UFC/DC CK0255|TIP8244 2018.2

With v without

Systems

Linear systems Advanced topics in machine learning

Francesco Corona

Department of Computer Science Federal University of Ceará, Fortaleza

Systems

UFC/DC CK0255|TIP8244 2018.2

Systems

A system

A system can be defined as a set of elements (or components) that cooperate in order to perform a specific functionality that would be otherwise impossible to attain for the individual components alone

This is definition is very fine, but it does not highlight an important fact

• The dynamical behaviour of the system

For us a central paradigm is that a system is subjected to external stimuli

• Stimuli influence the temporal evolution of the system itself

Systems

UFC/DC CK0255|TIP8244 2018.2

With v without delay

Systems (cont.)

A system (reloaded)

A system is a physical entity, typically consisting of different interacting components, that responds to external stimuli producing a determined/specific dynamical behaviour

We study how to mathematically model a broad variety of systems

Our scope is to analyse their dynamical behaviour

- → We want to operate them appropriately
- → The design of control devices
- → Under external stimuli

The methodological approach shall be formal and system independent

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

General topics

There is a wide spectrum of problems that spin around systems theory

- → System modelling, identification and analysis
- System control, optimisation and verification
- System diagnosis

Modelling

UFC/DC CK0255|TIP8244 2018.2

Systems

Modelling, identification and analysis

With v without delay

To study a system, the availability of a mathematical model is crucial

A quantitative description of the behaviour of the system

The model is often constructed on the knowledge of the component devices

• A knowledge of the laws the system obeys to must be available, too

Systems

UFC/DC CK0255|TIP8244 2018.2

Modelling, identification and analysis

Modelling, identification and analysis

General concepts

Systems

UFC/DC CK0255|TIP8244 2018.2

Modelling, identification and analysis

Modelling (cont.)

Consider the electric circuit consisting of two serially arranged resistors

The current flow i(t) [A] thru the system depends on tension v(t) [V]

Both resistors can be assumed to follow Ohm's law¹

$$\rightsquigarrow \quad v(t) = (R_1 + R_2)i(t) = 4i(t)$$

 $^{^1\}mathrm{The}$ potential difference ('voltage') across an ideal conductor is proportional to the current that flows through it. The proportionality constant is called 'resistance'

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and analysis

Control, optimisation and

Fault diagnosis

Classification

Representation

Input-output

representation

representation

Î

propertie:

Instantaneous

Linear v Nonline

non-stationary

With v without delay

Identification

At times, we only have an incomplete knowledge on the system's devices

- The model must be constructed from observations
- (Observations of the system behaviour)

Case A) We have a knowledge on the type/number of component devices

- Not all of their parameters are known
- System observations are available
- → Parametric identification
- → White-box identification

Case B) We have no knowledge on the components and their parameters

- Observations of the system are available
- → Black-box identification

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, identification and analysis

Control,

- -----

Input-output

representation

System

properties

Instantaneous

Linear v Nonline

Stationary v

Proper v improp
With v without
delay

Identification (cont.)

We can observe the system by collecting N pairs of measurements $\left\{(v_k,i_k)\right\}_{k=1}^N$

Often, such points will not be perfectly aligned along a line with slope R

- → Disturbances alter the behaviour to the system
- → Measurement errors are always present

We choose R corresponding to the line that best approximates the data

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and analysis

Control, optimisation and

Fault diagnosis

Classification

Representati

representation

representati

The model

Examples

oroperties

Dynamical v

Linear v Nonline

Stationary v

With v with

Identification (cont.)

Example

Consider the electric circuit consisting of two serially arranged resistors

The current flow i(t) [A] thru the system depends on tension v(t) [V]

$$R_1 = ?$$

•
$$R_2 = ?$$

Both resistors can still be assumed to follow Ohm's laws,

$$v(t) = (R_1 + R_2)i(t) = Ri(t)$$

R is now an unknown system parameter

 \leadsto It can be identified from data

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and analysis

Control, optimisation and

Fault diagnosis

Input-output

State-space

System

Dynamical v

Linear v Nonline Stationary v

roper v imprope Vith v without

Analysis

Systems analysis is about forecasting the future behaviour of a system

 \leadsto Based on the external stimuli it is subjected to

The availability of a mathematical model of the system is fundamental

• Needed to approach the problem in a quantitative manner

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and analysis

Control, optimisation and

Fault diagnosis

Cleasifiantia

Input-output

representatio

oresentation

i ne modei

Examples

System

Dynamical

Instantaneous

Stationary v

Proper v imprope With v without

Analysis (cont.)

Example

The marine ecosystem is described thru time evolution of its fauna and flora

Birth-growth-dead processes

The behaviour of the system is influenced by many factors

- Climate conditions, availability of food, ...
- Human predators, pollutants, ...
- ..., and so on

They recently spoke of reducing CO_2 emissions by injecting it into the sea

• CO₂ dissolves in sea water

The lack of a valid model limits our understanding about the system

• We do not know the response of the ecosystem

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

fodelling, lentification and

Control, optimisation and

Fault diagnosi

Classification

Representan

Input-output representation

State-space

The model

Examples

System

ynamical v

stantaneous

Stationary v

Proper v improp With v without

Control, optimisation and validation

General concepts

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept:

identification and analysis Control,

optimisation and validation

Representatio

representation

representatio

Evample

System

D------

Tilstantaneous

Stationary v

non-stationary

With v without

Control

The objective of **control** is to impose a desired behaviour on a system

We need to explicitly formulate what we mean by 'desired behaviour'

The specifications that such behaviour must satisfy

We need to design a device for implementing this task, the **controller**

- → The scope of a controller is to stimulate the system
- → Drive its evolution toward the desired behaviour

Systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

General concep

Modelling, identification and analysis Control,

optimisation and validation

- -----

Representatio

representation

representation

Evample

System

Dynamical v

inear v Nonlinea

Proper v imprope With v without

Control (cont.)

Example

Consider a conventional network for the distribution of drinking water

• Water pressure must be kept constant throughout the net

We can measure pressure at various network locations

• Locations have nominal (target) pressure values

Specs suggest instantaneous variations within $\pm 10\%$ of nominal value

We identify two stimuli that act on the system (and modify its behaviour)

- The flow-rate of water withdrawn from the network
- The pressure imposed by the network pumps

We cannot control water withdrawals, they are understood as disturbances

Pump pressures can be manipulated to meet specifications

• This manipulation is done by the controller

UFC/DC CK0255|TIP8244 2018.2

Control, optimisation and validation

With v without

Optimisation

Achieve a certain system's behaviour, while optimising a performance index

• Optimisation can be understood as a special case of control

We impose a desired behaviour, while optimising a performance index

- The index measures the quality of the behaviour of the system
- (Economic or operational terms)

Systems UFC/DC CK0255|TIP8244 2018.2

Control, optimisation and validation

With v without delay

Validation

Suppose that a mathematical model of a system under study is available

• Suppose that a set of desired properties can be formally expressed

Validation allows to see whether the model satisfies the properties

Systems

UFC/DC CK0255|TIP8244 2018.2

Control, optimisation and validation

Optimisation (cont.)

Consider a conventional suspension system of a conventional car

It is designed to satisfy two different needs

- → Appropriate passengers' comfort
- → Good handling in all conditions

Modern cars have suspensions based on 'semi-active' technology

- A controller (dynamically) changes the dumping factor
- It guarantees (a compromise between) the two needs

The optimiser takes into account of cabin and wheel oscillations

Systems UFC/DC CK0255|TIP8244 2018.2

Control, optimisation and validation

Validation (cont.)

Consider a conventional elevator

The system is controlled to guarantee that it responds correctly to requests

- The controller is an abstract machine
- Programmable logic controller (PLC)

Formal verification can be used to guarantee the correct functioning

UFC/DC CK0255|TIP8244 2018.2

Fault diagnosis

Fault diagnosis

General concepts

Systems

UFC/DC CK0255|TIP8244 2018.2

Fault diagnosis

With v without delay

Fault diagnosis (cont.)

The human body is a complex system subjected to many potential faults

• We conventionally call them diseases

Consider the presence of fever, or another anomalous condition

• Symptoms reveal the presence of a disease

A doctor, once identified the pathology, prescribes a therapy

Systems

UFC/DC CK0255|TIP8244 2018.2

Fault diagnosis

Fault diagnosis

Systems deviate from nominal behaviour because of occurrence of faults

- We need to detect the presence of an anomaly
- → We need to identify the typology of fault
- → We need to devise a corrective action

Fault diagnosis

Systems

UFC/DC CK0255|TIP8244 2018.2

Classification

Classification Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, identification an

Control, optimisation and

Fault diagnosis

Classification

Representation

T-----

representation

representation

The model

System

Dynamical v

Linone v Monlino

Stationary v

Proper v imprope With v without

Classification

The diversity of systems leads to a number of methodological approaches

Each approach pertains a particular class of models

Conventional methodological approaches and model/system classification

By typology

- → Time-evolving systems
- Discrete-event systems
- Hybrid systems

By representation

- Input-output models
- → State-space models

Systems

UFC/DC CK0255|TIP8244 2018.2

eneral concepts

fodelling, lentification and

optimisation and validation

Classification

Representati

representation State-space

The model

Examples

System properties

)ynamical v nstantaneous .inear v Nonlines

Proper v improp

Time-evolving systems

Time-evolving systems

The system/model behaviour is described with functions, or signals

- The independent variable is time (t or k)
- The time variable varies continuously
- → Discrete time-evolving systems
- The time variable takes discrete values

The signal can take values in a discrete set, digital time-evolving systems

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

identification s analysis

Control, optimisation

Fault diagnos

Classification

Representation

representation

representa

xamples

System

D-----------------

r. s. ..

tationary v

Proper v imprope

With v without delay

Time-evolving systems

Systems by typology

Systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

General concept

Modelling, identification and analysis

alidation and

Classification

Representatio

representation State-space

The mode

Examples

System

properties

Instantaneous Linear v Nonlin

tationary v

Proper v improp With v without

Time-evolving systems (cont.)

