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A coin is tossed three times, we are interested in the ordered number pair

(number of Hs on the first two tosses, number of Hs on all three tosses)

e H for heads

e T for tails

Let C = {TTT, TTH, THT, HTT, THH, HTH, HHT, HHH} be the sample space
e Let X; denote the number of Hs on the first two flips
e Let X5 denote the number of Hs on all three flips
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Our interest might be represented by the pair of variables (X1, X2)
e [X1(HTH), X2 (HTH)] represents the outcome (1, 2)
o [X1(THH), X2(THH)] represents the outcome (1, 2)
e [X1(TTH), X2(TTH)] represents the outcome (0, 1)
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Distributions (cont.)

X1 and Xs are real-valued functions defined on the sample space C

~~ To the space of ordered number pairs

D ={(0,0),(0,1),(1,1), (1,2),(2,2),(2,3)}

X7 and X» are two random variables defined on C and with space D
e D is a two-dimensional set
e Set D is a subset of R?

Hence, (X1, X2) is a vector function from C to D
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Random vector
Consider a random experiment with sample space C

Consider two random variables X1 and X that assign to each element ¢ € C
one and only one ordered pair of numbers Xi(c) = z1, Xa(c) = x2

(X1, X2) is called a random vector
The space/range of (X1, X2) is the set of ordered pairs

D= {(11,12) 1T = Xl(c),:EQ =S XQ(C),C € C}
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Let the sample space associated with the random vector (X1, X2) be D
e Let A be a subset of D (an event)
Consider an event A, we want to define its probability Px, x,(A)

Define Py, x, from the cumulative distribution function (CDF)

Fx, %, (z1,m) = P{X1 < m}N{X2 < m2}], V(m,m)eR?® (1)
As X; and Xs are random variables, each of the events of the intersection
and the intersection of the events are events in the original sample space C
As with random variables we can write

P{Xi <m}n{Xs <m}] = P[X1 <@, Xo < a2
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P(ar < X1 < b1,a2 < X2 < b2) =Fx, x,(b1,b2) — Fx, x, (a1, b2)
— Fx, x5 (b1, a2) + Fx, x, (a1, a2)

Consider all induced probabilities of sets of the form (a1, b1] X (a2, b2]
e They can be formulated in terms of the CDF

This CDF is the joint cumulative distribution function of (X1, X2)
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Distributions (cont.)

As with RVs, we are mainly interested in two types of random vectors
e Random vectors of the discrete type

e Random vectors of the continuous type
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Consider a random vector (X1, X2) whose space D is finite or countable

Such a random vector is said to be a discrete random vector

~ Hence, X7 and X»2 are also both discrete

The joint probability mass function (PMF) of (X1, X2) is defined by

Px;, X (21, 22) = P[X1 = @1, X2 = a2], V(z1,22) €D (3)

The PMF uniquely defines the CDF
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Two properties characterise the PMF

Px;, X, (71, 22) € [0, 1]

Zszhxz (z1,22) =1 4)
D

For an event B € D, we have

P[(X1,X2) € B] prl X, (71, 22)
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Consider the discrete random vector (X1, X2)

/2 | 0 1 2 3
0 [1/8 1/8 0 0
1 0 2/8 2/8 0
2 o 0 1/8 1/8

This is the tabulated PMF
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We define the support of discrete random vectors (X1, X2)
~» All the points (z1,z2) in the range of (X1, X2) such that p(z1,22) > 0

S = {(z1,2) : p(z1,22) > 0,21, 22 € D}
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Distributions (cont.)

Consider a random vector (X1, X2) with range D
o Assume its CDF Fx, x,(z1,22) is continuous

Such a random vector is said to be a continuous random vector

Usually continuous random vectors have the CDF that can be represented
as an integral of a non-negative function

T T2
Fx, x, (71, 72) =/ / fxy % (wi, wo)dwidwe,  V(z1,22) € R? (5)
— 00 — 00

We call the integrand the joint probability density (CDF)
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Then,
OFx, x, (21, 72)
_— e 1, T
02102 Ix1, % (21, 22)

(Except, possibly, on events with probability zero)
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A PDF is characterised by two properties
fx1, %0 (21,22) >0 (7

