

Impulse (cont.)

Signals and distributions UFC/DC $\rm CK0255|TIP8244$

2018.2

Impulse

- It is valid only if we accept the generalisation of a function
- The impulse $\delta(t)$ is not a function, it is a distribution

 $\rightsquigarrow \delta(t)$ is equal to zero everywhere, except the origin

 $\rightarrow \delta(t)$ at the origin is equal to infinity

 \rightsquigarrow The area under $\delta(t)$ is equal to 1

 $\delta(t) = 0, \quad \text{if } t \neq 0$

 $\delta(t) = \infty, \quad \text{if } t = 0$

 $\int_{-\infty}^{+\infty} \delta(t) \mathrm{d}t = \int_{0^{-}}^{0^{+}} \delta(t) \mathrm{d}t = 1$

Impulse (cont.)

The following properties hold

distributions $\rm UFC/DC$ CK0255|TIP8244 2018.2

Signals and

Impulse

Impulse (cont.) Signals and distributions UFC/DC CK0255|TIP8244 2018.2 $\varepsilon \longrightarrow 0$ Impulse $\delta_{-1,\varepsilon}(t)$ $\delta_{-1}(t)$ 1 ε $\varepsilon \longrightarrow 0$ 1 ۶ $\delta_{\varepsilon}(t)$ $\delta(t)$ ε ε + Impulse (cont.) Signals and distributions $\rm UFC/DC$ CK0255 TIP8244 2018.2 Let f(t) be some continuous function in t = 0• The product of f(t) and the impulse $\delta(t)$ Impulse $\rightsquigarrow f(t)\delta(t) = f(0)\delta(t)$ Let f(t) be some continuous function in t = T• The product of f(t) and $\delta(t-T)$ $\rightsquigarrow \quad f(t)\delta(t-T) = f(T)\delta(t-T)$ We used function $\delta(t-T)$ to denote the impulse centred in T Proof We have that $\delta(t) = 0$, for $t \neq 0$ The values taken by f(t) for $t \neq 0$ are not significant (as the impulse is zero)

Signals and distributions UFO/DC CK0255/TIP9244 2018.2 Canonical signals Tarsafily Bargs Inputs Perventise of a discontinuous function Convolution fitten Convolution fitten Convolution with canonical signals	Signals and distributions UFC/DC CK0255(TIFP342 2018.2 Chronoteal signals Totatep Rampe Ramp
Signals and distributions UFC/DC CK255/TIP324 2018.2 Canonical signals Topuls The family of the matter The family of the family of the family of the family of the family of the family	Signals and distributions UFC/DC CROSS(TTFS242 2018.2 Cronolical signals Topular Topu

Signals and distributions UFC/DC CK0255/TIP8244 2013.2 Canonical signals Unit step Ramps Impulse Derivative of the Impulse Tanonical signals Derivatives of a discontinuous function Convolution with canonical signals	Convolution integrals Signals and distributions	Signals and distributions UFC/DC CK0255]TIP8244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse Derivatives of a discontinuous function Convolution integrals Convolution with canonical signals	Convolution integrals The convolution integral is an important operator • Largely utilised in various field \sim System and signal analysis
Signals and distributions	Convolution integrals(cont.)	Signals and distributions	Convolution integrals (cont.)
UFC/DC CK0255 TIP8244 2018.2	9	UFC/DC CK0255 TIP8244 2018.2	0
Canonical signals Unit step Ramps Impulse Derivative of the impulse Canonical signals Convolution integrals Convolution with canonical signals	Definition Convolution Consider the two functions $f, g : \mathcal{R} \to \mathcal{C}$ The convolution of f with g is a function $h : \mathcal{R} \to \mathcal{C}$ in the real variable t $h(t) = f \star g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau$ Function $h(t)$ is built by using the operator convolution integral $\sim \star$	Canonical signals Unit step Rampa Impulse Derivative of the impulse The family of canonical signals Derivatives of a discontinuous function Convolution integrals Convolution with canonical signals	Consider the two functions $f(\tau) = \begin{cases} 1, & \tau \in [0, 1] \\ 0, & \text{elsewhere} \end{cases}$ $g(\tau) = \begin{cases} \tau, & \tau \in [0, 1] \\ 0, & \text{elsewhere} \end{cases}$ $(1) 1 1 1 1 1 1 1 1 1 $

Signals and distributions

UFC/DC CK0255|TIP8244 2018.2

Convolution integrals (cont.)