The evolution of such systems is completely based on the passage of time

The functions of system behaviour satisfy differential/difference equations

• A specification of the relation between functions and their changes

UFC/DC CK0255|TIP8244 2018.2

Classification

With v without

Time-evolving systems(cont.)

Continuous time-evolving systems

Consider a tank whose volume of liquid V(t) [m³] varies in time

- · Variation is due to input and output flow rates
- (By two externally operated pumps)

Tank cannot be emptied or filled

$$\rightarrow \frac{\mathrm{d}}{\mathrm{d}t}V(t) = q_1(t) - q_2(t)$$

• Output flow $q_2(t) > 0 \text{ [m}^3\text{s}^{-1}\text{]}$

• Input flow $q_1(t) \ge 0 \, [\text{m}^3 \text{s}^{-1}]$

The differential equation is a relation between continuous-time functions

$$V(t), q_1(t), q_2(t)$$

Systems

UFC/DC CK0255|TIP8244 2018.2

Classification

With v without delay

Time-evolving systems(cont.)

We approximate the derivative with the difference quotient

$$\frac{\mathrm{d}}{\mathrm{d}}V(t) \approx \frac{\Delta V}{\Delta t} = \frac{V(k+1) - V(k)}{\Delta t}$$

Multiplying both sides of $\frac{\Delta V}{\Delta t} = q_1(k) - q_2(k)$ by Δt yields

$$\rightarrow$$
 $V(k+1) - V(k) = q_1(k)\Delta t - q_2(k)\Delta t$

The difference equation is a relation between discrete-time functions

$$V(k), q_1(k), q_2(k)$$

Systems

UFC/DC CK0255|TIP8244 2018.2

Classification

Time-evolving systems(cont.)

Discrete time-evolving systems

Consider a tank whose volume of liquid V(t) [m³] varies in time

- Measurements are not continuously available
- Acquisitions only every Δt units of time

We are interested in the system behaviour at $0, \Delta t, 2\Delta t, \dots, k\Delta t, \dots$

We consider discrete-time variables

- $V(k) = V(k\Delta t)$
- $q_1(k) = q_1(k\Delta t)$
- $q_2(k) = q_2(k\Delta t)$

For k = 0, 1, 2, ...

Systems

UFC/DC CK0255|TIP8244 2018.2

Classification

Discrete-event systems

Systems by typology

UFC/DC CK0255|TIP8244 2018.2

General concepts

identification ar

Control, optimisation and

T. 1. 1.

Tuute diagnoon

Classification

Representation

nput-output

State-space

The model

Examples

properties

Dynamical v

T :---- -- NT---1:---

Stationary v

Proper v imprope With v without

With v withou delay

Discrete-event systems

Discrete-event systems

Dynamic systems whose *states* take logical or symbolic values (not numeric)

The behaviour is characterised by the occurrence of instantaneous events

→ [At irregular (perhaps unknown) times]

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept: Modelling,

analysis

Control, optimisation a

Fault diagnosi

Classification

Representation

epresentation

Evamples

System

properties

Instantaneous

Linear v Nonlinear

non-stationa

Proper v improp With v without delay

Discrete-event systems (cont.)

Six possible states

- L_0 , L_1 and L_2
- G_0 , G_1 and G_2
- L_0 , the machine is working and the depot is empty
- L_1 , the machine is working and there is one part in the depot
- L_2 , the machine is working and there are two parts in the depot
- G₀, the machine is not working and the depot is empty
- G_1 , the machine is not working and there is one part in the depot
- G_2 , the machine is not working and there are two parts in the depot

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and

optimisation and validation

Classification

Representati

State-space

The model

Evample

ystem roperties

)ynamical v nstantaneous

Stationary v

With v withou delay

Discrete-event systems (cont.)

$\operatorname{Example}$

Discrete-event systems

Consider a depot where parts are awaiting to be processed by some machine

- The number of parts awaiting to be processed cannot be larger than 2
- The machine can be either healthy (working) or faulty (stopped)

The state of the system

- Number of awaiting parts
- Status of the machine

The events of the system

• Changes in state

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, identification and analysis

optimisation and validation

Classification

Representation

State-space

The model

System

properties

instantaneous Linear v Nonlinear

Proper v imprope With v without

Discrete-event systems (cont.)

Four possible events

- \bullet a and p
- g and r
- a, a new part arrives to the depot
- p, the machines takes one part from the depot
- q, the machine gets faulty
- r, the machine gets fixed

UFC/DC CK0255|TIP8244 2018.2

Classification

With v without

Discrete-event systems (cont.)

Event a can only occur when the depot does not have two parts

$$a \leadsto \begin{cases} L_i \to L_{i+1} \\ G_i \to G_{i+1} \end{cases}$$

Event p can only occur when the deport is not empty

$$p \rightsquigarrow \left\{ L_i \to L_{i-1} \right\}$$

Event g and r determine the switches $L_i \to G_i$ and $G_i \to L_i$, respectively

UFC/DC CK0255|TIP8244 2018.2

Systems

Classification

With v without delay

Hybrid systems

A model that combines time-evolving dynamics and discrete-event dynamics

→ Thus, they are the most general class of dynamical systems

Systems

UFC/DC CK0255|TIP8244 2018.2

Classification

Hybrid systems

Systems by typology

Systems

UFC/DC CK0255|TIP8244 2018.2

Classification

Hybrid systems (cont.)

Hybrid systems

Consider a modern sauna, a cabin where the temperature is regulated

- A thermostat controls a stove used as heat generator
- Keep the temperature between 80°C and 90°C

The thermostat can be represented using a discrete-event model

- Switch the heater ON
- Switch the heater OFF

The cabin can be represented using a time-evolving model

• Temperature T(t)

UFC/DC CK0255|TIP8244 2018.2

Classification

With v without

Hybrid systems(cont.)

When the thermostat is OFF

T(t) in the cabin decreases, heat exchanged with the outside $[T_a < T(t)]$

$$\frac{d}{dt}T(t) = k[T_a - T(t)], \text{ with } k > 0$$

Systems

UFC/DC CK0255|TIP8244 2018.2

Representation

With v without delay

Representation

Systems

Systems

UFC/DC CK0255|TIP8244 2018.2

Classification

Hybrid systems(cont.)

When the thermostat is ON

T(t) in the cabin increases, heat generated by the stove q(t)

$$\frac{d}{dt}T(t) = k[T_a - T(t)] + q(t)$$

The state of the system is x = (l, T)

- A logical variable $l \in \{ON, OFF\}$, representing the discrete state
- A real function $T(t) \in \mathcal{R}$, representing the continuous state

Systems

UFC/DC CK0255|TIP8244 2018.2

Representation

Representation

We provide fundamental concepts for the analysis of time-evolving systems

- Evolution generates from the passing of time
- Focus on continuous-time systems

We introduce the two main forms that are used for describing such systems

→ Mathematic formulations and example(s)

We conclude with a classification, based on some system/model properties

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification ar

Control, optimisation and

Fault diagnosis

Representation

Input-output representation

State-space

The model

Examples

System propertie:

Dynamical v

T :---- -- NT---1:---

Stationary v

Proper v imprope

With v withou delay

Representation (cont.)

Fundamental step to use formal techniques to study time-evolving systems

→ We describe the system behaviour in terms of functions

There are two possible such model/system descriptions

- Input-output (IO) representation
- → State-space (SS) representation

We define the mathematical elements and properties of these representations

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

identification an analysis

optimisation

Classification

Representatio

Input-output representation

State-space

representation

Example

System

D------

Tilstantaneous

Ci i

non-stationar

Proper v improp With v without delay

Input-output representation

The quantities involved in the input-output (IO) representation of a system

Causes

- Quantities that are generated outside the system
- Their evolution influences the system behaviour
- They are not influenced by the system behaviour

Effects

- Quantities whose behaviour is influenced by the causes
- Their evolution is influenced by nature of the system

By convention,

 $\begin{array}{c} \sim \\ \longrightarrow \\ \text{Effects} \\ \sim \\ \text{Outputs} \end{array}$

Systems

UFC/DC CK0255|TIP8244 2018.2

eneral concepts

lodelling, lentification and

Control

validation

Representatio

Input-output representation

State-space

The model

properties

ynamical v

inear v Nonlinea

Stationary v

Proper v improp With v without

Input-output representation

Representation

Systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

General concept

identification and

Control, optimisation and validation

Classification

Input-output representation

State-space

The mode

Examples

System

properties

Instantaneous

Stationary v

Proper v improp With v without

Input-output representation (cont.)

