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The normal distribution

Motivation for the normal distribution is found in the central limit theorem

Normal distributions provide an important family of distributions

 Applications and inference

We first introduce the standard normal distribution

• Then, the general normal distribution
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Consider the integral
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dz (1)

This integral exists
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The normal distribution (cont.)

Consider the relevant part of the integrand

It is a positive continuous function bounded by an integrable function
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That is,

0 < exp
( − z2

2

)

< exp (−|z |+ 1), −∞ < z < ∞

and ∫ ∞

−∞
exp (−|z |+ 1)dz = 2e
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The normal distribution (cont.)

To evaluate the integral, we note that I > 0

We have that I 2

I 2 =

∫ ∞

−∞

1
√
2π

exp
(

−
z2

2

)

dx ·
∫ ∞

∞

1
√
2π

exp
(

−
w2

2

)

dw

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
exp

(

−
z2 + w2

2

)

dzdw

The integral can be computed by changing to polar coordinates



The normal

distribution

UFC/DC
ATAII (CK0146)
PR (TIP8412)

2017.2

The normal
distribution

The multivariate
normal
distribution

An application

PCA

The normal distribution (cont.)

Set z = r cos θ and w = r sin θ

Then,

I 2 =
1

2π

∫ 2π

0

∫ ∞

0
e−r2/2rdr

︸ ︷︷ ︸
∫

xecx
2
dx=1/(2c)ecx

2
=1

dθ

=
1

2π

∫ 2π

0
dθ

= 1

The integrand of Equation (1) is positive on R and integrates to 1 over R
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The integrand is a PDF of a continuous random variable with support R

Denote this random variable Z , Z has the PDF

f (z) =
1

√
(2π)

exp
( − z2

2

)

, for −∞ < x < ∞ (2)
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The normal distribution (cont.)

For t ∈ R, the MGF of Z can be derived by a completion of a square

E [exp (tZ )] =

∫ ∞

−∞
exp (tz)

1
√
2π

exp
(

−
1

2
z2

)

dz

= exp
(1

2
t2
)∫ ∞

−∞

1

2π
exp

[

−
1

2
(z − t)2

]

dz

= exp
(1

2
t2
)∫ ∞

−∞

1
√
2π

exp
[

−
1

2
w2

]

dw

(3)

For the last integral, we made a 1-to-1 change of variable w = z − t

The integral in Equation (3) has value 1, by the identity

f (z) =
1

√
(2π)

exp
( − z2

2

)

, for −∞ < x < ∞,



The normal

distribution

UFC/DC
ATAII (CK0146)
PR (TIP8412)

2017.2

The normal
distribution

The multivariate
normal
distribution

An application

PCA

The normal distribution (cont.)

Thus, the MGF of Z

MZ (t) = e(1/2t
2), for −∞ < x < ∞ (4)

The first two derivative of MZ (t) are

M ′
Z (t) = te(1/2t

2)

M ′′
Z (t) = e(1/2t

2) + t2e(1/2t
2)

Upon evaluating these derivatives at t = 0, the mean and variance of Z

 E(Z ) = 0

 Var(Z ) = 1
(5)
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The normal distribution (cont.)

Define the continuous random variable X = bZ + a, for b > 0

• This is a 1-to-1 transformation

We want to derive the PDF of X

• The inverse of the transformation is z = b−1(x − a)

• The Jacobian is J = b−1

Because b > 0, the PDF of X

fX (x) =
1

√
2π

1

b
exp

[

−
1

2

( x − a

b

)2]

, for −∞ < x < ∞
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The normal distribution (cont.)

By Equation (5), we have

 E(X ) = a

 Var(X ) = b2

The PDF of X can be written using those quantities

 a can be replaced by µ = E(X )

 b2 can be replaced by σ2 = Var(X )
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The normal distribution (cont.)

Definition 1.1

Normal distribution

A random variable X has a normal distribution if its PDF is

f (x) =
1

√
2πσ

exp
[

−
1

2

( x − µ

σ

)]

, x ∈ (−∞,+∞) (6)

The parameters µ and σ2 are the mean and the variance of X

We often write that X has a N (µ, σ2) distribution
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The normal distribution (cont.)

Remark

Consider the random variable Z with the PDF

f (z) =
1

√
(2π)

exp
( − z2

2

)

, for −∞ < x < ∞

The RV Z is said to have a N (0, 1) distribution

• We call Z a standard normal RV
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The normal distribution (cont)

Consider the calculation of the MGF of X

We use the relationship
X = σ

︸︷︷︸

b

Z + µ
︸︷︷︸

a

Remember that the MGF of Z

MZ (t) = e(1/2t
2), for −∞ < x < ∞
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The normal distribution (cont)

We obtain,

E
[
exp (tX )

]
= E

{
exp

[
t(σZ + µ)

]}
= exp (µt)E

[
exp (tσZ )

]

= exp (µt) exp
( 1

2
σ2t2

)

= exp
(

µt +
1

2
σ2t2

)

for −∞ < t < +∞
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The normal distribution (cont)

Remark

Consider the relationship between Z and X

 X ∼ N (µ, σ2) if and only if Z = (X − µ)/σ ∼ N (0, 1)

�
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The normal distribution (cont.)

