UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon variables

Generalitie

11 ansiormation:

Continuous random variables

Generalities

Transformations

Random variables Probability and distributions

Francesco Corona

Department of Computer Science Federal University of Ceará, Fortaleza

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete random variables

Generalitie

Transformation

Continuous random variable

Generalit

Transformations

Random variables Probability and distributions

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

Continuous random variable

Generalities

Transformatio

Random variables

If the elements of $\mathcal C$ are not numbers, the sample space is dull to describe

 \rightarrow A set of rules to represent elements c of \mathcal{C} by numbers

Example

Let the toss of a coin be the random experiment

Let $\mathcal{C} = \{H,T\}$ be the sample space we associate with this experiment

H and T are for heads and tails

Let X be a function such that X(T) = 0 and X(H) = 1

- X is a real-valued function defined on the sample space \mathcal{C}
- From C, to a space of real numbers $\mathcal{D} = \{0, 1\}$

We can define a random variable and its space

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

Continuous

Generalities

Generalities

Transformation:

Random variables

Definition

A random variable and its space/range

Consider a random experiment and let C be the sample space

A random variable (RV) is a function X that assigns to each element $c \in C$ one and only one number, X(c) = x

The space/range of X is the set of real numbers $\mathcal{D} = \{x : x = X(c), c \in \mathcal{C}\}$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generaliti

Transformation

Continuous

General

Generalities

Random variables (cont.)

A random variable thus maps the sample space onto the real line

Randomness comes from choosing a random element from sample space

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

Continuous random variables

Generalities

Transformatio

Random variables (cont.)

The range \mathcal{D} is typically a countable set or an interval of real numbers

- RVs of the first type are said to be **discrete**
- RVs of the second time are said to be **continuous**

Example

- RV X is defined on a sample space with 6 elements (C)
- RV X has possible values 0, 1 and 4 (\mathcal{D})

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor

Conoralitie

Cransformations

Continuous

random variable

Generalities

Generaliones

Random variables (cont.)

Given a RV X, its range $\mathcal D$ becomes the sample space of interest

- ullet Besides the sample space, X also induces a probability
- This probability is called the **distribution** of X

Random variables UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Random variables (cont.)

Let X be a discrete random variable with finite range $\mathcal{D} = \{d_1, d_2, \dots, d_m\}$

• The events of interest of the new sample space \mathcal{D} are subsets of \mathcal{D}

We define function $p_X(d_i)$ on \mathcal{D}

$$p_X(d_i) = P[\{c : X(c) = d_i, c \in C\}], \text{ for } i = 1, 2, ..., m$$
 (1)

Function $p_X(d_i)$ defines the **probability mass function** (**PMF**) of X

The induced probability distribution $P_X(\cdot)$ of X

$$P_X(D) = \sum_{d_i \in D} p_X(d_i), \quad D \subset \mathcal{D}$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando variables

Generalities

Transformation

Continuous random variables

Generalities

Generalities

Random variables (cont.)

Example

Two dice roll

Let X be the sum of upfaces on a single roll of two fair and ordinary dice

- The sample space is $C = \{(i, j) : 1 \le i, j \le 6\}$
- As the dice are fair, $P[\{(i,j)\}] = 1/36$
- Random variable X is X[(i,j)] = i + j
- The range of X is $\mathcal{D} = \{2, ..., 12\}$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete random variables

Generalities

.....

random variable

Generalities

Transformations

Random variables (cont.)

The probability mass function PMF^1 of X is given (by enumeration) by

	x	2	3	4	5	6	7	8	9	10	11	12
-	$p_X(x)$	1	2	3	4	5	6	5	4	3	2	1
		36	36	36	36	36	36	36	36	36	36	36

 $^{{}^{1}}p_{X}(d_{i}) = P[\{c : X(c) = d_{i}\}], \text{ for } i = 1, 2, \dots, m.$

Discrete randor variables

Generalitie

Transformations

Continuous

Generalities

Generalities

Transformations

Random variables (cont.)

The computation of probabilities regarding X follows

Suppose $B_1 = \{x : x = 7, 11\}$ and $B_2 = \{x : x = 2, 3, 12\}$

Using the values of $p_X(x)$ in the table

$$P_X(B_1) = \sum_{x \in B_1} p_X(x) = \frac{6}{36} + \frac{2}{36} = 8/36$$

$$P_X(B_2) = \sum_{x \in B_2} p_X(x) = \frac{1}{36} + \frac{2}{36} + \frac{1}{36} = 4/36$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando

Generalitie

Transformation

Continuous

random variables Generalities

Transformation

Random variables (cont.)