A system

The system S can be seen as an operator or a processing/computing unit

- It assigns a specific evolution to the output variables
- One for each possible evolution of the input variables

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and

Control, optimisation and

Fault diagnosis

Classification

Representation

Input-output representation

representation

The model

Examples

System

properties

Instantaneous

Linear v Nonline

non-stationary

With v without delay

Input-output representation (cont.)

A system can have more than one (r) input and more than one (p) output

• Both inputs and outputs are assumed to be measurable/observable

A graphical IO system representation

r inputs (in \mathcal{R}^r)

$$\mathbf{u}(t) = \begin{bmatrix} u_1(t) \cdots u_r(t) \end{bmatrix}^T$$

p **outputs** (in \mathbb{R}^p)

$$\mathbf{y}(t) = \left[y_1(t) \cdots y_p(t) \right]^T$$

Manipulable inputs

• They can be used for control

Non-manipulable inputs

• They are called disturbances

Input-output representation (cont.)

UFC/DC CK0255|TIP8244 2018.2

General concepts
Modelling,

Systems

Control,

validation

Classification

Representation

representation State-space

representation The model

Examples

System properties

Dynamical v Instantaneous

Stationary v

Proper v improp

Example

Two tanks (IO representation)

Consider a system consisting of two cylindric tanks, both of base $B\ [\mathrm{m}^2]$

 \bullet Output flow-rate from tank 1 is the input flow-rate to tank 2

 $\rightsquigarrow q_2$

First tank

- Input flow-rate q_1 [m³s⁻¹]
- Output flow-rate q_2 [m³s⁻¹]
- h_1 is the liquid level [m]

Second tank

- Input flow-rate q_2 [m³s⁻¹]
- Output flow-rate q_3 [m³s⁻¹]
- h_2 is the liquid level [m]

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and analysis

optimisation and validation

Classification

Representation Input-output representation

State-space representation

The model

System

Dynamical v

Linear v Nonlines Stationary v

Proper v impi

Input-output representation (cont.)

$\operatorname{Example}$

A car (IO representation)

Consider a car

Let its position and speed be the output variables

• They are both measurable

As input variables, we can consider wheel and gas position

• They are both measurable and manipulable

By acting on the input variables, we influence the output behaviour

- The changes depend on the specific system (car)
- (More precisely, by its dynamics)

Wind speed could be considered as an additional input variable

• It may be measurable but it is hardly manipulable

r = 3 inputs and p = 2 outputs (A MIMO system)

Systems

UFC/DC CK0255|TIP8244 2018.2

General concep

Modelling, identification and analysis Control,

optimisation and validation

Classification

Representation

Input-output representation

State-space representation

Examples

System

Dynamical v Instantaneous

Linear v Nonlinea Stationary v

Proper v improp

Input-output representation (cont.)

Suppose that flow-rates q_1 and q_2 can be set to some desired value (pumps)

Also suppose that q_3 depends linearly on the liquid level in the tank

- $q_3 = kh_2 \text{ [m}^3\text{s}^{-1}\text{], with } k \text{ [m}^2\text{s}^{-1}\text{]}$
- k appropriate constant

Inputs, q_1 and q_2

- → Measurable and manipulable
- → They influence the liquid levels in the tanks

Output,
$$d = h_1 - h_2$$

- → Measurable, but not manipulable
- → It is influenced indirectly only through inputs

UFC/DC CK0255|TIP8244 2018.2

State-space representation

With v without

State-space representation

Representation

Systems

UFC/DC CK0255|TIP8244 2018.2

State-space representation

State-space description(cont.)

Two tanks (SS representation)

Consider a system consisting of two cylindric tanks, both of base B [m²]

Let $d_0 = h_{1,0} - h_{2,0}$ be the output variable at time t_0

• $(h_{1,0} \text{ and } h_{2,0} \text{ are the liquid levels at time } t_0)$

Suppose that all input variables $(q_1 \text{ and } q_2)$ are zero at time t_0

- $q_{1,0} = 0$
- $q_{2,0} = 0$

Output d(t) at any time $t > t_0$ depends on input values $q_1(t)$ and $q_2(t)$

• Over the entire interval $[t_o, t]$

Systems

UFC/DC CK0255|TIP8244 2018.2

State-space representation

State-space representation

For a given behaviour of the inputs, S defines the behaviour of the outputs

- \rightarrow The output at time t is not only dependent on the inputs at time t
- → It also depends on the past behaviour (evolution) of the system

Systems

UFC/DC CK0255|TIP8244 2018.2

State-space representation

State-space representation (cont.)

We can take this into account by introducing an intermediate variable

A variable that exists between inputs and outputs

• The **state** variable of the system

The state condenses information about past and present of the system

UFC/DC CK0255|TIP8244 2018.2

General concepts

identification a

Control, optimisation and

raut diagnos

Input-output

State-space representation

The model

Examples

G .

properties

Instantaneous

Stationary v

Proper v improper

State-space representation (cont.)

The state vector $\mathbf{x}(t) = [x_1(t) \cdots x_n(t)]^T$ has n components

- \rightarrow We say that n is the order of the system
- (In this representation)

Definition

State variable

The **state** of a system at time t_0 is a variable that contains the necessary information to univocally determine the behaviour of output $\mathbf{y}(t)$ for $t \geq t_0$

• Given the behaviour of input $\mathbf{u}(t)$ for $t \geq t_0$ and the state itself at t_0

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept:

Modelling, dentification and

optimisation and

Fault diagnosis

Classification

Representation Input-output

State-space representation

The model

Examples

properties

ynamical v

Stationary v

Proper v improp With v without

State-space description (cont.)

In general, it is possible to select different physical entities as state variables

- The state variable is neither univocally defined, nor it is determined
- It is anything that can be seen as an internal cause of evolution
- (In general)

Systems

UFC/DC CK0255|TIP8244 2018.2

Modelling, identification and

Control, optimisation an

Fault diagnosis

Classification

Input-output representation

State-space representation

System

properties

Dynamical v Instantaneous

Linear v Nonli

Stationary v

Proper v imprope With v without delay

State-space representation (cont.)

Example

Two tanks (SS representation)

Consider a system consisting of two cylindric tanks, both of base $B\ [\mathrm{m}^2]$

First tank

- Input flow-rate q_1 [m³s⁻¹]
- \bullet Output flow-rate $q_2~[\mathrm{m}^3\mathrm{s}^{-1}]$
- h_1 is the liquid level [m]

Second tank

- Input flow-rate q_2 [m³s⁻¹]
- Output flow-rate q_3 [m³s⁻¹]
- h_2 is the liquid level [m]

Let $d_0 = h_{1,0} - h_{2,0}$ be the output variable at time t_0

• $h_{1,0}$ and $h_{2,0}$ are the liquid levels at time t_0

As state variable, select the volume of liquid in the tanks, $V_1(t)$ and $V_2(t)$

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept Modelling,

identification and analysis Control,

Fault diagnosis

- -----

Representation

State-space representation

Examples

System

properties

I is a North

Stationary v

Proper v improper With v without

State-space representation (cont.)

We shall see that we are able to evaluate the output d(t) for $t > t_0$

- \rightarrow Need to know the initial state, $V_{1,0}$ and $V_{2,0}$, at t_0
- Need to know the input, $q_1(t)$ and $q_2(t)$, in $[t_0, t]$

UFC/DC CK0255|TIP8244 2018.2

General concept

identification an analysis

Control, optimisation and

Representation

Input-output

State-space representation

The model

Examples

System

Dynamical v Instantaneous

non-stationary
Proper v imprope
With v without

State-space representation (cont.)

Common to choose as state those variables that characterise system energy

- For a cylindric tank of base B and liquid level h(t), the potential energy at time t is $E_p(t) = 1/2\rho g V^2(t)/B$, with ρ the density of the liquid and V(t) = Bh(t). V(t) or equivalently h(t) can be used as state variable
- For a spring with elastic constant k, the potential energy at time t is $E_k(t) = 1/2kz^2(t)$ with z(t) the spring deformation with respect to an equilibrium position. z(t) can be used as state variable
- For a mass m moving with speed v(t) on a plane, the kinetic energy at time t is $E_m(t) = 1/2mv^2(t)$. v(t) can be used as state of the system

Systems

UFC/DC CK0255|TIP8244 2018.2

deneral concept

Modelling, dentification and

Control,

Fault diagnosis

Classification

Kepresentatioi Input-output

State-space representation

The model

Examples

properties

ynamical v stantaneous

Stationary v

Proper v improp With v without delay

State-space description(cont.)

Consider a system in which there is energy stored, its state is not zero

• The system can evolve even in the absence of external inputs

The state can be understood as a possible (internal) cause of evolution

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts
Modelling,
identification and

Control, optimisation a

Fault diagnosis

Classification

representation State-space representation

The model

System

oroperties Dynamical v

Linear v Nonlinea

Stationary v

non-stationary Proper v improp

State-space representation (cont.)