Example

Consider the random variable X with the MGF

−2 0 2

·10−2

1

1.05

t

M
(t
) M (t) = e2t+32t2

M (t) = exp
(

µt +
1

2
σ2t2

)

X has a normal distribution with µ = 2 and σ2 = 64, N (2, 54)

The random variable Z = (X − 2)/8 has a N (0, 1) distribution

�
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The normal distribution (cont.)

Example

We can derive all the moments of the standard normal RV using its MGF

 We can do the same for a general normal RV

Let X ∼ N (µ, σ2)

Hence, for all nonnegative integers k , by the binomial theorem1

E(X k ) = E
[
(σZ + µ)k

]
=

k∑

j=0

(k

j

)

σjE(Z j )µk−j (7)

 All the odd moments of Z are zero

 All even moments can be calculated

�

1(x + y)k =
∑n

k=0

(

n
k

)

xn−kyk =
∑n

k=0

(

n
k

)

xk yn−k
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x

f (x |µ = 3, σ2 = 1/4|1|4)

fX (x) =
1

√
2πb

exp
[

−
1

2

( x − a

b

)2]

 The graph is symmetric about a vertical axis at x = µ

 The graph has its maximum of 1/(σ
√
2π) at x = µ

 The graph has the x -axis as horizontal asymptote

 The points of inflection are at x = µ ± σ
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The normal distribution (cont)

There are many practical applications that involve normal distributions

 We need to be able to readily calculate probabilities

Normal PDFs contain a factor of the form exp (−s2)

• Antiderivatives are not in closed-form

• Numerical integration must be used
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We can use the relation between normal and standard normal variables

 X ∼ N (µ, σ2) if and only if Z = (X − µ)/σ ∼ N (0, 1)

Thus, we need only calculate probabilities for standard normal RVs
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Consider the CDF of a standard normal random variables Z

Φ(z) =

∫ z

−∞

1
√
2π

exp
( − w2

2

)

dw (8)

Let X ∼ N (µ, σ2)

Suppose that we want to compute FX (x) = P(X ≤ x) for some x

Then, for Z = (X − µ)/σ

FX (x) = P(X ≤ x) = P
(

Z ≤
x − µ

σ

)

= Φ
( x − u

σ

)

Thus, only integration for Φ(z) is needed
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Suppose we are interested in the value xp such that p = FX (xp) for some p

Take zp = Φ−1(p), then xp = σzp + µ

Consider the standard normal density

−4 −2 0 2 4

0

0.1

0.2

0.3

z

f
(z
)

Φ(z) =
1

√
(2π)

exp
( − z2

2

)

The area to the left of zp is p

• Φ(zp) = p

We can use an abbreviated table of probability
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Suppose we are interested in Φ(−z), for some z > 0

Since the PDF is symmetric,

 Φ(−z) = 1− Φ(z) (9)
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The normal distribution (cont.)

Consider a random variable X ∼ N (a, b)

• pnorm(x,a,b), P(X ≤ x)

• dnorm(x,a,b), the PDF of X at x
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The normal distribution (cont.)

Example

Let the random variable X ∼ N (2, 25)

−20 0 20

0

1

2

3

·10−3

x

f
(x

|µ
=

2
,σ

2
=

2
5
)

Using abbreviated tables of probabilities

P(0 < X < 10) = Φ
(10 − 2

5

)

− Φ
(0− 2

5

)

= Φ(1.6) −Φ(−0.4)

= 0.945 − (1 − 0.655) = 0.600
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The normal distribution (cont.)

P(−8 < X < 1) = Φ
(1− 2

5

)

−Φ
( − 8− 2

5

)

= Φ(−0.2)− Φ(−2)

= (1− 0.579) − (1 − 0.977) = 0.398

�
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The normal distribution (cont.)

Example

Let the random variable X ∼ N (µ, σ2)

P(µ − 2σ < X < µ+ 2σ) = Φ
(µ+ 2σ − µ

σ

)

− Φ
(µ− 2σ − µ

σ

)

= Φ(2) −Φ(−2)

= 0.977− (1− 0.977) = 0.954

(10)

�
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The normal distribution (cont.)

