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Systems

A system

A system can be defined as a set of elements (or components) that coop-
erate in order to perform a specific functionality that would be otherwise
impossible to attain for the individual components alone

This is definition is very fine, but it does not highlight an important fact

• The dynamical behaviour of the system

For us a central paradigm is that a system is subjected to external stimuli

• Stimuli influence the temporal evolution of the system itself

A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Systems (cont.)

A system (reloaded)

A system is a physical entity, typically consisting of different interact-
ing components, that responds to external stimuli producing a deter-
mined/specific dynamical behaviour

We study how to mathematically model a broad variety of systems

Our scope is to analyse their dynamical behaviour

! We want to operate them appropriately

! The design of control devices

! Under external stimuli

The methodological approach shall be formal and system independent A
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General topics

There is a wide spectrum of problems that spin around systems theory

! System modelling, identification and analysis

• System control, optimisation and verification

• System diagnosis
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Modelling, identification and
analysis

General concepts
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Modelling

To study a system, the availability of a mathematical model is crucial

! A quantitative description of the behaviour of the system

The model is often constructed on the knowledge of the component devices

• A knowledge of the laws the system obeys to must be available, too
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Modelling (cont.)

Example

Consider the electric circuit consisting of two serially arranged resistors

The current flow i(t) [A] thru the system depends on tension v(t) [V]

R1

R2v(t)
i(t)

• R1 = 1 [Ω]

• R2 = 3 [Ω]

Both resistors can be assumed to follow Ohm’s law1

! v(t) = (R1 +R2)i(t) = 4i(t)

"

1The potential difference (‘voltage’) across an ideal conductor is proportional to
the current that flows through it. The proportionality constant is called ‘resistance’.
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Identification

At times, we only have an incomplete knowledge on the system’s devices

• The model must be constructed from observations

• (Observations of the system behaviour)

Case A) We have a knowledge on the type/number of component devices

• Not all of their parameters are known

• System observations are available

! Parametric identification

! White-box identification

Case B) We have no knowledge on the components and their parameters

• Observations of the system are available

! Black-box identification A
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Identification (cont.)

Example

Consider the electric circuit consisting of two serially arranged resistors

The current flow i(t) [A] thru the system depends on tension v(t) [V]

R1

R2v(t)
i(t)

• R1 = ?

• R2 = ?

Both resistors can still be assumed to follow Ohm’s laws,

v(t) = (R1 +R2)i(t) = Ri(t)

R is now an unknown system parameter

! It can be identified from data
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Identification (cont.)

We can observe the system by collecting N pairs of measurements
{
(vk , ik )

}N

k=1

v

(a)

i

v

(b)

i
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Often, such points will not be perfectly aligned along a line with slope R

! Disturbances alter the behaviour to the system

! Measurement errors are always present

We choose R corresponding to the line that best approximates the data
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Analysis

Systems analysis is about forecasting the future behaviour of a system

! Based on the external stimuli it is subjected to

The availability of a mathematical model of the system is fundamental

• Needed to approach the problem in a quantitative manner



A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Analysis (cont.)

Example

The marine ecosystem is described thru time evolution of its fauna and flora

• Birth-growth-dead processes

The behaviour of the system is influenced by many factors

• Climate conditions, availability of food, ...

• Human predators, pollutants, ...

• ..., and so on

They recently spoke of reducing CO2 emissions by injecting it into the sea

• CO2 dissolves in sea water

The lack of a valid model limits our understanding about the system

• We do not know the response of the ecosystem
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Control, optimisation and
validation
General concepts
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Control

The objective of control is to impose a desired behaviour on a system

We need to explicitly formulate what we mean by ‘desired behaviour’

! The specifications that such behaviour must satisfy

We need to design a device for implementing this task, the controller

! The scope of a controller is to stimulate the system

! Drive its evolution toward the desired behaviour
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Control (cont.)

Example

Consider a conventional network for the distribution of drinking water

• Water pressure must be kept constant throughout the net

We can measure pressure at various network locations

• Locations have nominal (target) pressure values

Specs suggest instantaneous variations within ±10% of nominal value

We identify two stimuli that act on the system (and modify its behaviour)

• The flow-rate of water withdrawn from the network

• The pressure imposed by the network pumps

We cannot control water withdrawals, they are understood as disturbances

Pump pressures can be manipulated to meet specifications

• This manipulation is done by the controller

"
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Optimisation

Achieve a certain system’s behaviour, while optimising a performance index

• Optimisation can be understood as a special case of control

We impose a desired behaviour, while optimising a performance index

• The index measures the quality of the behaviour of the system

• (Economic or operational terms)
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Optimisation (cont.)

Example

Consider a conventional suspension system of a conventional car

It is designed to satisfy two different needs

! Appropriate passengers’ comfort

! Good handling in all conditions

Modern cars have suspensions based on ‘semi-active’ technology

• A controller (dynamically) changes the dumping factor

• It guarantees (a compromise between) the two needs

The optimiser takes into account of cabin and wheel oscillations
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Validation

Suppose that a mathematical model of a system under study is available

• Suppose that a set of desired properties can be formally expressed

Validation allows to see whether the model satisfies the properties
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Validation (cont.)

Example

Consider a conventional elevator

The system is controlled to guarantee that it responds correctly to requests

• The controller is an abstract machine

• Programmable logic controller (PLC)

Formal verification can be used to guarantee the correct functioning

"
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Fault diagnosis
General concepts
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Fault diagnosis

Systems deviate from nominal behaviour because of occurrence of faults

! We need to detect the presence of an anomaly

! We need to identify the typology of fault

! We need to devise a corrective action

Fault diagnosis
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Fault diagnosis (cont.)

Example

The human body is a complex system subjected to many potential faults

• We conventionally call them diseases

Consider the presence of fever, or another anomalous condition

• Symptoms reveal the presence of a disease

A doctor, once identified the pathology, prescribes a therapy
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Classification

The diversity of systems leads to a number of methodological approaches

• Each approach pertains a particular class of models

Conventional methodological approaches and model/system classification

By typology

! Time-evolving systems

• Discrete-event systems

• Hybrid systems

By representation

• Input-output models

! State-space models
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Time-evolving systems

Time-evolving systems

The system/model behaviour is described with functions, or signals

• The independent variable is time (t or k)

!Continuous time-evolving systems

• The time variable varies continuously

! Discrete time-evolving systems

• The time variable takes discrete values

The signal can take values in a discrete set, digital time-evolving systems
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Time-evolving systems
Systems by typology
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Time-evolving systems (cont.)