/ Ix1, %o (@1, 22)dzydae = 1 )
D

For an event A € D, we have
P[(X1,X2) € Al = / fxy, x5 (@1, 32)dzrdas
A

P[(X1, X2)] € A is the volume under surface z = fx, x, (21, 32) over set A
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When clear, we drop the subscript X1, X2 from joint CDFs/PDFs/PMF's
Also, we may use the notation fi2 to denote fx, x,

Besides X1, X2, we sometimes also use X, Y
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f(z1, 22)

6x12x2, 0<z1,22 <1
0, elsewhere

7

////{ f(z1, 22)
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‘We have,

31 2 3/4
PO<Xi<—-<X2<2) =/ f(z1, z2)dzidas
1

43 /3Jo
1 3/4 2 r3/4
:/ / 6:12121122d$1d$2+/ / 0dz;dao
1/3J0 1 Jo
=3/840=23/8

This probability is the volume under the surface f(z1, 2)
e above rectangular set {(ml,zg) 0< 11 <3/4,1/3< 12 < 1} e R?
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Consider a continuous random vector (X1, X2)

The support of (X1, X2) contains all points (z1, z2) for which f(z1,22) > 0
o We denote the support of a random vector by S, with S C D
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Distributions (cont.)

Definition of a PDF fx, x, (1, 22) over R? extended by using zero elsewhere

e We do this consistently to avoid an incessant reference to D

Once done, we can replace

/ /fxl,xz (21, z2)dz1dz2
D

/ / f(z1, z2)dz1de

by
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We extend the PMF px, x, (1, 22) over a convenient set with zero elsewhere

Hence, we can replace

Z prl,xz (z1, 22)

D

D> p(w,a2)

zy T2

by
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If a PMF or a PDF in one/more variables is defined explicitly, we can observe
by inspection whether the RVs are of the continuous or of the discrete type
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1 78 1,2,3
T,y = e
j— b b b b b
p(@,y) = 47+y
0, elsewhere
0.5
-
0 5
0
5 o v
T
x/y | 1 2 3 4 5 6 7 8
T 0.5000  0.1250 _ 0.0312 _ 0.0078 _ 0.0020 _ 0.0005 _ 0.0001 __ 0.0000
2 0.1250  0.0312  0.0078  0.0020  0.0005  0.0001  0.0000  0.0000
3 0.0312  0.0078  0.0020  0.0005  0.0001  0.0000  0.0000  0.0000
4 0.0078  0.0020  0.0005  0.0001  0.0000  0.0000  0.0000  0.0000
5 0.0020  0.0005  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000
6 0.0005  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
7 0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
8 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000



Two random Distributions (cont.)
variables (A)

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Distributions of

two random A PDF of two continuous-type variables X and Y
variables
Expectation f(ﬂ:, y)

I'ransformations
of two random
variables

4xye_(z2+y2), z,y € (0, 00)
0, elsewhere

f(zay):{
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Let (X1, X2) be a random vector, then both X7 and X2 are random variables

e We get their distribution in terms of the joint distribution of (X1, X2)

Recall that the event which defined the CDF of X; at z1 is {X1 < 21}

{Xlgiltl}:{Xlgxl}m{—OO<X2<+OO}
={X1 <m,-00< Xp < 400}

Taking probabilities, we have

Fx,(z1) = P[X; < 31,—00 < Xa < +o0], forall 21 € R (9)
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Distributions (cont.)

Fx, (1) = P[Xl <m,—0< X2 < -I-oo]7 forall z;y € R

We can write the equation as Fy, (21) = limg,to0 F(21, 22)

e We have a relation between CDF's

This can be extended to either the PMF or the PDF, depending on (X1, X2)
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Distributions (cont.)

Discrete case
Let Dy, be the support of X3

For z; € Dx,, we have

Fx,(m) = Y > pxyxp(wi,32)

wy <z] —oo<xwp <00

=2 { > le,x2(’w1,z2)}

wy <z T2<00

By uniqueness of CDFs, quantity in brackets must be the PMF of X; at w;

px, (71) = Z Px;,x, (21, 22), for all 21 € Dy,

zp <00

To determine the probability that X is a1

~ Fix z1 and sum px, x, over all of o

(10)
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Distributions (cont.)