Theorem 1.1

Consider a random variable X ∼ N (µ, σ2) with σ2 > 0

The random variable V = (X − µ)2/σ2 is χ2(1)

Proof

The random variable V = W 2, with W = (X − µ)/σ ∼ N (0, 1)

The CDF G(v) for V

G(v) = P(W 2 ≤ v) = P(−
√
v ≤ W ≤

√
v), for v ≥ 0
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That is,

G(v) = 2

∫ √
v

0

1
√
2π

e(−w2/2)dw , for 0 ≤ v

Moreover,
G(v) = 0, for v < 0

Consider a change of the integration variable, w =
√
y

 G(v) =

∫ v

0

1
√
2π

√
y
e(−y/2)dy , for 0 ≤ v
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The normal distribution (cont.)

Hence, the PDF g(v) = G′(v) of random variable V of the continuous type

g(v) =






1
√
π
√
2
v (1/2−1)e(−v/2), 0 < v < ∞

0, elsewhere

Since g(v) is a PDF,
∫ ∞

0
g(v)dv = 1,

Then, it must be Γ(1/2) =
√
π and therefore V ∼ χ2(1)

�
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The normal distribution (cont.)

A main property of the normal distribution is additivity under independence

Theorem 1.2

Let X1, . . . ,Xn be independent random variables

Suppose that Xi ∼ N (µi , σ2
i ), for i = 1, . . . , n,

Let Y =
∑n

i=1 aiXi , for some constants a1, . . . , an

Then, the distribution of Y is N (
∑n

i=1 aiµi ,
∑n

i=1 a
2
i σ

2
i )

Proof

For t ∈ R, the MGF of Y

MY (t) =
n∏

i=1

exp
[
taiµi + (1/2)t2a2

i σ
2
i

]

= exp
[

t
n∑

i=1

aiµi + (1/2)t2
n∑

i=1

a2
i σ

2
i

]

This is the MGF of a N (
∑n

i=1 aiµi ,
∑n

i=1 a
2
i σ

2
i ) distribution

�
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Let X1,X2, . . . ,Xn be random sample from a N (µ, σ2)

A corollary gives the distribution of the sample mean

 X =
1

n

n∑

i=1

Xi

Corollary

Let X1, . . . ,Xn be IID random variables with common N (µ, σ2) distribution

Let X =
1

n

∑n
i=1 Xi

Then, X has a N (µ, σ2/n) distribution

Proof

In Theorem 1.2, take ai = (1/n), µi = µ and σ2
i = σ2, for i = 1, 2, . . . ,n

�
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The multivariate normal distribution

The multivariate normal distribution for a n-dimensional random vector

• Examples for the bivariate case, n = 2

The derivation is simplified by first discussing the standard case

• Then, we proceed with the general cases
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The multivariate normal distribution (cont.)

Consider the random vector Z = (Z1, . . . ,Zn)′

• Z1, . . . ,Zn are IID N (0, 1) random variables

Then, the density of Z

fZ(z) =
n∏

i=1

1
√
2π

exp
{

−
1

2
z2i

}

=
( 1

2π

)n/2
exp

{

−
1

2

n∑

i=1

z2i

}

=
( 1

2π

)n/2
exp

{

−
1

2
z′z

}

, for z ∈ Rn

(11)
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The multivariate normal distribution (cont.)

Consider the random vector Z = (Z1,Z2)′

Since n = 2, we have

fZ(z) =
n∏

i=1

1
√
2π

exp
{

−
1

2
z2i

}

=
( 1

2π

)n/2
exp

{

−
1

2

n∑

i=1

z2i

}

,

= 1/(2π) exp
{

− 1/2
2∑

i=1

z2i

}

= 1/(2π) exp
{
− 1/2(z21 + z22 )

}

−4 −2 0 2 4−4
−2

0
2
4

0

0.1

z1
z2

f Z
1
,Z

2
(z

1
,z

2
)
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The multivariate normal distribution (cont.)

The Zis have mean zero, unit variance and they are uncorrelated

Then, the mean and covariance matrix of Z

E(Z) = 0

Cov(Z) = In
(12)

• In indicates an identity matrix of order n
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The multivariate normal distribution

The MGF of each of the Zis evaluated at ti is e(t
2
i /2)

As the Zi s are independent, the MGF of Z

MZ(t) = E
[ n∏

i=1

exp {tiZi}
]

=
n∏

i=1

E [exp {tiZi}]

= exp
{1

2

n∑

i=1

t2i

}

= exp
{1

2
t′t

}

, for all t ∈ Rn

(13)
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The multivariate normal distribution

Consider the random vector Z = (Z1,Z2)′

Since n = 2, we have

MZ(t) = E
[ n∏

i=1

exp {tiZi}
]

=
n∏

i=1

E [exp {tiZi}]

= exp
{1

2

2∑

i=1

t2i

}

= exp
{
1/2(t21 + t22 )

}
, for all (t1, t2) ∈ R2

−0.2
0

0.2−0.2

0

0.21

1.02

1.04

t1
t2

M
Z
1
,Z

2
(t

1
,t

2
)
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The multivariate normal distribution (cont.)

