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Distributions

The notions developed for two random variable can be extended to n RVs

 We start by defining the space of n random variables
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Definition

Consider a random experiment with sample space C

Let the random variable Xi assign to each element c ∈ C one and only one
real number Xi (c) = xi , i = 1, 2, . . . ,n

We say that (X1, . . . ,Xn) is a n-dimensional random vector

The space/range of the random vector is the set of ordered n-tuples

D =
{
(x1, x2, . . . , xn) : x1 = X1(c), . . . , xn = Xn (c), c ∈ C

}
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Definition

Let A be a subset of the space D

Then, P
[
(X1, . . . ,Xn) ∈ A

]
= P(C )

C =
{
c : c ∈ C and (X1(c),X2(c), . . . ,Xn(c) ∈ A)

}
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We denote (X1, . . . ,Xn)′ by the n-dimensional (column) vector X

• The observed values (x1, . . . , xn)′ of the RV are x
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The joint CDF is defined as always

FX(x) = P
[
X1 ≤ x1, . . . ,Xn ≤ xn

]
(1)

The n RVs X1,X2, . . . ,Xn can of the discrete type or of the continuous type

• The (cumulative) distribution

 FX(x) =
∑

w1≤x1

∑

w2≤x2

· · ·
∑

wn≤xn

p(w1,w2, . . . ,wn )

 FX(x) =

∫ x1

−∞

∫ x2

−∞
· · ·

∫ xn

−∞
f (w1,w2, . . . ,wn)dwn · · · dw2dw1
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For the continuous case

∂n

∂x1 · · · ∂xn
FX(x) = f (x) (2)

(Except, possibly, at points with zero probability)



Several

random

variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Several RVs

Distributions

Variance-covariance

Transformations

Linear
combinations

Distributions (cont.)

A continuous function f must satisfy the conditions of a PDF

 f is defined and is non-negative for all real values of its argument(s)

 Its integral over all real values of its argument(s) is 1

A point function p must satisfy the conditions of a PMF

 p is defined and is non-negative for all real values of its argument(s)

 Its sum over all real values of its argument(s) is 1



Several

random

variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Several RVs

Distributions

Variance-covariance

Transformations

Linear
combinations

Distributions (cont.)

As always, it is convenient to define the support of a random vector

Discrete case

• All points in D that have positive probability mass

Continuous case

• All points in D that can be placed in an open set of positive
probability

We use S to denote support sets
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Example

Let X , Y and Z be random variables with the joint PDF

f (x , y , z) =

{

e−(x+y+z), 0 < x , y , z < ∞

0, elsewhere

The distribution function of X , Y and Z

F (x , y , z) = P(X ≤ x ,Y ≤ y ,Z ≤ z) =

∫ z

0

∫ y

0

∫ x

0
e−u−v−wdudvdw

=
(

1−
1

ex

)(

1−
1

ey

)(

1−
1

ez

)

, 0 ≤ x , y , z < ∞

(3)

and zero elsewhere

 
∂n

∂x1 · · · ∂xn
FX(x) = f (x)

�
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Let (X1,X2, . . . ,Xn ) be a random vector, let Y = u(X1,X2, . . . ,Xn )

• (For some function u)

As with the bivariate case, the expected value of the RV may exist

Continuous case

 The n-fold integral must exist

∫ ∞

−∞
· · ·

∫ ∞

−∞

∣
∣u(x1, x2, . . . , xn)

∣
∣f (x1, x2, . . . , xn)dx1dx2 · · ·dxn

Discrete case

 The n-fold sum must exist
∑

xn

· · ·
∑

x1

∣
∣u(x1, x2, . . . , xn )

∣
∣p(x1, x2, . . . , xn )
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If the expected value of Y exists, then we can determine its expectation

 Continuous case

E(Y ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
u(x1, . . . , xn)f (x1, . . . , xn)dx1dx2 · · ·dxn (4)

 Discrete case

E(Y ) =
∑

xn

· · ·
∑

x1

u(x1, . . . , xn)p(x1, . . . , xn ) (5)
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The usual properties of expectation hold for the n-dimensional case