The evolution of such systems is completely based on the passage of time

The functions of system behaviour satisfy differential/difference equations

• A specification of the relation between functions and their changes
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Time-evolving systems(cont.)

Example

Continuous time-evolving systems

Consider a tank whose volume of liquid V (t) [m3] varies in time

• Variation is due to input and output flow rates

• (By two externally operated pumps)

q1(t)

q2(t)

hmax

hmin

V (t) h(t)

Tank cannot be emptied or filled

!
d

dt
V (t) = q1(t)− q2(t)

• Output flow q2(t) ≥ 0 [m3s−1]

• Input flow q1(t) ≥ 0 [m3s−1]

The differential equation is a relation between continuous-time functions

V (t), q1(t), q2(t)

"
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Time-evolving systems(cont.)

Example

Discrete time-evolving systems

Consider a tank whose volume of liquid V (t) [m3] varies in time

• Measurements are not continuously available

• Acquisitions only every ∆t units of time

We are interested in the system behaviour at 0,∆t , 2∆t , . . . , k∆t , . . .

q1(t)

q2(t)

hmax

hmin

V (t) h(t)

We consider discrete-time variables

• V (k) = V (k∆t)

• q1(k) = q1(k∆t)

• q2(k) = q2(k∆t)

For k = 0, 1, 2, . . .
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Time-evolving systems(cont.)

We approximate the derivative with the difference quotient

d

d
V (t) ≈

∆V

∆t
=

V (k + 1) −V (k)

∆t

Multiplying both sides of
∆V

∆t
= q1(k)− q2(k) by ∆t yields

! V (k + 1) −V (k) = q1(k)∆t − q2(k)∆t

The difference equation is a relation between discrete-time functions

V (k), q1(k), q2(k)

" A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Discrete-event systems
Systems by typology



A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Discrete-event systems

Discrete-event systems

Dynamic systems whose states take logical or symbolic values (not numeric)

The behaviour is characterised by the occurrence of instantaneous events

! [At irregular (perhaps unknown) times]
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Discrete-event systems (cont.)

Example

Discrete-event systems

Consider a depot where parts are awaiting to be processed by some machine

• The number of parts awaiting to be processed cannot be larger than 2

• The machine can be either healthy (working) or faulty (stopped)

aa

aa

pp

ggg rrr

L0 L1 L2

G0 G1 G2

The state of the system

• Number of awaiting parts

• Status of the machine

The events of the system

• Changes in state
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Discrete-event systems (cont.)

aa

aa

pp

ggg rrr

L0 L1 L2

G0 G1 G2

Six possible states

• L0, L1 and L2

• G0, G1 and G2

• L0, the machine is working and the depot is empty

• L1, the machine is working and there is one part in the depot

• L2, the machine is working and there are two parts in the depot

• G0, the machine is not working and the depot is empty

• G1, the machine is not working and there is one part in the depot

• G2, the machine is not working and there are two parts in the depot
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Discrete-event systems (cont.)

aa

aa

pp

ggg rrr

L0 L1 L2

G0 G1 G2

Four possible events

• a and p

• g and r

• a, a new part arrives to the depot

• p, the machines takes one part from the depot

• g , the machine gets faulty

• r , the machine gets fixed
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Discrete-event systems (cont.)

aa

aa

pp

ggg rrr

L0 L1 L2

G0 G1 G2

Event a can only occur when the depot does not have two parts

a !

{

Li → Li+1

Gi → Gi+1

Event p can only occur when the deport is not empty

p !
{

Li → Li−1

Event g and r determine the switches Li → Gi and Gi → Li , respectively

"

A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Hybrid systems
Systems by typology
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Hybrid systems

A model that combines time-evolving dynamics and discrete-event dynamics

! Thus, they are the most general class of dynamical systems
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Hybrid systems (cont.)

Example

Hybrid systems

Consider a modern sauna, a cabin where the temperature is regulated

• A thermostat controls a stove used as heat generator

• Keep the temperature between 80◦C and 90◦C

OFF ON

d

dt
T (t) = k [Ta − T (t)]

d

dt
T (t) = k [Ta − T (t)] + q(t)

T ≥ 90◦C

T ≤ 80◦C

The thermostat can be represented using a discrete-event model

• Switch the heater ON

• Switch the heater OFF

The cabin can be represented using a time-evolving model

• Temperature T (t)
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Hybrid systems(cont.)

OFF ON

d

dt
T (t) = k [Ta − T (t)]

d

dt
T (t) = k [Ta − T (t)] + q(t)

T ≥ 90◦C

T ≤ 80◦C

When the thermostat is OFF

T (t) in the cabin decreases, heat exchanged with the outside [Ta < T (t)]

d

dt
T (t) = k [Ta −T (t)], with k > 0
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Hybrid systems(cont.)

OFF ON

d

dt
T (t) = k [Ta − T (t)]

d

dt
T (t) = k [Ta − T (t)] + q(t)

T ≥ 90◦C

T ≤ 80◦C

When the thermostat is ON

T (t) in the cabin increases, heat generated by the stove q(t)

d

dt
T (t) = k [Ta −T (t)] + q(t)

The state of the system is x = (l ,T )

• A logical variable l ∈ {ON,OFF}, representing the discrete state

• A real function T (t) ∈ R, representing the continuous state
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Systems
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Representation

We provide fundamental concepts for the analysis of time-evolving systems

• Evolution generates from the passing of time

• Focus on continuous-time systems

We introduce the two main forms that are used for describing such systems

! Mathematic formulations and example(s)

We conclude with a classification, based on some system/model properties
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Representation (cont.)

