Random variables
 Probability and distributions

Francesco Corona

Department of Computer Science Federal University of Ceará, Fortaleza

Random variables

Probability and distributions

Random variables

UFC/DC
2017.2

Random

 variables
Random variables

If the elements of \mathcal{C} are not numbers, the sample space is dull to describe \rightsquigarrow A set of rules to represent elements c of \mathcal{C} by numbers

Example

Let the toss of a coin be the random experiment
Let $\mathcal{C}=\{\mathrm{H}, \mathrm{T}\}$ be the sample space we associate with this experiment

- H and T are for heads and tails

Let X be a function such that $X(\mathrm{~T})=0$ and $X(\mathrm{H})=1$

- X is a real-valued function defined on the sample space \mathcal{C}
- From \mathcal{C}, to a space of real numbers $\mathcal{D}=\{0,1\}$

We can define a random variable and its space

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables
Random variables

Definition

A random variable and its space/range
Consider a random experiment and let \mathcal{C} be the sample space
A random variable ($R V$) is a function X that assigns to each element $c \in \mathcal{C}$ one and only one number, $X(c)=x$

The space/range of X is the set of real numbers $\mathcal{D}=\{x: x=X(c), c \in \mathcal{C}\}$

Random variables
2017.2

Random

 variables
Random variables (cont.)

A random variable thus maps the sample space onto the real line

Randomness comes from choosing a random element from sample space

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables
Generalities
Transformations
Continuous random variables
Generalities Transformations

Random variables (cont.)

The range \mathcal{D} is typically a countable set or an interval of real numbers

- RVs of the first type are said to be discrete
- RVs of the second time are said to be continuous

Example

- RV X is defined on a sample space with 6 elements (\mathcal{C})
- RV X has possible values 0,1 and $4(\mathcal{D})$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables
Random variables (cont.)

Given a RV X, its range \mathcal{D} becomes the sample space of interest

- Besides the sample space, X also induces a probability
- This probability is called the distribution of X
2017.2

Random

 variables
Random variables (cont.)

Let X be a discrete random variable with finite range $\mathcal{D}=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$

- The events of interest of the new sample space \mathcal{D} are subsets of \mathcal{D}

We define function $p_{X}\left(d_{i}\right)$ on \mathcal{D}

$$
\begin{equation*}
p_{X}\left(d_{i}\right)=P\left[\left\{c: X(c)=d_{i}, c \in \mathcal{C}\right\}\right], \quad \text { for } i=1,2, \ldots, m \tag{1}
\end{equation*}
$$

Function $p_{X}\left(d_{i}\right)$ defines the probability mass function (PMF) of X

The induced probability distribution $P_{X}(\cdot)$ of X

$$
P_{X}(D)=\sum_{d_{i} \in D} p_{X}\left(d_{i}\right), \quad D \subset \mathcal{D}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesRandom variables (cont.)

Example

Two dice roll
Let X be the sum of upfaces on a single roll of two fair and ordinary dice

- The sample space is $\mathcal{C}=\{(i, j): 1 \leq i, j \leq 6\}$
- As the dice are fair, $P[\{(i, j)\}]=1 / 36$
- Random variable X is $X[(i, j)]=i+j$
- The range of X is $\mathcal{D}=\{2, \ldots, 12\}$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables
Generalities
Transformations

Random variables (cont.)

The probability mass function PMF^{1} of X is given (by enumeration) by

x	2	3	4	5	6	7	8	9	10	11	12
$p_{X}(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

[^0]Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesRandom variables (cont.)

The computation of probabilities regarding X follows

Suppose $B_{1}=\{x: x=7,11\}$ and $B_{2}=\{x: x=2,3,12\}$
Using the values of $p_{X}(x)$ in the table

$$
\begin{aligned}
& P_{X}\left(B_{1}\right)=\sum_{x \in B_{1}} p_{X}(x)=\frac{6}{36}+\frac{2}{36}=8 / 36 \\
& P_{X}\left(B_{2}\right)=\sum_{x \in B_{2}} p_{X}(x)=\frac{1}{36}+\frac{2}{36}+\frac{1}{36}=4 / 36
\end{aligned}
$$

2017.2

Random

 variables
Random variables (cont.)

Let X be a continuous random variable, the new sample space \mathcal{D} is an interval of real numbers and simple events of interest are (generally) intervals

Usually, we can determine a non-negative function $f_{X}(x)$ such that, for any interval $(a, b) \in \mathcal{D} \subset \mathcal{R}$, the induced probability distribution $P_{X}(\cdot)$ of X is

$$
\begin{equation*}
P_{X}[(a, b)]=P[\{c: a<X(c)<b, c \in \mathcal{C}\}]=\int_{a}^{b} f_{X}(x) \mathrm{d} x \tag{2}
\end{equation*}
$$

- This is the probability that X falls between a and b
- The area under curve $y=f_{X}(x)$ between a and b

Function $f_{X}(x)$ defines the probability density function of X (PDF)

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables
Random variables (cont.)

