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If the elements of C are not numbers, the sample space is dull to describe

~» A set of rules to represent elements c¢ of C by numbers

Let the toss of a coin be the random experiment
Let C = {H, T} be the sample space we associate with this experiment

e Hand T are for heads and tails

Let X be a function such that X (T) =0 and X(H) =1
e X is a real-valued function defined on the sample space C

e From C, to a space of real numbers D = {0, 1}

We can define a random variable and its space
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A random variable and its space/range

Consider a random experiment and let C be the sample space

A random wvariable (RV) is a function X that assigns to each element
¢ € C one and only one number, X(c) =z

The space/range of X is the set of real numbers D = {z : ¢ = X(c),c € C}
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Generalities

Transformations

Randomness comes from choosing a random element from sample space
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The range D is typically a countable set or an interval of real numbers
e RVs of the first type are said to be discrete

e RVs of the second time are said to be continuous

e RV X is defined on a sample space with 6 elements (C)
e RV X has possible values 0, 1 and 4 (D)
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Given a RV X, its range D becomes the sample space of interest

Generalities

e Besides the sample space, X also induces a probability
e This probability is called the distribution of X

Transformations
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Random variables (cont.)

Let X be a discrete random variable with finite range D = {d1, d2,..., dm }

e The events of interest of the new sample space D are subsets of D

We define function px(d;) on D
px(di) = P[{c: X(c)=di,ceC}], fori=1,2,...,m (1)

Function px (d;) defines the probability mass function (PMF) of X

The induced probability distribution Px(-) of X

Px(D)= Y px(d), DCD
d;eD
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Two dice roll
Let X be the sum of upfaces on a single roll of two fair and ordinary dice
e The sample space is C = {(¢,75) : 1 < 4,7 < 6}

e As the dice are fair, P[{(i,)}] = 1/36

o Random variable X is X [(i,5)] =i+
e The range of X is D={2,...,12}
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Random variables (cont.)

The probability mass function PMF! of X is given (by enumeration) by

r | 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 5 4 3 2 1

px(@) | o= % 3w 3 3 3 % 36 36 36
6 36 36 36 36 36 36 36 36 36 36

17 .
&
> 05) .
ISH

of eet?tT000es,

0 5 10
x

Tox(di) = P[{c: X(c) =d;}], fori=1,2,...,m.
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Random variables (cont.)

The computation of probabilities regarding X follows

Suppose Bi = {z: 2z ="7,11} and B; = {z : z = 2,3,12}

Using the values of px (z) in the table

Px(B1)= > px(z) = S, 2. 8/36

ot 36 36
1 2 1
Px(B2) = > px(z) = Bt 3t %:4/36

€ By



Random
variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Random
variables

Transformations

Random variables (cont.)

Let X be a continuous random variable, the new sample space D is an
interval of real numbers and simple events of interest are (generally) intervals

Usually, we can determine a non-negative function fx (z) such that, for any
interval (a, b) € D C R, the induced probability distribution Px (-) of X is

b
Px[(a,b)] = P[{c:a< X(c) <b,ceC} :/ fx (z)dz (2)

e This is the probability that X falls between a and b

o The area under curve y = fx (z) between a and b

Function fx (z) defines the probability density function of X (PDF)
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[ — Besides fx (z) > 0, we require that

Px®) = [ fe()do=1
Transformations D

Total area under curve over the sample space D is 1
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Pick a real number at random from interval (0,1), let X be the number

The space of X is D = (0, 1), the induced probability Px is not obvious

e As the number is picked at random, it makes sense to assign
Px[(a,b)] =b—a,for0<a<b<1 (3)

Since Px [(a, b)] = fab fx(xz)dz = b — a, it follows that the PDF of X

1 — |

1, 0<z<1
0, elsewhere

0.5 | fx(z) = { 4)

fx(z)
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The probability that X is less than one-eighth or greater than seven-eighths