Fundamental step to use formal techniques to study time-evolving systems

! We describe the system behaviour in terms of functions

There are two possible such model/system descriptions

• Input-output (IO) representation

! State-space (SS) representation

We define the mathematical elements and properties of these representations
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Input-output representation
Representation
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Input-output representation

The quantities involved in the input-output (IO) representation of a system

Causes

• Quantities that are generated outside the system

• Their evolution influences the system behaviour

• They are not influenced by the system behaviour

Effects

• Quantities whose behaviour is influenced by the causes

• Their evolution is influenced by nature of the system

By convention,

!

{

Causes ! Inputs

Effects ! Outputs A
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Input-output representation (cont.)

A system

The system S can be seen as an operator or a processing/computing unit

• It assigns a specific evolution to the output variables

• One for each possible evolution of the input variables
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Input-output representation (cont.)

A system can have more than one (r) input and more than one (p) output

• Both inputs and outputs are assumed to be measurable/observable

A graphical IO system representation

u1(t)

ur(t)

...

y1(t)
...

yp(t)
S

r inputs (in Rr )

u(t) =
[
u1(t) · · · ur (t)

]T

p outputs (in Rp)

y(t) =
[
y1(t) · · · yp(t)

]T

Manipulable inputs

• They can be used for control

Non-manipulable inputs

• They are called disturbances
A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Input-output representation (cont.)

Example

A car (IO representation)

Consider a car

Let its position and speed be the output variables

• They are both measurable

As input variables, we can consider wheel and gas position

• They are both measurable and manipulable

By acting on the input variables, we influence the output behaviour

• The changes depend on the specific system (car)

• (More precisely, by its dynamics)

Wind speed could be considered as an additional input variable

• It may be measurable but it is hardly manipulable

r = 3 inputs and p = 2 outputs (A MIMO system)
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Input-output representation (cont.)

Example

Two tanks (IO representation)

Consider a system consisting of two cylindric tanks, both of base B [m2]

• Output flow-rate from tank 1 is the input flow-rate to tank 2

! q2

q1

h1

q2

q3=k⋅h2

h2

(a)

d

First tank

• Input flow-rate q1 [m3s−1]

• Output flow-rate q2 [m3s−1]

• h1 is the liquid level [m]

Second tank

• Input flow-rate q2 [m3s−1]

• Output flow-rate q3 [m3s−1]

• h2 is the liquid level [m]
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Input-output representation (cont.)

Suppose that flow-rates q1 and q2 can be set to some desired value (pumps)

Also suppose that q3 depends linearly on the liquid level in the tank

• q3 = kh2 [m3s−1], with k [m2s−1]

• k appropriate constant

Inputs, q1 and q2

! Measurable and manipulable

! They influence the liquid levels in the tanks

Output, d = h1 − h2

! Measurable, but not manipulable

! It is influenced indirectly only through inputs

"
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State-space representation
Representation
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State-space representation

For a given behaviour of the inputs, S defines the behaviour of the outputs

! The output at time t is not only dependent on the inputs at time t

! It also depends on the past behaviour (evolution) of the system
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State-space description(cont.)

Example

Two tanks (SS representation)

Consider a system consisting of two cylindric tanks, both of base B [m2]

Let d0 = h1,0 − h2,0 be the output variable at time t0

• (h1,0 and h2,0 are the liquid levels at time t0)

Suppose that all input variables (q1 and q2) are zero at time t0

q1

h1

q2

q3=k⋅h2

h2

(a)

d
• q1,0 = 0

• q2,0 = 0

Output d(t) at any time t > t0 depends on input values q1(t) and q2(t)

• Over the entire interval [to , t ]
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State-space representation (cont.)

We can take this into account by introducing an intermediate variable

A variable that exists between inputs and outputs

• The state variable of the system

u1(t) 

ur(t) 

...

y1(t) 
...

yp(t) 

ingressi uscite

x1(t) 

xn(t) 

...

stati

r inputs (in Rr )

u(t) = [u1(t) · · · ur (t)]T

n states (in Rn)

x(t) = [x1(t) · · · xn(t)]T

p outputs (in Rp)

y(t) = [y1(t) · · · yp(t)]T

The state condenses information about past and present of the system
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State-space representation (cont.)

u1(t) 

ur(t) 

...

y1(t) 
...

yp(t) 

uscite

x1(t) 

xn(t) 

...

stati

The state vector x(t) = [x1(t) · · · xn (t)]T has n components

! We say that n is the order of the system

• (In this representation)

Definition

State variable

The state of a system at time t0 is a variable that contains the necessary
information to univocally determine the behaviour of output y(t) for t ≥ t0

• Given the behaviour of input u(t) for t ≥ t0 and the state itself at t0
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State-space description (cont.)

In general, it is possible to select different physical entities as state variables

• The state variable is neither univocally defined, nor it is determined

• It is anything that can be seen as an internal cause of evolution

• (In general)
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State-space representation (cont.)

Example

Two tanks (SS representation)

Consider a system consisting of two cylindric tanks, both of base B [m2]

q1

h1

q2

q3=k⋅h2

h2

(a)

d

First tank

• Input flow-rate q1 [m3s−1]

• Output flow-rate q2 [m3s−1]

• h1 is the liquid level [m]

Second tank

• Input flow-rate q2 [m3s−1]

• Output flow-rate q3 [m3s−1]

• h2 is the liquid level [m]

Let d0 = h1,0 − h2,0 be the output variable at time t0

• h1,0 and h2,0 are the liquid levels at time t0

As state variable, select the volume of liquid in the tanks, V1(t) and V2(t)
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State-space representation (cont.)

We shall see that we are able to evaluate the output d(t) for t > t0

! Need to know the initial state, V1,0 and V2,0, at t0

! Need to know the input, q1(t) and q2(t), in [t0, t ]

"
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State-space representation (cont.)

Common to choose as state those variables that characterise system energy

• For a cylindric tank of base B and liquid level h(t), the potential energy
at time t is Ep(t) = 1/2ρgV 2(t)/B , with ρ the density of the liquid and
V (t) = Bh(t). V (t) or equivalently h(t) can be used as state variable

• For a spring with elastic constant k , the potential energy at time t is
Ek (t) = 1/2kz2(t) with z(t) the spring deformation with respect to an
equilibrium position. z(t) can be used as state variable

• For a mass m moving with speed v(t) on a plane, the kinetic energy at
time t is Em (t) = 1/2mv2(t). v(t) can be used as state of the system
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State-space description(cont.)