Besides $f_{X}(x) \geq 0$, we require that

$$
P_{X}(\mathcal{D})=\int_{\mathcal{D}} f_{X}(x) \mathrm{d} x=1
$$

Total area under curve over the sample space \mathcal{D} is 1

UFC/DC
2017.2

Random variables (cont.)

Random

 variables
Example

Pick a real number at random from interval $(0,1)$, let X be the number The space of X is $\mathcal{D}=(0,1)$, the induced probability P_{X} is not obvious

- As the number is picked at random, it makes sense to assign

$$
\begin{equation*}
P_{X}[(a, b)]=b-a, \text { for } 0<a<b<1 \tag{3}
\end{equation*}
$$

Since $P_{X}[(a, b)]=\int_{a}^{b} f_{X}(x) \mathrm{d} x=b-a$, it follows that the PDF of X

Random variables (cont.)

The probability that X is less than one-eighth or greater than seven-eighths

$$
P[(X<1 / 8) \cup(X>7 / 8)]=\int_{0}^{1 / 8}(1) \mathrm{d} x+\int_{7 / 8}^{1}(1) \mathrm{d} x=1 / 4
$$

variables
UFC/DC
2017.2

Random

 variables
Random variables (cont.)

Remark

$\rightsquigarrow p_{X}\left(d_{i}\right)=P\left[\left\{c \in \mathcal{C}: X(c)=d_{i}\right\}\right]$ for $i=1, \ldots, m$
$\rightsquigarrow P_{X}[(a, b)]=P[\{c \in \mathcal{C}: a<X(c)<b\}]=\int_{a}^{b} f_{X}(x) \mathrm{d} x$

Subscript X identifies the PMF $p_{X}(x)$ and the PDF $f_{X}(x)$ with the RV

Remark

PMFs of discrete RVs and PDFs of continuous RVs are different beasts

Random variables

UFC/DC
2017.2

Random

 variablesRandom variables (cont.)

Distribution functions determine the probability distribution of a RV

Definition

Cumulative distribution function
Let X be a random variable
The cumulative distribution function (CDF) of $R V X$ is defined by $F_{X}(x)$

$$
\begin{equation*}
F_{X}(x)=P_{X}[(-\infty, x]]=P[\{c: X(c) \leq x, c \in \mathcal{C}\}] \tag{5}
\end{equation*}
$$

We conveniently shorten $P[\{c: X(c) \leq x, c \in \mathcal{C}\}]$ as $P(X \leq x)$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesRandom variables (cont.)

Remark

$F_{X}(x)$ is often called the distribution function (DF) of X

- Adjective 'cumulative' indicates that probabilities are accumulated
- $F_{X}(x)$ adds up probabilities less than or equal to x

Random variables

UFC/DC
2017.2

Random

 variables
Random variables (cont.)

Example

Roll of a fair die
Suppose we roll an ordinary die, the dice is fair

- Let X be the observed spots upface
- The space of X is $\{1,2, \ldots, 6\}$

The PMF of X

$$
\begin{aligned}
p_{X}(i) & =1 / 6 \\
\text { for } i & =1,2, \ldots, 6
\end{aligned}
$$

Random

 variables
Random

 variables
Random variables (cont.)

- If $x<1$, then $F_{X}(x)=\sum_{i \in(-\infty, 1)} p_{X}(i)=0$
- If $1 \leq x<2$, then $F_{X}(x)=\sum_{i \in(-\infty, 2)} p_{X}(i)=1 / 6$
- If $2 \leq x<3$, then $F_{X}(x)=\sum_{i \in(-\infty, 3)} p_{X}(i)=2 / 6$
- ...

Continuing this way, the CDF of X is an increasing step function

The step of $F_{X}(x)$ is $p_{X}(i)$, at each i, in the range of X
\rightsquigarrow Given the CDF of X, we can determine its PMF

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables
Random variables (cont.)

Example

Pick a real number at random from interval $(0,1)$, let X be the number The space of X is $\mathcal{D}=(0,1)$

What is the CDF of X ?

- If $x<0$, then $P(X \leq x)=0$
- If $1 \leq x$, then $P(X \leq x)=1$
- If $0 \leq x<1$, then $P(X \leq x)=P(0<X \leq x)=x-0=x$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables

Generalities
Transformations
Continuous random variables

Generalities

Random variables (cont.)

Hence, the CDF if X is given by

Random

 variables
Random variables (cont.)

The connection between $F_{X}(x)$ and $f_{X}(x)$ is given by

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(x) \mathrm{d} x, \text { for all } x \in \mathcal{R}
$$

and

$$
\frac{\partial}{\partial x} F_{X}(x)=f_{X}(x), \text { for all } x \in \mathcal{R}, \text { except } x=0 \text { and } x=1
$$

$$
f_{X}(x)= \begin{cases}1, & x \in(0,1) \\ 0, & \text { elsewhere }\end{cases}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables
Random variables (cont.)