Let (X1, X2) be a discrete random vector with joint PMF px, x, (w1, x2)

Then, the marginal PMFs of X1 and X2 are

px, (1) Z DXy, Xo (71, 72)

Px, (22) Z Pxy, X5 (71, 72)

Proof
For any z1, let Ay = {(zl,zg) T—oco < 12 < oo} be a line in the plane
e First coordinate equal 1
Then, for any 7,
px, (z1) = P(X1 =21) = P(X1 = 11, —00 < X2 < 00) = P[(X1, X2) € Aqs]
Z DXy, Xo (71, 22) Zle X, (@1, 72)

(z1,22) €A,
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Consider a tabulated joint PMF
e Rows comprised of X; support values

e Columns comprised of X support values

The distribution of Xj can be obtained by marginal sums of the columns
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1 /2 0 1 2 3 | pxy(m)
0 1/8 1/8 0 0 2/8
1 0 2/8 2/8 0 4/8
2 0 0 1/8 1/8 2/8
px,(z2) | 1/8 3/8 3/8 1/8

Joint probabilities have been summed in each row and each column

The sums are added to the margins of table
e Last column is the PMF of X3
e Last row is the PMF of Xo



Distributions (cont.)

Such distributions are often referred to as marginal PMF's
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Distributions (cont.)

Continuous case
Let Dx, be the support of X3 and 1 € Dy,

For 21 € R, equation Fy, (1) = P[Xl <zp,—00 < X2 < oo] equals to
Fx, (o) = / / Ix1, %o (w1, z2)dzadun

/ {/oo Fxy, %, (w1, 22 d$2}dw1

By uniqueness of CDF's, quantity between brackets must be the PDF of X3

e evaluated at wy

o0
fx, (z1) = / fxy, x5 (@1, 32)dx2, Vo € Dx
— 00
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In the continuous case
e The marginal PDF of X; is found by integrating out z2
e The marginal PDF of X5 is found by integrating out z;
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1+ a2, 0<ax1,22 <1
0, elsewhere

flz1, 22) =

1 Yor
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Yo ar 7 A B
y A y A
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Varzzi 1
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0 05 0.5
10 -
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Distributions (cont.)

The marginal PDF of X;

1
fl(:lll):/ (z1+2)dze =21 +1/2, 0<zm <1
0

and zero elsewhere
The marginal PDF of X3

1
fa(z2) =/ (z1 + 22)dz1 =1/2 422, 0<z2<1
0

and zero elsewhere
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Distributions (cont.)

150 ] 150 ]
1 RS e .
& &
< 05| 1 S os) .

0f — — 0f — —
0 1 0 1
1 2

A probability as P(X; < 1/2) is computed from either fi(z1) or f(z1,z2)

1/2 ,1 /2
/0 /0 f($1,$2)d$2d1121 :/ fl(zl)d:lll = 3/8

1
0
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Distributions (cont.)

A probability as P(X; + X2 < 1) must be from the joint PDF f(z1, z2)

1 1—z 1 1 5
/ / (21 + 22)dz2dzy = / [Il(l — @)+ Q] dmz
o Jo o 2

= /1 (1/2 —1/227)dz; = 1/3
0

This is the volume under surface f(z1,22) = 21 + 22
o Above set {(z1,22) : 0 < z1, 21 + 22 < 1}
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Let (X1, X2) be a random vector and let Y = ¢g(X1, X2)

o for some real-valued function g : R? - R

Y is a random vector, we can determine its expectation

~ By getting its distribution
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e Suppose (X1, X2) is of the continuous type

Then E(Y) exists if

(e o) (e o)
/ / |9(I17x2)|fxl,x2(z1,x2)dx1da:2 < 00
— 00 — 00

[e @) [e @)
~ E(Y)Z/ / g(z1, 22)fx,, X, (21, 22)dz1d 2
—oo J —oo
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Likewise, suppose (X1, X2) is of the discrete type

Expectation
Then E(Y) exists if
DO a1, @) px, x, (@1, 22) < 00

Ty z2

~  B(Y) =Y g(a, m2)px; x, (@1, 22)

Ty x2



Two random
variables (A)

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Expectation

Expectation (cont.)