Consider a system in which there is energy stored, its state is not zero

• The system can evolve even in the absence of external inputs

The state can be understood as a possible (internal) cause of evolution
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State-space representation (cont.)

Example

Two tanks (SS representation, reloaded)

Consider any of the tanks in the two cylindric tanks system, base B [m2]

q1

h1

q2

q3=k⋅h2

h2

(a)

d

First tank

• Input flow-rate q1 [m3s−1]

• Output flow-rate q2 [m3s−1]

• h1 is the liquid level [m]

Second tank

• Input flow-rate q2 [m3s−1]

• Output flow-rate q3 [m3s−1]

• h2 is the liquid level [m]

Each of the tanks can store a certain amount of potential energy

• The amount depends on the liquid volumes (levels)

The entire (two-tank) system has order 2

"

A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Mathematical model
Representation
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Mathematical model

System analysis studies the relations between the system inputs and outputs
(IO) or, alternatively, between the system inputs, states and outputs (SS)

We are given certain input functions

! Interest in understanding how states and outputs evolve in time

We need a model to describe quantitatively the system behaviour

• The relations between inputs (states) and outputs
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Mathematical model (cont.)

Input-output model

The relationship between the system output y(t) ∈ Rp and its derivatives,
the system input u(t) ∈ Rr and its derivatives (a differential equation)

State-space model

It describes how the evolution ẋ(t) ∈ Rn of the system state depends on the
state x(t) ∈ Rn itself and on the input u(t) ∈ Rr (the state equation)

It describes how the system output y(t) ∈ Rp depends on system state
x(t) ∈ Rn and on system input u(t) ∈ Rr (the output transformation)
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Input-output model

The IO model of a SISO system is given as a differential equation

h
[

y(t), ẏ(t), . . . , y(n)(t)
︸ ︷︷ ︸

output

,u(t), u̇(t), . . . ,u(m)(t)
︸ ︷︷ ︸

input

, t
︸︷︷︸

time

]

= 0

• ẏ(t) =
d

dt
y(t), . . . , ẏ2(t) =

d

dt2
y(t) and . . . , y(n)(t) =

dn

dtn
y(t)

• u̇(t) =
d

dt
u(t), . . . , u̇2(t) =

d

dt2
u(t) and . . . ,u(m)(t) =

dm

dtm
u(t)

h is a multi-parametric function that depends on the system

• n is the maximum order of derivation of the output

• m is the maximum order of derivation of the input

The order of the system (model) is n
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Input-output model (cont.)

Example

Consider a system model given by the differential equation

h
︷ ︸︸ ︷

2 ẏ(t)y(t)
︸ ︷︷ ︸

output

+2
√

t
︸︷︷︸

time

u(t)ü(t)
︸ ︷︷ ︸

input

= 0

We have,

• Output order of derivation, n = 1

• Input order of derivation, m = 2

Function h links y and ẏ, and u and ü, and t is the independent variable

The relationship explicitly depends on the independent variable (time)

!
√
t

"
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Input-output model (cont.)

The IO model of a MIMO system with p outputs and r inputs

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1

[

y1(t), ẏ1(t), . . . , y
(n1)
1 (t)

︸ ︷︷ ︸

output 1

, u1(t), u̇1(t), . . . , u
(m1,1)

1 (t)
︸ ︷︷ ︸

input 1

, . . . , ur (t), . . . , u
(m1,r )
r (t)

︸ ︷︷ ︸

input r

, t
]

= 0

h2

[

y2(t), ẏ2(t), . . . , y
(n2)
2 (t)

︸ ︷︷ ︸

output 2

, u1(t), u̇1(t), . . . , u
(m2,1)

1 (t)
︸ ︷︷ ︸

input 1

, . . . , ur (t), . . . , u
(m2,r )
r (t)

︸ ︷︷ ︸

input r

, t
]

= 0

.

.

.

hp

[

yp(t), ẏp(t), . . . , y
(np )
p (t)

︸ ︷︷ ︸

output p

, u1(t), u̇1(t), . . . , u
(mp,1)

1 (t)
︸ ︷︷ ︸

input 1

, . . . , ur (t), . . . , u
(mp,r )
r (t)

︸ ︷︷ ︸

input r

, t
]

= 0

hi (i = 1, . . . , p) are multi-parametric functions depending on the system

• ni , max order of derivation of the i-th component of output yi(t)

• mi , max order of derivation of the i-th component of input ui (t)

A total of p differential equations
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State-space model
Mathematical model
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State-space model

The SS model of a SISO system is NOT a differential equation of order n

State equation

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = f1
[
x1(t), . . . , xn(t), u(t), t

]

ẋ2(t) = f2
[

x1(t), . . . , xn(t), u(t), t
]

...

ẋn(t) = fn
[
xn (t), . . . , xn(t), u(t), t

]

It links the derivative of each state with the other states and the input

Output transformation

y(t) = g
[

x1(t), . . . , xn (t), u(t), t
]

It further links the output with each state variable and the input

fi with i = 1, . . . , n and g are multi-parametric functions

• They depend on (are) the dynamics of the system
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State-space model (cont.)

Let ẋ(t) be the vector whose components are the derivatives of the state

ẋ(t) =
d

dt
x(t) =

⎡

⎢
⎣

ẋ1(t)
...

ẋn (t)

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

d

dt
x1(t)

...
d

dt
xn (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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State-space model (cont.)

State-space model

!

{

ẋ(t) = f
[
x(t), u(t), t

]

y(t) = g
[

x(t), u(t), t
]

f is a vectorial function whose i-th component is fi , with i = 1, . . . ,n
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State-space model (cont.)

The SS model of a MIMO system with r inputs and p outputs

State equation

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = f1
[
x1(t), . . . , xn(t), u1(t), . . . , ur (t), t

]

ẋ2(t) = f2
[
x1(t), . . . , xn(t), u1(t), . . . , ur (t), t

]

...