Z is said to have a multivariate normal distribution

Z has a Nn (0, In ) distribution, mean 0, covariance matrix In
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The multivariate normal distribution (cont.)

Let Σ be a n × n, symmetric and positive-definite matrix (z′Σz > 0,∀z)

From linear algebra, we can always decompose Σ

Σ = Γ′ΛΓ (14)

Λ is the diagonal matrix Λ = diag(λ1, λ2, . . . , λn)

Λ =








λ1 0 · · · 0
0 λ2 · · · 0
..
.

..

.
. . .

..

.
0 0 · · · λn








 λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of Σ

The columns of Γ′, v1,v2, · · · ,vn , are the corresponding eigenvectors

Γ′ =








v1,1 v2,1 · · · vn,1
v1,2 v2,2 · · · vn,2
.
..

.

..
.
..

v1,n v2,n · · · vn,n







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The multivariate normal distribution (cont.)

Σ = Γ′ΛΓ

The factorisation is called the spectral decomposition of Σ

• Matrix Γ is orthogonal (Γ−1 = Γ′, thus ΓΓ′ = I)
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The multivariate normal distribution (cont.)

Remark

Eigenvalues and eigenvectors

A (n×n) matrix A can be used to transform a n-vector x to another one y

y = Ax

Consider a scalar variable λi and a particular value of x (= ei ) such that

yei = Aei = λiei

 λi is often called an eigenvalue of A

 ei is the corresponding eigenvector
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The multivariate normal distribution (cont.)

Aei = λiei

Every (n × n) matrix has n eigenvalues and up to n eigenvectors

They can be jointly specified

(λ1In −A)e1 = 0

(λ2In −A)e2 = 0

· · ·
(λnIn −A)en = 0

If (λiIn −A)ei = 0 is satisfied, then so is (λiIn −A)αei = 0 (i = 1, . . . , n)

 Eigenvectors are specified up to any multiplicative constant α
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The multivariate normal distribution (cont.)

The set of n vector equations can have non-trivial solutions

The n values of λi need be solutions to the scalar equation

|λIn −A| := ∆(λ) = 0

 (λIn −A) is called the characteristic matrix of A

 ∆(λ) is the characteristic polynomial of A

The determinant gives a n-degree polynomial in λ

• It can be factored as a product of n binomials

∆(λ) = λn + cn−1λ
n−1 + · · ·+ c1λ+ c0

= (λ− λ1)(λ − λ2) · · · (λ − λn )

= 0

• Each of the binomial roots is an eigenvalue of A
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The multivariate normal distribution (cont.)

If the roots are all distinct, there will be n independent eigenvectors

 If the roots are repeated, there may be fewer eigenvectors

For a distinct eigenvalue λi , the eigenvector ei is contained in Adj(λi In −A)

Adj(λi In −A) =
[
α1ei α2ei · · · αnei

]

Since αj are arbitrary constants, any non-zero column represents ei

Adj(λi In −A) is computed for each root (i = 1, . . . ,n)

• A single eigenvector is chosen from each evaluation
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The multivariate normal distribution (cont.)

Together, the n eigenvectors form the columns of the modal matrix E

E =
[
e1 e2 · · · en

]

Here, the eigenvectors are scaled so that |ei | = 1 (i = 1, . . . , n)
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The multivariate normal distribution (cont.)

The modal matrix can be used to diagonalise A

To transform A into a diagonal matrix (of eigenvalues)








Ae1 = λ1e1
Ae2 = λ2e2
...

...
Aen = λnen







, or AE = EΛ

Λ is a diagonal matrix of eigenvalues

Λ =








λ1 0 · · · 0
0 λ2 · · · 0
..
.

..

.
. . .

..

.
0 0 · · · λn







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The multivariate normal distribution (cont.)

E is non-singular because the ei are linearly independent

A = EΛE−1

From the diagonal matrix of eigenvalues to the original square matrix

The inverse transformation

Λ = E−1AE
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The multivariate normal distribution (cont.)

If A is a real, symmetric matrix, its eigenvalues are real

• The eigenvectors are orthogonal to each other

There are n eigenvectors, even with repeated roots

The eigenvectors corresponding to distinct eigenvalues

Adj(λi In −A) =
[
α1ei α2ei · · · αnei

]

The eigenvectors of eigenvalues λi with multiplicity m

dm−1

dλm−1

[
Adj(λi In −A)

]∣∣
∣
λ=λi

=
[
· · · ei1 ei2 · · · eim · · ·

]

�
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The multivariate normal distribution (cont.)