Let X and Y be two random variables
X and Y are equal in distribution $X \stackrel{D}{=} Y$ iff $F_{X}(x)=F_{Y}(y)$, for all $x \in \mathcal{R}$

- X and Y can be equal in distribution, and yet be different otherwise

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesRandom variables (cont.)

Example

Pick a real number at random from interval $(0,1)$, let X be the number - The range of X is $\mathcal{D}_{X}=(0,1)$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables

Generalities
Transformations
Continuous random variables

Generalities

Random variables (cont.)

Define the random variable $Y=1-X$, clearly $Y \neq X$

The range of Y is the same as X

- Interval $\mathcal{D}_{Y}=(0,1)$

Random variables

Random

 variablesDiscrete random variables
Generalities
Transformations
Continuous random variables

Generalities

Random variables (cont.)

The CDF of Y is given by

$$
F_{Y}(y)= \begin{cases}0, & \text { if } y<0 \\ y, & \text { if } y \in[0,1) \\ 1, & \text { if } y \geq 1\end{cases}
$$

For $0 \leq y<1$, we computed

$$
\begin{aligned}
F_{Y}(y)=P(Y \leq y) & = \\
& P(1-X \leq y)=P(X \geq 1-y)=1-(1-y)=y
\end{aligned}
$$

$\rightsquigarrow \quad Y \stackrel{D}{=} X$

Random variables

UFC/DC
2017.2

Random

 variablesGeneralities
Transformations

Random variables (cont.)

We have seen two CDFs that share some common features

- They are increasing functions
- The lower limit is 0 , the upper limit 1

Such properties are true for CDFs in general

Theorem 1.1

Let X be a random variable
Let its cumulative distribution function be F_{X}
a) For all a and b, if $a<b$, then $F(a) \leq F(b)$ (F is non-decreasing)
b) $\lim _{x \downarrow-\infty} F(x)=0$ (lower-bound of F is zero)
c) $\lim _{x \uparrow+\infty} F(x)=1$ (upper-bound of F is one)
d) $\lim _{x \downarrow x_{0}} F(x)=F\left(x_{0}\right)$ (F is right-continuous)

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesRandom variables (cont.)

Theorem 1.2

Let X be a random variable with F_{X} the CDF
Then, for $a<b$,

$$
P(a \leq X \leq b)=F_{X}(b)-F_{X}(a)
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables
Random variables (cont.)

Example

Let X be the lifetime in years of your potted flowers
Assume that X has the CDF

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ 1-e^{-x}, & 0 \leq x\end{cases}
$$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables
Generalities
Transformations
Continuous random variables

Generalities

Random variables (cont.)

The PDF of $X, \mathrm{~d}\left[F_{X}(x)\right] / \mathrm{d} x$

$$
f_{X}(x)= \begin{cases}e^{-x}, & 0<x<\infty \\ 0, & \text { elsewhere }\end{cases}
$$

Remark

The derivative does not exist at $x=0$

Random

 variables
Random

 variablesRandom variables (cont.)

The probability that your flower has a lifetime between 1 and 3 years

$$
P(1<X \leq 3)=F_{X}(3)-F_{X}(1)=\int_{1}^{3} e^{-x} \mathrm{~d} x
$$

The probability is found by $F_{X}(3)-F_{X}(1)$ or by evaluating the integral

- Either way, it equals $\exp (-1)-\exp (-3)=0.318$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesRandom variables (cont.)

CDFs are right-continuous and monotone
CDFs possess a countable number of discontinuities

- It can be shown that the discontinuities of a CDF have mass
- If x is a point of discontinuity of F_{X}, then $P(X=x)>0$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesRandom variables (cont.)

Theorem

For any random variable X,

$$
\begin{equation*}
P[X=x]=F_{X}(x)-F_{X}(x-), \quad \text { for all } x \in \mathcal{R} \tag{7}
\end{equation*}
$$

We used $F_{X}(x-)=\lim _{z \uparrow x} F_{X}(z)$

Proof

For any $x \in \mathcal{R}$, we have

$$
\{x\}=\bigcap_{n=1}^{\infty}\left(x-\frac{1}{n}, x\right],
$$

$\{x\}$ is the limit of a decreasing sequence of sets

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables
Generalities
Transformations

Random variables (cont.)

For a decreasing sequence of sets

$$
\lim _{n \uparrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \uparrow \infty} C_{n}\right)=P\left(\bigcap_{n=1}^{\infty} C_{n}\right)
$$

Hence,

$$
\begin{aligned}
P(X=x) & =P\left[\bigcap_{n=1}^{\infty}\left\{x-\frac{1}{n}<X \leq x\right\}\right]=\lim _{n \uparrow \infty} P\left[x-\frac{1}{n}<X \leq x\right] \\
& =\lim _{n \uparrow \infty}\left\{F_{X}(x)-F_{X}[x-(1 / n)]\right\}=F_{X}(x)-F_{X}(x-)
\end{aligned}
$$

Random

 variables
Random

 variables
Random variables (cont.)