ẋn(t) = fn
[

xn(t), . . . , xn(t), u1(t), . . . ,ur (t), t
]

Output transformation

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1(t) = g1
[

x1(t), . . . , xn(t), u1(t), . . . , ur (t), t
]

y2(t) = g2
[
x1(t), . . . , xn(t), u1(t), . . . , ur (t), t

]

...

yp(t) = gp
[

x1(t), . . . , xn(t), u1(t), . . . , ur (t), t
]

Multi-parametric functions depending on the system, f and g

• fi with i = 1, . . . ,n

• gi with i = 1, . . . , p
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State-space model (cont.)

State-space model

!

{

ẋ(t) = f
[

x(t),u(t), t
]

y(t) = g
[
x(t),u(t), t

]



A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

State-space model (cont.)

The state equation is a set of n first-order ordinary differential equations

• Regardless of the fact that the system is SISO or MIMO

The output transformation is a scalar or vectorial algebraic equation

• Depending on the number p of output variables

)),(),(()( tttt uxfx =! y(t)=g(x(t),u(t),t)
y(t)x(t)u(t)
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State-space model (cont.)

The state-space representation of a system is central in our methods

• It offers a consistent framework for analysing systems

• Analysis of systems of arbitrary degree of complexity

Conversion of a scalar n-th order ordinary differential equation

! n first-order ordinary differential equations

! A first-order vector equation, dimension n
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State-space model (cont.)

Example

Consider the third-order scalar equation

...
x (t) + c3ẍ(t) + c2ẋ(t) + c1x(t) = bu(t)

We define,

x(t) =

⎡

⎣

x1(t)
x2(t)
x3(t)

⎤

⎦ =

⎡

⎣

x(t)
ẋ(t)
ẍ(t)

⎤

⎦

Thus,
! ẋ3(t) + c3x3(t) + c2x2(t) + c1x1(t) = bu(t)

This equation can be first integrated to get x3(t) [! ẍ(t)]

• Two more integrations to get x2(t) [! ẋ(t)] and x1 [! x(t)] A
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State-space model (cont.)

The three scalar differential equations that must be solved

ẋ(t) =

⎡

⎣

ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤

⎦ =

⎡

⎣

x2(t)
x3(t)[

− c3x3(t)− c2x2(t) − c1x1(t) + bu(t)
]

⎤

⎦

=

⎡

⎢
⎢
⎢
⎣

f1
[
x(t), u(t), t

]

f2
[
x(t), u(t), t

]

f3
[
x(t), u(t), t

]

⎤

⎥
⎥
⎥
⎦

A single vector (state) equation

"
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Examples

Example

q1

h1

q2

q3=k⋅h2

h2

(a)

d

First tank

• Input flow-rate q1 [m3s−1]

• Output flow-rate q2 [m3s−1]

• h1 is the liquid level [m]

Second tank

• Input flow-rate q2 [m3s−1]

• Output flow-rate q3 [m3s−1]

• h2 is the liquid level [m]

• ui = qi with i = 1, 2, the input variables

• y = d , the output variable

• x1 = V1 and x2 = V2, the state variables

We are interested in the IO and the SS representations of the system
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Examples (cont.)

For an incompressible fluid, by mass conservation
⎧

⎪⎪⎨

⎪⎪⎩

dV1(t)

dt
= q1(t)− q2(t)

dV2(t)

dt
= q2(t)− q3(t) = q2(t) − kh2(t)

(1)

We can set h1 = V1/B , h2 = V2/B , and q3 = kh2

!

⎧

⎪⎪⎨

⎪⎪⎩

ḣ1(t) =
1

B
q1(t)−

1

B
q2(t)

ḣ2(t) =
1

B
q2(t)−

1

B
q3(t) =

1

B
q2(t)−

k

B
h2(t)
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Examples (cont.)

Moreover, we have y(t) = d(t) = h1(t) − h2(t)

ẏ(t) = ḋ(t) = ḣ1(t)− ḣ2(t) =
[ 1

B
q1(t)−

1

B
q2(t)

︸ ︷︷ ︸

ḣ1(t)

]

−
[ 1

B
q2(t)−

k

B
h2(t)

︸ ︷︷ ︸

ḣ2(t)

]

=
1

B
q1(t)−

2

B
q2(t) +

k

B
h2(t)

=
1

B
u1(t)−

2

B
u2(t) +

k

B
[h1(t) − y(t)]

We used u1(t) = q1(t) and u2(t) = q2(t)
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Examples (cont.)

ẏ(t) =
1

B
u1(t) −

2

B
u2(t) +

k

B
h1(t)−

k

B
y(t)

By taking the second derivative of y(t), we have

ÿ(t) =
1

B
u̇1(t)−

2

B
u̇2(t) +

k

B
ḣ1(t)−

k

B
ẏ(t)

=
1

B
u̇1(t)−

2

B
u̇2(t) +

k

B2
u1(t)−

k

B2
u2(t)

︸ ︷︷ ︸

k

B
ḣ1(t)

−
k

B
ẏ(t)

The IO system representation is a ordinary differential equation

! ÿ(t) +
k

B
ẏ(t) =

1

B
u̇1(t) −

2

B
u̇2(t) +

k

B2
u1(t)−

k

B
u2(t) A
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Examples (cont.)

ÿ(t) +
k

B
ẏ(t)−

1

B
u̇1(t) +

2

B
u̇2(t)−

k

B2
u1(t) +

k

B
u2(t) = 0

The obtained model is in the general IO form

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1

[

y1(t), ẏ1(t), . . . , y
(n1)
1 (t)

︸ ︷︷ ︸

output 1

, u1(t), u̇1(t), . . . , u
(m1,1)

1 (t)
︸ ︷︷ ︸

input 1

, . . . , ur (t), . . . , u
(m1,r)
r (t)

︸ ︷︷ ︸

input r

, t
]

= 0

.

.

.

hp

[

yp(t), ẏp(t), . . . , y
(np )
p (t)

︸ ︷︷ ︸

output p

, u1(t), u̇1(t), . . . , u
(mp,1)

1 (t)
︸ ︷︷ ︸

input 1

, . . . , ur (t), . . . , u
(mp ,r)
r (t)

︸ ︷︷ ︸

input r

, t
]

= 0

! p = 1, n1 = 2

! r = 2, m1 = m2 = 1
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Examples (cont.)