 E is a linear operator

Let Yj = uj (X1, . . . ,Xn), for j = 1, . . . ,m, suppose that each E(Yi ) exist

E
[ m∑

j=1

kjYj

]

=
m∑

j=1

kjE(Yj ), (6)

for some constants k1, . . . , km
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Notions of marginal and conditional probability density functions for n RVs

• Previous definitions can be generalised to n-variables
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Let the RVs X1,X2, . . . ,Xn be of the continuous type with joint PDF

f (x1, x2, . . . , xn )

As with the bivariate case, we have for every b

FX1
(b) = P(X1 ≤ b) =

∫ b

−∞
f1(x1)dx1

• f1(x1) is defined by the (n − 1)-fold integral

f1(x1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x1, x2, . . . , xn )dx2 · · ·dxn

f1(x1) is the PDF of the RV X1, the marginal PDF of X1
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Remark

The marginal probability density functions f2(x2), . . . , fn(xn) of X2, . . . ,Xn

• They are similar (n − 1)-fold integrals

Each marginal PDF is a PDF of one random variable
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It is possible and convenient to extend the terminology to joint PDFs

Let f (x1, . . . , xn) be the joint PDF of n random variables X1, . . . ,Xn

Let us take any group of k < n of these RVs

We wish to find their joint PDF

 This joint PDF is the marginal PDF of the k -group of RVs
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Example

Let n = 6, X1,X2,X3,X4,X5,X6 are some RVs with some joint PDF

f (x1, x2, x3, x4, x5, x6)

Let k = 3 and let us select the group X2,X4,X5

The marginal PDF of X2,X4,X5 is the joint PDF of the group

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3, x4, x5, x6)dx1dx3dx6

(if the random variables are of the continuous type)

�
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As for the conditional PDF, suppose f1(x1) > 0, then define the symbol

f2,...,n|1(x2, . . . , xn |x1) =
f (x1, x2, . . . , xn )

f1(x1)

This is the joint conditional PDF of X2, . . . ,Xn , given X1 = x1

Joint conditional PDF of (n − 1) RVs, X1, . . . ,Xi−1,Xi+1, . . . ,Xn , Xi = xi

• The joint PDF of X1, . . . ,Xn divided by the marginal PDF fi (xi )

• (Provided that fi(xi ) > 0)
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Remark

Or, more generally

The joint conditional PDF of any (n − k) of the RVs for given values of the
remaining k RVs is defined as the joint PDF of the n RVs divided by the
marginal PDF of the group of k RVs (provided the latter PDF is positive)
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A joint conditional PDF is a PDF of a certain set of random variables

 The expectation of a function of these RVs is defined

We must emphasise that a particular conditional PDF is considered

• Such expectations are called conditional expectations



Several

random

variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Several RVs

Distributions

Variance-covariance

Transformations

Linear
combinations

Distributions (cont.)

The conditional expectation of u(X2, . . . ,Xn), given X1 = x1

For the case of RVs of the continuous type

E
[
u(X2, . . . ,Xn )

∣
∣x1

]
=

∫ ∞

−∞
· · ·

∫ ∞

∞
u(x2, . . . , xn)f2,...,n|1(x2, . . . , xn |x1)dx2 · · ·dxn

• (Provided that f1(x1) > 0 and that the integral converges absolutely)

h(X1) = E
[
u(X2, . . . ,Xn)

∣
∣X1

]
is a (useful) random variable



Several

random

variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Several RVs

Distributions

Variance-covariance

Transformations

Linear
combinations

Distributions (cont.)