Let X be a continuous random variable, the new sample space \mathcal{D} is an interval of real numbers and simple events of interest are (generally) intervals

Usually, we can determine a non-negative function $f_X(x)$ such that, for any interval $(a,b) \in \mathcal{D} \subset \mathcal{R}$, the induced probability distribution $P_X(\cdot)$ of X is

$$P_X[(a,b)] = P[\{c : a < X(c) < b, c \in \mathcal{C}\}] = \int_a^b f_X(x) dx$$
 (2)

- ullet This is the probability that X falls between a and b
- The area under curve $y = f_X(x)$ between a and b

Function $f_X(x)$ defines the **probability density function** of X (**PDF**)

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon

Generalitie

Transformations

Continuous

Generalities

Generalities

Transformations

Random variables (cont.)

Besides $f_X(x) \geq 0$, we require that

$$P_X(\mathcal{D}) = \int_{\mathcal{D}} f_X(x) dx = 1$$

Total area under curve over the sample space $\mathcal D$ is 1

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Random variables (cont.)

Pick a real number at random from interval (0,1), let X be the number

The space of X is $\mathcal{D} = (0,1)$, the induced probability P_X is not obvious

• As the number is picked at random, it makes sense to assign

$$P_X[(a,b)] = b - a, \text{ for } 0 < a < b < 1$$
 (3)

Since $P_X[(a,b)] = \int_a^b f_X(x) dx = b - a$, it follows that the PDF of X

$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases} \tag{4}$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Cransformations

Continuous random variables

Generalities

Generalities

Transformations

Random variables (cont.)

The probability that X is less than one-eighth or greater than seven-eighths

$$P[(X < 1/8) \cup (X > 7/8)] = \int_0^{1/8} (1) dx + \int_{7/8}^1 (1) dx = 1/4$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalitie

Transformations

Continuous

Generalities

Generalities

Transformations

Random variables (cont.)

Remark

$$\rightarrow$$
 $p_X(d_i) = P[\{c \in \mathcal{C} : X(c) = d_i\}] \text{ for } i = 1, \dots, m$

$$\rightarrow$$
 $P_X[(a,b)] = P[\{c \in \mathcal{C} : a < X(c) < b\}] = \int_a^b f_X(x) dx$

Subscript X identifies the PMF $p_X(x)$ and the PDF $f_X(x)$ with the RV

Remark

PMFs of discrete RVs and PDFs of continuous RVs are different beasts

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Random variables (cont.)

Distribution functions determine the probability distribution of a RV

Cumulative distribution function

Let X be a random variable

$$F_X(x) = P_X\left[(-\infty, x]\right] = P\left[\left\{c : X(c) \le x, c \in \mathcal{C}\right\}\right]$$
 (5)

The cumulative distribution function (CDF) of RV X is defined by $F_X(x)$

We conveniently shorten $P[\{c: X(c) \le x, c \in \mathcal{C}\}]$ as $P(X \le x)$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando: variables

Generaliti

Transformation

Continuous random variables

Generalities

Generanties

Transformations

Random variables (cont.)

Remark

 $F_X(x)$ is often called the **distribution function** (**DF**) of X

- Adjective 'cumulative' indicates that probabilities are accumulated
- $F_X(x)$ adds up probabilities less than or equal to x

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando

Generalities

Transformation:

Continuous

random variables

Generalities

Transformatio

Random variables (cont.)

$\operatorname{Example}$

Roll of a fair die

Suppose we roll an ordinary die, the dice is fair

- Let X be the observed spots upface
- The space of X is $\{1, 2, ..., 6\}$

The PMF of X

$$p_X(i) = 1/6$$

for $i = 1, 2, ..., 6$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

Continuous

Generalitie

Transformations

Random variables (cont.)

- If x < 1, then $F_X(x) = \sum_{i \in (-\infty, 1)} p_X(i) = 0$
- If $1 \le x < 2$, then $F_X(x) = \sum_{i \in (-\infty, 2)} p_X(i) = 1/6$
- If $2 \le x < 3$, then $F_X(x) = \sum_{i \in (-\infty,3)} p_X(i) = 2/6$
- ..

Continuing this way, the CDF of X is an increasing step function

The step of $F_X(x)$ is $p_X(i)$, at each i, in the range of X

 \longrightarrow Given the CDF of X, we can determine its PMF

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Random variables (cont.)

Pick a real number at random from interval (0,1), let X be the number

The space of X is $\mathcal{D} = (0, 1)$

What is the CDF of X?

- If x < 0, then $P(X \le x) = 0$
- If 1 < x, then P(X < x) = 1
- If $0 \le x < 1$, then $P(X \le x) = P(0 < X \le x) = x 0 = x$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon

variables

Transformation

Continuous

Conoralitios

Generalities

Transformations

Random variables (cont.)

Hence, the CDF if X is given by

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } x \in [0, 1) \\ 1, & \text{if } x \ge 1 \end{cases}$$
 (6)

Random variables (cont.)