The SS system representation is derived from mass conservation

!

⎧

⎪⎪⎨

⎪⎪⎩

dV1(t)

dt
= q1(t)− q2(t)

dV2(t)

dt
= q2(t)− q3(t) = q2(t)− kh2(t)

The state equation is obtained by setting h1 = x1/B and h2 = x2/B

The output transformation,

y(t) =
1

B
x1(t)−

1

B
x2(t)
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Examples (cont.)

The resulting SS representation of the system

!

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = u1(t)− u2(t)

ẋ2(t) = −
k

B
x2(t) + u2(t)

y(t) =
1

B
x1(t)−

1

B
x2(t)
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Examples (cont.)

The model is in the general SS form

State equation

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = f1
[
x1(t), . . . , xn (t), u1(t), . . . ,ur (t), t

]

ẋ2(t) = f2
[
x1(t), . . . , xn (t), u1(t), . . . ,ur (t), t

]

...

ẋn (t) = fn
[

xn(t), . . . , xn(t), u(t), t
]

Output transformation

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1(t) = g1
[

x1(t), . . . , xn(t), u1(t), . . . , ur (t), t
]

y2(t) = g2
[
x1(t), . . . , xn(t), u1(t), . . . , ur (t), t

]

...

yp(t) = gp
[

x1(t), . . . , xn(t), u1(t), . . . , ur (t), t
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Examples (cont.)

In general, the choice of the states is not unique

• We could have chosen the levels as states

• x1 = h1 and x2 = h2

!

⎧

⎪⎨

⎪⎩

ẋ1(t) = −Bu1(t) − Bu2(t)

ẋ2(t) = −kx2(t) + Bu2(t)

y(t) = x1(t)− x2(t)

"
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System properties

We discuss a set of fundamental properties of time-evolving models

• Proper v Improper

• Linear v Non-linear

• With v Without delay

• Dynamical v Instantaneous

• Stationary v Non-stationary

• Lumped v Distributed parameters

Yet another way of classifying dynamical systems/models
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Dynamical v Instantaneous

Definition

Instantaneity

A system is said to be instantaneous if the value of the output y(t) ∈ Rp

at time t only depends on the value of the input u(t) ∈ Rr at time t

A system is said to be dynamical, otherwise

"
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Dynamical v Instantaneous (cont.)

Proposition

IO representation - SISO

A necessary and sufficient condition for a SISO system to be instantaneous
is that the IO relationship is expressed by an equation in the form

h
[

y(t),
✭
✭
✭
✭
✭
✭✭

ẏ(t), . . . , y(n)(t),u(t),
✭

✭
✭
✭
✭
✭✭

u̇(t), . . . ,u(m)(t), t
]

= 0

! h
[
y(t),u(t), t

]
= 0

! The order of the derivatives of y and u is zero (n = m = 0)

"
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Dynamical v Instantaneous (cont.)

h
[
y(t), u(t), t

]
= 0

If a SISO system is instantaneous, the IO relation is an algebraic equation

This is necessary, but it is not sufficient for a system to be instantaneous

Consider a differential equation as IO representation of a SISO system

! Then, the system is certainly dynamical
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Dynamical v Instantaneous systems (cont.)

Example

Counter-intuition

Consider the algebraic equation as IO representation of a SISO system

y(t) = u(t − T ), with T ∈ R+

The output y(t) at time t does not depend on the input u(t) at time t

• It depends on the input value u(t − T ), at a preceding moment

t

u(t) 

t

y(t)=u(t-T) 

T

Such a system is not instantaneous, it is dynamical

! Finite time delay system

"
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Dynamical v Instantaneous (cont.)

Proposition

IO representation - MIMO

A necessary and sufficient condition for a MIMO system with r inputs and
p outputs to be instantaneous is that the IO representation is expressed by
a system of equations in the form

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

h1
[

y1(t), u1(t), u2(t), . . . ,ur (t), t
]

= 0

h2
[
y2(t), u1(t), u2(t), . . . ,ur (t), t

]
= 0

· · ·
hp

[

yp(t), u1(t), u2(t), . . . ,ur (t), t
]

= 0

"
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Dynamical v Instantaneous (cont.)

If a MIMO system is instantaneous, then the following conditions are true

! The order of the derivatives of yi is ni = 0, for all i = 1, . . . , p

! The order of the derivatives of ui is mj ,i = 0, for all j = 1, . . . , p and
i = 1, . . . , r

The IO relation can be expressed as a system of p algebraic equations

If any of the IO relations is a differential equation, the system is dynamical
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Dynamical v Instantaneous

Proposition

SS representation

Consider a model of a system expressed in SS form

{

ẋ(t) = f
[

x(t),u(t), t
]

y(t) = g
[
x(t),u(t), t

]

A necessary and sufficient condition for a system to be instantaneous is
that the SS model is zero-order (i.e., there exists no state vector)

! y(t) = g
[
u(t), t

]

"
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Dynamical v Instantaneous

Example

Consider the two serially arranged resistors

v(t) = (R1 +R2)i(t) = Ri(t)

The system is instantaneous

The IO representation corresponds to the SS output transformation

R1

R2v(t)
i(t)

v(t) = (R1 + R2)i(t) = Ri(t)

! y(t) =
1

R
u(t)

The order of the system is zero (no device to store energy)

"
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Linear v Nonlinear

Definition

Linearity

A system is said to be linear if it obeys the superposition principle

A system is said nonlinear, otherwise

"

Superposition principle

Consider some system

• Let the system response to cause c1 be equal to effect e1

• Let the system response to cause c2 be equal to effect e2

The system response to cause (αc1 + βc2) equals effect (αe1 + βe2)

• (whatever the constants α and β) A
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Linear v Non-linear (cont.)

Proposition

IO representation - SISO

A necessary and sufficient condition for a SISO system to be linear is that
the IO representation is expressed by a linear differential equation

a0(t)y(t) + a1(t)ẏ(t) + · · ·+ an (t)y
(n)(t)

= b0(t)u(t) + b1(t)u̇(t) + · · ·+ bm(t)u(m)(t)

"

The coefficients of the IO representation are, in general, time dependent
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Linear v Non-linear (cont.)

