and C2 be two events

C1 and C2 are said to be independent if

P(C1 ∩C2) = P(C1)P(C2)

�

Suppose C1 and C2 are independent events

Then,

 C1 and C c
2 are also independent

 C c
1 and C2 are also independent

 C c
1 and C c

2 are also independent
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Independence (cont.)

Remark

Events that are independent are called stochastically independent

• Independent in a probabilistic sense

• Statistically independent

We use independent, without adjectives

�
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Independence (cont.)

Suppose that we have three events C1, C2 and C3

They are mutually independent iff they are pair-wise independent

P(C1 ∩C2) = P(C1)P(C2)

P(C1 ∩C3) = P(C1)P(C3)

P(C2 ∩C3) = P(C2)P(C3)

and
P(C1 ∩ C2 ∩ C3) = P(C1)P(C2)P(C3)



Probability

theory

UFC/DC
ATML(CK0255)
PRV (TIP8412)

2017.2

Introduction

Set theory

Probability set
functions

Conditional
probability

Independence

Independence (cont.)

In general, n events C1,C2, . . . ,Cn are mutually independent if and only
if for every collection of k of such events (2 ≤ k ≤ n) the following holds

Let d1, d2, . . . , dn be k distinct integers from 1, 2, . . . ,n, then

P(Cd1 ∩Cd2 ∩ · · · ∩ Cdk ) = P(Cd1 )P(Cd2 ) · · ·P(Cdk )

Remark

Specifically, if C1,C2, . . . ,Cn are mutually independent, then

P(C1 ∩C2 ∩ · · · ∩ Cn ) = P(C1)P(C2) · · ·P(Cn )
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Independence (cont.)

As with two sets, event combinations and complements are independent

• Events C c
1 and C2 ∪ C c

3 ∪ C4 are independent

• Events C1 ∪C c
2 , C

c
3 , C4 ∩ C c

5 are mutually independent
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Independence (cont.)

If no risk of misunderstanding, use ‘independent’ w/o adjective ‘mutually’

• (also for more than two events)

Remark

Pairwise independence does not imply mutual independence
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Independence (cont.)

We may perform sequences of experiments so that the events associated with
one of them are independent of the events associated with other experiments

• The events are referred to as outcomes of independent experiments

• The respective events are understood as independent

Thus we often refer to independent trials of some given random experiment
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Conditional probability and independence (cont.)

Example

A coin is flipped independently a number of times

Let event Ci be a head H on the i-th toss

 C c
i indicates tails T

Assume Ci and C c
i as equally probable

P(Ci ) = P(C c
i ) = 1/2

From independence, the probability for ordered sequences as HHTH

P(C1 ∩ C2 ∩ C c
3 ∩ C4) = P(C1)P(C2)P(C c

3 )P(C4) = (1/2)4 = 1/16
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Independence (cont.)

The probability of getting the first head on the third toss

P(C c
1 ∩C c

2 ∩ C3) = P(C c
1 )P(C c

2 )P(C3) = (1/2)3 = 1/8

The probability of observing at least one head on four tosses

P(C1 ∪ C2 ∪ C3 ∪ C4) = 1− P
[
(C1 ∪C2 ∪C3 ∪C4)

c
]

= 1− P(C c
1 ∩ C c

2 ∩ C c
3 ∩ C c

4 )

= 1− (1/2)4 = 15/16

�
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Independence (cont.)

Example

A system such that if component K1 fails, it is by-passed and component
K2 is used instead, if also component K2 fails, then component K3 is used

Suppose that the following probabilities are given

• Probability that K1 fails is 0.01

• Probability that K2 fails is 0.03

• Probability that K3 fails is 0.10

Let failures be mutually independent events

The probability of system’s failure as all components would have to fail is

(0.01)(0.03)(0.10) = 0.00003

The probability of not-failure

1− 0.00003 = 0.99997
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