The concept of marginal/conditional distributions generalise to discrete RVs

• Use PMFs and summations instead of PDFs and integrals
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Let the RVs (X1,X2, . . . ,Xn) have the joint PDF f (x1, x2, . . . , xn)

Let f1(x1), f2(x2), . . . , fn(xn) be the marginal PDFs

We generalise the bivariate definition of independence of RVs X1 and X2

• Mutual independence of X1,X2, . . . ,Xn

RVs X1,X2, . . . ,Xn are said to be mutually independent if and only if

 Continuous case

f (x1, . . . , xn) ≡ f1(x1)f2(x2) · · · fn(xn )

 Discrete case

p(x1, . . . , xn) ≡ p1(x1)p2(x2) · · · pn (xn )
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Suppose X1,X2 . . . ,Xn are mutually independent

Then,

P
[
(a1 < X1 < b1), . . . , (an < Xn < bn)

]

= P(a1 < X1 < b1) · · ·P(an < Xn < bn) =
n∏

i=1

P(ai < Xi < bi )

We define the symbol
∏n

i=1 ϕ(i) as always

n∏

i=1

ϕ(i) = ϕ(1)ϕ(2) · · ·ϕ(n)
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For two independent random variables X1 and X2

E
[
u(X1)v(X2)

]
= E

[
u(X1)

]
E
[
v(X2)

]

For n mutually independent random variables X1,X2, . . . ,Xn

E
[
u1(X1)u2(X2) · · ·un (Xn)

]
= E

[
u1(X1)

]
E
[
u2(X2)

]
· · ·E

[
un (Xn )

]

or, compactly

E
[ n∏

i=1

ui (Xi )
]

=
n∏

i=1

E
[
ui (Xi )

]
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We can define the MGF of the joint distribution of n RVs X1,X2, . . . ,Xn

Suppose that the expectation M (t1, t2, . . . , tn) exist

E
[
exp (t1X1 + t2X2 + · · ·+ tnXn)

]

For −hi < ti < hi , i = 1, 2, . . . ,n, with each hi positive

This expectation is the MGF of the joint distribution of X1,X2, . . . ,Xn

• It is unique

It uniquely determines the joint distribution of the n variables

 (hence, also all marginal distributions)
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 The MGF of the marginal distributions of Xi

 M (0, . . . , 0, ti , 0, . . . , 0)

 The MGF of the marginal distributions of Xi and Xj

 M (0, . . . , 0, ti , 0, . . . , 0, tj , 0, . . . , 0)
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We can also generalise the bivariate theorem

Theorem

Suppose the joint MGF M (t1, t2) exists for random variables X1 and X2

Then, X1 and X2 are independent if and only if

M (t1, t2) = M (t1, 0)M (0, t2)

The joint MGF is identically equal to the product of the marginals MGFs
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Consider the mutual independence of X1,X2, . . . ,Xn

 The factorisation is a necessary and sufficient condition

M (t1, t2, . . . , tn) =
n∏

i=1

M (0, . . . , 0, ti , 0, . . . , 0) (7)

The joint MGF in vector notation reads

M (t) = E
[
exp (t′X)

]
, for t ∈ B ⊂ Rn

B =
{
t : −hi < ti < +hi , i = 1, . . . , n

}
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Theorem 1.1

Suppose X1,X2, . . . ,Xn are n mutually independent random variables

Suppose Xi has MGF Mi (t) for −hi < t < hi , hi > 0 (i = 1, 2, . . . ,n)

Let T =
∑n

i=1 kiXi , where k1, k2, . . . , kn are constants

Then, T has the MGF

MT (t) =
n∏

i=1

Mi (ki t), −min
i

{hi} < t < +min
i

{hi}, (8)
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Proof

Assume t is in the interval (−mini {hi},+mini {hi})

Then, by independence

MT (t) = E
[

e
∑n

i=1 tkiXi

]

= E
[ n∏

i=1

e(tki)Xi

]

=
n∏

i=1

E
[
etkiXi

]
=

n∏

i=1

Mi (ki t)

which concludes our proof

�
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Example

Let X1,X2 and X3 be three mutually independent random variables

Let each have the PDF

f (x) =

{

2x , 0 < x < 1

0, elsewhere
(9)

The joint PDF of X1,X2,X3

f (x1, x2, x3) = f (x1)f (x2)f (x3) = 8x1x2x3, 0 < xi < 1, i = 1, 2, 3

• and zero elsewhere
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The expected value of 5X1X 3
2 + 3X2X 4