Example

Let the random variable X have the discontinuous CDF $F_{X}(x)$

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ x / 2, & 0 \leq x<1 \\ 1, & 1 \leq x\end{cases}
$$

Then,

$$
P(-1<X \leq 1 / 2)=F_{X}(1 / 2)-F_{X}(-1)=1 / 4-0=1 / 4
$$

and

$$
P(X=1)=F_{X}(1)-F_{X}(1-)=1-1 / 2=1 / 2
$$

The value $1 / 2$ equals the value of the step of F_{X} for $x=1$
2017.2

Random

 variables
Random variables (cont.)

The total probability associated with a random variable X of discrete type with PMF $p_{X}(x)$, or of the continuous type with PMF $f_{X}(x)$ is 1

Then, it must be true that

$$
\sum_{x \in \mathcal{D}} p_{X}(x)=1 \quad \text { and } \quad \int_{\mathcal{D}} f_{X}(x) \mathrm{d} x=1
$$

\mathcal{D} denotes the space of X

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables

Generalities
Transformations
Continuous random variables
Generalities
Transformations

Random variables (cont.)

Remark

If we know the PMF/PDF up to a constant, then we know the PMF/PDF

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesRandom variables (cont.)

Example

Suppose that X has the PMF

$$
p_{X}(x \mid c)= \begin{cases}c x, & x=1,2, \ldots, 10 \\ 0, & \text { elsewhere }\end{cases}
$$

for some proper constant c

Then,

$$
1=\sum_{x=1}^{10} p_{X}(x)=\sum_{x=1}^{10} c x=c(1+2+\cdots+10)=55 c
$$

Random

 variables2017.2

Random

 variables
Random variables (cont.)

Example

$$
f_{X}(x \mid c)= \begin{cases}c x^{3}, & 0<x<2 \\ 0, & \text { elsewhere }\end{cases}
$$

for some constant c

Then,

$$
1=\int_{0}^{2} c x^{3} \mathrm{~d} x=c\left[\frac{x^{4}}{4}\right]_{0}^{2}=4 c
$$

The computation of a probability involving X follows as always

$$
P(1 / 4<X<1)=\int_{1 / 4}^{1} \frac{1}{4} x^{3} \mathrm{~d} x=\frac{255}{4096} \approx 0.06
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables
Discrete random variables

Generalities
Transformations

Continuous

 random variablesGeneralities
Transformations

Discrete random variables

Random variables

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables
Discrete random variables

Generalities
Transformations

Continuous

random variables
Generalities
Transformations

Generalities

Discrete random variables

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesGeneralities
Transformations
Continuous random variables

Generalities

Transformations

Discrete random variables

Definition

Discrete random variables
A random variable is said to be a discrete random variable if its space/range is either finite or countable

Random variables

UFC/DC
2017.2

Random

variables
Discrete random variables

Generalities
Transformations
Continuous random variables
Generalities
Transformations

Discrete random variables

Example

Independent tosses of a coin
Consider a sequence of independent tosses of a coin

- Each flip results in a head H or a tail T
- Assume that H and T are equiprobable

The sample space \mathcal{C} of the experiment consists of sequences like TTHHTHT \cdots

Let the random variable X be the number of tosses to observe the first H

- $X($ нттннтт $\cdots)=1$
- $X($ THHTHHH $\cdots)=2$
- $X($ TTHHTHT $\cdots)=3$
- ...

The space range of X is $\mathcal{D}=\{1,2, \ldots\}$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables

Discrete random variables
Generalities
Transformations
Continuous

Discrete random variables (cont.)

We have that $X=1$ when the sequence starts with H

- $P(X=1)=1 / 2$

Similarly, $X=2$ when the sequence starts with TH

- $P(X=2)=(1 / 2)(1 / 2)=(1 / 2)^{2}=1 / 4$

For $X=x$, there must be a sequence of $(x-1)$ Ts followed by a H

- $P(X=x)=\underbrace{(1 / 2)(1 / 2) \cdots}_{x-1 \text { times }}(1 / 2)=(1 / 2)^{x-1}(1 / 2)=(1 / 2)^{x}$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables

Discrete random variables (cont.)

The event 'first H is observed on a odd number of flips' has probability

$$
P[X \in\{1,3,5, \cdots\}]=\sum_{x=1}^{\infty}(1 / 2)^{2 x-1}=\frac{1 / 2}{1-(1 / 4)}=2 / 3
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables
Discrete random variables

Generalities
Transformations
Continuous random variables

Generalities

Discrete random variables (cont.)

Probabilities regarding discrete RVs can be obtained in terms of probabilities

$$
P(X=x), \text { for } x \in \mathcal{D}
$$

These probabilities determine an important probability function

Random variables

UFC/DC
2017.2

Random

variables
Discrete random variables

Generalities
Transformations
Continuous random variables

Generalities

Discrete random variables (cont.)