Remark

An alternative way to write the spectral decomposition

Σ = Γ′ΛΓ =
n∑

i=1

λiviv
′
i (15)








v1,1 v2,1 · · · vn,1
v1,2 v2,2 · · · vn,2
.
..

.

..
.
..

v1,n v2,n · · · vn,n















λ1 0 · · · 0
0 λ2 · · · 0
.
..

.

..
. . .

.

..
0 0 · · · λn








︸ ︷︷ ︸

λ2v2








v1,1 v1,2 · · · v1,n
v2,1 v2,2 · · · v2,n
.
..

.

..
.
..

vn,1 vn,2 · · · vn,n








︸ ︷︷ ︸

v′

2

�
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The multivariate normal distribution (cont.)

Because the λis are non-negative, we can define the diagonal matrix

Λ1/2 = diag(
√

λ1,
√

λ2, . . . ,
√

λn )

=









λ1
1/2 0 · · · 0

0 λ2
1/2 · · · 0

...
...

. . .
...

0 0 · · · λn
1/2









Then, the orthogonality of Γ implies

Σ = Γ′ Λ1/2 ΓΓ′
︸︷︷︸

I

Λ1/2

︸ ︷︷ ︸

Λ

Γ
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The multivariate normal distribution (cont.)

Σ = Γ′ Λ1/2 ΓΓ′
︸︷︷︸

I

Λ1/2

︸ ︷︷ ︸

Λ

Γ

Define the square root of the positive semi-definite matrix Σ

Σ1/2 = Γ′Λ1/2Γ (16)

 Σ1/2 is symmetric and positive semi-definite

Suppose Σ is positive definite and all its eigenvalues are strictly positive

Then, we have
(Σ1/2)−1 = Γ′Λ−1Γ = Σ−1/2 (17)
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The multivariate normal distribution (cont.)

Let Z have a Nn (0, In ) distribution

Let Σ be a positive semi-definite symmetric matrix

Let µ be a n × 1 vector of constants

Define the random vector X

X = Σ1/2Z+ µ (18)

By Equation (12), we have

E [X] = µ

Cov[X] = Σ1/2Σ1/2 = Σ
(19)
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The multivariate normal distribution (cont.)

The MGF of X

MX(t) = E
[
exp

{
t′X

}]
= E

[
exp {t′Σ1/2Z+ t′µ}

]

= exp (t′µ)E
{
exp

[(
Σ1/2t

)′
Z
]}

= exp (t′µ) exp
[
(1/2)

(
Σ1/2t

)′
Σ1/2t

]

= exp (t′µ) exp
[
(1/2)t′Σt

]

(20)
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The multivariate normal distribution (cont.)

Definition

Multivariate normal

A n-dimensional random vector X has a multivariate normal distribution

if its MGF is
MX(t) = exp

[
t′µ+ (1/2)t′Σt

]
(21)

for all t ∈ Rn

• Σ is a symmetric, positive semi-definite matrix

• µ ∈ Rn

�

We say that X has a Nn(µ,Σ) distribution
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The multivariate normal distribution (cont.)

The definition is for positive semi-definite positive matrices Σ

• Σ is usually positive definite

 We can get the density of X

If Σ is positive definite, then so is Σ1/2

• Its inverse is (Σ1/2)−1 = Γ′Λ−1Γ = Σ−1/2



The normal

distribution

UFC/DC
ATAII (CK0146)
PR (TIP8412)

2017.2

The normal
distribution

The multivariate
normal
distribution

An application

PCA

The multivariate normal distribution (cont.)

X = Σ1/2Z+ µ

The transformation between X and Z is 1-to-1

The inverse transformation

Z = Σ−1/2(X− µ)

The Jacobian ∣
∣Σ−1/2

∣
∣ =

∣
∣Σ

∣
∣−1/2
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The multivariate normal distribution (cont.)

Hence, upon simplification, the PDF of X

fX(x) =
1

(2π)n/2|Σ|1/2
exp

[

−
1

2
(x− µ)′Σ−1(x− µ)

]

, for x ∈ Rn (22)
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The multivariate normal distribution (cont.)

Theorem 2.1

Suppose X has a Nn(µ,Σ) distribution

Let Y = AX+ b, where A is a m × n matrix and b ∈ Rm

Then, Y has a Nm (Aµ+ b,AΣA′) distribution



The normal

distribution

UFC/DC
ATAII (CK0146)
PR (TIP8412)

2017.2

The normal
distribution

The multivariate
normal
distribution

An application

PCA

The multivariate normal distribution (cont.)