E is a linear operator

Let (X1, X2) be a random vector

Let Y1 = g1(X1, X2) and Y2 = g(X1, X2) be RVs whose expectations exist
For all real numbers k1 and k2,

E(kl Y1 + k2 YQ) = klE(Yl) + kQE(YQ)

Proof
For the continuous case

Existence of the expected value of k1 Y1 + ko2 Y2 follows
e Assumptions
e Triangle inequality

e Linearity of integrals
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By using the triangle inequality and the linearity of the integrals
o0 o0
/ / [k1g1 (21, 32) + kaga (a1, 32)|fx,, X, (71, 72)d@1dmn
— 00 — 00
(e o) (e o)
< |k1|/ / |91 (1, 22)|fxy, xo (@1, 22)dz1 daz
— 00 — 00

o0 o0
+ |k2|/ / |92 (@1, 22)| fx1, x5 (%1, 32)dm1d72 < 0O
—oo J —o0
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By using the linearity of the integral
Expectation
E(k1 Y1+ k2 Y2)
oo oo
:/ / [19191(3131,962)-i-kzgz(am,952)]]3(17)(2(3,;1’962)(1961(1132
=k / / 1(21, 22)fxy, x5 (21, 22)d21d 2

+ k:2/ / g2(m1, 22)fx, . x, (21, 22)dz1dze = k1 E(Y1) + k2 E(Ya)
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The expected value of any function g(X2) of X> can be found in two ways

[9(X2)] / / 9(x2)fx,, x5 (21, z2)dz1dm2 = /00 9(22) fx, (z2)dm2

—o00

The single integral is obtained from the double, by integrating on z; first
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Let X7 and X2 have the PDF
f(z1, z2)

Expectation

8z, 0<z1 <T2<1
0, elsewhere
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I'ransformations 6
of two random 8/312 dzy = 8/21
variables

mzd | fzr, 22) | miadf (o1, 22)
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Expectation (cont.)

In addition,

1 pao
E(X2) :/0 [) 22 (8z122)dz1dae = 4/5

o | fz, 22) | 1 .I;;f(.lﬂ ,12)

X2 has the PDF fo(22) = 4:053 for 0 < 22 < 1 and zero elsewhere

e Thus, the expectation can be obtained also from

E(X2) = /01 z2 (423 )dae = 4/5



Expectation (cont.)

E(7TX1X2 4 5X2) = TE(X1 X2) + 5E(X2)
= (7)(8/21) + (5)(4/5) = 20/3
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Let X7 and X2 have the PDF

8rize, 0< 11 <12<1
0, elsewhere

f(x17372):{

Suppose the random variable Y is defined by Y = X1/X>
e We are interested in E(Y)

We can determine it in two ways
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The first way is by definition (find the distro then determine expectation)

e The CDF of Y, for 0 <y <1

1 YT
Fy(y) = P(Y <y) = P(X1 < yXa) :/ / 821 zpdz1 daa
0 0

1
=/ 4y2I§dx2 = y?
0

e Hence, the PDF of Y

2y, 0<y<l1
= F} =
Ty () v () {07 elsewhere

This yields
1
E(Y) =/ y(2y)dy = 2/3
0
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e We find E(Y) directly

= E(Xl/Xz) = /01 {/012 (zl/xz)(8z1z2)dz1}dz2
= /1 8/3x5dzy = 2/3

0
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Moment generating function

Let X = (X1, X2)’" be a random vector

Suppose E[exp (1 X1 + tQXQ)] exists for [t1] < h1 and |t2| < ho
e hy and ha are positive numbers

Then, this quantity is indicated by Mx, x,(t1,t2)
o The moment generating function (MGF) of X

The MGF of a random vector uniquely determines its distribution
o If it exists

As in the single-variable case
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Let t = (t1, t2)’

Similarly to the MGF of a RV, we can write the MGF of X as

My, x, (t) = E[et'x]

The MGFs of X; and X2 are My, x,(t1,0) and Mx, x, (0, t2), respectively
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Let the continuous-type random variables X and Y have the joint PDF

[z, y) with (z,y) € R?

f(Ly):{

exp (=),
07

0<z<y<oo
elsewhere



Expectation (cont.)