Definition

Probability mass function (PMF)
Let X be random variable of the discrete type with range \mathcal{D}
The probability mass function (PMF) of X is given by

$$
\begin{equation*}
p_{X}(x)=P(X=x), \quad \text { for } x \in \mathcal{D} \tag{9}
\end{equation*}
$$

The PMF satisfies two properties

$$
\begin{align*}
& \text { (i) } 0 \leq p_{X}(x) \leq 1, \text { for } x \in \mathcal{D} \\
& \text { (ii) } \sum_{x \in \mathcal{D}} p_{X}(x)=1 \tag{10}
\end{align*}
$$

[\rightsquigarrow] It can be shown that the distribution of the RV is uniquely determined by a function that satisfies properties (i) and (ii) for a discrete set \mathcal{D}
2017.2

Random

Discrete random variables (cont.)

Let X be a discrete RV with range \mathcal{D}, discontinuities of $F_{X}(x)$ possess mass
\rightsquigarrow If x is a point of discontinuity of F_{X}, then $P(X=x)>0$
The range of a discrete RV and such points of positive probability are distinct

- In the range \mathcal{D} of discrete random variable X, the set of points that have positive probability are said to define the support of RV X
- We often use \mathcal{S} to indicate the support of X
- $\mathcal{S} \subset \mathcal{D}$ and it may be that $\mathcal{S}=\mathcal{D}$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables

Discrete random variables (cont.)

We can also obtain a relation between the PMF and CDF of a discrete RV

- If $x \in \mathcal{S}$, then $p_{X}(x)$ equals the size of the discontinuity of F_{X} at x
- If $x \notin \mathcal{S}$, then $P(X=x)=0$ and, hence, F_{X} is continuous at such x

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables

Example

A box consisting of 100 bulbs is inspected using a standardised procedure

- Five bulbs are selected at random and checked
- If they all glow, the lot is accepted

If there are 20 faulty bulbs in the lot, the probability of accepting the box

$$
\binom{80}{5} /\binom{100}{5} \approx 0.32
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables variables

Generalities
Transformations
Continuous random variables

Discrete random variables (cont.)

Let the RV X be the number of faulty bulbs among the inspected 5 The PMF of X is

$$
p_{X}(x)= \begin{cases}\binom{20}{x}\binom{80}{5-x} /\binom{100}{5}, & x=0,1,2,3,4,5 \tag{11}\\ 0 & \text { elsewhere }\end{cases}
$$

The range of $X, \mathcal{D}=\{0,1,2,3,4,5\}$ is also its support \mathcal{S}

Random variables

Transformations

Discrete random variables

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables
Discrete random variables
Generalities
Transformations
Continuous random variables
Generalities
Transformations

Transformations

Suppose that we have a RV X of the discrete type, we know its distribution

- We are interested in another RV Y
- RV Y is some transformation of X
$\rightsquigarrow Y=g(X)$
Specifically, we want to determine the distribution of Y

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables

Transformations (cont.)

Assume X is of the discrete type with range \mathcal{D}_{X}

- The range of Y is $\mathcal{D}_{Y}=\left\{g(x): x \in \mathcal{D}_{X}\right\}$

We consider two cases, separately
(1) g is one-to-one (bijective)
(2) g is not one-to-one
2017.2

Random

variables
Discrete random variables
Generalities
Transformations

Continuous

random variables
Generalities
Transformations

Transformations (cont.)

g is one-to-one
The PMF of Y

$$
\begin{align*}
p_{Y}(y) & =P(Y=y)=P[g(X)=y]=P\left[X=g^{-1}(y)\right] \\
& =p_{X}\left[g^{-1}(y)\right] \tag{12}
\end{align*}
$$

Random variables

UFC/DC
2017.2

Random

variables
Discrete random variables
Generalities
Transformations
Continuous random variables

Generalities
Transformations

Transformations (cont.)

Example

Consider a sequence of independent tosses of a coin

- Each flip results in a H or a T
- H and T are equiprobable

The sample space \mathcal{C} of the experiment consists of sequences like TTHHTHT \cdots

Let the random variable X be the number of tosses to observe the first H

- $X($ TTHHTHT $\cdots)=3$
- ...

The range of X is $\mathcal{D}_{X}=\{1,2,3,4, \ldots\}$
2017.2

Random

variables

Discrete random variables

Transformations (cont.)

The PMF of X was determined earlier

2017.2

Random

variables
Discrete random variables

Transformations (cont.)

Let $Y=X-1$ (the number of tosses before the first H)

- $g(x)=x-1=y$, with inverse $g^{-1}(y)=y+1$

The range of Y is $\mathcal{D}_{Y}=\{0,1,2, \cdots\}$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables
Generalities
Transformations
Continuous random variables

Generalities

Transformations (cont.)