3

∫ 1

0

∫ 1

0

∫ 1

0
(5x1x

3
2 + 3x2x

4
3 )(8x1x2x3)dx1dx2dx3 = 2

Let Y be the maximum of X1, X2 and X3

Then, we have

P(Y ≤ 1/2) = P(X1 ≤ 1/2,X2 ≤ 1/2,X3 ≤ 1/2)

=

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0
8x1x2x3dx3dx2dx1

=
(
1/2

)6
= 1/64

(10)
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In a similar manner, we find the CDF of Y

G(y) = P(Y ≤ y) =







0, y < 0

y6 0 ≤ y < 1

1, 1 ≤ y

Accordingly, the PDF of Y

g(y) =

{

6y5, 0 < y < 1

0, elsewhere

�
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Remark

If X1, X2 and X3 are mutually independent, they pairwise independent

• Xi and Xj , i 6= j , i , j = 1, 2, 3 are independent

Pairwise independence does not necessarily mean mutual independence

Let X1, X2 and X3 have the joint PMF

p(x1, x2, x3) =

{

1/4, (x1, x2, x3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}

0, elsewhere

The joint PMF of Xi and Xj , i 6= j

pij (xi , xj ) =

{

1/4, (xi , xj ) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}

0, elsewhere
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The marginal PMF of Xi

pi (xi ) =

{

1/2, x1 = 0, 1

0, elsewhere

Obviously, if i 6= j , then we have

pij (xi , xj ) ≡ pi (xi )pj (xj )

Thus Xi and Xj are independent

However,
p(x1, x2, x3) 6≡ p1(x1)p2(x2)p3(x3)

Thus, X1, X2 and X3 are not mutually independent

�
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If several variables are mutually independent and have the same distribution,
we say that they are independent and identically distributed, or iid
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We state a useful corollary to Theorem 1.1 for iid RVs

Corollary

Let X1,X2, . . . ,Xn be iid RVs each with MGF M (t), t ∈ (−h,+h), h > 0

Let T =
∑n

i=1 Xi

Then,T has MGF given by

MT (t) =
[
M (t)

]n
, −h < t < +h (11)

�
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Extend the discussion on the covariance between two RVs to n-variate case

Let X = (X1, . . . ,Xn)′ be a n-dimensional random vector

• We have defined the expectation of a random vector

• It is the vector of the expectations of its components

 E(X) =
[
E(X1), . . . ,E(Xn )

]′

Suppose that W is a m × n matrix of random variables

• W =
[
W

]

ij
for the random variables Wij

• 1 ≤ i ≤ m and 1 ≤ j ≤ n

We can always roll out the matrix into a mn × 1 vector

We define the expectation of a random matrix

E
[
W

]
=

[
E(Wij )

]
(12)
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Theorem 1.2

Let W1 and W2 be m × n matrices of random variables

Let A1 and A2 be k ×m matrices of constants

Let B be a n × l matrix of constants

Then,

E
[
A1W1 +A2W2

]
= A1E

[
W1

]
+A2E

[
W2

]
(13)

E
[
A1W1B

]
= A1E

[
W1

]
B (14)
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Proof

Consider the linearity of the operator E on RVs

 for the (i , j )-th components of expression (13)

E
[ m∑

s=1

a1isW1sj +
m∑

s=1

a2isW2sj

]

=
m∑

s=1

a1isE [W1sj ] +
m∑

s=1

a2isE [W2sj ]

Hence, by Equation (12), expression (13) holds true

The derivation of expression (14) is analogous
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Let X = (X1, . . . ,Xn)′ be a random n-vector

 Suppose that σ2 = Var(Xi ) < ∞

The mean of X is µ = E(X)

We define its variance-covariance matrix

Cov(X) = E
[
(X− µ)(X − µ)′

]
= [σij ] (15)

The i-th diagonal entry

 σii = σ2
i = Var(Xi )

The (i , j )-th off-diagonal entry

 Cov(Xi ,Xj )

(⋆)
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Multivariate variance-covariance matrix (cont.)