The connection between $F_X(x)$ and $f_X(x)$ is given by

$$F_X(x) = \int_{-\infty}^x f_X(x) dx$$
, for all $x \in \mathcal{R}$

and

$$\frac{\partial}{\partial x}F_X(x)=f_X(x), \text{ for all } x\in\mathcal{R}, \text{ except } x=0 \text{ and } x=1$$

$$f_X(x) = \begin{cases} 1, & x \in (0,1) \\ 0, & \text{elsewhere} \end{cases}$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Random variables (cont.)

Let X and Y be two random variables

X and Y are equal in distribution $X \stackrel{D}{=} Y$ iff $F_X(x) = F_Y(y)$, for all $x \in \mathcal{R}$

• X and Y can be equal in distribution, and yet be different otherwise

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando

Generalitie

Transformation

11ansiormations

Continuous random variables

Generalities

m a

Random variables (cont.)

Example

Pick a real number at random from interval (0,1), let X be the number

• The range of X is $\mathcal{D}_X = (0,1)$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando variables

Generalitie

11ansiormation

Continuous random variable

General

T-----

Random variables (cont.)

Define the random variable Y = 1 - X, clearly $Y \neq X$

The range of $\,Y\,$ is the same as $\,X\,$

• Interval $\mathcal{D}_Y = (0,1)$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

Continuous

random variabl

Generalities

Transformations

Random variables (cont.)

The CDF of Y is given by

$$F_Y(y) = \begin{cases} 0, & \text{if } y < 0 \\ y, & \text{if } y \in [0, 1) \\ 1, & \text{if } y \ge 1 \end{cases}$$

For $0 \le y < 1$, we computed

$$F_Y(y) = P(Y \le y) = P(1 - X \le y) = P(X \ge 1 - y) = 1 - (1 - y) = y$$

$$\rightsquigarrow Y \stackrel{D}{=} X$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randor variables

Generalities

Transformation

Continuous

Conceplition

Transformation

Transformatio

Random variables (cont.)

We have seen two CDFs that share some common features

- They are increasing functions
- The lower limit is 0, the upper limit 1

Such properties are true for CDFs in general

Theorem 1.1

Let X be a random variable

Let its cumulative distribution function be F_X

- a) For all a and b, if a < b, then $F(a) \le F(b)$ (F is non-decreasing)
- b) $\lim_{x \downarrow -\infty} F(x) = 0$ (lower-bound of F is zero)
- c) $\lim_{x\uparrow+\infty} F(x) = 1$ (upper-bound of F is one)
- d) $\lim_{x\downarrow x_0} F(x) = F(x_0)$ (F is right-continuous)

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation:

Continuous random variables

Generalities

Generalities

Transformations

Random variables (cont.)

Theorem 1.2

Let X be a random variable with F_X the CDF

Then, for a < b,

$$P(a \le X \le b) = F_X(b) - F_X(a)$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando variables

Generalities

Transformation

Continuous

Generalities

Generalities

Transformations

Random variables (cont.)

Example

Let X be the lifetime in years of your potted flowers

Assume that X has the CDF

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-x}, & 0 \le x \end{cases}$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando: variables

Generalities

Transformation:

Continuous random variables

Generalities

m c ...

Random variables (cont.)

The PDF of X, $d[F_X(x)]/dx$

$$f_X(x) = \begin{cases} e^{-x}, & 0 < x < \infty \\ 0, & \text{elsewhere} \end{cases}$$

Remark

The derivative does not exist at x = 0

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

random variables

Generalities

Transformat

Transformations

Random variables (cont.)

The probability that your flower has a lifetime between 1 and 3 years

$$P(1 < X \le 3) = F_X(3) - F_X(1) = \int_1^3 e^{-x} dx$$

The probability is found by $F_X(3) - F_X(1)$ or by evaluating the integral

• Either way, it equals $\exp(-1) - \exp(-3) = 0.318$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalitie

Transformation

Continuous

random var

Generalities

Transformati

Random variables (cont.)

CDFs are right-continuous and monotone

CDFs possess a countable number of discontinuities

- It can be shown that the discontinuities of a CDF have mass
- If x is a point of discontinuity of F_X , then P(X = x) > 0

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor

Generalities

Transformatic

Continuous

0 100

Generalities

T-----

Random variables (cont.)

Theorem

For any random variable X,

$$P[X = x] = F_X(x) - F_X(x-), \quad \text{for all } x \in \mathcal{R}$$
 (7)

We used $F_X(x-) = \lim_{z \uparrow x} F_X(z)$

Proof

For any $x \in \mathcal{R}$, we have

$$\{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x\right],$$

 $\{x\}$ is the limit of a decreasing sequence of sets

Discrete randon variables

Generalitie

Transformation

Continuous

Generalities

Generalities

Transformations

Random variables (cont.)