Example

Two tanks (SS representation, reloaded)

Consider any of the tanks in the two cylindric tanks system, base $B~[\mathrm{m}^2]$

- Input flow-rate q_1 [m³s⁻¹]
- Output flow-rate q_2 [m³s⁻¹]
- h_1 is the liquid level [m]

Second tank

- Input flow-rate q_2 [m³s⁻¹]
- Output flow-rate q_3 [m³s⁻¹]
- h_2 is the liquid level [m]

Each of the tanks can store a certain amount of potential energy

 $q_3=k\cdot h_2$

• The amount depends on the liquid volumes (levels)

The entire (two-tank) system has order 2

 h_2

Systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

General concep

Modelling, identification an analysis

Control, optimisation and validation

Classification

Representation

Input-output representation

State-space representation The model

.

Examples

properties

Dynamical v

Linear v Nonline

Proper v imprope With v without

Mathematical model

Representation

UFC/DC CK0255|TIP8244 2018.2

The model

With v without

Mathematical model

System analysis studies the relations between the system inputs and outputs (IO) or, alternatively, between the system inputs, states and outputs (SS)

We are given certain input functions

→ Interest in understanding how states and outputs evolve in time

We need a model to describe quantitatively the system behaviour

• The relations between inputs (states) and outputs

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

With v without

Input-output model

Mathematical model

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

Mathematical model (cont.)

Input-output model

The relationship between the system output $\mathbf{y}(t) \in \mathcal{R}^p$ and its derivatives, the system input $\mathbf{u}(t) \in \mathcal{R}^r$ and its derivatives (a differential equation)

State-space model

It describes how the evolution $\dot{\mathbf{x}}(t) \in \mathbb{R}^n$ of the system state depends on the state $\mathbf{x}(t) \in \mathcal{R}^n$ itself and on the input $\mathbf{u}(t) \in \mathcal{R}^r$ (the state equation)

It describes how the system output $\mathbf{v}(t) \in \mathcal{R}^p$ depends on system state $\mathbf{x}(t) \in \mathcal{R}^n$ and on system input $\mathbf{u}(t) \in \mathcal{R}^r$ (the output transformation)

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

Input-output model

The IO model of a SISO system is given as a differential equation

$$h\left[\underbrace{y(t),\dot{y}(t),\ldots,y^{(n)}(t)}_{\text{output}},\underbrace{u(t),\dot{u}(t),\ldots,u^{(m)}(t)}_{\text{input}},\underbrace{t}_{\text{time}}\right]=0$$

$$\bullet \ \ \dot{y}(t)=\frac{d}{dt}y(t),\ldots,\dot{y}^2(t)=\frac{d}{dt^2}y(t) \ \text{and} \ \ldots,y^{(n)}(t)=\frac{d^n}{dt^n}y(t)$$

•
$$\dot{u}(t) = \frac{d}{dt}u(t), \dots, \dot{u}^2(t) = \frac{d}{dt^2}u(t)$$
 and $\dots, u^{(m)}(t) = \frac{d^m}{dt^m}u(t)$

h is a multi-parametric function that depends on the system

- \bullet n is the maximum order of derivation of the output
- \bullet m is the maximum order of derivation of the input

The order of the system (model) is n

UFC/DC CK0255|TIP8244 2018.2

The model

With v without

Input-output model (cont.)

Consider a system model given by the differential equation

$$2\underbrace{\underbrace{\dot{y}(t)y(t)}_{\text{output}} + 2}_{\text{output}} \underbrace{\frac{t}{\text{time}}}_{\text{input}} \underbrace{u(t)\ddot{u}(t)}_{\text{input}} = 0$$

We have,

- Output order of derivation, n=1
- Input order of derivation, m=2

Function h links y and \dot{y} , and u and \ddot{u} , and t is the independent variable

The relationship *explicitly* depends on the independent variable (time)

$$\rightsquigarrow \sqrt{t}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

With v without

State-space model

Mathematical model

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

Input-output model (cont.)

The IO model of a MIMO system with p outputs and r inputs

$$\begin{cases} h_1 \left[\underbrace{y_1(t), \dot{y}_1(t), \dots, y_1^{(n_1)}(t)}_{\text{output 1}}, \underbrace{u_1(t), \dot{u}_1(t), \dots, u_1^{(m_1, 1)}(t)}_{\text{input 1}}, \dots, \underbrace{u_r(t), \dots, u_r^{(m_1, r)}(t)}_{\text{input r}}, t \right] \\ = 0 \\ h_2 \left[\underbrace{y_2(t), \dot{y}_2(t), \dots, y_2^{(n_2)}(t)}_{\text{output 2}}, \underbrace{u_1(t), \dot{u}_1(t), \dots, u_1^{(m_2, 1)}(t)}_{\text{input 1}}, \dots, \underbrace{u_r(t), \dots, u_r^{(m_2, r)}(t)}_{\text{input r}}, t \right] \\ = 0 \\ \vdots \\ h_p \left[\underbrace{y_p(t), \dot{y}_p(t), \dots, y_p^{(n_p)}(t)}_{\text{output p}}, \underbrace{u_1(t), \dot{u}_1(t), \dots, u_1^{(m_p, 1)}(t)}_{\text{input 1}}, \dots, \underbrace{u_r(t), \dots, u_r^{(m_p, r)}(t)}_{\text{input r}}, t \right] \\ = 0 \end{cases}$$

 h_i (i = 1, ..., p) are multi-parametric functions depending on the system

- n_i , max order of derivation of the *i*-th component of output $y_i(t)$
- m_i , max order of derivation of the *i*-th component of input $u_i(t)$

A total of p differential equations

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

State-space model

The SS model of a SISO system is NOT a differential equation of order n

State equation

$$\begin{cases} \dot{x}_1(t) = f_1[x_1(t), \dots, x_n(t), u(t), t] \\ \dot{x}_2(t) = f_2[x_1(t), \dots, x_n(t), u(t), t] \\ \vdots \\ \dot{x}_n(t) = f_n[x_n(t), \dots, x_n(t), u(t), t] \end{cases}$$

It links the derivative of each state with the other states and the input

Output transformation

$$y(t) = g[x_1(t), \dots, x_n(t), u(t), t]$$

It further links the output with each state variable and the input

 f_i with i = 1, ..., n and g are multi-parametric functions

• They depend on (are) the dynamics of the system

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification a

Control, optimisation and

Fault diagnosi

Classification

Representation

Input-output representation

State-space

The model

Examples

properties

Dynamical v

Stationary v

Proper v improp

With v without delay

State-space model (cont.)

Let $\dot{\mathbf{x}}(t)$ be the vector whose components are the derivatives of the state

$$\dot{\mathbf{x}}(t) = \frac{d}{dt}\mathbf{x}(t) = \begin{bmatrix} \dot{x}_1(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}t}x_1(t) \\ \vdots \\ \frac{\mathrm{d}}{\mathrm{d}t}x_n(t) \end{bmatrix}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, identification and

Control,

validation

Classification

Input-output

presentation tate-space

The model

Examples

properties

ynamical v

Instantaneous

Stationary v

With v withou

State-space model (cont.)

State-space model

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f} \big[\mathbf{x}(t), u(t), t \big] \\ y(t) = g \big[\mathbf{x}(t), u(t), t \big] \end{cases}$$

f is a vectorial function whose *i*-th component is f_i , with $i = 1, \ldots, n$

Systems

UFC/DC CK0255|TIP8244 2018.2

General concep Modelling,

analysis

validation

- -----

Representation

State-space

The model

Examples

System

properties

Tilotantaneous

Stationary v

Proper v improp With v without delay

State-space model (cont.)

The SS model of a MIMO system with r inputs and p outputs

State equation

$$\begin{cases} \dot{x}_1(t) = f_1 \left[x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t \right] \\ \dot{x}_2(t) = f_2 \left[x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t \right] \\ \vdots \\ \dot{x}_n(t) = f_n \left[x_n(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t \right] \end{cases}$$

Output transformation

$$\begin{cases} y_1(t) = g_1 [x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t] \\ y_2(t) = g_2 [x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t] \\ \vdots \\ y_p(t) = g_p [x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t] \end{cases}$$

Multi-parametric functions depending on the system, f and g

- f_i with $i = 1, \ldots, n$
- q_i with $i = 1, \ldots, p$

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept Modelling,

identification and analysis

optimisation ar

Fault diagnos

Representation Input-output

State-space

The model

Example

System

Dynamical v Instantaneous

non-stationary Proper v improp

State-space model (cont.)

State-space model

$$\Rightarrow \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t), t \right] \\ \mathbf{y}(t) = \mathbf{g} \left[\mathbf{x}(t), \mathbf{u}(t), t \right] \end{cases}$$

UFC/DC CK0255|TIP8244 2018.2

The model

With v without

State-space model (cont.)

The state equation is a set of n first-order ordinary differential equations

· Regardless of the fact that the system is SISO or MIMO

The output transformation is a scalar or vectorial algebraic equation

• Depending on the number p of output variables

$$\underbrace{x(t)}_{\dot{x}(t) = f(x(t), u(t), t)} \underbrace{x(t)}_{\dot{x}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), t)} \underbrace{y(t) = g(x(t), u(t), u(t), t)}_{\dot{y}(t) = g(x(t), u(t), u($$

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

With v without delay

State-space model (cont.)