Example

Let the continuous-type random variables X and Y have the joint PDF

0
5

0

5
0

0.5

1

x
y

fX ,Y (x , y) with (x , y) ∈ R2

f (x , y) =

{

exp (−y), 0 < x < y < ∞

0, elsewhere
.

We have determined the joint MGF

M (t1, t2) =
1

(1− t1 − t2)(1 − t2)
, t1 + t2 < 1, t2 < 1
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The first two moments

µ1 = 1

µ2 = 2

σ2
1 = 1

σ2
2 = 2

E
[
(X − µ1)(Y − µ2)

]
= 1

(16)

Let Z = (X ,Y )′, then we have

E [Z] =

[
1
2

]

Cov(Z) =

[
1 1
1 2

] (17)
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We now present two useful properties of Cov(Xi ,Xj )
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Theorem

Let X = (X1, . . . ,Xn)′ be a random n-vector

• Suppose that σ2
i = Var(Xi ) < ∞

Then,
Cov(X) = E [XX′]− µµ

′ (18)

Proof

We can use Theorem 1.2 to derive Equation (18)

Cov(X) = E [(X− µ)(X − µ)′]

= E [XX′ − µX′ −Xµ
′ + µµ

′]

= E [XX′]− µE [X′]− E [X]µ′ + µµ
′
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Theorem

Let X = (X1, . . . ,Xn)′ be a random n-vector

• Suppose that σ2
i = Var(Xi ) < ∞

Let A be a m × n matrix of constants

Then,
Cov(AX) = ACov(X)A′ (19)
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All variance-covariance matrices are positive semi-definite

• a′Cov(X)a ≥ 0, for all vectors a ∈ Rn

Let X be a random vector and let a be any n × 1 vector of constants

Then, Y = a′X is a random variable

 Hence, its variance is non-negative

0 ≤ Var(Y ) = Var(a′X) = a′Cov(X)a (20)

 Hence, Cov(X) is positive semi-definite
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Technically, the determination of the joint PDF of two functions of two ran-
dom variables of the continuous type is a corollary to a theorem in analysis

 Change of variables in a two-fold integral

The theorem naturally extends to n-fold integrals
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Transformations (cont.)

Consider an integral of the form

∫

· · ·

∫

A

f (x1, x2, . . . , xn)dx1dx2 · · ·dxn

A is a subset of a n-dimensional space S

Let

y1 = u1(x1, x2, . . . , xn )

y2 = u2(x1, x2, . . . , xn )

· · ·

yn = un (x1, x2, . . . , xn)

and their inverse functions

x1 = w1(y1, y2, . . . , yn)

x2 = w2(y1, y2, . . . , yn)

· · ·

xn = wn (y1, y2, . . . , yn)

They define a 1-to-1 transformation that maps S onto T
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Vector function u(x) and inverse vector function w(y) define a 1-to-1 map

• S in x1, x2, . . . , xn space is mapped onto T in y1, y2, . . . , yn space

The transformation maps subsets A of S onto subsets B of T

Let the first partial derivative of the inverse functions be continuous

Let J be the n × n Jacobian determinant of the inverse transformation

J =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂x1

∂y1

∂x1

∂y2
· · ·

∂x1

∂yn
∂x2

∂y1

∂x2

∂y2
· · ·

∂x2

∂yn
..
.

..

.
. . .

..