1/8 1
e P[(X <1/8) U (X >7/8)] = /O (1)dz + /7/8 ()dz =1/4

Transformations
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~ px(d;) =Pl{ceC:X(c)=4d;}] for i =1,.
~ Px[(a,b)] = P{c€C:a < X(c) <b}]= ffx

Subscript X identifies the PMF px (z) and the PDF fx (z) with the RV

PMFs of discrete RVs and PDFs of continuous RVs are different beasts
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Cumulative distribution function

P Let X be a random wvariable

The cumulative distribution function (CDF) of RV X is defined by Fx (z)

Fx(z) = Px [(—oo,x]] = P[{c :X(c) <z ceE C}] (5)

We conveniently shorten P[{c: X(c) < z,c € C}] as P(X < z)
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Fx (z) is often called the distribution function (DF) of X

e Adjective ‘cumulative’ indicates that probabilities are accumulated

e Fx(z) adds up probabilities less than or equal to z



Random variables (cont.)

Random
variables

UFC/DC

ATML (CK0255)
PRV (TIP8412)
2017.2

Roll of a fair die
Random
variables

Suppose we roll an ordinary die, the dice is fair
e Let X be the observed spots upface
e The space of X is {1,2,...,6}

e *‘ The PMF of X
1 B
% s | px (i) = 1/6
s fori=1,2,...,6
el 11t |
0 5

T
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If z <1, then Fx(z) = > ie(—oo,1) px (i) =0
o If 1 <z <2, then Fx(z)

=2 ic(—oo0,2) Px (1) =1/6

e If2 <z <3, then Fx(2) =3 ;¢ (_oo,3) Px (i) =2/6

Continuing this way, the CDF of X is an increasing step function

0.5

Fx (z)

The step of Fx(z) is px (i), at each 4, in the range of X
~» Given the CDF of X, we can determine its PMF
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Pick a real number at random from interval (0,1), let X be the number
The space of X is D = (0,1)
What is the CDF of X?

o If z <0, then P(X <z)=0

o If1 <z, then P(X <z)=1
e If0<z<1l,then P(X <z)=P0<X<z)=2-0=12
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Random variables (cont.)

Fx(z)

0.5

Hence, the CDF if X is given by

Fx(z) =

0, ifz<0
z, ifz€]0,1)
1, ifz>1

(6)
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Fx(z) = / fx(z)dz, forall z € R
Random e
variables
and o
Ge a—FX(m) = fx(z), forall z € R, except z =0 and z =1
T'r T
Gener alities
Transformations 1 T ]
® 1 0,1
< 05 : @)= 2€O
Ny 0, elsewhere
O | | L]
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Let X and Y be two random variables

X and Y are equal in distribution X 2y Fx(z)=Fy(y), forallz € R

Gener alities

Transformations

e X and Y can be equal in distribution, and yet be different otherwise
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variables

e The range of X is Dx = (0, 1)

0.5 -

Ix (@)
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Define the random variable Y =1 — X clearly Y # X

Random
variables

1 | .
8
|

— 0.5 —
Cmemiitice Il
Transformations >

oL, ! L

0 0.5 1
x

The range of Y is the same as X
e Interval Dy = (0,1)
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Fy(y)=4qy, ifyel0,1)
Random 1, ify>1

variables

For 0 < y < 1, we computed

Fy(y)=P(Y <y)=
Pl—-X<y)=PX>1—g)=1-(1-y)=y

Genera lities

Transformations

1} — 1 1} |
= =
2 05) 1 T osf |
S
ES &
ol . ol .
-1 o0 1 2 -1 o0 1 2
y y
- vEx
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We have seen two CDFs that share some common features
e They are increasing functions
e The lower limit is 0, the upper limit 1

Such properties are true for CDFs in general

Let X be a random wvariable

Let its cumulative distribution function be Fx

a) For all a and b, if a < b, then F(a) < F(b) (F is non-decreasing)
b) lim,| o F(z) =0 (lower-bound of F is zero)
¢) limgq oo F(z) =1 (upper-bound of F is one)
d) limgyq, F(z) = F(x) (F is right-continuous)
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Let X be a random variable with Fx the CDF
i Then, for a < b,

Pla < X <b) = Fx(b) — Fx(a)
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Let X be the lifetime in years of your potted flowers

Assume that X has the CDF

0.5~ 1 Fx(@)= {

Fx(z)
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The PDF of X, d[Fx(z)]/dz

1
&
=~ 0.5
&

0

The derivative does not exist at z =0

fx(z)

{

—x
€ )

07

0<z <o
elsewhere
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Random variables (cont.)