Consider the third-order scalar equation

$$\ddot{x}(t) + c_3\ddot{x}(t) + c_2\dot{x}(t) + c_1x(t) = bu(t)$$

We define,

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} = \begin{bmatrix} x(t) \\ \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix}$$

Thus.

$$\rightarrow$$
 $\dot{x}_3(t) + c_3x_3(t) + c_2x_2(t) + c_1x_1(t) = bu(t)$

This equation can be first integrated to get $x_3(t) \sim \ddot{x}(t)$

• Two more integrations to get $x_2(t) \sim \dot{x}(t)$ and $x_1 \sim x(t)$

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

State-space model (cont.)

The state-space representation of a system is central in our methods

- It offers a consistent framework for analysing systems
- Analysis of systems of arbitrary degree of complexity

Conversion of a scalar n-th order ordinary differential equation

- \rightarrow n first-order ordinary differential equations
- \rightarrow A first-order vector equation, dimension n

Systems

UFC/DC CK0255|TIP8244 2018.2

The model

State-space model (cont.)

The three scalar differential equations that must be solved

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ x_3(t) \\ [-c_3x_3(t) - c_2x_2(t) - c_1x_1(t) + bu(t)] \end{bmatrix}$$
$$= \begin{bmatrix} f_1 [\mathbf{x}(t), u(t), t] \\ f_2 [\mathbf{x}(t), u(t), t] \end{bmatrix}$$
$$f_3 [\mathbf{x}(t), u(t), t]$$

A single vector (state) equation

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification a

Control, optimisation and

T 1: 1: .

Classification

Donnagantation

Input-output

representation

epresentation

The model

Examples

System properties

Dynamical v

7 . 37 . 11

Stationary v

Proper v imprope

With v without

Examples

Systems

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification an

Control,

validation

Classification

Representation

Input-output

representation

representation

Examples

C---4----

properties

Tilstantaneous

C. ..

non-stationary

With v without delay

Examples (cont.)

For an incompressible fluid, by mass conservation

$$\begin{cases} \frac{\mathrm{d}V_1(t)}{\mathrm{d}t} = q_1(t) - q_2(t) \\ \frac{\mathrm{d}V_2(t)}{\mathrm{d}t} = q_2(t) - q_3(t) = q_2(t) - kh_2(t) \end{cases}$$
(1)

We can set $h_1 = V_1/B$, $h_2 = V_2/B$, and $q_3 = kh_2$

$$\begin{cases}
\dot{h}_1(t) = \frac{1}{B}q_1(t) - \frac{1}{B}q_2(t) \\
\dot{h}_2(t) = \frac{1}{B}q_2(t) - \frac{1}{B}q_3(t) = \frac{1}{B}q_2(t) - \frac{k}{B}h_2(t)
\end{cases}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

Modelling,

lentification and nalysis

optimisation and validation

Classification

nepresentation

representation

representati

The model

Examples

oroperties

namical v stantaneous

Linear v Nonline Stationarv v

Proper v imp

Examples

Example

First tank

- Input flow-rate q_1 [m³s⁻¹]
- Output flow-rate q_2 [m³s⁻¹]
- h_1 is the liquid level [m]

Second tank

- Input flow-rate q_2 [m³s⁻¹]
- Output flow-rate q_3 [m³s⁻¹]
- h_2 is the liquid level [m]
- $u_i = q_i$ with i = 1, 2, the input variables
- y = d, the output variable
- $x_1 = V_1$ and $x_2 = V_2$, the state variables

We are interested in the IO and the SS representations of the system

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and analysis

Control, optimisation and

Classification

Representation

Input-output representation

representation

Examples

System

properties

istantaneous

Linear v Nonlinear

Proper v imprope

Examples (cont.)

Moreover, we have $y(t) = d(t) = h_1(t) - h_2(t)$

$$\dot{y}(t) = \dot{d}(t) = \dot{h}_1(t) - \dot{h}_2(t) = \left[\underbrace{\frac{1}{B}q_1(t) - \frac{1}{B}q_2(t)}_{\dot{h}_1(t)}\right] - \left[\underbrace{\frac{1}{B}q_2(t) - \frac{k}{B}h_2(t)}_{\dot{h}_2(t)}\right]$$

$$= \frac{1}{B}q_1(t) - \frac{2}{B}q_2(t) + \frac{k}{B}h_2(t)$$
$$= \frac{1}{B}u_1(t) - \frac{2}{B}u_2(t) + \frac{k}{B}[h_1(t) - y(t)]$$

We used $u_1(t) = q_1(t)$ and $u_2(t) = q_2(t)$

UFC/DC CK0255|TIP8244 2018.2

Examples

With v without

Examples (cont.)

$$\dot{y}(t) = \frac{1}{B}u_1(t) - \frac{2}{B}u_2(t) + \frac{k}{B}h_1(t) - \frac{k}{B}y(t)$$

By taking the second derivative of y(t), we have

$$\ddot{y}(t) = \frac{1}{B}\dot{u}_1(t) - \frac{2}{B}\dot{u}_2(t) + \frac{k}{B}\dot{h}_1(t) - \frac{k}{B}\dot{y}(t)$$

$$= \frac{1}{B}\dot{u}_1(t) - \frac{2}{B}\dot{u}_2(t) + \underbrace{\frac{k}{B^2}u_1(t) - \frac{k}{B^2}u_2(t)}_{\frac{k}{B}\dot{h}_1(t)} - \frac{k}{B}\dot{y}(t)$$

The IO system representation is a ordinary differential equation

$$\ddot{y}(t) + \frac{k}{B}\dot{y}(t) = \frac{1}{B}\dot{u}_1(t) - \frac{2}{B}\dot{u}_2(t) + \frac{k}{B^2}u_1(t) - \frac{k}{B}u_2(t)$$

Systems

UFC/DC CK0255|TIP8244 2018.2

Examples

With v without

Examples (cont.)

The SS system representation is derived from mass conservation

$$\Rightarrow \begin{cases} \frac{\mathrm{d}V_1(t)}{\mathrm{d}t} = q_1(t) - q_2(t) \\ \frac{\mathrm{d}V_2(t)}{\mathrm{d}t} = q_2(t) - q_3(t) = q_2(t) - kh_2(t) \end{cases}$$

The state equation is obtained by setting $h_1 = x_1/B$ and $h_2 = x_2/B$

The output transformation,

$$y(t) = \frac{1}{B}x_1(t) - \frac{1}{B}x_2(t)$$

Systems

UFC/DC CK0255|TIP8244 2018.2

Examples

Examples (cont.)

$$\ddot{y}(t) + \frac{k}{B}\dot{y}(t) - \frac{1}{B}\dot{u}_1(t) + \frac{2}{B}\dot{u}_2(t) - \frac{k}{B^2}u_1(t) + \frac{k}{B}u_2(t) = 0$$

The obtained model is in the general IO form

$$\begin{cases} h_1 \left[\underbrace{y_1(t), \dot{y}_1(t), \dots, y_1^{(n_1)}(t)}_{\text{output 1}}, \underbrace{u_1(t), \dot{u}_1(t), \dots, u_1^{(m_1, 1)}(t)}_{\text{input 1}}, \dots, \underbrace{u_r(t), \dots, u_r^{(m_1, r)}(t)}_{\text{input r}}, t \right] \\ = 0 \\ \vdots \\ h_p \left[\underbrace{y_p(t), \dot{y}_p(t), \dots, y_p^{(n_p)}(t)}_{\text{output p}}, \underbrace{u_1(t), \dot{u}_1(t), \dots, u_1^{(m_p, 1)}(t)}_{\text{input 1}}, \dots, \underbrace{u_r(t), \dots, u_r^{(m_p, r)}(t)}_{\text{input r}}, t \right] \\ = 0 \end{cases}$$

$$\rightarrow p = 1, n_1 = 2$$

$$\rightarrow$$
 $r=2, m_1=m_2=1$

Systems

UFC/DC CK0255|TIP8244 2018.2

Examples

Examples (cont.)

The resulting SS representation of the system

the resulting SS representation of the system
$$\begin{cases} \dot{x}_1(t) = u_1(t) - u_2(t) \\ \dot{x}_2(t) = -\frac{k}{B}x_2(t) + u_2(t) \\ y(t) = \frac{1}{B}x_1(t) - \frac{1}{B}x_2(t) \end{cases}$$

UFC/DC CK0255|TIP8244 2018.2

Examples

With v without

Examples (cont.)

The model is in the general SS form

State equation

$$\begin{cases} \dot{x}_1(t) = f_1 \left[x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t \right] \\ \dot{x}_2(t) = f_2 \left[x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t \right] \\ \vdots \\ \dot{x}_n(t) = f_n \left[x_n(t), \dots, x_n(t), u(t), t \right] \end{cases}$$

Output transformation

$$\begin{cases} y_1(t) = g_1 \left[x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t \right] \\ y_2(t) = g_2 \left[x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t \right] \\ \vdots \\ y_p(t) = g_p \left[x_1(t), \dots, x_n(t), u_1(t), \dots, u_r(t), t \right] \end{cases}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

System properties

With v without delay

System properties

Systems

Systems

UFC/DC CK0255|TIP8244 2018.2

Examples

Examples (cont.)