The PMF of Y

- $p_{Y}(y)=P(Y=y)=P[g(X)=y]=P\left[X=g^{-1}(y)\right]=p_{X}\left[g^{-1}(y)\right]$
2017.2

Random

variables
Discrete random variables
Generalities
Transformations
Continuous random variables

Transformations (cont.)

Example

Let the random variable X have the PMF

$$
p_{X}(x)=\left\{\begin{array}{lr}
\frac{3!}{x!(3-x!)}(2 / 3)^{x}(1 / 3)^{3-x}, & x=0,1,2,3 \\
0, & \text { elsewhere }
\end{array}\right.
$$

We are interested in the PMF $p_{Y}(y)$ of the random variable $Y=X^{2}$
2017.2

Random

 variables
Transformations (cont.)

$$
y=g(x)=x^{2} \text { maps } \mathcal{D}_{X}=\{x: x=0,1,2,3\} \text { onto } \mathcal{D}_{Y}=\{y: y=0,1,4,9\}
$$

- $y=x^{2}$ does not always define a one-to-one transformation
- It does here, as the values of x in \mathcal{D}_{X} are non-negative

Transformations (cont.)

We have a singly valued inverse function $x=g^{-1}(y)=\sqrt{y}(\operatorname{not} \pm \sqrt{y})$

$$
\begin{aligned}
p_{Y}(y)=p_{X}(\sqrt{y}) & =\frac{3!}{(\sqrt{y})!(3-\sqrt{y})!}(2 / 3)^{\sqrt{y}}(1 / 3)^{3-\sqrt{y}} \\
\text { for } y & =0,1,4,9
\end{aligned}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables variablesTransformations (cont.)
g is not one-to-one
The PMF of discrete Y can be obtained in an uncomplicated manner

- There is no need to develop a rule

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables
Generalities
Transformations
Continuous random variables
Generalities
Transformations

Transformations (cont.)

Example

Let $Z=(X-2)^{2}$, with X the geometric random variable whose PMF is

$$
\begin{aligned}
P(X=x) & =(1 / 2)^{x} \\
\text { for } x & =1,2,3, \ldots
\end{aligned}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables

Transformations (cont.)

The range of Z is $\mathcal{D}_{Z}=\{0,1,4,9,16, \ldots\}$

- $Z=0$, iff $X=2$
- $Z=1$, iff $X=1$ or $X=3$

For $z \in\{4,9,16, \ldots\}$, there is a 1 -to- 1 map, $x=\sqrt{z}+2$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Transformations (cont.)

Hence, the PMF of Z is

$$
p_{Z}(z)= \begin{cases}p_{X}(2)=1 / 4, & z=0 \tag{13}\\ p_{X}(1)+p_{X}(3)=5 / 8, & z=1 \\ p_{X}(\sqrt{z}+2)=1 / 4(1 / 2)^{\sqrt{z}}, & z=4,9,16, \ldots\end{cases}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables
Discrete random variables

Generalities
Transformations
Continuous random variables

Generalities
Transformations

Continuous random variables Random variables

Random variables

Generalities

Continuous random variables

Random variables
2017.2

Continuous random variables

Another class of random variables is the class of RVs of the continuous type

Definition

Continuous random variables
A random variable is said to be a continuous random variable if its cumulative distribution function $F_{X}(x)$ is a continuous function for all $x \in \mathcal{R}$

We know that for any random variable $X, P(X=x)=F_{X}(x)-F_{X}(x-)^{2}$
\rightsquigarrow Hence, for a continuous RV X, no points can be of discrete mass
\rightsquigarrow If X is continuous, then it must be $P(X=x)=0$, for all $x \in \mathcal{R}$

$$
{ }^{2} F_{X}(x)=\lim _{z \uparrow x} F_{X}(x)
$$

2017.2

Random

Continuous random variables(cont.)

Most common continuous RVs are absolutely continuous

$$
\begin{equation*}
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) \mathrm{d} t \tag{14}
\end{equation*}
$$

for some function $f_{X}(t)$

The function $f_{X}(t)$ is the probability density function (PDF) of X If $f_{X}(t)$ is continuous, then the fundamental theorem of calculus yields

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} F_{X}(t)=f_{X}(t) \tag{15}
\end{equation*}
$$

Random

 variables2017.2

Random

Continuous random variables (cont.)

The support of a continuous RV X consists of all points x st $f_{X}(x)>0$

- We indicate the support of X by \mathcal{S}_{X} (as in the discrete case)

If X is a continuous RV , then probabilities are determined by integration

$$
P(a<X \leq b)=F_{X}(b)-F_{X}(a)=\int_{a}^{b} f_{X}(t) \mathrm{d} t
$$

Moreover, for RVs of the continuous type, we have

$$
P(a<X \leq b)=P(a \leq X \leq b)=P(a \leq X<b)=P(a<X<b)
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables
Continuous random variables (cont.)