.
∂xn

∂y1

∂xn

∂y2
· · ·

∂xn

∂yn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

We assume that J not be identically zero in T
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Then,

∫

· · ·

∫

A

f (x1, . . . , xn)dx1dx2 · · ·dxn

=

∫

· · ·

∫

B

f
[
w1(y1, . . . , yn)
︸ ︷︷ ︸

x1

, . . . ,wn (y1, . . . , yn)
︸ ︷︷ ︸

xn

]∣
∣J

∣
∣dy1dy2 · · ·dyn

Thus, we are able to determine the joint PDF of n functions of n RVs

• Whenever the conditions of the theorem are satisfied
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Proper changes in notation to denote n-spaces v 2-spaces are needed

The joint PDF of RVs Y1 = u1(X1, . . . ,Xn), . . . ,Yn = un(X1, . . . ,Xn)

g(y1, y2, . . . , yn)

= f
[
w1(y1, . . . , yn)
︸ ︷︷ ︸

x1

, . . . ,wn (y1, . . . , yn)
︸ ︷︷ ︸

xn

]∣
∣J

∣
∣, for (y1, . . . , yn) ∈ T

and zero elsewhere
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Example

Let X1, X2 and X3 have the joint PDF

f (x1, x2, x3) =

{

48x1x2x3, 0 < x1 < x2 < x3 < 1

0, elsewhere
(21)

Let Y1 = X1/X2, Y2 = X2/X3 and Y3 = X3

The associated inverse transformations

x1 = y1y2y3

x2 = y2y3

x3 = y3

The determinant of the Jacobian of the inverse transformation

J =

∣
∣
∣
∣
∣
∣

y2y3 y1y3 y1y2
0 y3 y2
0 0 1

∣
∣
∣
∣
∣
∣

= y2y
2
3
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The inequalities define the support

0 < y1y2y3

y1y2y3 < y2y3

y2y3 < y3

y3 < 1

This gives the unit-cube as support T of (Y1,Y2,Y3)

T =
{
(y1, y2, y3) : 0 < yi < 1, i = 1, 2, 3

}
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Transformations (cont.)

Hence, the joint PDF of Y1,Y2,Y3

g(y1, y2, y3) = 48(y1y2y3
︸ ︷︷ ︸

x1

)(y2y3
︸ ︷︷ ︸

x2

)( y3
︸︷︷︸

x3

)
∣
∣y2y

2
3

∣
∣

=

{

48y1y3
2y

5
3 , 0 < yi < 1, i = 1, 2, 3

0, elsewhere

The marginal PDFs

g1(y1) = 2y1, 0 < y1 < 1, zero elsewhere

g2(y2) = 4y3
2 , 0 < y2 < 1, zero elsewhere

g3(y3) = 6y5
3 , 0 < y3 < 1, zero elsewhere

 g(y1, y2, y3) = g(y1)g(y2)g(y3)

The random variables Y1,Y2,Y3 are mutually independent
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Example

Let X1,X2,X3 be three IID random variables with common PDF

f (x) =

{

e−x , 0 < x < ∞

0, elsewhere

The joint PDF of X1,X2,X3

fX1,X2,X3
(x1, x2, x3) =

{

e−
∑3

i=1 xi , 0 < xi < ∞, i = 1, 2, 3

0, elsewhere

Consider the random variables Y1,Y2 and Y3

Y1 =
X1

X1 + X2 + X3

Y2 =
X2

X1 + X2 + X3

Y3 = X1 +X2 + X3
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Transformations (cont.)

Hence, the inverse transformation

x1 = y1y3

x2 = y2y3

x3 = y3 − y1y3 − y2y3

The determinant of the Jacobian

J =

∣
∣
∣
∣
∣
∣

y3 0 y1
0 y3 y2

−y3 −y3 1− y1 − y2

∣
∣
∣
∣
∣
∣

= y2
3
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Transformations (cont.)

The support of S of X1,X2,X3 maps onto T of Y1,Y2,Y3

0 < y1y3 < ∞

0 < y2y3 < ∞

0 < y3(1 − y1 − y2) < ∞

The support T

T =
{
(y1, y2, y3) : 0 < y1, 0 < y2, 0 < y1 − y2, 0 < y3 < ∞

}
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Hence, the joint PDF of Y1,Y2,Y3

g(y1, y2, y3) = y2
3e

−y3 , (y1, y2, y3) ∈ T

 The marginal PDF of Y1

g1(y1) =

∫ 1−y1

0

∫ ∞

0
y2
3e

−y3dy3dy2 = 2(1− y1)

for 0 < y1 < 1 (zero elsewhere)