In general, the choice of the states is not unique

- · We could have chosen the levels as states
- $x_1 = h_1$ and $x_2 = h_2$

$$\begin{cases} \dot{x}_1(t) = -Bu_1(t) - Bu_2(t) \\ \dot{x}_2(t) = -kx_2(t) + Bu_2(t) \\ y(t) = x_1(t) - x_2(t) \end{cases}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

System

properties

System properties

We discuss a set of fundamental properties of time-evolving models

- Proper v Improper
- Linear v Non-linear
- With v Without delay
- Dynamical v Instantaneous
- Stationary v Non-stationary
- Lumped v Distributed parameters

Yet another way of classifying dynamical systems/models

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification

Control,

optimisation and

Fault diagnosis

Classification

Representation

Input-output

State-enace

representatio

The model

Examples

properties

Dynamical v Instantaneous

Linear v Nonlinea

Stationary v

Proper v improp

With v without

System properties

Properties

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

analysis

Control, optimisation ar

Fault diagnosi

Classification

Representation Input-output

State-space

i ne modei

Examples

properties

Dynamical v Instantaneous

Linear v Nonline

Stationary v

Proper v improp

With v without delay

Dynamical v Instantaneous (cont.)

Proposition

IO representation - SISO

A necessary and sufficient condition for a SISO system to be instantaneous is that the IO relationship is expressed by an equation in the form

$$h[y(t), \underline{\dot{y}(t), \dots, \dot{y}^{(n)}(t)}, u(t), \underline{\dot{u}(t), \dots, \dot{u}^{(m)}(t)}, t] = 0$$

$$\Rightarrow h[y(t), u(t), t] = 0$$

 \rightarrow The order of the derivatives of y and u is zero (n = m = 0)

Systems

UFC/DC CK0255|TIP8244 2018.2

Jeneral concept

Modelling, dentification and

Control, optimisation and validation

Classification

Representati

Input-output representatio

State-space

The model

Examples

System properties

Dynamical v Instantaneous

Stationary v

Proper v impre With v without

Dynamical v Instantaneous

Definition

Instantaneity

A system is said to be **instantaneous** if the value of the output $\mathbf{y}(t) \in \mathcal{R}^p$ at time t only depends on the value of the input $\mathbf{u}(t) \in \mathcal{R}^r$ at time t

A system is said to be **dynamical**, otherwise

Systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

2016.2

Modelling, identification and analysis

Control, optimisation and validation

Classification

Representation

State-space

The model

System

Dynamical v

Linear v Nonline

Proper v improper With v without

Dynamical v Instantaneous (cont.)

$$h\big[y(t),u(t),t\big]=0$$

If a SISO system is instantaneous, the IO relation is an algebraic equation $\,$

This is necessary, but it is not sufficient for a system to be instantaneous

Consider a differential equation as IO representation of a SISO system $\,$

 \leadsto Then, the system is certainly dynamical

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification an

Control, optimisation and

Fault diagnosis

Classification

Representation

Input-output representation

State-space

The model

Examples

properties

Dynamical v

Linear v Nonlines

Stationary v

Proper v improp With v without

Dynamical v Instantaneous systems (cont.)

Example

Counter-intuition

Consider the algebraic equation as IO representation of a SISO system

$$y(t) = u(t - T)$$
, with $T \in \mathbb{R}^+$

The output y(t) at time t does not depend on the input u(t) at time t

• It depends on the input value u(t-T), at a preceding moment

Such a system is not instantaneous, it is dynamical

→ Finite time delay system

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification an

Control,

validation as

Classification

Representatio

State-space

System

properties
Dynamical v

Linear v Nonline

Stationary v

Proper v improp With v without delay

Dynamical v Instantaneous (cont.)

If a MIMO system is instantaneous, then the following conditions are true

- \rightarrow The order of the derivatives of y_i is $n_i = 0$, for all $i = 1, \ldots, p$
- The order of the derivatives of u_i is $m_{j,i} = 0$, for all $j = 1, \ldots, p$ and $i = 1, \ldots, r$

The IO relation can be expressed as a system of p algebraic equations

If any of the IO relations is a differential equation, the system is dynamical

Systems

UFC/DC CK0255|TIP8244 2018.2

eneral concepts

Modelling, dentification and

optimisation and

G1 161 11

Input-output

State-space

The model

Examples

oystem properties

Dynamical v Instantaneous

Linear v Noniin Stationarv v

Proper v impro

Dynamical v Instantaneous (cont.)

Proposition

IO representation - MIMO

A necessary and sufficient condition for a MIMO system with r inputs and p outputs to be instantaneous is that the IO representation is expressed by a system of equations in the form

$$\begin{cases} h_1[y_1(t), u_1(t), u_2(t), \dots, u_r(t), t] = 0 \\ h_2[y_2(t), u_1(t), u_2(t), \dots, u_r(t), t] = 0 \\ & \dots \\ h_p[y_p(t), u_1(t), u_2(t), \dots, u_r(t), t] = 0 \end{cases}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

General concep

identification and analysis

optimisation and validation

Classification

Representation

representation State-space

representation
The model

Examples

System properties

Dynamical v Instantaneous

> nationary v on-stationary roper v imprope

Dynamical v Instantaneous

Proposition

$SS\ representation$

Consider a model of a system expressed in SS form

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f} \big[\mathbf{x}(t), \mathbf{u}(t), t \big] \\ \mathbf{y}(t) = \mathbf{g} \big[\mathbf{x}(t), \mathbf{u}(t), t \big] \end{cases}$$

A necessary and sufficient condition for a system to be instantaneous is that the SS model is zero-order (i.e., there exists no state vector)

$$\rightarrow$$
 $\mathbf{y}(t) = \mathbf{g}[\mathbf{u}(t), t]$

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification an

Control, optimisation and

Fault diagnosis

Classification

Representation

Input-output

State-space

The model

Examples

properties

Dynamical v

Linear v Nonline

Stationary v

Proper v improp With v without

Dynamical v Instantaneous

Example

Consider the two serially arranged resistors

$$v(t) = (R_1 + R_2)i(t) = Ri(t)$$

The system is instantaneous

The IO representation corresponds to the SS output transformation

The order of the system is zero (no device to store energy)

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

analysis

optimisation an validation

Tuure diagnosis

Danvasantation

Input-output

State-space representation

System

Dynamical v Instantaneous

Linear v Nonlinea

Stationary v

Proper v improp With v without delay

Linear v Nonlinear

Definition

Linearity

A system is said to be linear if it obeys the superposition principle

A system is said **nonlinear**, otherwise

Superposition principle

Consider some system

- Let the system response to cause c_1 be equal to effect e_1
- Let the system response to cause c_2 be equal to effect e_2

The system response to cause $(\alpha c_1 + \beta c_2)$ equals effect $(\alpha e_1 + \beta e_2)$

• (whatever the constants α and β)

Systems

UFC/DC CK0255|TIP8244 2018.2

eneral concepts

Modelling, dentification and

Control,

validation

Representation

Input-output

epresentation

The model

G .

oper tres

Instantaneous
Linear v Nonlinear

Stationary v

Proper v impror

With v without

Linear v Nonlinear

Properties

Systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

General concept

Modelling, identification and analysis

validation

rauit diagnosis

Representation

Input-output representation

State-space representation

Evamples

System

Instantaneous Linear v Nonlinea

Linear v Nonline Stationary v

Proper v improp With v without

Linear v Non-linear (cont.)

Proposition

IO representation - SISO

A necessary and sufficient condition for a SISO system to be linear is that the IO representation is expressed by a linear differential equation

$$a_0(t)y(t) + a_1(t)\dot{y}(t) + \dots + a_n(t)y^{(n)}(t)$$

= $b_0(t)u(t) + b_1(t)\dot{u}(t) + \dots + b_m(t)u^{(m)}(t)$

The coefficients of the IO representation are, in general, time dependent

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification a

Control, optimisation and

Fault diagnosis

r truit trughton.

Representation

representation

State-space

The model

Examples

properties

Dynamical v

Linear v Nonlinear

Stationary v

Proper v improp

With v without delay

Linear v Non-linear (cont.)

Linear differential equation

Consider the differential equation

$$h[y(t), \dot{y}(t), \dots, y^{(n)}(t), u(t), \dot{u}(t), \dots, u^{(m)}(t), t] = 0$$

The equation is linear if and only if the function h is a linear combination of the output and its derivatives, and of the input and its derivatives

$$\alpha_0(t)y(t) + \alpha_1(t)\dot{y}(t) + \dots + \alpha_n(t)y^{(n)}(t) + \beta_0(t)u(t) + \beta_1(t)\dot{u}(t) + \dots + \beta_m(t)u^{(m)}(t) = 0$$

→ A zero-sum weighted sum of inputs, outputs, and derivatives

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling,

analysis

Control,

optimisation :

Classification

Representation

representation

representation

System

Dynamical v

Linear v Nonlines

Stationary v

non-stationar: Proper v impi

Proper v improp With v without delay

Linear v non-linear (cont.)