For a decreasing sequence of sets

$$\lim_{n \uparrow \infty} P(C_n) = P(\lim_{n \uparrow \infty} C_n) = P(\bigcap_{n=1}^{\infty} C_n)$$

Hence,

$$P(X = x) = P\left[\bigcap_{n=1}^{\infty} \left\{ x - \frac{1}{n} < X \le x \right\} \right] = \lim_{n \uparrow \infty} P\left[x - \frac{1}{n} < X \le x \right]$$
$$= \lim_{n \uparrow \infty} \left\{ F_X(x) - F_X\left[x - (1/n)\right] \right\} = F_X(x) - F_X(x - x)$$

UFC/DC TML (CK0255)

Let the random variable X have the discontinuous CDF $F_X(x)$

$$F_X(x) = \begin{cases} 0, & x < 0 \\ x/2, & 0 \le x < 1 \\ 1, & 1 \le x \end{cases}$$

Then,

$$P(-1 < X \le 1/2) = F_X(1/2) - F_X(-1) = 1/4 - 0 = 1/4$$

and

$$P(X = 1) = F_X(1) - F_X(1-) = 1 - 1/2 = 1/2$$

The value 1/2 equals the value of the step of F_X for x=1

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformations

Continuous random variables

Generalities

Transformations

Random variables (cont.)

The total probability associated with a random variable X of discrete type with PMF $p_X(x)$, or of the continuous type with PMF $f_X(x)$ is 1

Then, it must be true that

$$\sum_{x \in \mathcal{D}} p_X(x) = 1 \quad \text{and} \quad \int_{\mathcal{D}} f_X(x) \mathrm{d}x = 1,$$

 \mathcal{D} denotes the space of X

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Remark

Random variables (cont.)

If we know the PMF/PDF up to a constant, then we know the PMF/PDF

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalitie

Transformations

Continuous

Coneralities

Generanties

Random variables (cont.)

Example

Suppose that X has the PMF

$$p_X(x|c) = \begin{cases} cx, & x = 1, 2, \dots, 10 \\ 0, & \text{elsewhere} \end{cases},$$

for some proper constant c

Then,

$$1 = \sum_{x=1}^{10} p_X(x) = \sum_{x=1}^{10} cx = c(1+2+\dots+10) = 55c$$

Random

Random variables (cont.)

Suppose that X has the PDF

$$f_X(x|c) = \begin{cases} cx^3, & 0 < x < 2\\ 0, & \text{elsewhere} \end{cases}$$

for some constant c

Then,

$$1 = \int_0^2 cx^3 dx = c \left[\frac{x^4}{4} \right]_0^2 = 4c$$

The computation of a probability involving X follows as always

$$P(1/4 < X < 1) = \int_{1/4}^{1} \frac{1}{4} x^3 dx = \frac{255}{4096} \approx 0.06$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Discrete random variables

Discrete random variables

Random variables

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete random

Generalities

Transformation

Continuous

Generalities

Transformations

Generalities

Discrete random variables

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Generalities

Discrete random variables

Discrete random variables

A random variable is said to be a discrete random variable if its space/range is either finite or countable

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Conoralities

Discrete random variables

Independent tosses of a coin

Consider a sequence of independent tosses of a coin

- Each flip results in a head H or a tail T
- Assume that H and T are equiprobable

The sample space C of the experiment consists of sequences like TTHHTHT · · ·

Let the random variable X be the number of tosses to observe the first H

- $X(\text{HTTHHTT}\cdots)=1$
- $X(\text{THHTHHH}\cdots)=2$
- $X(TTHHTHT \cdots) = 3$
- . . .

The space range of X is $\mathcal{D} = \{1, 2, \dots\}$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

variables

variables

Generalities

Transformation

Continuous

random variable

Generalities

Transformatio

Discrete random variables (cont.)

We have that X = 1 when the sequence starts with H

•
$$P(X=1)=1/2$$

Similarly, X = 2 when the sequence starts with TH

•
$$P(X = 2) = (1/2)(1/2) = (1/2)^2 = 1/4$$

For X = x, there must be a sequence of (x - 1) Ts followed by a H

•
$$P(X = x) = \underbrace{(1/2)(1/2)\cdots}_{x-1 \text{ times}} (1/2) = (1/2)^{x-1}(1/2) = (1/2)^x$$

Discrete randon variables

Generalities

Transformation

Continuous

random variable

Generalities

Transformations

Discrete random variables (cont.)

$$P(X = x) = (1/2)^{x}$$

for $x = 1, 2, 3, ...$ (8)

The event 'first H is observed on a odd number of flips' has probability

$$P[X \in \{1, 3, 5, \dots\}] = \sum_{n=1}^{\infty} (1/2)^{2x-1} = \frac{1/2}{1 - (1/4)} = 2/3$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Generalities

Discrete random variables (cont.)