Linear differential equation

Consider the differential equation

h
[
y(t), ẏ(t), . . . , y(n)(t), u(t), u̇(t), . . . ,u(m)(t), t

]
= 0

The equation is linear if and only if the function h is a linear combination
of the output and its derivatives, and of the input and its derivatives

α0(t)y(t) + α1(t)ẏ(t) + · · ·+ αn (t)y(n)(t)

+ β0(t)u(t) + β1(t)u̇(t) + · · ·+ βm(t)u(m)(t) = 0

! A zero-sum weighted sum of inputs, outputs, and derivatives
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Linear v non-linear (cont.)

Consider a MIMO system in IO representation

Each function hi , i = 1, . . . , p, must be a linear combination of the i-th com-
ponent of the output and its ni derivatives, and the input and its derivatives

! The condition is necessary and sufficient
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Linear v non-linear (cont.)

Proposition

SS representation

A necessary and sufficient condition for a system to be linear is that state
equation and output transformation in the SS model are linear equations

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = a1,1(t)x1(t) + · · ·+ a1,n (t)xn(t) + b1,1u1(t) + · · ·+ b1,r (t)ur (t)

· · ·
ẋn(t) = an,1(t)x1(t) + · · ·+ an,n (t)xn (t) + bn,1u1(t) + · · ·+ bn,r (t)ur (t)

y1(t) = c1,1(t)x1(t) + · · ·+ c1,n(t)xn (t) + d1,1u1(t) + · · ·+ d1,r (t)ur (t)

· · ·
yp(t) = cp,1(t)x1(t) + · · ·+ cp,n(t)xn (t) + dp,1u1(t) + · · ·+ dp,r (t)ur (t) A
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Linear v non-linear (cont.)

!

{

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

! A(t) =
{
ai,j (t)

}
∈ Rn×n

! B(t) =
{
bi,j (t)

}
∈ Rn×r

! C(t) =
{
ci,j (t)

}
∈ Rp×n

! D(t) =
{

di,j (t)
}

∈ Rp×r

Coefficient matrices A, B, C and D are, in general, time dependent

"
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Linear v non-linear (cont.)

Example

Consider a system consisting of two cylindric tanks, both of base B [m2]

• Output flow-rate from tank 1 is the input flow-rate to tank 2, q2(t)

q1

h1

q2

q3=k⋅h2

h2

(a)

d

First tank

• Input flow-rate q1 [m3s−1]

• Output flow-rate q2 [m3s−1]

• h1 is the liquid level [m]

Second tank

• Input flow-rate q2 [m3s−1]

• Output flow-rate q3 [m3s−1]

• h2 is the liquid level [m] A
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Linear v non-linear (cont.)

The SS representation of the system, from mass conservation

!

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

!

⎧

⎪⎪⎨

⎪⎪⎩

dV1(t)

dt
= q1(t)− q2(t)

dV2(t)

dt
= q2(t)− q3(t) = q2(t) − kh2(t)

!

{

y(t) =
1

B
x1(t)−

1

B
x2(t)
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Examples (cont.)

We obtained,

!

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = u1(t) − u2(t)

ẋ2(t) =
− k

B
x2(t) + u2(t)

ẏ(t) =
1

B
x1(t) −

1

B
x2(t)

We have,

A(t) =

⎡

⎣

0 0

0
− k

B

⎤

⎦ , B(t) =

[
1 −1
0 1

]

C(t) =

[

1

B

− 1

B

]

, D(t) =
[
0 0

]
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Linear v non-linear (cont.)

Example

Counter-intuition

Consider the system described by the IO model

y(t) = u(t) + 1

The system violates the superposition principle

• It is thus nonlinear

Consider two constant inputs

• u1(t) = 1

• u2(t) = 2

We can calculate the outputs

! y1(t) = u1(t) + 1 = 2

! y2(t) = u2(t) + 1 = 3
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Linear v non-linear (cont.)

Consider the combined input

u3(t) = u1(t) + u2(t) = 3

The resulting output
y3(t) = u3(t) + 1 = 4

We thus have,
y3(t) = 4 ≠ y1(t) + y2(t) = 5

The IO representation is a nonlinear algebraic equation

• (Blame the +1 on the RHS for nonlinearity)
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Linear v non-linear (cont.)

Example

Counter-intuition

Consider the system described by the IO model

ẏ(t) + y(t) =
√
t − 1u(t)

The system is linear

Consider the IO representation for a linear SISO system

a0(t)y(t) + a1(t)ẏ(t) +
✭
✭
✭
✭
✭
✭
✭

· · ·+ an (t)y
(n)(t)

= b0(t)u(t) +
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

b1(t)u̇(t) + · · ·+ bm(t)u(m)(t)

! a0(t) = 1

! a1(t) = 1

! b0(t) =
√
t − 1

System ẏ(t) + y(t) =
√
t − 1u(t) is thus linear
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Stationary and non-stationary systems

Definition

Stationarity

A system is said to be stationary (or time-invariant), if it obeys the trans-
lation principle

A system is said to be non-stationary (or time-varying), otherwise

"

Translation principle

Consider some system

Let the system response to a cause c1(t) be equal to an effect e1(t)

System response to cause c2(t) = c1(t −T ) equals effect e2(t) = e(t −T )
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Stationary and non-stationary systems (cont.)

Let the same cause be applied to system S at 2 different times

! t = 0

! t = T

t

c(t)

t

e(t)

t

c(t-T)

T

t

e(t-T)

T

The resulting effects are analogous

• Shifted by time interval T
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Stationary and non-stationary systems (cont.)

In nature, no system is stationary

Yet, there exists a wide range of variations that can be neglected

• Over large time intervals

Over such intervals, the systems can be considered as stationary
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Stationary and non-stationary systems (cont.)

Proposition

IO representation

A necessary and sufficient condition for a system to be stationary

! The IO representation must not explicitly depend on time

"

Consider the SISO system

h
[
y(t), ẏ(t), . . . , y(n)(t), u(t), u̇(t), . . . ,u(m)(t), t

]
= 0

Then, the stationary model becomes

! h
[

y(t), ẏ(t), . . . , y(n)(t), u(t), u̇(t), . . . ,u(m)(t)
]

= 0 A
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Stationary and non-stationary systems (cont.)