Proposition

$SS\ representation$

A necessary and sufficient condition for a system to be linear is that state equation and output transformation in the SS model are linear equations

$$\begin{cases} \dot{x}_1(t) = a_{1,1}(t)x_1(t) + \dots + a_{1,n}(t)x_n(t) + b_{1,1}u_1(t) + \dots + b_{1,r}(t)u_r(t) \\ \dots \end{cases}$$

$$\dot{x}_n(t) = a_{n,1}(t)x_1(t) + \dots + a_{n,n}(t)x_n(t) + b_{n,1}u_1(t) + \dots + b_{n,r}(t)u_r(t)$$

$$y_1(t) = c_{1,1}(t)x_1(t) + \dots + c_{1,n}(t)x_n(t) + d_{1,1}u_1(t) + \dots + d_{1,r}(t)u_r(t)$$

$$y_p(t) = c_{p,1}(t)x_1(t) + \dots + c_{p,n}(t)x_n(t) + d_{p,1}u_1(t) + \dots + d_{p,r}(t)u_r(t)$$

Systems

UFC/DC CK0255|TIP8244 2018.2

eneral concepts

Modelling, dentification and

naiysis Iontrol

validation

514001110401011

Input-output

State-enace

representati

System

properties

Instantaneous Linear v Nonlinea

Stationary v

Proper v improp

Linear v non-linear (cont.)

Consider a MIMO system in IO representation

Each function h_i , i = 1, ..., p, must be a linear combination of the *i*-th component of the output and its n_i derivatives, and the input and its derivatives

→ The condition is necessary and sufficient

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, identification and analysis

Control, optimisation and validation

Classification

Representation

Input-output representation

State-space representation

Evamples

System

Dynamical v Instantaneou

Linear v Nonlinea

ion-stationary Proper v improper With v without

Linear v non-linear (cont.)

$$\mathbf{A}(t) = \left\{a_{i,j}(t)\right\} \in \mathcal{R}^{n \times n}$$

$$\Rightarrow \left\{\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) \right.$$

$$\Rightarrow \mathbf{B}(t) = \left\{b_{i,j}(t)\right\} \in \mathcal{R}^{n \times r}$$

$$\Rightarrow \mathbf{C}(t) = \left\{c_{i,j}(t)\right\} \in \mathcal{R}^{p \times n}$$

$$\Rightarrow \mathbf{D}(t) = \left\{d_{i,j}(t)\right\} \in \mathcal{R}^{p \times r}$$

Coefficient matrices A, B, C and D are, in general, time dependent

UFC/DC CK0255|TIP8244 2018.2

Linear v Nonlinear

With v without

Linear v non-linear (cont.)

Consider a system consisting of two cylindric tanks, both of base $B [m^2]$

• Output flow-rate from tank 1 is the input flow-rate to tank 2, $q_2(t)$

First tank

- Input flow-rate q_1 [m³s⁻¹]
- Output flow-rate q_2 [m³s⁻¹]
- h_1 is the liquid level [m]

Second tank

- Input flow-rate q_2 [m³s⁻¹]
- Output flow-rate q_3 [m³s⁻¹]
- h_2 is the liquid level [m]

Systems

UFC/DC CK0255|TIP8244 2018.2

Linear v Nonlinear

Linear v non-linear (cont.)

The SS representation of the system, from mass conservation

$$\longrightarrow \begin{cases}
\frac{\mathrm{d} V_1(t)}{\mathrm{d} t} = q_1(t) - q_2(t) \\
\frac{\mathrm{d} V_2(t)}{\mathrm{d} t} = q_2(t) - q_3(t) = q_2(t) - kh_2(t) \\
\longrightarrow \begin{cases}
y(t) = \frac{1}{B} x_1(t) - \frac{1}{B} x_2(t)
\end{cases}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

Linear v Nonlinear

With v without delay

Examples (cont.)

We obtained.

$$\Rightarrow \begin{cases}
\dot{x}_1(t) &= u_1(t) - u_2(t) \\
\dot{x}_2(t) &= \frac{-k}{B} x_2(t) + u_2(t) \\
\dot{y}(t) &= \frac{1}{B} x_1(t) - \frac{1}{B} x_2(t)
\end{cases}$$

We have,

$$\mathbf{A}(t) = \begin{bmatrix} 0 & 0 \\ 0 & \frac{-k}{B} \end{bmatrix}, \quad \mathbf{B}(t) = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{C}(t) = \begin{bmatrix} \frac{1}{B} & \frac{-1}{B} \end{bmatrix}, \quad \mathbf{D}(t) = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

Linear v Nonlinea

Linear v non-linear (cont.)

Counter-intuition

Consider the system described by the IO model

$$y(t) = u(t) + 1$$

The system violates the superposition principle

• It is thus nonlinear

Consider two constant inputs

- $u_1(t) = 1$
- $u_2(t) = 2$

We can calculate the outputs

- $y_1(t) = u_1(t) + 1 = 2$
- $y_2(t) = u_2(t) + 1 = 3$

UFC/DC CK0255|TIP8244 2018.2

Linear v Nonlinear

With v without

Linear v non-linear (cont.)

Consider the combined input

$$u_3(t) = u_1(t) + u_2(t) = 3$$

The resulting output

$$y_3(t) = u_3(t) + 1 = 4$$

We thus have,

$$y_3(t) = 4 \neq y_1(t) + y_2(t) = 5$$

The IO representation is a nonlinear algebraic equation

• (Blame the +1 on the RHS for nonlinearity)

Systems

UFC/DC CK0255|TIP8244 2018.2

non-stationary

With v without delay

Stationary v non-stationary Properties

Systems

UFC/DC CK0255|TIP8244 2018.2

Linear v Nonlinea

Linear v non-linear (cont.)

Counter-intuition

Consider the system described by the IO model

$$\dot{y}(t) + y(t) = \sqrt{t - 1}u(t)$$

The system is linear

Consider the IO representation for a linear SISO system

$$a_0(t)y(t) + a_1(t)\dot{y}(t) + \dots + a_n(t)\dot{y}^{(n)}(t)$$

$$= b_0(t)u(t) + b_1(t)\dot{u}(t) + \cdots + b_m(t)u^{(m)}(t)$$

$$\rightarrow a_0(t) = 1$$

$$\rightarrow$$
 $a_1(t) = 1$

$$\rightarrow b_0(t) = \sqrt{t-1}$$

System $\dot{y}(t) + y(t) = \sqrt{t-1}u(t)$ is thus linear

Systems

UFC/DC CK0255|TIP8244 2018.2

non-stationary

Stationary and non-stationary systems

Stationarity

A system is said to be stationary (or time-invariant), if it obeys the translation principle

A system is said to be non-stationary (or time-varying), otherwise

Translation principle

Consider some system

Let the system response to a cause $c_1(t)$ be equal to an effect $e_1(t)$

System response to cause $c_2(t) = c_1(t-T)$ equals effect $e_2(t) = e(t-T)$

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification an

Control, optimisation and

Fault diagnosi

C1---:6:--4:--

Representation

Input-output

State-space

representation

The model

LXampies

propertie:

Dynamical v

Linear v Nonlinear

non-stationary

With v without delay

Stationary and non-stationary systems (cont.)

Let the same cause be applied to system S at 2 different times

$$\rightarrow$$
 $t=0$

$$\rightsquigarrow t = T$$

The resulting effects are analogous

 \bullet Shifted by time interval T

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, identification an

optimisation and

validation

Taggification

Representatio

Input-output

State-space

The model

Examples

System properties

ynamical v

Linear v Nonline Stationary v non-stationary

Proper v improp With v without

Stationary and non-stationary systems (cont.)

In nature, no system is stationary

Yet, there exists a wide range of variations that can be neglected

• Over large time intervals

Over such intervals, the systems can be considered as stationary

Systems

UFC/DC CK0255|TIP8244 2018.2

General concep

analysis

optimisation an validation

- -----

Representatio

representation

representation

System

Dynamical v Instantaneous

Linear v Nonlinear

Stationary v non-stationary

Proper v improp
With v without
delay

Stationary and non-stationary systems (cont.)

Proposition

IO representation

A necessary and sufficient condition for a system to be stationary

→ The IO representation must not explicitly depend on time

Consider the SISO system

$$h[y(t), \dot{y}(t), \dots, y^{(n)}(t), u(t), \dot{u}(t), \dots, u^{(m)}(t), t] = 0$$

Then, the stationary model becomes

$$\rightarrow h[y(t), \dot{y}(t), \dots, y^{(n)}(t), u(t), \dot{u}(t), \dots, u^{(m)}(t)] = 0$$

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, identification an analysis

Control, optimisation and validation

Fault diagnosis

_

Input-output representation

representation

Examples

System

Dynamical v Instantaneous

Stationary v non-stationary

Proper v improp With v without delay

Stationary and non-stationary systems (cont.)

Consider a linear SISO system

$$a_0(t)y(t) + a_1(t)\dot{y}(t) + \dots + a_n(t)y^{(n)}(t)$$

= $b_0(t)u(t) + b_1(t)\dot{u}(t) + \dots + b_m(t)u^{(m)}(t)$

The model becomes a linear differential equation

$$a_0 y(t) + a_1 \dot{y}(t) + \dots + a_n y^{(n)}(t)$$

$$= b_0 u(t) + b_1 \dot{u}(t) + \dots + b_m u^{(m)}(t)$$

The coefficients are constant

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification and

Control, optimisation and

Fault diagnosis

Classification

Representation

Input-output

State-space

The model

Examples

System propertie

Instantaneous

Stationary v

non-stationary
Proper v imprope
With v without

Stationary and non-stationary systems (cont.)