Two random
variables (A)

UFC/DC
ATML (CK0255)
PRVQ(OFI;I-(ZMI” The MGF of this joint distribution

B : ; : oo [e o)
istributions o M(t1,t2) = / / exp (tiz + toy — y)dzdy
0 T

two random

variables
1

Expectation
, for t1 +t2 <1land t2 <1

Iransformations - (1 —t — t2)(1 _ tz)

of two random

variables

7T TI7H|
i
17T TT I FF
i v
777
e

M(t1, t2)
—

[2)

t1
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Moment-generating functions of the marginal distributions of X and Y

M(t1,0) = . <l
(l ) 1—t 1
M(t2,0) = ! t2 <1
2, RESTSEL 2
T T
1.1 — 1.2 |
= =
N K
~— [ — ~— 17 .
= =
0.9 [ ! = 0.8 \ =
0 0.1 —0.1 0 0.1
to

—0.1
t1
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These MGFs are those of the marginal probability density functions

fi(z)

fi(@)

f(y) = 677’/(;

0.5

oo
= / e Ydy=e"" 0<z<oo (zeroelsewhere)
x

Y

dz = ye Y,

0<y <o

f2(y)

0.4

0.3

0.2

0.1

(zero elsewhere)
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We also need to define the expected value of a random vector itself
e It is a not new concept

It is defined from component-wise expectations

FEzxpected value of a random vector
Let X = (X1, X2)’" be a random vector
The expected value of X exists if the expectations of X1 and Xa exist

If it exists, then the expected value has the form

B(X) = [ggﬁ (11)
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Transformations
of two random
variables

Transformations

Let (X1, X2) be a random vector, suppose we know the joint distribution

We are interested in the distribution of a transformation of (X1, X2)
= Y = g(X1, X2)

We could try to obtain the CDF of Y or we could use a transformation

We extend transformation theory for random variables to random vectors

e We present discrete and continuous cases separately
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Transformations (cont.)

Discrete case
Let px,,x,(z1,22) be the joint PMF of two discrete RVs X7 and X2

Let S be the bi-dimensional set of points where px, x,(z1,22) >0
e S is the support of (X7, X2)

Let y1 = wi(z1, 22) and y2 = uz (71, 22) define a 1-to-1 map from S onto T
The joint PMF of the new RVs Y1 = u1 (X1, X2) and Y2 = ua (X1, X2)

DXy, X (Wi (Y, y2), wa(yr, y2)], (y1,92) €T

Py, Y, (Y1, 92) = {07 elsewhere

1 = wi(y1,Y2), T2 = w2(y1, y2), inverses of y1 = w1 (w1, 12), Y2 = uz(1, 72)
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Transformations (cont.)

From the joint PMF py, v, (y1,%2), we can determine both marginals

e The marginal PMF of Y7, by summing on y2
e The marginal PMF of Y2, by summing on y;
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Transformations (cont.)

Let X; and X have the joint PMF

MT1H§2€_H16_N2 x1 :07172737"'
DXy, X (71, T2) = z1 20! 22=0,1,2,3,---
0, elsewhere

W1, p2 are positive real numbers (in the plots, pu1 = 1, u2 = 1)

Space S is the set of points (z1,22) with z; and z2 non-negative integers

PX1,Xo ('7:17 12|M1» /’LQ)

1
0.5
0 O
0 2 2
60 T2
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Transformations (cont.)

We wish to find the PMF of Y71 = X7 + X5

If we use the change of variable method, we need to define a second RV Y2
e This RV is of no interest to us

Let us choose it in such a way that we have a simple 1-to-1 transformation

Let us take Yo = Xo
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Transformations (cont.)

Then y1 = z1 + 22 and y2 = z represent a 1-to-1 transformation

Y1 = T1 + 32

e It maps S onto T

T={(y1,92) 192 =0,1,...

6 o
°
g 40 ° B
Il )
S 2 ° .
°
ore ! ! L
0 2 4 6
o2

,y1and y1 =0,1,2,...}
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Transformations (cont.)