Consider a linear SISO system

a0(t)y(t) + a1(t)ẏ(t) + · · ·+ an (t)y
(n)(t)

= b0(t)u(t) + b1(t)u̇(t) + · · ·+ bm(t)u(m)(t)

The model becomes a linear differential equation

! a0y(t) + a1ẏ(t) + · · ·+ any
(n)(t)

= b0u(t) + b1u̇(t) + · · ·+ bmu(m)(t)

The coefficients are constant



A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Stationary and non-stationary systems (cont.)

Theorem

SS representation

A necessary and sufficient condition for a system to be stationary

! The SS representation must not explicitly depend on time

• (Both state equation and output transformation)

"

Consider the system

{

ẋ(t) = f
[

x(t),u(t), t
]

y(t) = g
[
x(t),u(t), t

]

Then, the stationary model becomes

!

{

ẋ(t) = f
[
x(t),u(t)

]

y(t) = g
[

x(t),u(t)
]
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Stationary and non-stationary systems (cont.)

Consider a linear system

{

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

The model becomes

!

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

The (elements of the) coefficient matrices A, B, C and D are constant
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Stationary and non-stationary systems (cont.)

Example

Consider the instantaneous and linear system

y(t) = tu(t)

The system is non-stationary

We can show this by using the translation principle

Consider the input

u(t) =

{

1, t ∈ [0, 1]

0, elsewhere

If the same input is applied with a delay, the output is not simply shifted A
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Stationary and non-stationary systems (cont.)

The same input is applied with one (1) time-unit delay

t

u(t)

t

y(t)

t

u(t-1)

t

y(t-1)
(a)

1

0 1 0 1 2

1

(c)

0 1

1

(b)
0 1 2

1

2

(d)

"
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Proper and improper systems

Definition

Appropriateness

A system is said to be proper, if it obeys the causality principle

The system is said to be improper, otherwise

"

Causality principle

The effect does not precede the generating cause

In nature, all systems are (obviously?) proper

• Only the model can be improper
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Proper v improper (cont.)

Proposition

IO representation - SISO

A necessary and sufficient condition for a SISO system to be proper

! The order of derivation of the output (n) is equal to or larger than
the order of derivation of the input (m)

h
[

y(t), ẏ(t), . . . , y(n)(t), u(t), u̇(t), . . . , u(m)(t), t
]

= 0, with n ≥ m

A system where n > m is said to be strictly proper
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Proper and improper systems (cont.)

The result can be extended to MIMO systems

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1
[
y1(t), ẏ1(t), . . . , y

(n1)
1 (t)

︸ ︷︷ ︸

output 1

, u1(t), u̇1(t), . . . , u
(m1,1)

1 (t)
︸ ︷︷ ︸

input 1

, . . . , ur (t), . . . , u
(m1,r)
r (t)

︸ ︷︷ ︸

input r

, t
]

= 0

h2
[
y2(t), ẏ2(t), . . . , y

(n2)
2 (t)

︸ ︷︷ ︸

output 2

, u1(t), u̇1(t), . . . , u
(m2,1)

1 (t)
︸ ︷︷ ︸

input 1

, . . . , ur (t), . . . , u
(m2,r)
r (t)

︸ ︷︷ ︸

input r

, t
]

= 0

.

.

.

hp
[
yp(t), ẏp(t), . . . , y

(np )
p (t)

︸ ︷︷ ︸

output p

, u1(t), u̇1(t), . . . , u
(mp,1)

1 (t)
︸ ︷︷ ︸

input 1

, . . . , ur (t), . . . , u
(mp ,r)
r (t)

︸ ︷︷ ︸

input r

, t
]

= 0

None of the equations must include derivatives of the input variables whose
order is larger than the derivation order of corresponding output variables

ni ≥ max
j=1,...,r

mi,j , for all i = 1, . . . , p

A system is strictly proper if the inequality is strictly true, for all i = 1, . . . , p
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Proper and improper systems (cont.)

Proposition

SS representation

Consider a system described by a SS model

{

ẋ(t) = f
[
x(t),u(t), t

]

y(t) = g
[

x(t),u(t), t
]

Such a system/model is always proper

A strictly proper system has an output transformation independent on u(t)

!

{

ẋ(t) = f
[
x(t),u(t), t

]

y(t) = g
[
x(t), t

]
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Proper and improper systems (cont.)

The SS model of a linear, stationary and strictly proper system

!

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
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Systems with and without delay

Definition

Finite time delay

A finite delay is a system whose output y(t) at time t is equal to the input
u(t − T ) at time t − T

"

elemento

y(t)=u(t-T)u(t)
S

! T ∈ (0,+∞) is called the time delay

t

u(t) 

t

y(t)=u(t-T) 

T
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Systems with and without delay (cont.)

Consider the algebraic equation describing a finite delay element

y(t) = u(t − T ), with T ∈ R+

• Such a system is not instantaneous

• The system is dynamic

The output at time t depends on the previous values of the input

A
U
G
22
,
20
18

–
FC

–

Systems

UFC/DC
CK0255|TIP8244

2018.2

General concepts

Modelling,
identification and
analysis

Control,
optimisation and
validation

Fault diagnosis

Classification

Representation

Input-output
representation

State-space
representation

The model

Examples

System
properties

Dynamical v
Instantaneous

Linear v Nonlinear

Stationary v
non-stationary

Proper v improper

With v without
delay

Systems with and without delay (cont.)

Proposition

IO and SS representation

A necessary and sufficient condition for a system to be without a time delay

! All the signals in the model (IO or SS) must share the same argument

"
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Systems with and without delay (cont.)

Example

Consider a system described by the IO model

4ẏ(t) + 2y(t) = u(t − T )

The system has delay elements

• There are signals that are dependent on t

• There are signals that are dependent on t − T

"

Example

Consider a system described by the SS model

{

ẋ(t) = x(t −T ) + u(t)

y(t) = 7x(t)

The system/model has delay elements

• There are signals that are dependent on t

• There are signals that are dependent on t − T

"