Proof

From MX(t) exp
[
t′µ+ (1/2)t′Σt

]
, for all t ∈ Rm

The MGF of Y

MY(t) = E
[
exp

(
t′Y

)]

= E
{
exp

[
t′(AX + b)

]}

= exp (t′b)E
{
exp

[(
A′t

)′
X
]}

= exp (t′b) exp
[(
A′t

)′
µ+

(
1/2

)(
A′t

)′
Σ
(
A′t

)]

= exp
[
t′
(
Aµ+ b

)
+

(
1/2

)
t′AΣA′t

]

This is the MGF of a Nm(Aµ + b,AΣA′) distribution

�
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The multivariate normal distribution (cont.)

A corollary gives us the marginal distributions of a multivariate normal RV

Let X1 be any sub-vector of X of dimension m < n

We can always rearrange means and correlations

There is no loss in writing

X =

[
X1

X2

]

(23)

X2 is of dimension p = n −m
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The multivariate normal distribution (cont.)

In the same way, we partition mean and covariance matrix of X

µ =

[
µ1

µ2

]

Σ =

[
Σ11 Σ12

Σ21 Σ22

] (24)

• Σ11 is the covariance matrix of X1

• Σ12 contains all covariances between the components of X1 and X2
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The multivariate normal distribution (cont.)

We define A to be the matrix

A =
[[
Im

]∣∣
∣
[
0mp

]]

=








1 0 · · · 0 0 · · · · · · 0
0 1 · · · 0 0 · · · · · · 0
..
.

..

.
. . .

..

.
..
.

. . .
. . .

..

.
0 0 · · · 1 0 · · · · · · 0








 Im indicates a m ×m identity matrix

 0mp indicates a m × p matrix of zeros

Then, X1 = AX
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The multivariate normal distribution (cont.)

We apply Theorem 2.1 to the transformation X1 = AX

We have the following corollary

Corollary 2.1

Suppose X has a Nn (µ,Σ) distribution, partitioned as in Equation (23-24)

µ =

[
µ1

µ2

]

Σ =

[
Σ11 Σ12

Σ21 Σ22

]

Then, X1 has a Nm (µ1,Σ11) distribution

�

This is a useful result

The corollary shows that any marginal distribution of X is also normal

 Mean and covariance matrix are those from the partial vector
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The multivariate normal distribution (cont.)

Example

Consider the multivariate normal in the case when n = 2

 The bivariate normal

We use common notation (X ,Y ) rather than (X1,X2)

Suppose that (X ,Y ) ∼ N2(µ,Σ)

µ =

[
µ1

µ2

]

Σ =

[
σ2
2 σ12

σ21 σ2
2

] (25)

 µ1 and σ2
1 are the mean and variance of X

 µ2 and σ2
2 are the mean and variance of Y

σ12 = ρ(σ1σ2) is the covariance between X and Y

 ρ is the correlation coefficient between X and Y
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The multivariate normal distribution (cont.)

Substituting ρσ1σ2 for σ12 in Σ

Σ =

[
σ2
2 ρσ1σ2

ρσ2σ1 σ2
2

]

The determinant of Σ is σ2
1σ

2
2(1 − ρ2) (remember that ρ2 ≤ 1)

• Suppose that ρ2 < 1, so that Σ is invertible

The inverse of Σ

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

[
σ2
2 −ρσ1σ2

−ρσ2σ1 σ2
1

]

(26)
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The multivariate normal distribution (cont.)

From this expression, the PDF of (X ,Y )

f (x , y) =
1

2πσ1σ2

√
1− ρ2

e(−q/2), −∞ < x , y < ∞ (27)

with

q =
1

1− ρ2

[( x − µ1

σ1

)2
− 2ρ

( x − µ1

σ1

)( x − µ2

σ2

)

+
(y − µ2

σ2

)2]

(28)
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The multivariate normal distribution (cont.)

In general, if X and Y are independent RVs, correlation coefficient is zero

If they are normal, then X ∼ N (µ1, σ2
1) and Y ∼ N (µ2, σ2

2)

• (by Corollary 2.1)
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The multivariate normal distribution (cont.)

f (x , y) =
1

2πσ1σ2

√
1− ρ2

e(−q/2), −∞ < x , y < ∞

q =
[( x − µ1

σ1

)2
+

(y − µ2

σ2

)2]

From the joint PDF of (X ,Y ), let the correlation coefficient be zero

• X and Y are independent

For the bivariate normal, independence corresponds to ρ = 0

The generalisation to the multivariate case also holds true

�
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The multivariate normal distribution (cont.)

If two random variables are independent their covariance is zero

• The converse is not necessarily true

Yet, it can be shown that this is true for the multivariate normal

Theorem 2.2

Suppose that X ∼ Nn(µ,Σ)

Suppose the partitioning

µ =

[
µ1

µ2

]

Σ =

[
Σ11 Σ12

Σ21 Σ22

]

Then, X1 and X2 are independent if and only if Σ12 = 0

�
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The multivariate normal distribution (cont.)