The probability that your flower has a lifetime between 1 and 3 years

3
POl < X <3) = Fx(3) — Fx(1) =/ e "do
1

1h | b )
= 5
< 05) 1 2 oosf .
i &
0L | ! ! L 0L . | | |
—2 0 2 4 6 -2 0 2 4 6

The probability is found by Fx (3) — Fx (1) or by evaluating the integral
o Either way, it equals exp (—1) —exp (—3) = 0.318
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Transformations CDFs are right-continuous and monotone

CDFs possess a countable number of discontinuities

Generalities

o e It can be shown that the discontinuities of a CDF have mass

o If z is a point of discontinuity of Fx, then P(X =z) >0
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For any random variable X,

P[X =z]=Fx(z) — Fx(z—), forallz eR (7)
We used Fx (z—) = lim,q, Fx(2)
Proof
For any = € R, we have
~ 1
=N (2= =2,

{z} is the limit of a decreasing sequence of sets
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Random variables (cont.)

For a decreasing sequence of sets

3

lim P(Cyp) = P(lim C,) =P

‘)

n=1

Hence,

P(X ==

~

:P[ﬁ {x—l<X§x}]: limP[z—l<X§z]
n=1 n nfoo "

= lim {Fx(x) — Fx[z— (1/n)]} = Fy(z) — Fx(z—)

ntToo
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Let the random variable X have the discontinuous CDF Fx (z)

1 |- —
o 0, z <0
= 0.5 8 Fx(z)=<{z/2, 0<z<1
= 1, 1<z
0] \ i
—2 0 2
x
Then,
P(-1< X <1/2)=Fx(1/2) — Fx(-1)=1/4—-0=1/4
and

P(X=1)=Fxy(1)— Fx(1-)=1-1/2=1/2

The value 1/2 equals the value of the step of Fx for z =1
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The total probability associated with a random variable X of discrete
type with PMF px (), or of the continuous type with PMF fx(z) is 1

Then, it must be true that

Genera lities

Transformations

Soox@ =1 and [ fr(@ps=1,

z€D

D denotes the space of X
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o If we know the PMF/PDF up to a constant, then we know the PMF/PDF
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Suppose that X has the PMF

) = cx, r=1,2,...,10
px 10, elsewhere ’

for some proper constant ¢

Then,

10 10
1:ZPX(I):Zfiﬂﬂ:rz(14r24r-~-+10):55c
z=1

z=1
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3 —  Suppose that X has the PDF
2+ - cx 0<z<2
sformation 2 Ix (z|c) = ’ ]
< 0, elsewhere
= 1L
alitic for some constant ¢
r tior 0 i ‘— —
0 2
a3
Then,

4

2 5 2442
1:/ cx dz:c[—] =dc
0 4 1o

The computation of a probability involving X follows as always

255

U
P(l/a<X <1)= / —z¥de = —— ~ 0.06
174 4 4096
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Discrete random variables

A random variable is said to be a discrete random variable if its space/range
is either finite or countable
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Independent tosses of a coin

Consider a sequence of independent tosses of a coin
Generalities

Transformation e FEach flip results in a head H or a tail T

e Assume that H and T are equiprobable

; rmation The sample space C of the experiment consists of sequences like TTHHTHT - - -

Let the random variable X be the number of tosses to observe the first H
X (HTTHHTT---) =1
X (THHTHHH - - -) = 2
X (TTHHTHT -- ) = 3

The space range of X is D = {1,2,...}
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Discrete random variables (cont.)