 The marginal PDF of Y2

g2(y2) = 2(1 − y2), 0 < y2 < 1 (zero elsewhere)

 The marginal PDF of Y3

g3(y3) =

∫ 1

0

∫ 1−y1

0
y2
3e

−y3dy2dy1 = 1/2y2
3 e

−y3

for 0 < y3 < ∞ (zero elsewhere)
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Transformations (cont.)

 g(y1, y2, y3) 6= g1(y1)g2(y2)g3(y3)

The random variables Y1,Y2,Y3 are dependent
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The joint PDF of Y1 and Y3

g13(y1, y3) =

∫ 1−y1

0
y2
3e

−y3dy2 = (1− y1)y
2
3 e

−y3

for 0 < y1 < 1, 0 < y3 < ∞ (zero elsewhere)

 Thus, Y1 and Y2 are independent

The joint PDF of Y2 and Y3

g12(y1, y2) =

∫ ∞

0
y2
3e

−y3dy3 = 2

0 < y1, 0 < y2, y1 + y2 < 1 (zero elsewhere)

 Thus, Y2 and Y3 are independent
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As in the bivariate case, we could use the MGF technique

Consider the case in which Y = g(X1,X2, . . . ,Xn ) is a function of the RVs

Then, in the continuous case, the MGF of Y

E(etX ) =

∫ ∞

−∞

∫ ∞

∞
· · ·

∫ ∞

∞
etg(x1,x2,...,xn )dx1dx2 · · ·dxn

f (x1, x2, . . . , xn) is the joint PDF

In the discrete case, summation replaces integration



Several

random

variables

UFC/DC
ATML (CK0255)
PRV (TIP8412)

2017.2

Several RVs

Distributions

Variance-covariance

Transformations

Linear
combinations

Transformations (cont.)

Example

Let X1, X2, X3 and X4 be independent random variables with common PDF

p(x1, x2, x3) =







µx1
1 µx2

2 µx3
3 e−µ1e−µ2e−µ3

x1!x2!x3!
, xi = 0, 1, 2, . . . , i = 1, 2, 3

0, elsewhere

Let Y = X1 +X2 +X3 be a random variable with the MGF

E
(
etY

)
= E

[
et(X1+X2+X3)

]

= E
[
etX1etX2etX3

]

= E
(
etX1

)
E
(
etX2

)
E
(
etX3

)

Because of the independence of X1, X2 and X3
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Transformations (cont.)

Earlier, we found

E
(
etXi

)
= e

[
µi (e

t−1)
]

, i = 1, 2, 3

Hence,

E
(
etY

)
= e

[
(µ1+µ2+µ3)(e

t−1)
]

−0.1 0 0.1

7

7.5

8

t

E
(
e
tY

)

E
(
etY

)
= e

[
(µ1+µ2+µ3)(e

t−1)
]

(In the plot, µ1 = 1, µ2 = 1 and µ3 = 1)
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This is the MGF of a random variable Y with the PMF

pY (y) =






(µ1 + µ2 + µ3)ye
−
(
µ1+µ2+µ3

)

y !
, y = 0, 1, 2, . . .

0, elsewhere

Thus, this is the distribution of Y = X1 +X2 + X3
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Example

Let X1, X2, X3 and X4 be independent random variables with common PDF

f (x) =

{

e−x , x > 0

0, elsewhere

Let Y = X1 +X2 +X3 + X4

Because of the independence of X1, X2, X3 and X4

E(etY ) = E(etX1)E(etX2 )E(etX3 )E(etX4 )

We have
E(etXi ) = (1 − t)−1, for t < 1, i = 1, 2, 3, 4
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Hence,

−0.1 0 0.1
0.6

0.8

1

1.2

1.4

1.6

t

E
(e

tY
)

E(etY ) = (1 − t)−4
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This is the MGF of a distribution with PDF