Probabilities regarding discrete RVs can be obtained in terms of probabilities

$$P(X = x)$$
, for $x \in \mathcal{D}$

These probabilities determine an important probability function

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Conoralities

Discrete random variables (cont.)

Probability mass function (PMF)

Let X be random variable of the discrete type with range \mathcal{D}

The probability mass function (PMF) of X is given by

$$p_X(x) = P(X = x), \quad \text{for } x \in \mathcal{D}$$
 (9)

The PMF satisfies two properties

(i)
$$0 \le p_X(x) \le 1$$
, for $x \in \mathcal{D}$
(ii) $\sum_{x \in \mathcal{D}} p_X(x) = 1$ (10)

[\infty] It can be shown that the distribution of the RV is uniquely determined by a function that satisfies properties (i) and (ii) for a discrete set \mathcal{D}

Random variables UFC/DC

ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

Continuous

random variables

Generalities

Transformations

Discrete random variables (cont.)

Let X be a discrete RV with range \mathcal{D} , discontinuities of $F_X(x)$ possess mass

 \rightarrow If x is a point of discontinuity of F_X , then P(X=x)>0

The range of a discrete RV and such points of positive probability are distinct

- In the range D of discrete random variable X, the set of points that have positive probability are said to define the support of RV X
- We often use S to indicate the support of X
- $\mathcal{S} \subset \mathcal{D}$ and it may be that $\mathcal{S} = \mathcal{D}$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Generalities

Discrete random variables (cont.)

We can also obtain a relation between the PMF and CDF of a discrete RV

- If $x \in \mathcal{S}$, then $p_X(x)$ equals the size of the discontinuity of F_X at x
- If $x \notin \mathcal{S}$, then P(X = x) = 0 and, hence, F_X is continuous at such x

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Generalities

Discrete random variables

A box consisting of 100 bulbs is inspected using a standardised procedure

- Five bulbs are selected at random and checked
- If they all glow, the lot is accepted

If there are 20 faulty bulbs in the lot, the probability of accepting the box

$${80 \choose 5} \Big/ {100 \choose 5} \approx 0.32$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon variables

Generalities

Transformation

Continuous

random variables

Generalities

m c ...

Discrete random variables (cont.)

Let the RV X be the number of faulty bulbs among the inspected 5

The PMF of X is

$$p_X(x) = \begin{cases} \binom{20}{x} \binom{80}{5-x} / \binom{100}{5}, & x = 0, 1, 2, 3, 4, 5\\ 0 & \text{elsewhere} \end{cases}$$
 (11)

The range of X, $\mathcal{D} = \{0, 1, 2, 3, 4, 5\}$ is also its support \mathcal{S}

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon variables

Generalitie

 ${\it Transformations}$

Continuous random variables

Generalit

Transformations

Transformations

Discrete random variables

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalitie

Transformations

random variable

Generalities

m c ...

Transformations

Suppose that we have a RV X of the discrete type, we know its distribution

- \bullet We are interested in another RV Y
- RV Y is some transformation of X

$$\rightsquigarrow Y = g(X)$$

Specifically, we want to determine the distribution of Y

Random variables UFC/DC

ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Transformations

random variables

Generalities

Transformation

Transformations (cont.)

Assume X is of the discrete type with range \mathcal{D}_X

• The range of Y is
$$\mathcal{D}_Y = \{g(x) : x \in \mathcal{D}_X\}$$

We consider two cases, separately

- g is one-to-one (bijective)
- $oldsymbol{g}$ is not one-to-one

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformations

Continuous random variable

Generalities

Transformations

Transformations (cont.)

g is one-to-one

The PMF of Y

$$p_Y(y) = P(Y = y) = P[g(X) = y] = P[X = g^{-1}(y)]$$

= $p_X[g^{-1}(y)]$ (12)

Random variables UFC/DC

ATML (CK0255) PRV (TIP8412) 2017.2

Transformations

Transformations (cont.)

Consider a sequence of independent tosses of a coin

- Each flip results in a H or a T
- H and T are equiprobable

The sample space C of the experiment consists of sequences like TTHHTHT · · ·

Let the random variable X be the number of tosses to observe the first H

- $X(TTHHTHT \cdots) = 3$
- . . .

The range of *X* is $\mathcal{D}_X = \{1, 2, 3, 4, ...\}$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformations

Continuous

Generalities

Transformations (cont.)

The PMF of X was determined earlier

$$P(X = x) = (1/2)^x$$

for $x = 1, 2, 3, ...$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformations

Continuous random variable

Generalities

...

Transformations (cont.)

Let Y = X - 1 (the number of tosses before the first H)

•
$$g(x) = x - 1 = y$$
, with inverse $g^{-1}(y) = y + 1$

The range of Y is $\mathcal{D}_Y = \{0, 1, 2, \cdots\}$

Discrete randon variables

Generalities

Transformations

random variables

Generalities

Transformations

Transformations (cont.)