S T
6—3 ) ‘o ° o‘ [ 3— 67‘ ‘ ‘ ‘o—
e 6 6 0 0 0 o e o
410 © © @ © © O 4 o o o
g e o © o 0 0 o S e o o o
2Ie @ © @ © © o 2 e 06 06 o o
e 6 6 0 0 0 o o © ¢ o o
Ofe ® o oo o o] Of2 o0 e oo of
0 2 4 6 0 2 4 6

x1 Y1

Note that if (y1,y2) € T, then 0 < y2 < y1



Two random
variables (A)

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Expectation

Transformations
of two random
variables

Transformations (cont.)

The inverse functions are 1 = y1 — y2 and 22 = y2

Thus, the joint PMF of Y7 and Y3 is

Yy, Yo (Y1, y2) =

Py, v (U1, y2|p1, p2)

o
o

o

Y1—Y2 Y2 o~y —
! Py e HLH2

07

(y1 — y2)!y2!

2
Y1

60

)

2

(y1,92) €T

elsewhere

Y2
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Transformations (cont.)

The marginal PMF of Y;

1
Py, (11) = Z Pyy,Ys (Y1, y2)

y2=0
_ etk < y1! LY1I—Y2 Y2
T T
y2=0
1+ o)Vt e H1—H2
:(,U H2) , y1=0,1,2,...
y1!

and zero elsewhere

(*) The third equality holds from the binomial expansion
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Continuous case

We consider an example which is illustrative of the CDF technique
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Transformations (cont.)

Choose at random a point (X, V) from S = {(z,y): 0 < z,y < 1}

The interest is not in X orin Y, butin Z =X+ Y

‘We need a suitable probability model
~~ Then, we can find the PDF of Z
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two random
variable

——— fx, v (@,y)
Transformations

of two random
variables

1, O0<z,y<1

By (@) = 0, elsewhere

5
z
This describes the probability model



Two random
variables (A)

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Expectation

Transformations
of two random
variables

Transformations (cont.)

Let the CDF of Z be denoted by Fz(z) = P(X + Y < z), then

0,
J5 Jo T dyds = 22/2,
Fz(z) = 1 (2-2)?
1- fzfl fzfz' dydz =1- T’
1,
[ ]
3 0.5
X0
O . L]
—2 0 2 4

2 <0
0<z<1

1<2<2
2< z
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Transformations (cont.)

The F,(z) exists for all values of z

Then, the PMF of Z

17 .
— 2,
X L |
N 0.5 fZ(z) = 2—2,
“~
07
0 | | |

0<z<1
1<2z2<2

elsewhere
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Transformations (cont.)

We consider in general the transformation technique for continuous variables

Let (X1, X2) have the jointly continuous distribution with PDF fx,  x, (21, z2)
e The support set is of (X1, X2) is S

Suppose RVs Y1 and Y3 are given by Y1 = w3 (X1, X2) and Yo = ua (X1, X2)

Functions y1 = w1 (21, 22) and y2 = uz(z1, 22) define a 1-to-1 transformation

e A map from the set S € R? onto a set T € R?
e T is the support of (Y1, Y2)
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Transformations (cont.)

If we express each of z; and z in terms of y; and y2, we can write
oz = wi(y1,y2)
oz = wa(y1,y2)

The Jacobian of the transformation is the determinant of order 2

or1 Oz

Oyr  Oy2
J=

Ozry  Oxo

dy1 Oye

It is assumed that
e These first-order derivatives are continuous

e The Jacobian is not identically zero in T
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Transformations (cont.)

By use of a theorem in analysis!, we can find the joint PDF of (Y7, Y2)

Let A be a subset of S
Let B denote a mapping of A under the one-to-one transformation
Map is 1-to-1, events {(X1, X2) € A} and {(Y71, Y2) € B} are equivalent

P[(Y1, Y2) € B] = P[(X1, X2) € A]
://Ale,Xg($17$2)dzld$2

IR. Creighton Buck, Advanced calculus.
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Transformations (cont.)