0 5 10 15

0

0.1

0.2

y

f Y
(y

)

fY (y) =







1

3!
y3e−y , 0 < y < ∞

0, elsewhere

Accordingly, this is the distribution of Y
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Let (X1, . . . ,Xn)′ indicate a random vector

We are often interested in some function of T = T (X1, . . . ,Xn)

Let us consider a linear combination of the variables

T =
n∑

i=1

aiXi

a = (a1, . . . , an )′ is some specified vector
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The mean of T follows from linearity of the expectation operator

Theorem 3.1

Let (X1, . . . ,Xn)′ indicate a random vector

Let T =
∑n

i=1 aiXi

Then,

E(T ) =
n∑

i=1

aiE(Xi )

Provided E
[∣
∣Xi

∣
∣
]
< ∞, for i = 1, . . . ,n

�
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For the variance of T , we first state a general result about covariances

Theorem 3.2

Let (X1, . . . ,Xn)′ and (Y1, . . . ,Ym )′ indicate two random vectors

Let T =
∑n

i=1 aiXi

Let W =
∑m

j=1 bjYj

Suppose that E
[
X 2

i

]
< ∞, for i = 1, . . . ,n

Suppose that E
[
Y 2

j

]
< ∞, for j = 1, . . . ,m

Then,

Cov(T ,W ) =
n∑

i=1

m∑

j=1

aibjCov(Xi ,Yj )
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Proof

Using the definition of covariance and Theorem 3.1, we have the first equality

Cov(T ,W ) = E
{ n∑

i=1

m∑

j=1

[

aiXi − aiE(Xi )
][

bjYj − bjE(Yj )
]}

=
n∑

i=1

m∑

j=1

aibjE
{[

Xi − E(Xi )
][

Yj − E(Yj )
]}

The second equality follows from the linearity of E
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For the variance of T , we replace W by T

Corollary

Let (X1, . . . ,Xn)′ and let T =
∑n

i=1 aiXi

Suppose that E
[
X 2

i

]
< ∞, for i = 1, . . . , n

Var(T ) = Cov(T ,T ) =
n∑

i=1

a2
i Var(Xi ) + 2

∑

i<j

aiajCov(Xi ,Xj ) (22)

If X1, . . . ,Xn are independent RVs, then the covariance Cov(Xi ,Xj ) = 0

 Equation (22) gets simplified
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Corollary 3.1

Let X1, . . . ,Xn be independent random variables with finite variances

Then,

Var(T ) =
n∑

i=1

a2
i Var(Xi ) (23)

To obtain this result, only Xi and Xj need be uncorrelated for all i 6= j

 Cov(Xi ,Xj ) = 0, i 6= j , true when X1, . . . ,Xn are independent
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Let the RVs X1, . . . ,Xn are independent and identically distributed

The RVs make a random sample of size n from the common distribution

Two commonly used statistics of the random sample

 Sample mean

 Sample variance
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Example

Sample mean

Let X1, . . . ,Xn be independent and identically distributed random variables

• Let µ and σ2 be the common mean and variance

The sample mean

 X = n−1
n∑

i=1

Xi (24)

This is a linear combination of the sample observations, with ai ≡ n−1
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By Theorem 3.1 and Corollary 3.1

E(X ) = µ

Var(X ) = σ2/n
(25)

We say that X is an unbiased estimator of µ
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Example

Sample variance

Let X1, . . . ,Xn be independent and identically distributed random variables

• Let µ and σ2 be the common mean and variance

The sample variance

S2 = (n − 1)−1
n∑

i=1

(Xi − X )2 = (n − 1)−1
( n∑

i=1

X 2
i − nX

2
)

(26)

The second equality follows after some algebra (⋆)
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By Theorem 3.1 and Corollary 3.1, by the results from the previous example

E(S2) = (n − 1)−1
[ n∑

i=1

E(X 2
i )− nE(X

2
)
]

= (n − 1)−1
{

nσ2 + nµ2 − n
[

(σ2/n) + µ2
]}

= σ2

(27)

We used the fact that E(X 2) = σ2 + µ2

Hence, S2 is an unbiased estimator of σ2
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