The PMF of Y

$$p_Y(y) = p_X(y+1) = (1/2)^{y+1}$$

for $y = 0, 1, 2, ...$

•
$$p_Y(y) = P(Y = y) = P[g(X) = y] = P[X = g^{-1}(y)] = p_X[g^{-1}(y)]$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete random variables

Generalities

Transformations

Continuous

Coneralities

Generanties

Transformations (cont.)

Example

Let the random variable X have the PMF

$$p_X(x) = \begin{cases} \frac{3!}{x!(3-x!)} (2/3)^x (1/3)^{3-x}, & x = 0, 1, 2, 3 \\ 0, & \text{elsewhere} \end{cases}$$

We are interested in the PMF $p_Y(y)$ of the random variable $Y = X^2$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete random variables

Generalities

 ${\it Transformations}$

Continuous random variables

Generali

m e ...

Transformations (cont.)

$$y = g(x) = x^2$$
 maps $\mathcal{D}_X = \{x : x = 0, 1, 2, 3\}$ onto $\mathcal{D}_Y = \{y : y = 0, 1, 4, 9\}$

- $y = x^2$ does not always define a one-to-one transformation
- It does here, as the values of x in \mathcal{D}_X are non-negative

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon variables

Generalitie

Transformations

Continuous

random variables

Generalit

Transformations

Transformations (cont.)

We have a singly valued inverse function $x = g^{-1}(y) = \sqrt{y}$ (not $\pm \sqrt{y}$)

$$p_Y(y) = p_X(\sqrt{y}) = \frac{3!}{(\sqrt{y})!(3 - \sqrt{y})!} (2/3)^{\sqrt{y}} (1/3)^{3 - \sqrt{y}}$$
 for $y = 0, 1, 4, 9$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randor variables

Generalitie

Transformations

Continuous random variable

Generalities

Generalities

Transformations (cont.)

g is not one-to-one

The PMF of discrete Y can be obtained in an uncomplicated manner

• There is no need to develop a rule

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformations

Continuous

Generalities

Generalities

Transformations

Transformations (cont.)

Example

Let $Z = (X - 2)^2$, with X the geometric random variable whose PMF is

$$P(X = x) = (1/2)^x$$

for $x = 1, 2, 3, ...$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete random

Generalities

 ${\it Transformations}$

Continuous

Generalities

Generaliones

Transformations (cont.)

The range of Z is $\mathcal{D}_Z = \{0, 1, 4, 9, 16, \dots\}$

- Z = 0, iff X = 2
- Z = 1, iff X = 1 or X = 3

For $z \in \{4, 9, 16, ...\}$, there is a 1-to-1 map, $x = \sqrt{z} + 2$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon variables

Generalities

Transformations

Continuous

random variables

Generalities

Transformations

Transformations (cont.)

Hence, the PMF of Z is

$$p_Z(z) = \begin{cases} p_X(2) = 1/4, & z = 0\\ p_X(1) + p_X(3) = 5/8, & z = 1\\ p_X(\sqrt{z} + 2) = 1/4(1/2)^{\sqrt{z}}, & z = 4, 9, 16, \dots \end{cases}$$
(13)

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon

Generalitie

Transformations

Continuous random variables

random variable

Transformations

Continuous random variables Random variables

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Continuous

random variables

Generalities

Transformations

Generalities Continuous random variables

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete rando variables

Generalities

Transformation

Continuous

Generalities

Transformatio

Continuous random variables

Another class of random variables is the class of RVs of the continuous type

Definition

Continuous random variables

A random variable is said to be a continuous random variable if its cumulative distribution function $F_X(x)$ is a continuous function for all $x \in \mathcal{R}$

We know that for any random variable X, $P(X = x) = F_X(x) - F_X(x-)^2$

- \rightarrow Hence, for a continuous RV X, no points can be of discrete mass
- \longrightarrow If X is continuous, then it must be P(X = x) = 0, for all $x \in \mathcal{R}$

 $^{^{2}}F_{X}(x) = \lim_{z \uparrow x} F_{X}(x)$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randor variables

Generalitie

C--+:----

random variable

Generalities

Transformations

Continuous random variables(cont.)

Most common continuous RVs are absolutely continuous

$$F_X(x) = \int_{-\infty}^x f_X(t) dt,$$
 (14)

for some function $f_X(t)$

The function $f_X(t)$ is the **probability density function** (**PDF**) of X

If $f_X(t)$ is continuous, then the fundamental theorem of calculus yields

$$\frac{\mathrm{d}}{\mathrm{d}x}F_X(t) = f_X(t) \tag{15}$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

random variables

Generalities

Transformations

Continuous random variables (cont.)