We have that X = 1 when the sequence starts with H
e P(X=1)=1/2

Similarly, X = 2 when the sequence starts with TH

. P(X =2)=(1/2)(1/2) = (1/2)? = 1/4

For X = z, there must be a sequence of (z — 1) Ts followed by a H
o P(X =) = (1/2)(1/2)---(1/2) = (1/2)"~1(1/2) = (1/2)°
| S ——

z—1 times
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0
Generalities ||
0.5 - - P(X =z)=(1/2)"
= (®)
& T forx =1,2,3,...
Gener alities
Transformations 0 ? ¢ ‘0 ®oo0o0eo ® |
5 10
T

The event ‘first H is observed on a odd number of flips’ has probability

- 2171 1/2
P[X €{1,3,5, 1211 1/2) :m:w?,



Random
variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Generalities

Transformations

Generalities

Transformations

Discrete random variables (cont.)

Probabilities regarding discrete RVs can be obtained in terms of probabilities

P(X =z), forz €D

These probabilities determine an important probability function



Random
variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Generalities

Discrete random variables (cont.)

Probability mass function (PMF)
Let X be random variable of the discrete type with range D
The probability mass function (PMF) of X is given by

px(z)=P(X =z), forzeD 9)

The PMF satisfies two properties

(i) 0<px(z)<1, forzeD

@) > px(e) =1 (10)

z€D

[~~] It can be shown that the distribution of the RV is uniquely determined
by a function that satisfies properties (4) and (%) for a discrete set D
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Let X be a discrete RV with range D, discontinuities of F'x (z) possess mass

Generalities ~ If z is a point of discontinuity of Fx, then P(X =z) >0

The range of a discrete RV and such points of positive probability are distinct

Transformations

e In the range D of discrete random variable X, the set of points that
have positive probability are said to define the support of RV X

e We often use S to indicate the support of X
e S C D and it may be that S =D
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We can also obtain a relation between the PMF and CDF of a discrete RV
o If £ € S, then px(z) equals the size of the discontinuity of Fx at x
Gener alities

Transformations o If ¢ S, then P(X = z) = 0 and, hence, Fx is continuous at such z
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A box consisting of 100 bulbs is inspected using a standardised procedure
e Five bulbs are selected at random and checked

o o If they all glow, the lot is accepted

If there are 20 faulty bulbs in the lot, the probability of accepting the box

(5)/(5) ~os
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Discrete random variables (cont.)

Let the RV X be the number of faulty bulbs among the inspected 5
The PMF of X is

00
ooy LG, 012805
0 elsewhere

(11)

The range of X, D ={0,1,2,3,4,5} is also its support S
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Sl Suppose that we have a RV X of the discrete type, we know its distribution
o We are interested in another RV Y

e RV Y is some transformation of X
Iransformations ~ Y = g(X)

Specifically, we want to determine the distribution of Y
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Transformations (cont.)

Assume X is of the discrete type with range Dx
e The range of Y is Dy = {g(z) : z € Dx}

We consider two cases, separately
©® g is one-to-one (bijective)

® g is not one-to-one
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g is one-to-one

Transformations
... ThePMFofY
B py(y) = P(Y =y) = P[g(X) =y] = P[X = g~ ()]

12
=pxlg™ ()] (12)
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Transformations (cont.)

Consider a sequence of independent tosses of a coin
e Fach flip resultsina Hor a T
e Hand T are equiprobable

The sample space C of the experiment consists of sequences like TTHHTHT - - -

Let the random variable X be the number of tosses to observe the first H
e X (TTHHTHT ---) =3
° ...

The range of X is Dx ={1,2,3,4,...}
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Transformations (cont.)