Proof

Note that Σ12 = Σ′
21

The joint MGF of X1 and X2

Mx1,x2 (t1, t2) =

exp
{

t′1µ1 + t′2µ2 +
1

2

(

t′1Σ11t1 + t′2Σ22t2 + t′2Σ21t1 + t′1Σ12t2

)}

(29)

We used
t′ = (t′1, t

′
2)
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The multivariate normal distribution (cont.)

By Corollary (2.1),

• X1 ∼ Nm(µ1,Σ11)

• X2 ∼ Np(µ2,Σ22)

The product of their marginal MGFs

Mx1(t1)Mx2 (t2) = exp
{

t′1µ1 + t′2µ2 +
1

2

(

t′1Σ11t1 + t′2Σ22t2

)}

(30)

For X1 and X2 be independent, Equation (29) and (30) must be identical
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The multivariate normal distribution (cont.)

exp
{

t′1µ1 + t′2µ2 +
1

2

(

t′1Σ11t1 + t′2Σ22t2 + t′2Σ21t1 + t′1Σ12t2

)}

exp
{

t′1µ1 + t′2µ2 +
1

2

(

t′1Σ11t1 + t′2Σ22t2

)}

Independence of X1 and X2 is verified when Σ12 = 0′ and hence Σ21 = 0

 The covariances between their components are all 0

�
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The multivariate normal distribution (cont.)

Theorem

Suppose X has a Nn (µ,Σ) distribution, partitioned as in Equation (23-24)

µ =

[
µ1

µ2

]

Σ =

[
Σ11 Σ12

Σ21 Σ22

]

Assume that Σ is positive definite

Then, the conditional distribution of X1|X2

Nm

[

µ1 +Σ12Σ
−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

]
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The multivariate normal distribution (cont.)

Proof

Consider the joint distribution of W = X1 −Σ12Σ
−1
22 X2 and X2

The joint distribution can be obtained from the transformation

[
W

X2

]

=

[
Im −Σ12Σ

−1
22

0 Ip

]

︸ ︷︷ ︸

A

[
X1

X2

]

This is a linear transformation

The joint distribution is multivariate normal (Theorem 2.1)
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The multivariate normal distribution (cont.)

The means

• E(W) = µ1 −Σ12Σ
−1
22 µ2

• E(X2) = µ2

The covariance matrix

[
Im −Σ12Σ

−1
22

0 Ip

]

︸ ︷︷ ︸

A

[
Σ11 Σ12

Σ21 Σ22

]

︸ ︷︷ ︸

Σ

[
Im 0′

−Σ
−1
22 Σ21 Ip

]

︸ ︷︷ ︸

A′

=

[
Σ11 −Σ12Σ

−1
22 Σ21 0′

0 Σ22

]
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The multivariate normal distribution (cont.)

By Theorem 2.2, the random vectors W and X2 are independent

• The conditional of W2|X2 equals the marginal of W

W|X2 ∼ Nm

(
µ1 −Σ12Σ

−1
22 µ2,Σ11 −Σ12Σ

−1
22 Σ21

)

Because of this independence,

W+Σ12Σ
−1
22 X2|X2

∼ Nm

(
µ1 −Σ12Σ

−1
22 µ2 +Σ12Σ

−1
22 X2,Σ11 −Σ12Σ

−1
22 Σ21

)

�
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The multivariate normal distribution (cont.)

Example

Suppose that (X ,Y ) ∼ N2(µ,Σ)

µ =

[
µ1

µ2

]

Σ =

[
σ2
2 σ12

σ21 σ2
2

]

 µ1 and σ2
1 are the mean and variance of Y (= X1)

 µ2 and σ2
2 are the mean and variance of X (= X2)

Nm

(
µ1 −Σ12Σ

−1
22 µ2 +Σ12Σ

−1
22 X2,Σ11 −Σ12Σ

−1
22 Σ21

)

The expression shows the conditional distribution of Y given X = x

N
[

µ2 + ρ
σ2

σ1
(x − µ1), σ

2
2(1− ρ2)

]
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The multivariate normal distribution (cont.)

The coefficient of x in the conditional mean of E(Y |x) is ρσ2/σ1

E(Y |x) = µ2 + ρ
σ2

σ1

The conditional mean of Y , given that X = x is linear in x

The σ1 and σ2 are the respective standard deviations

ρ is the correlation coefficient of X and Y

Remark

This follows from the fact that the coefficient of x in a linear conditional
mean E(Y |x) is the product of correlation coefficient and σ2/σ1
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The multivariate normal distribution (cont.)