We wish now to change variables of integration
° y1 = ur (71, 32), Y2 = u2(m, 72)
or

oz = wi(y1,¥y2), 2 = w2(y1, y2)

It has been proved in analysis

/Afxl,X2($17$2)d$ld$2://le,XQ (w1 (y1, y2), wo(y1, y2)] | J|dyrdy2
B

Thus, for every set B € T

P[(Y1,Y2) € B] = //fol,XQ [wi(y1, y2), way1, y2)] | T|dy1dy2
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Transformations (cont.)

This implies that the joint PDF fy, y,(y1,y2) of Y1 and Y>

I [wi(yn, y2), we (v, 2)] | 7], (w1, 92) €T
0, elsewhere

fyy,ve (21, 22) = {

The marginal PDF fy, (y1) of Y1, from the joint PDF fy, v, (1, y2)

e In the usual manner, by integrating on ys
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Transformations (cont.)

Suppose (X1, X2) have the joint PDF

Ixy, %o (21, 22)

—

, 0<m,z2 <1

T1,22) =
Pxa % (@1, 72) 0, elsewhere

0.5

1

10 4

The support of (X1, X2) is the set S = {(z1,22) : 0 < 21,22 < 1}



Two random
variables (A)

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Expectation

Transformations
of two random
variables

Transformations (cont.)

Suppose Y1 = X1 4+ X2 and Yo = X1 — Xo

The transformation is

y1 = u1(z1, x2) = 21 + 22

Y2 = ug(@1,x2) = 21 — 22

y1 = w1 (1, 22)

777
77 T IZFFT
e
27277
7T 7F

/7
77

o
Vo
,’,/”'"I"

e

This transformation is one-to-one

y2 = uz2(z1, 2)

1
0
-1 1
0 .
0.5 10 0512
1
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We determine set 7 in the y; — y2 plane onto which S has been mapped

e 1 = wi(y1, y2) = 1/2(y1 + y2)

Transformations Ty = U/2(y17 y2) — 1/2(y1 — y2)

of two random
variables

The boundaries of S have been transformed such that
21 =0 into 0 =1/2(y1 + y2)
21 =1into 1 =1/2(y1 + y2)
23 =0 into 0 = 1/2(y1 — v2)
72 =1into 1 = 1/2(y1 — y2)

They define T



Two random
variables (A)

UFC/DC

ATML (CK0255)

PRV (TIP8412)
2017.2

Distributions of
two random
variables
Expectation
Transformations

of two random
variables

Transformations (cont.)
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Transformations (cont.)

We could have transformed the boundaries of S

Alternatively, we directly use the inequalities

0<x <1
O0<z2<1

The four inequalities become

They are equivalent to

They define T

0<1/2(y1+y2) <1
0<1/2(y1 —y2) <1

—vy1 < Y2
y2 <2—1u1
Y2 < Y1

y1—2<y2
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Transformations (cont.)

We need the Jacobian of the inverse transformation

oz

_ |om
J= Oxo

Em

oz

Oya| _|1/2 12| _
s *‘1/2 _1/9| =712

9y2
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Transformations (cont.)

Hence, the joint PDF of random vector (Y7, Y2)

Iy, vo (Y1, 42) =

Ixu,x0 [1/2(01 4+ 92), 1/2(y1 — 92)]|J| = 1/2, (y1,92 € T)

0,

Fyi,ve (Y1, y2) with (y1,32) € R?

elsewhere
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The marginal PDF of Y;

v (y1) = /oo Iy, ve (Y1, y2)dye

J2,, 1/2dy2 =y, 0<y <1
= /o8 1/2d=2-yn 1<pn<2
0, elsewhere
1 | .
=
~ 0.5 -
S
3
op . . i
0 2

Y1
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Transformations (cont.)