The PMF of X was determined earlier

1
0
o5
O
9
0

LT

?’Oooooo—

0

5

10

P(X =z)=(1/2)°
forx =1,2,3,...
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Let Y = X — 1 (the number of tosses before the first H)
o g(z) =z — 1=y, with inverse g~ (y) = y + 1

Gener alities

Transformations

10 ‘ ‘
°
°
— °
Gener alities | .
Transformations 8 5 [
I L
> °
°
°
ore ! !
0 5 10
x

The range of Y is Dy = {0,1,2,---}
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Transformations (cont.)

The PMF of Y

0.5 |- N

P(Y =y)

0Ote ‘ T?,.......
0 5 10

e py(y) = P(Y =y) = Plg(X

py (y) = px(y +1) = (1/2)"
fory=0,1,2,...
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Let the random variable X have the PMF

! x —T
px(z) = m(2/3) (1/3)*7%, £=0,1,2,3

st 0, elsewhere
Transformations
S —— 1 .
&
= 0.5+ -
& I
LTl
0 2 4

x

We are interested in the PMF py (y) of the random variable ¥ = X2
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y=g(z) =22 maps Dy = {z: 2 =0,1,2,3} onto Dy = {y: y =0,1,4,9}

T
[ J
Generalities
Transformations
«
8 5 -
; ‘ I Py
Generalities >
Transformations
[ ]
Ofe o o0 ]
-2 0 2
T

o y = 22 does not always define a one-to-one transformation

e It does here, as the values of z in Dx are non-negative
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2017.2 We have a singly valued inverse function z = ¢~ '(y) = /y (not +./y)

3!
py(y) = px(Vy) = m@/?’

for y =0,1,4,9

)7 (1/3)%7

Genera lities

Transformations

1 | —
Genera lities
I'ransformations
=
= 05 .
& I
o T ! T ! L
0 5 10 15
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Generalities
Transformations

g is not one-to-one

. The PMF of discrete Y can be obtained in an uncomplicated manner
Transformations

e There is no need to develop a rule
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Let Z = (X — 2)2, with X the geometric random variable whose PMF is

neralitic

Transformations

05| P(X =z)=(1/2)"
forz =1,2,3,...

P(X =z)

le e T?Po.....,
‘5 1‘0

0
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The range of Z is Dz = {0,1,4,9, 16,
o 7 =0,iff X =2

e Z=1,iff X=1o0or X =3
Gener alities

Transformations

Gener alities

Transformations

20 -

°
10 |-

y=(z—-2)>°

z
For z € {4,9, 16,

...}, there is a 1-to-1 map, z = /z + 2
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2017.2 Hence, the PMF of Z is
px (2) =1/4, z2=0
pz(2) = { px (1) +px(3) = 5/8, z=1 (13)

pX(\/E+2) = 1/4(1/2)\/27 z=4,9,16,...

Gener alities

Transformations

17 |
Gener alities
I'ransformations
X
S 05| |
[sH
OT * .\ e *]
0 10 20
z
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Generalities

I

Continuous random variables

Another class of random variables is the class of RVs of the continuous type

Continuous random variables

A random wvariable is said to be a continuous random variable if its cu-
mulative distribution function Fx (z) s a continuous function for all x € R

We know that for any random variable X, P(X = z) = Fx (z) — Fx (z—)?
~ Hence, for a continuous RV X, no points can be of discrete mass

~ If X is continuous, then it must be P(X =z) =0, for all z € R

2Fx (z) = lim,4, Fx (2)
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Generalities

Transformations

Continuous random variables(cont.)

Most common continuous RVs are absolutely continuous

Fx(z) = [ " e, (14)

for some function fx ()

The function fx (¢) is the probability density function (PDF) of X

If fx(t) is continuous, then the fundamental theorem of calculus yields

a0 = x(0) (15)
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Generalities

Transformations

Continuous random variables (cont.)

The support of a continuous RV X consists of all points z st fx (z) > 0
e We indicate the support of X by Sx (as in the discrete case)

If X is a continuous RV, then probabilities are determined by integration

b
Pla< X <b) = Fx(b) — Fx(a) :/ Fe(t)dt
a
Moreover, for RVs of the continuous type, we have

Pla<X<b)=Pa<X<b)=Pla<X<b)=Pla<X<b)
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Continuous random variables (cont.)