To demonstrate (2), where the three functions are identical, we use (1)
Observe that all three functions when evaluated for t = -∞ are null
Whereas their derivatives are equal, for all values of t

This is because of the definition of integral

Convolution integrals

nonical signals And, because

 $\frac{\mathrm{d}}{\mathrm{d}t}f \star \mathcal{G}(t) = f \star \left[\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{G}\right](t) = f \star g(t)$ $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} \star g(t) = \left[\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}\right] \star g(t) = f \star g(t)$

 $\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{0} f \ast g(\tau) d\tau = f \ast g(t)$

integrals Convolution with

Signals and distributions

canonical signals

Signals and distributions	Convolution integrals (cont.)
UFC/DC CK0255 TIP8244 2018 2	
Canonical signals	To demonstrate (3), we use (1) again
Unit step Ramps	
Impulse Derivative of the impulse	$\mathcal{F} \star \dot{g}(t)$ is obtained from (1)
The family of canonical signals	$\frac{\mathrm{d}}{\mathrm{d}}\mathcal{F} \star q(t) = \mathcal{F} \star \left[\frac{\mathrm{d}}{\mathrm{d}}q\right](t) = \left[\frac{\mathrm{d}}{\mathrm{d}}\mathcal{F}\right] \star q(t)$
Derivatives of a discontinuous	$dt \qquad \qquad$
Convolution	
Convolution with	$\dot{f} \ast \mathcal{G}(t)$ is obtained by differentiating $f \star \mathcal{G}(t)$
	$\frac{\mathrm{d}}{\mathrm{d}t} + G(t) = f + \left[\frac{\mathrm{d}}{\mathrm{d}G}\right](t) = \left[\frac{\mathrm{d}}{\mathrm{d}f}\right] + G(t)$
	$dt^{f} \stackrel{\mathbf{\wedge} \mathfrak{g}(t)}{\to} \int \stackrel{\mathbf{\wedge}}{\to} \left[dt^{\mathfrak{g}} \right]^{(t)} - \left[dt^{f} \right] \stackrel{\mathbf{\wedge} \mathfrak{g}(t)}{\to} \dots f + g(t) = \dot{t} + \mathcal{C}(t)$
	$ \qquad \qquad$
Signals and distributions	Convolution with canonical signals
Signals and distributions UFC/DC CK0551/DE9444	Convolution with canonical signals
Signals and distributions UFC/DC CK0255[TIP8244 2018.2	Convolution with canonical signals
Signals and distributions UFC/DC CK0255/TIP8244 2018.2 Canonical signals Unit step	Convolution with canonical signals
Signals and distributions UFC/DC CK0255/TIF8244 2018.2 Canonical signals Unit step Ramps Impulse	Convolution with canonical signals
Signals and distributions UFC/DC CK0255[TIP8244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse The family of	Convolution with canonical signals Theorem Convolution with the impulse Consider a function $f: \mathcal{R} \rightarrow \mathcal{R}$ continuous in t
Signals and distributions UFC/DC CK0255[TIP8244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse Derivatives of a	Convolution with canonical signals Theorem Convolution with the impulse Consider a function $f : \mathcal{R} \to \mathcal{R}$ continuous in t We have.
Signals and distributions UFC/DC CK0255[TIF8244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse The family of canonical signals Derivatives of a discontinuous function	Convolution with canonical signals Theorem Convolution with the impulse Consider a function $f : \mathcal{R} \to \mathcal{R}$ continuous in t We have, $f(t) = \int^{+\infty} f(\tau)\delta(t - \tau)d\tau$
Signals and distributions UFC/DC CK0255[TIP8244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse Derivative of the impulse Derivatives of a discontinuous Annetion Convolution	Convolution with canonical signals Theorem Convolution with the impulse Consider a function $f : \mathcal{R} \to \mathcal{R}$ continuous in t We have, $f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta(t-\tau)d\tau$
Signals and distributions UFC/DC CK02555 TIP8244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse The family of canonical signals Derivatives of a discontinuous function Convolution integrals	Convolution with canonical signals Theorem Convolution with the impulse Consider a function $f : \mathcal{R} \to \mathcal{R}$ continuous in t We have, $f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta(t - \tau)d\tau$ For any interval (t_a, t_b) containing t, we have
Signals and distributions UFC/DC CK0255[TIP8244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse Derivative of the impulse Derivatives of a discontinuous function Convolution integrals	Convolution with canonical signals Theorem Convolution with the impulse Consider a function $f : \mathcal{R} \to \mathcal{R}$ continuous in t We have, $f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta(t-\tau)d\tau$ For any interval (t_a, t_b) containing t, we have $f(t) = \int_{-\infty}^{t_b} f(\tau)\delta(t-\tau)d\tau$
Signals and distributions UFC/DC CK0255[TIPS244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse Derivative of the canonical signals Derivatives of a discontinuous function Convolution mitegrals Convolution with canonical signals	Convolution with canonical signals \mathbf{E} Theorem Convolution with the impulse Consider a function $f : \mathcal{R} \to \mathcal{R}$ continuous in t We have, $f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta(t-\tau)d\tau$ For any interval (t_a, t_b) containing t, we have $f(t) = \int_{t_a}^{t_b} f(\tau)\delta(t-\tau)d\tau$
Signals and distributions UFC/DC CK0255 TIP8244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse Derivative of the impulse Derivative of the impulse Derivatives of a discontinuous function Convolution integrals	Convolution with canonical signals Theorem Convolution with the impulse Consider a function $f : \mathcal{R} \to \mathcal{R}$ continuous in t We have, $f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta(t-\tau)d\tau$ For any interval (t_a, t_b) containing t, we have $f(t) = \int_{t_a}^{t_b} f(\tau)\delta(t-\tau)d\tau$
Signals and distributions UFC/DC CK0255[TIF5244 2018.2 Canonical signals Unit step Ramps Impulse Derivative of the impulse Derivatives of a discontinuous function Convolution integrals Convolution with canonical signals	Convolution with canonical signals Theorem Convolution with the impulse Consider a function $f : \mathcal{R} \to \mathcal{R}$ continuous in t We have, $f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta(t-\tau)d\tau$ For any interval (t_a, t_b) containing t, we have $f(t) = \int_{t_a}^{t_b} f(\tau)\delta(t-\tau)d\tau$