The marginal PDF of Y3

fya(y2) = / vy, vs (1, y2)dy

J2P2dy =92 +1, —1<y2<0

= f;;” 1/2dy1 =1—1, 0<y <1

0, elsewhere

1 | .
B
= 0.5 B
N
R

O ! L

—2 0 2

Y2
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Let Y1 = E(Xl — X2) where X; and X3 have the joint PDF

( T + Iz)
Transformations _ -
of two random Ixy, x5 (71, 32) = { 1/4e 2/, 0<mz,m < o0
variables
07

elsewhere

e

LT

AT

SRR P>
———
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Let Yo = Xo
Expectation
Bl y1 = 1/2(z1 — x2) and y2 = 22, or equally 21 = 2y; + y2 and 22 = Y2
variables ~~ Define a 1-to-1 transformation

From

S = {(xl,zg) 0< 1,22 < oo}
onto

T ={(y1,92): —2y1 < y2 and 0 < y2 < 00, —00 < y1 < 00}
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The Jacobian of the inverse transformation

Or1 Oz
J = Oy1 Oya| _ 2
Ozry  Oxo 0

a1 Oy
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Transformations (cont.)

The joint PDF of the random vector (Y7, Y2)

|2|/4e(_y1_y2)a (y17y2) €T

Iyi, vy (Y1, 92) = 0, elsewhere

Iy1,ve (y1,y2) with (y1,y2) € R?
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Y- 1) —
1\ [ 1/2e(Cn—w)dy, =1/2e7¥1, 0<y < oo
=1/2¢" Ml for —oo < y1 < o0
Transformations
of “,ngfa“dom This PDF is the double exponential or Laplace PDF
0.4

2

= 0.2 -

(hay

0 = ! !

Y1
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! le’X2 (:El,mg) with (11,162) € R?
Transformations
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10z122, 0<m <22 <1
0, otherwise

fiz(z1, 22) = {

10 o4

Suppose Y1 = X1/X2 and Yo = X»
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Transformations (cont.)

The inverse transformation is ;1 = y1y2 and a2 = y2, with Jacobian

Or1  Om
|0y Oy _|v w|_
J= Oxz  Oxzz| |0 1 =2
dy1  Oye

The inequalities defining the support S of (X1, X2) become

0 <y1y2
Y1y2 <y2
y2 <1

The inequalities are equivalent to
0<y <1
0<y2 <1

They define the support set 7 of (Y1, Y2)
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Transformations (cont.)

Hence, the joint PDF of (Y7, Y2)

fyi,ve (1, v2) = 10y1 9293 |y2| = 109193,

fyi, v (Y1, 92)

(y1,92) €T
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The marginal PDFs

1
~ fyy (1) = /0 10y1 yadye = 2y1,

and zero elsewhere

0<y1 <1

1
~ fyy (y2) :/ 10y2y3dyr = 5ys, 0<y2 <1
0

and zero elsewhere

2 |
B s
— 1 ~
N N
R S
O ! \ !
0 0.5 0 0.5
Y1 Y2
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Variable change and CDF for finding distributions of functions of RVs

There is another model, the moment generating function technique

e It works well for linear functions of RVs

If Y = g(X1, X2), then E(Y), if it exists, can be from

—+ o0 —+ o0
E(Y) :/ / g(z1, 22)fx; , xo dzrdan

(Summations replace integrals in discrete case)
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of two random Function g(X1, X2) could be chosen to be e[t"(xl’x2)]
~ We would find the MGF of function Z = u(X1, X2)

If we could then recognise this MGF as belonging to a certain distribution

~ Z would have that distribution
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(_931+12)
iAo fx1, %0 (21, 22) = S 1/4e 2

Transformations
¥q11>f(v?11|qtloxxx 07 elsewhere
of two random

variables

, 0<z,22 <00

Ixy, x5 (21, 22)

Let YV = (1/2)(X1 — XQ)
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Transformations (cont.)

The MGF of Y

oo oo ].
E(e'Y) =/ / et(zl_ZQ)/2Ze[_(zl+zz)/2]d$1d$2

LR )
0 0

:[1it”1j—t]: 1—1t2

for1—¢t>0and 1+ ¢ >0, or equivalently ¢t € (—1,+1)

1.04 |- -1

T o1.02F |
=
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Transformations (cont.)

Consider the MGF of the double exponential distribution

oo e*|z| 0 e(1+t)z oo e(lft)z
/ el® dz / ——dz +/ ——dz
oo 2 oo 2 0 2

1 1 1

20+ 20— 1-¢

with ¢ € (—1,+1)

The RV Y does have the double exponential distribution
e Because of the uniqueness of the MGF
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