The mean of the conditional distribution of Y given X = x

• It depends upon x (unless ρ = 0)

The variance σ2
2(1 − ρ2) is the same for all real values of x

Thus, given that X = x , the conditional probability that Y is within (≈
2.57)σ2

√
(1− ρ2) units of the conditional mean is 0.99, whatever is x

Most of the probability for the distribution of (X ,Y ) lies within the band

µ2 + ρ
σ2

σ1
(x − µ1)± (≈ 2.57)σ2

√

1− ρ2

about the plot of the linear conditional mean

�
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The multivariate normal distribution (cont.)

Theorem

Suppose X has a Nn(µ,Σ) distribution

Let Σ is positive definite

Then, the RV W = (X− µ)′Σ(X− µ) has a χ2(n) distribution

Proof

Write Σ = Σ1/2Σ1/2, with Σ1/2 = Γ′Λ1/2Γ

Then, Z = Σ−1/2(X− µ) is Nn(0, In )

Let W = Z′Z =
∑n

i=1 Z
2
i
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The multivariate normal distribution (cont.)

Each Zi has a N (0, 1) distribution, for i = 1, 2, . . . , n

From Theorem 1.1, it follows that Z 2
i has a χ2(1) distribution

Variables Z1, . . . ,Zn are independent standard normal RVs

• Thus,
∑n

i=1 Z
2
i = W has a χ2(n) distribution

• (by an earlier corollary)

�
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Principal components analysis

We consider applications of the multivariate normal distribution

• Principal components analysis (PCA)

It results in a linear function of a multivariate normal random vector

• The function preserves the ‘total variation in the problem’

• The random vector has independent components
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Principal components analysis (cont.)

Let the random vector X has the multivariate normal distribution Nn(µ,Σ)

• Σ is positive definite

Consider the spectral decomposition of Σ = Γ′ΛΓ

 The eigenvalues form the main diagonal of Λ

λ1, λ2, . . . , λn

 The corresponding eigenvectors are the columns of Γ

v1,v2, . . . ,vn

Assume without loss of generality that the eigenvalues are sorted

λ1 ≥ λ2 ≥ · · · ≥ λn > 0
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Principal components analysis (cont.)

Define the random vector Y = Γ(X− µ)

ΓΣΓ′ = Λ, thus Y has a Nn(0,Λ) distribution (by Theorem 2.1)

 The components Y1,Y2, . . . ,Yn are independent RVs

 Yi has a N (0, λi ) distribution, for i = 1, 2, . . . , n

The random vector Y is the vector of principal components
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Principal components analysis (cont.)

Total variation of a random vector sums the variances of its components

For a random vector X, because Γ is an orthogonal matrix

TV (X) =
n∑

i=1

σ2
i = Tr(Σ) = Tr(Γ′ΛΓ) = Tr(ΛΓΓ′) =

n∑

i=1

λi = TV (Y)

Hence, X and Y share the same total variation
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Principal components analysis (cont.)

Consider the first component of Y

Y1 = v′
1(X− µ)

• This is a linear combination of the components of X− µ

• Because of orthogonality, ||v1||2 =
∑n

j=1 v
2
1j = 1
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Principal components analysis (cont.)

Consider any other linear combination of (X − µ)

a′(X− µ), with ||a||2 = 1

As a ∈ Rn and because {v1, . . . ,vn} form a basis for Rn

 We must have

a =
n∑

j=1

ajvj

for some set of scalars a1, a2, . . . , an

Furthermore, the basis {v1, . . . ,vn} is orthonormal

a′vi =
( n∑

j=1

ajvj

)′
vi =

n∑

j=1

ajv
′
jvi = ai



The normal

distribution

UFC/DC
ATAII (CK0146)
PR (TIP8412)

2017.2

The normal
distribution

The multivariate
normal
distribution

An application

PCA

Principal components analysis (cont.)

We have that Σ = Γ′ΛΓ =
∑n

i=1 λiviv
′
i and that λi > 0

Then, the inequality

Var(a′X) = a′Cov(X)a = a′Σa =

n∑

i=1

λi (a
′vi )

2

=
n∑

i=1

λia
2
i ≤ λ1

n∑

i=1

a2
i = λ1 = Var(Y1)

(31)

Y1 has the maximum variance of any other linear combination

 Y1 is called the first principal component of X
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Principal components analysis (cont.)

Other components Y2,Y3, . . . ,Yn share a similar property

Relative to the order of their associated eigenvalue

 Second, third, ..., n-th principal component
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Principal components analysis (cont.)

Theorem

For j = 2, . . . ,n and i = 1, 2, . . . , j − 1,

Var[a′X] ≤ λj = Var(Yj )

for all vectors a such that a ⊥ vi and ||a|| = 1

Proof

The proof follows the lines of that for the first principal component (⋆)

�
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