The **support** of a continuous RV X consists of all points x st $f_X(x) > 0$

• We indicate the support of X by S_X (as in the discrete case)

If X is a continuous RV, then probabilities are determined by integration

$$P(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(t) dt$$

Moreover, for RVs of the continuous type, we have

$$P(a < X \le b) = P(a \le X \le b) = P(a \le X < b) = P(a < X < b)$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

variables

Generalities

G 4:

random variable

Generalities

- Concramence

Transformations

Continuous random variables (cont.)

Note that PDFs satisfy the two properties

•
$$f_X(x) \ge 0$$

•
$$\int_{-\infty}^{+\infty} f_X(t) dt = 1$$

Second property follows from $F_X(\infty) = 1$

Remarl

It can be shown that if a function satisfies the aforementioned properties, such a function is the PDF of a random variable of the continuous type

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transforma

Continuous random variables

Generalities

- c

Transformations

Continuous random variables (cont.)

Example

Pick a real number at random from interval (0,1), let X be the number

- The chosen number X is an example of a continuous RV
- The space of X is $\mathcal{D} = (0,1)$

The CDF is $F_X(x) = x$ for $x \in (0,1)$, its PDF is $f_X(x) = 1$ for $x \in (0,1)$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randor variables

Generalitie

Transformation

Continuous

Generalities

Transformations

Continuous random variables (cont.)

Remark

Continuous/discrete RVs X whose PDF/PMF is constant on support \mathcal{S}_X

→ They are said to have a **uniform** distribution

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Generalities

Continuous random variables (cont.)

Let RV X be the time (mins) between incoming chat messages from friends Suppose that a valid probability model for X is the PDF

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randor variables

Generalitie

Transformation

Continuous random variables

Generalities

Transformations

Continuous random variables (cont.)

 f_X satisfies the two properties of a PDF

•
$$f(x) \geq 0$$

•
$$\int_{-\infty}^{+\infty} 0.25 \exp(-x/4) dx = \left[-\exp(-x/4) \right]_{0}^{\infty} = 1$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete random variables

Generalities

Transformation

Continuous random variable

Generalities

Transformations

Continuous random variables (cont.)

The probability that the time between successive messages is > 4 minutes

$$P(X > 4) = \int_{4}^{\infty} 0.25 \exp(-x/4) dx = \exp(-1) \approx 0.368$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor

Generalitie

Transformation

Continuous random variable

Generalit

Transformations

Transformations

Continuous random variables

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalitie

Transformation:

Continuous

Concrelities

Transformations

Transformations

Let X be a random variable of the continuous type with known PDF f_X

We are interested in the distribution of a random variable ${\cal Y}$

• *Y* is some **transformation** of *X*

$$\rightsquigarrow Y = g(X)$$

Often it is possible to determine the PDF of Y by first getting its CDF

Random variables UFC/DC

ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randon variables

Generalities

Transformation

Continuous

Genera

Transformations

Transformations (cont.)

Example

Let X be a random variable whose PDF is given by

$$f_X(x) = \begin{cases} 2x, & 0 \le x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

The CDF of X is given by

$$F_X(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < 1 \\ 1, & 1 \le x \end{cases}$$
 (16)

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalitie

Transformation

Continuous random variables

General

Transformations

Transformations (cont.)

Suppose we are interested in its square, $Y = X^2$

X and Y have the same support $S_X = S_Y = (0,1)$

• What is the CDF of Y?

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randon variables

Generalitie

Transformation

Continuous

random variable

Generali

 ${\bf Transformations}$

Transformations (cont.)

Using $F_X(x)$ and the fact that \mathcal{S}_X only contains positive numbers

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(X \le \sqrt{y})$$

= $F_X(\sqrt{y}) = (\sqrt{y})^2 = y$

It follows that the PDF of Y is given by

$$f_Y(y) = \begin{cases} 1, & 0 < y < 1 \\ 0, & \text{elsewhere} \end{cases}$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformations

Continuous random variables

Generalities

Transformations

Transformations (cont.)

Example

Let $f_X(x) = \frac{1}{2}$ for $x \in (-1,1)$ and zero elsewhere be the PDF of the RV X

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randor variables

Generalities

Transformation

Continuous

General

Transformations

Transformations (cont.)

Define the random variable $Y = X^2$

We are interested in the PDF of Y

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randon

Generalitie

Transformation

Continuous

random variable

Generalities
Transformations

Transformations (cont.)

If
$$y \ge 0$$
, probability $P(Y \le y)$ equals $P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y})$

Accordingly, the CDF of Y, $F_Y(y) = P(Y \le y)$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randor variables

Generalities

Transformation

Continuous

General

Transformations

Transformations (cont.)