Note that PDFs satisfy the two properties

- $f_{X}(x) \geq 0$
- $\int_{-\infty}^{+\infty} f_{X}(t) \mathrm{d} t=1$

Second property follows from $F_{X}(\infty)=1$

Remark

It can be shown that if a function satisfies the aforementioned properties, such a function is the PDF of a random variable of the continuous type

Random

 variables2017.2

Random variables

Discrete random variables
Generalities
Transformations
Continuous random variables

Continuous random variables (cont.)

Example

Pick a real number at random from interval $(0,1)$, let X be the number

- The chosen number X is an example of a continuous RV
- The space of X is $\mathcal{D}=(0,1)$

The CDF is $F_{X}(x)=x$ for $x \in(0,1)$, its PDF is $f_{X}(x)=1$ for $x \in(0,1)$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variables
Continuous random variables (cont.)

Remark

Continuous/discrete RVs X whose PDF/PMF is constant on support \mathcal{S}_{X} \rightsquigarrow They are said to have a uniform distribution

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables
Discrete random variables
Generalities
Transformations
Continuous random variables
Generalities
Transformations

Continuous random variables (cont.)

Example

Let RV X be the time (mins) between incoming chat messages from friends
Suppose that a valid probability model for X is the PDF

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables
Generalities
Transformations

Continuous

 random variables
Generalities

Transformations

Continuous random variables (cont.)

f_{X} satisfies the two properties of a PDF

- $f(x) \geq 0$
- $\int_{-\infty}^{+\infty} 0.25 \exp (-x / 4) \mathrm{d} x=[-\exp (-x / 4)]_{0}^{\infty}=1$

Random

 variablesUFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Continuous random variables (cont.)

The probability that the time between successive messages is >4 minutes

$$
P(X>4)=\int_{4}^{\infty} 0.25 \exp (-x / 4) \mathrm{d} x=\exp (-1) \approx 0.368
$$

Random variables

Transformations

Continuous random variables

Transformations

2017.2

Random

variables

Transformations

Let X be a random variable of the continuous type with known PDF f_{X} We are interested in the distribution of a random variable Y

- Y is some transformation of X
$\rightsquigarrow Y=g(X)$

Often it is possible to determine the PDF of Y by first getting its CDF

Random variables
2017.2

Random

variables
Discrete random variables

Generalities
Transformations
Continuous random variables

Transformations (cont.)

Example

Let X be a random variable whose PDF is given by

$$
f_{X}(x)= \begin{cases}2 x, & 0 \leq x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

The CDF of X is given by

$$
F_{X}(x)= \begin{cases}0, & x<0 \tag{16}\\ x^{2}, & 0 \leq x<1 \\ 1, & 1 \leq x\end{cases}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

 variablesDiscrete random variables

Transformations (cont.)

Suppose we are interested in its square, $Y=X^{2}$

X and Y have the same support $\mathcal{S}_{X}=\mathcal{S}_{Y}=(0,1)$

- What is the CDF of Y ?

Random

 variables
Random

variables

Transformations (cont.)

Using $F_{X}(x)$ and the fact that \mathcal{S}_{X} only contains positive numbers

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y}) \\
& =F_{X}(\sqrt{y})=(\sqrt{y})^{2}=y
\end{aligned}
$$

It follows that the PDF of Y is given by

$$
f_{Y}(y)= \begin{cases}1, & 0<y<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables

Discrete random variables
Generalities
Transformations
Continuous random variables
Generalities
Transformations

Transformations (cont.)

Example

Let $f_{X}(x)=\frac{1}{2}$ for $x \in(-1,1)$ and zero elsewhere be the PDF of the RV X

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables

Discrete random variables

Generalities

Transformations
Continuous random variables

Generalities
Transformations

Transformations (cont.)

Define the random variable $Y=X^{2}$

We are interested in the PDF of Y

Random variables

Transformations (cont.)

If $y \geq 0$, probability $P(Y \leq y)$ equals $P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y})$
Accordingly, the CDF of $Y, F_{Y}(y)=P(Y \leq y)$

Random

 variables$\mathrm{UFC} / \mathrm{DC}$ ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables

Discrete random variables
Generalities
Transformations

Contintious

random variables

Generalities
Transformations

Transformations (cont.)

The PDF of Y

$$
f_{Y}(y)= \begin{cases}\frac{1}{2 \sqrt{y}}, & 0<y<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables
Discrete random variables

Generalities
Transformations
Continuous random variables Generalities

Transformations

Transformations (cont.)

We used the cumulative distribution function technique
The transformation in the first example is one-to-one
\rightsquigarrow We derive an expression for the PDF of Y

- In terms of the PDF of X
2017.2

Random
variables

Transformations (cont.)