Theorem

$SS\ representation$

A necessary and sufficient condition for a system to be stationary

- \leadsto The SS representation must not explicitly depend on time
- (Both state equation and output transformation)

Consider the system

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f} \big[\mathbf{x}(t), \mathbf{u}(t), t \big] \\ \mathbf{y}(t) = \mathbf{g} \big[\mathbf{x}(t), \mathbf{u}(t), t \big] \end{cases}$$

Then, the stationary model becomes

$$\stackrel{\leadsto}{\sim} \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f} \big[\mathbf{x}(t), \mathbf{u}(t) \big] \\ \mathbf{y}(t) = \mathbf{g} \big[\mathbf{x}(t), \mathbf{u}(t) \big] \end{cases}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, identification and

analysis

Control,

validation

Classification

Representatio

Input output

representation

State-space

The model

. .

properties

Dynamical v

Linear v Nonlinear

Stationary v non-stationary

Proper v imprope With v without delay

Stationary and non-stationary systems (cont.)

Example

Consider the instantaneous and linear system

$$y(t) = tu(t)$$

The system is non-stationary

We can show this by using the translation principle

Consider the input

$$u(t) = \begin{cases} 1, & t \in [0, 1] \\ 0, & \text{elsewhere} \end{cases}$$

If the same input is applied with a delay, the output is not simply shifted

Systems

UFC/DC CK0255|TIP8244 2018.2

eneral concepts

Modelling, dentification and

optimisation and

validation

Classification

Input-output

Input-output representation

State-space

The model

Examples

oroperties

Dynamical v

nstantaneous

Stationary v non-stationary

Proper v impro

Stationary and non-stationary systems (cont.)

Consider a linear system

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t) \end{cases}$$

The model becomes

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{cases}$$

The (elements of the) coefficient matrices A, B, C and D are constant

Systems

UFC/DC CK0255|TIP8244 2018.2

Modelling,

analysis
Control,

Fault diagnosis

Classification

Representation

representation

State-space representation

Examples

System

Dynamical v Instantaneous

Linear v Nonlin Stationary v non-stationary

Proper v improper With v without delav

Stationary and non-stationary systems (cont.)

u(t-1)

The same input is applied with one (1) time-unit delay

UFC/DC CK0255|TIP8244 2018.2

General concepts

identification a

Control,

validation

Classification

Representation

Input-output

representatio

representation

The model

Examples

System

Dynamical v

Linear v Nonlinear

Stationary v

Proper v improper

With v without

Proper v improper

Properties

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling,

analysis

Control, optimisation a

validation

Classification

Representation

representation

representation

Evample

System

roperties

Linear v Nonlinear

Stationary v

Proper v improper

With v without

Proper v improper (cont.)

Proposition

IO representation - SISO

A necessary and sufficient condition for a SISO system to be proper

The order of derivation of the output (n) is equal to or larger than the order of derivation of the input (m)

$$h[y(t), \dot{y}(t), \dots, y^{(n)}(t), u(t), \dot{u}(t), \dots, u^{(m)}(t), t] = 0, \text{ with } n \ge m$$

A system where n > m is said to be **strictly proper**

Systems

UFC/DC CK0255|TIP8244 2018.2

eneral concepts

Modelling, dentification and

Control, optimisation and

raun diagnosis

Classification

Input-output

representation

The model

Examples

System properties

Dynamical v Instantaneous Linear v Nonlinear

Proper v improper

With v without delay

Proper and improper systems

Definition

Appropriateness

A system is said to be **proper**, if it obeys the causality principle

The system is said to be *improper*, otherwise

Causality principle

The effect does not precede the generating cause

In nature, all systems are (obviously?) proper

• Only the model can be improper

Systems

$^{\rm UFC/DC}_{\rm CK0255|TIP8244}_{\rm 2018.2}$

Modelling, identification and analysis

Control, optimisation and

Tuut diagnosis

Classification

Representation

representation State-space

The model

System

properties

Dynamical v

Linear v Nonlinea

Proper v improper

Proper and improper systems (cont.)

The result can be extended to MIMO systems

$$\begin{cases} h_1 \left[\underbrace{y_1(t), \dot{y}_1(t), \dots, y_1^{(n_1)}(t)}_{\text{output 1}}, \underbrace{u_1(t), \dot{u}_1(t), \dots, u_1^{(m_1, 1)}(t)}_{\text{input 1}}, \dots, \underbrace{u_r(t), \dots, u_r^{(m_1, r)}(t)}_{\text{input r}}, t \right] \\ = 0 \\ h_2 \left[\underbrace{y_2(t), \dot{y}_2(t), \dots, y_2^{(n_2)}(t)}_{\text{output 2}}, \underbrace{u_1(t), \dot{u}_1(t), \dots, u_1^{(m_2, 1)}(t)}_{\text{input 1}}, \dots, \underbrace{u_r(t), \dots, u_r^{(m_2, r)}(t)}_{\text{input r}}, t \right] \\ = 0 \\ \vdots \\ h_p \left[\underbrace{y_p(t), \dot{y}_p(t), \dots, y_p^{(n_p)}(t)}_{\text{output p}}, \underbrace{u_1(t), \dot{u}_1(t), \dots, u_1^{(m_p, 1)}(t)}_{\text{input 1}}, \dots, \underbrace{u_r(t), \dots, u_r^{(m_p, r)}(t)}_{\text{input r}}, t \right] \\ = 0 \end{cases}$$

None of the equations must include derivatives of the input variables whose order is larger than the derivation order of corresponding output variables

$$n_i \ge \max_{j=1,\ldots,r} m_{i,j}$$
, for all $i = 1,\ldots,p$

A system is strictly proper if the inequality is strictly true, for all i = 1, ..., p

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification an

Control, optimisation and

Fault diagnosis

Classification

Representation

Input-output

representation

representation

I no model

Examples

System

Dynamical v

inear v Nonlinea

Stationary v

Proper v improper

With v without lelay

Proper and improper systems (cont.)

Propositio

$SS\ representation$

Consider a system described by a SS model

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f} \big[\mathbf{x}(t), \mathbf{u}(t), t \big] \\ \mathbf{y}(t) = \mathbf{g} \big[\mathbf{x}(t), \mathbf{u}(t), t \big] \end{cases}$$

Such a system/model is always proper

A strictly proper system has an output transformation independent on $\mathbf{u}(t)$

$$\Rightarrow \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f} \big[\mathbf{x}(t), \mathbf{u}(t), t \big] \\ \mathbf{y}(t) = \mathbf{g} \big[\mathbf{x}(t), t \big] \end{cases}$$

With v without delay Properties

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

Modelling, dentification and

anaiysis Control

validation

Input-output

Input-output

State-space representation

The model

xamples

roperties

ynamical v

nstantaneous

Stationary v

Proper v improper

Proper and improper systems (cont.)

The SS model of a linear, stationary and strictly proper system

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) \end{cases}$$

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

identification and

optimisation and validation

- -----

Representation

Input-output representation State-space

The mode

Examples

ystem

properties

Instantaneous Linear y Nonline

Stationary v

Proper v imprope

Systems with and without delay

Definition

Finite time delay

A finite delay is a system whose output y(t) at time t is equal to the input u(t-T) at time t-T

 $T \in (0, +\infty)$ is called the **time delay**

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

analysis Control,

Fault diagnosis

Classification

Representation Input-output

State-space representation

The model

System properties

Dynamical v Instantaneous

Linear v Nonlinear

Stationary v non-stationary

Proper v improp

UFC/DC CK0255|TIP8244 2018.2

General concepts

identification a

Control, optimisation and

Fault diagnosi

Classification

Representation

Input-output representation

State-space

The model

Examples

System properties

Dynamical v

Linear v Nonlines

Stationary v

Proper v imprope

With v without delay

Systems with and without delay (cont.)

Consider the algebraic equation describing a finite delay element

$$y(t) = u(t - T)$$
, with $T \in \mathcal{R}^+$

- Such a system is not instantaneous
- The system is dynamic

The output at time t depends on the previous values of the input

Systems

UFC/DC CK0255|TIP8244 2018.2

General concepts

Modelling, identification an analysis

Control,

Fault diagnosi

Classification

Representation

representation

State-space

representation

System

properties

Tilstantaneous

Ci i

non-stationa

Proper v improp
With v without
delay

Systems with and without delay (cont.)

Example

Consider a system described by the IO model

$$4\dot{y}(t) + 2y(t) = u(t - T)$$

The system has delay elements

- \bullet There are signals that are dependent on t
- There are signals that are dependent on t-T

Example

Consider a system described by the SS model

$$\begin{cases} \dot{x}(t) = x(t-T) + u(t) \\ y(t) = 7x(t) \end{cases}$$

The system/model has delay elements

- \bullet There are signals that are dependent on t
- There are signals that are dependent on t-T

Systems

UFC/DC CK0255|TIP8244 2018.2

General concept

fodelling, lentification and

optimisation and

Classification

Representation

Input-output representation

representation

The model

System

Dynamical v

Dynamical v Instantaneous

Stationary v

Proper v improp
With v without
delay

Systems with and without delay (cont.)

Proposition

IO and SS representation

A necessary and sufficient condition for a system to be without a time delay

→ All the signals in the model (IO or SS) must share the same argument