Note that PDFs satisfy the two properties
e fx(z) =20

o [T fx(t)dt=1

Second property follows from Fx(co) =1

It can be shown that if a function satisfies the aforementioned properties,
such a function is the PDF of a random variable of the continuous type
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Random

variables
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2017.2
Pick a real number at random from interval (0,1), let X be the number

e The chosen number X is an example of a continuous RV

e The space of X is D = (0, 1)

The CDF is Fx(z) = z for z € (0,1), its PDF is fx(z) = 1 for z € (0,1)

Generalities T
Tran ¢ 1 N 1 E— -
O ®
= 0.5 - = 05 -
< &
0| - 0| B
-1 0 1 2 -1 0 1 2
T
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Generalitios Continuous/discrete RVs X whose PDF/PMF is constant on support Sx

Transformation

~» They are said to have a uniform distribution
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Let RV X be the time (mins) between incoming chat messages from friends

Suppose that a valid probability model for X is the PDF

Generalities
e 0.2 [~ |
= 0.25¢(—2/9) 0 <z < co
>< I | €T o b
= ot 256 {07 elsewhere
0 - ‘ B

0 10 20



Rendom Continuous random variables (cont.)

variables

UFC/DC

ATML (CK0255)

PRV (TIP8412)
2017.2

fx satisfies the two properties of a PDF

Random
variables . f(z) >0
Discrete random oo
oo
variables ° fj_oo 0.25exp (—z/4)dz = [— exp (—z/4)] =1
Generalities 0
Transformations
Continuous
random variables
Generalities 0.2 —
Transformations
—
&
&0 -
0 i
20
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The probability that the time between successive messages is > 4 minutes

Random
variable

oo
. ‘ P(X >4)= / 0.25exp (—z/4)dz = exp (—1) ~ 0.368
iscrete random 4
variables

Generalities

Transformations

Continuous

random variable

Generalities 02 [ —
Transformations —
8
&

X010 |

0f — ‘ B

0 10 20
x
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Genera lities

Transformations

Transformations

Let X be a random variable of the continuous type with known PDF fx

We are interested in the distribution of a random variable Y
e Y is some transformation of X
~ Y =g(X)

Often it is possible to determine the PDF of Y by first getting its CDF
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Transformations

Transformations (cont.)

Let X be a random variable whose PDF is given by

The CDF of X is given by

0,
Fx(z)=q=z

fx (z)

0<z<1
elsewhere

(16)
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Suppose we are interested in its square, ¥ = X?

Gener alities

Transformations

X and Y have the same support Sy = Sy = (0,1)

e What is the CDF of Y7



Transformations (cont.)

Random
variables

UFC/DC Using Fx(z) and the fact that Sx only contains positive numbers
ATML (CK0255)
PRV (TIP8412)

Fy(y) = P(Y <y) = P(X> < y) = P(X < \/7)
= Fx(V3) = (VD) =y

It follows that the PDF of Y is given by

0, elsewhere

Genera lities

Transformations

10 R 10 _
= >
= 0.5) 4 Zosp
~ ES
0 . ! L 0 . \
—1 0 1 2 —1 0 1



Transformations (cont.)

Random
variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

1
Let fx(z) = B for z € (—1,1) and zero elsewhere be the PDF of the RV X

0.4 B

liti

Transformations

(z)
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Define the random variable ¥ = X2

Generalities 1 [
T'ransformations

(o]

8
Generalities || 05 [
Transformations =Y

0

We are interested in the PDF of Y
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If y > 0, probability P(Y < y) equals P(X2 <y)=P(—/¥ < X < /7)

Accordingly, the CDF of Y, Fy(y) = P(Y <vy)

[ ]
Genera lities
Transformations
> 0, y <0
B 1Py () =3 Y7 (Syda = €lo,1)
S8 NG 2 Tz = \/yv Y )
1, 1<y
0 \ ! L
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Random
variable

Discrete random
variable
Generalities
Transformations
Continuou
random variable
Generalities

Transformations

Transformations (cont.)