Theorem 3.1

Let $f_{X}(x)$ be the PDF of a continuous random variable X with support \mathcal{S}_{X} Let $Y=g(X)$, with $g(x)$ a 1-to-1 differentiable function on \mathcal{S}_{X}

Let the inverse of $g(x)$ be denoted by $x=g^{-1}(y)$
Let $d x / d y=d\left[g^{-1}(y)\right] / d y$

Then, the PDF of Y is given by

$$
\begin{equation*}
f_{Y}(y)=f_{X}\left[g^{-1}(y)\right]\left|\frac{d x}{d y}\right|, \quad \text { for } y \in \mathcal{S}_{Y} \tag{17}
\end{equation*}
$$

Set $\mathcal{S}_{Y}=\left\{y=g(x): x \in \mathcal{S}_{X}\right\}$ indicates the support of Y
Proof
$g(x)$ is 1-to-1, continuous, strictly monotonically increasing or decreasing
2017.2

Random

variables

Transformations (cont.)

$g(x)$ is monotonically increasing

The CDF of Y

$$
\begin{align*}
F_{Y}(y) & =P(Y \leq y)=P[g(X) \leq y]=P\left[X \leq g^{-1}(y)\right] \tag{18}\\
& =F_{X}\left[g^{-1}(y)\right]
\end{align*}
$$

The PDF of Y

$$
\begin{equation*}
f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)=f_{X}\left[g^{-1}(y)\right] \frac{\mathrm{d} x}{\mathrm{~d} y} \tag{19}
\end{equation*}
$$

$\mathrm{d} x / \mathrm{d} y$ is the derivative of function $x=g^{-1}(y)$

As g is increasing ($\mathrm{d} x / \mathrm{d} y>0$), we can write $\mathrm{d} x / \mathrm{d} y=|\mathrm{d} x / \mathrm{d} y|$
2017.2

Random

variables
Discrete random variables
Generalities
Transformations

Continuous

Generalities

Transformations

Transformations (cont.)

$g(x)$ is monotonically decreasing
The CDF of Y

$$
F_{Y}(y)=1-F_{X}\left[g^{-1}(y)\right]
$$

The PDF of Y

$$
f_{Y}(y)=f_{X}\left[g^{-1}(y)\right]\left(-\frac{\mathrm{d} x}{\mathrm{~d} y}\right)
$$

As g is decreasing $(\mathrm{d} x / \mathrm{d} y<0)$, we can write $-\mathrm{d} x / \mathrm{d} y=|\mathrm{d} x / \mathrm{d} y|$

Equation (17) is true in both cases
2017.2

Random

variables

Transformations (cont.)

The Jacobian of the (inverse) transformation $x=g^{-1}(y)$

$$
J=\mathrm{d} x / \mathrm{d} y=\frac{\mathrm{d}\left[g^{-1}(y)\right]}{\mathrm{d} y}
$$

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Random

variables
Discrete random variables

Generalities
Transformations
Continuous random variables
Generalities
Transformations

Transformations (cont.)

Example

Let the random variable X have the PDF

$$
f(x)= \begin{cases}1, & 0<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

2017.2

Random

Transformations (cont.)

Consider the random variable $Y=-2 \log (X)$

Support sets of X and Y are $\mathcal{S}_{X}=(0,1)$ and $\mathcal{S}_{Y}=(0, \infty)$
The transformation $g(x)=-2 \log (x)$ is one-to-one between these sets

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412)
2017.2

Transformations (cont.)

The inverse transformation is $x=g^{-1}(y)=\exp (-y / 2)$

The Jacobian is

$$
J=\frac{\mathrm{d}[\exp (-y / 2)]}{\mathrm{d} y}=-1 / 2 \exp (-y / 2)
$$

Transformations (cont.)

Accordingly, the PDF of $Y=-2 \log (X)$ is

$$
f_{Y}(y)= \begin{cases}f_{X}[\exp (-y / 2)]|J|=1 / 2 \exp (-y / 2), & 0<y<\infty \\ 0, & \text { elsewhere }\end{cases}
$$

Continuous

random variables

Random variables
2017.2

Random

variables
Discrete random variables
Generalities
Transformations
Continuous

Transformations (cont.)

Example

Consider the following distribution function

- The distribution is neither of the continuous nor of the discrete type
- $F(x)$ is not always continuous, nor is it a step function

Then,

$$
\begin{gathered}
P(-3<X \leq 1 / 2)=F(1 / 2)-F(-3)=3 / 4-0=3 / 4 \\
P(X=0)=F(0)-F(0-)=1 / 2-0=1 / 2
\end{gathered}
$$

Random variables

UFC/DC
2017.2

Random

variables
Discrete random variables
Generalities
Transformations
Continuous
random variables
Generalities
Transformations

Random variable (cont.)

Distributions that are mixtures of continuous/discrete type are frequent

Example

In survival analysis, we know that life duration X exceeds some number a

- The exact value of X is however unknown (censoring)

A classic: A subject under study at some point a disappears

- We know that the subject has lived a certain time a
- The exact life duration of life is unknown

[^0]: ${ }^{1} p_{X}\left(d_{i}\right)=P\left[\left\{c: X(c)=d_{i}\right\}\right]$, for $i=1,2, \ldots, m$.