The PDF of Y

$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}}, & 0 < y < 1\\ 0, & \text{elsewhere} \end{cases}$$

Random variables UFC/DC

ATML (CK0255)

PRV (TIP8412) 2017.2

Random

Discrete rando

Generalitie

Transformation

Continuous

Generali

Transformations

Transformations (cont.)

We used the cumulative distribution function technique

The transformation in the first example is one-to-one

- \rightarrow We derive an expression for the PDF of Y
 - In terms of the PDF of X

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor

Conordition

Jeneralities

Transformation

random variable

Generalities

Transformations

Transformations (cont.)

Theorem 3.1

Let $f_X(x)$ be the PDF of a continuous random variable X with support \mathcal{S}_X

Let Y = g(X), with g(x) a 1-to-1 differentiable function on S_X

Let the inverse of g(x) be denoted by $x = g^{-1}(y)$

Let
$$dx/dy = d[g^{-1}(y)]/dy$$

Then, the PDF of Y is given by

$$f_Y(y) = f_X \left[g^{-1}(y) \right] \left| \frac{dx}{dy} \right|, \quad for \ y \in \mathcal{S}_Y$$
 (17)

Set $S_Y = \{y = g(x) : x \in S_X\}$ indicates the support of Y

Proof

g(x) is 1-to-1, continuous, strictly monotonically increasing or decreasing

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete rando: variables

Generalitie

Transformations

C---ti----

random variables

General

Transformations

Transformations (cont.)

g(x) is monotonically increasing

The CDF of Y

$$F_Y(y) = P(Y \le y) = P[g(X) \le y] = P[X \le g^{-1}(y)]$$

= $F_X[g^{-1}(y)]$ (18)

The PDF of Y

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) = f_X \left[g^{-1}(y) \right] \frac{\mathrm{d}x}{\mathrm{d}y}$$
 (19)

dx/dy is the derivative of function $x = g^{-1}(y)$

As g is increasing (dx/dy > 0), we can write dx/dy = |dx/dy|

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalitie

Transformation

Continuous random variables

Genera

Transformations

Transformations (cont.)

g(x) is monotonically decreasing

The CDF of Y

$$F_Y(y) = 1 - F_X[g^{-1}(y)]$$

The PDF of Y

$$f_Y(y) = f_X \left[g^{-1}(y) \right] \left(-\frac{\mathrm{d}x}{\mathrm{d}y} \right)$$

As g is decreasing (dx/dy < 0), we can write -dx/dy = |dx/dy|

Equation (17) is true in both cases

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randor variables

Generalitie

Transformation

Continuous random variable

Transformations

Transformations (cont.)

The **Jacobian** of the (inverse) transformation $x = g^{-1}(y)$

$$J = \mathrm{d}x/\mathrm{d}y = \frac{\mathrm{d}[g^{-1}(y)]}{\mathrm{d}y}$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

Continuous

Conoralitie

Transformations

Transformations (cont.)

Example

Let the random variable X have the PDF

$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete rando variables

Generalities

Transformation

Continuous random variables

General

Transformations

Transformations (cont.)

Consider the random variable $Y = -2 \log(X)$

Support sets of X and Y are $S_X = (0,1)$ and $S_Y = (0,\infty)$

The transformation $g(x) = -2\log(x)$ is one-to-one between these sets

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random

Discrete randon variables

Generalitie

Transformation

Continuous random variables

Generaliti

Transformations

Transformations (cont.)

The inverse transformation is $x = g^{-1}(y) = \exp(-y/2)$

The Jacobian is

$$J = \frac{d[\exp(-y/2)]}{dy} = -1/2\exp(-y/2)$$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Random variables

Discrete randor variables

Generalities

Transformation

Continuous random variables

Generali

Transformations

Transformations (cont.)

Accordingly, the PDF of $Y = -2 \log(X)$ is

$$f_Y(y) = \begin{cases} f_X \left[\exp\left(-y/2\right) \right] |J| = 1/2 \exp\left(-y/2\right), & 0 < y < \infty \\ 0, & \text{elsewhere} \end{cases}$$

Transformations

Transformations (cont.)

Consider the following distribution function

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{x+1}{2}, & 0 \le x < 1\\ 1, & x \ge 1 \end{cases}$$

- The distribution is neither of the continuous nor of the discrete type
- F(x) is not always continuous, nor is it a step function

Then,

$$P(-3 < X \le 1/2) = F(1/2) - F(-3) = 3/4 - 0 = 3/4$$

 $P(X = 0) = F(0) - F(0-) = 1/2 - 0 = 1/2$

UFC/DC ATML (CK0255) PRV (TIP8412) 2017.2

Transformations

Random variable (cont.)

Distributions that are mixtures of continuous/discrete type are frequent

In survival analysis, we know that life duration X exceeds some number a

• The exact value of X is however unknown (censoring)

A classic: A subject under study at some point a disappears

- We know that the subject has lived a certain time a
- The exact life duration of life is unknown