Signals and distributions

UFC/DC CK0255|TIP8244 2018.2

Convolution with canonical signals (cont.)

Proof

Thus,

Convolution with

canonical signals

Observe that $\delta(t-\tau) = \delta(\tau-t)$ is an impulse centred in $\tau = t$ $\int_{-\infty}^{+\infty} f(\tau)\delta(t-\tau)d\tau = \int_{-\infty}^{+\infty} f(t)\delta(t-\tau) d\tau$

$$\begin{aligned} -\tau)d\tau &= \int_{-\infty} \underbrace{\int_{(t)\delta(t-T)=f(T)\delta(t-T)}^{+\infty} d\tau}_{f(t)\delta(t-T)=f(T)\delta(t-T)} & d\tau \\ &= f(t) \underbrace{\int_{-\infty}^{+\infty} \delta(t-\tau)d\tau}_{\int_{-\infty}^{+\infty} \delta(t)dt=\int_{0^{-}}^{0^{+}} \delta(t)dt=1} & = f(t) \end{aligned}$$

The second part is derived from the first one, as $\delta(t-\tau) = 0$ for $\tau \neq t$

Convolution with canonical signals (cont.) Signals and distributions UFC/DC $\rm CK0255|TIP8244$ Consider a continuous function $f : \mathcal{R} \to \mathcal{R}$ with k continuous derivatives 2018.2We have, $\frac{d^k}{dt^k}f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta_k(t-\tau)d\tau$ \mathbf{Proof} Observe that $f(t) = f \star \delta(t)$ Convolution with By repeatedly differentiating and using that $\frac{d}{dt}f \star g(t) = f \star \dot{g}(t) = \dot{f} \star g(t)$, canonical signals $\frac{\mathrm{d}}{\mathrm{d}t}f(t) = \frac{\mathrm{d}}{\mathrm{d}t}f \star \delta(t) = f \star \left[\frac{\mathrm{d}}{\mathrm{d}t}\delta\right](t) = f \star \delta_1(t)$ $\frac{\mathrm{d}^2}{\mathrm{d}t^2}f(t) = \frac{\mathrm{d}}{\mathrm{d}t}f \star \delta_1(t) = f \star \delta_2(t)$ $\frac{\mathrm{d}^{k}}{\mathrm{d}t^{k}}f(t) = \frac{\mathrm{d}}{\mathrm{d}t}f \star \delta_{k-1}(t) = f \star \delta_{k}(t)$