The PDF of Y

fy ()

fr(y)

1
—) O<y<l1
2\/5

0, elsewhere
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Generalities

Transformations

We used the cumulative distribution function technique

The transformation in the first example is one-to-one

Generalities

T . ~~ We derive an expression for the PDF of Y
e In terms of the PDF of X
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Transformations (cont.)

Let fx(x) be the PDF of a continuous random variable X with support Sx
Let Y = g(X), with g(z) a 1-to-1 differentiable function on Sx
Let the inverse of g(z) be denoted by z = g~ '(y)

Let dz/dy = d[g~"(y)]/dy

Then, the PDF of Y is given by

dx

frw) =ix[s" W] g | forvesy (17)

Set Sy = {y = g(z) : x € Sx} indicates the support of Y
Proof

g(z) is 1-to-1, continuous, strictly monotonically increasing or decreasing
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Transformations

Transformations (cont.)

g(z) is monotonically increasing

The CDF of Y
Fy(y)=P(Y <y)=P[g(X)<y] =P[X < g '(y)] (18)
= Fx [gfl(y)]
The PDF of Y q d
Friv) = g Py ) = fx [g—l(w]ﬁ (19)

dz/dy is the derivative of function z = g~ 1(y)

As g is increasing (dz/dy > 0), we can write dz/dy = |dz/dy|
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Transformations (cont.)

g(z) is monotonically decreasing

The CDF of YV
Fy(y)=1-Fx[g7'(¥)]

The PDF of Y 4
fr (W) =fx[97'®)] (—d—z>

As g is decreasing (dz/dy < 0), we can write —dz/dy = |dz/dy|

Equation (17) is true in both cases
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Generalities

Transformations

The Jacobian of the (inverse) transformation z = g~1(y)

d -1
7 dujay — L)
Transformations dy
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Let the random variable X have the PDF
b 1E ] ]

Transformations " 1, 0 1
< 05| | F(z) = o<
~ 0, elsewhere

0] . \ L]
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Transformations (cont.)

Consider the random variable Y = —2log (X)

67 .
O

54l ]
[a\]
|

27 .
=

op ! L

0 0.5 1

z

Support sets of X and Y are Sx = (0,1) and Sy = (0, 00)

The transformation g(z) = —2log (z) is one-to-one between these sets
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Transformations (cont.)

The inverse transformation is * = g~ (y) = exp (—y/2)

L T ™
~
~
v

- 0.5 N
Il
8

0. ! L

0 10 20

Yy

The Jacobian is

J= M =—1/2exp (—y/2)
dy
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Accordingly, the PDF of Y = —2log (X)) is

fr(y) = {fX [eXp(_y/2)] |J]=1/2exp(-y/2), 0<y < oo

0, elsewhere

Gener alities 0.4+ N

Transformations

Ty (y)

0.2 -

0 10 20



Random
variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

neralitic

Transformations

Transformations (cont.)

Consider the following distribution function

17 —
— 0, Tz <0
= 0.5} z4+1
e F(z) = . 0<z<1
2
1, z>1
o — . ! L]

e The distribution is neither of the continuous nor of the discrete type

e F(z) is not always continuous, nor is it a step function

Then,
P(-3< X <1/2)=F(1/2)— F(-3)=3/4—0=3/4

P(X =0)= F(0) — F(0—) =1/2— 0= 1/2
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Transformations

Random variable (cont.)

Distributions that are mixtures of continuous/discrete type are frequent

In survival analysis, we know that life duration X exceeds some number a

e The exact value of X is however unknown (censoring)

A classic: A subject under study at some point a disappears
e We know that the subject has lived a certain time a

e The exact life duration of life is unknown
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