

Lagrange
formula

| $\substack{\text { Forree-free and } \\ \text { forced evolution }}$ |
| :---: | forced evolution

Impulse response Similarity Similarity
transformation transformation
Diagonalisation Transition matrix Jordan form Basis of general
eigenvectors Basis of gen
eisenvectors $\underset{\substack{\text { Generali } \\ \text { matrix }}}{\text { and }}$ ${ }_{\substack{\text { matrix } \\ \text { Transition matrix }}}$ Transitit
modes

State-space representation
Jordan form
Basis of general
eigenvectors
eigenvectors Generalised modal
Generalit
matrix
Trasitio
Transition matrix
Transition an
modes
modes

State-space
representation
SA (CK0191) ${ }_{2018.1}$

Representation and analysis
 and analysis

State transitic
matrix
Definition
Properties

$\begin{array}{l}\text { Properties } \\ \text { Sylvester expansion }\end{array}$

Lagrange
formula
$\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }$
forced evolution
Impulse response
Similarity
${ }_{\substack{\text { Similarity } \\ \text { transformation }}}$
Diagonalisation
Transition matrix
Complex eigenvalues
Jordan form

Bardis of generali
eigenvectors

State-space representation

Analysis in time of linear stationary systems in state-space representation

- The analysis problem
- The state transition matrix
- Sylvester expansion
- Lagrange formula
- Similarity transformations
- Diagonalisation
- Jordan's form
- Modes

Representation and analysis

Consider a linear and stationary system of order n

- Let p be the number of outputs
- Let r be the number of inputs

The state-space representation of the system

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \tag{1}\\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.
$$

- $\mathbf{x}(t)$ is the state vector (n components)
- $\dot{\mathbf{x}}(t)$ is the derivative of the state vector (n components)
- $\mathbf{u}(t)$ is the input vector (r components)
- $\mathbf{y}(t)$ is the output vector (p components)
$\mathbf{A}(n \times n), \mathbf{B}(n \times r), \mathbf{C}(p \times n)$ and $\mathbf{D}(p \times r)$ are matrices
- The elements are not function of time

```
State-space
    UFC/DC
    SA (CK0191)
```

Representation
and analysis
and analysis
State tra
matrix
matrix
Definition
Properties
Sylvester expa
Lagrange
formula
Force-free and
forced evolution

forced evolution
Impulse response

Similarity
transformatio
Diagonalisation
Transition matrix
Complex e eirenvaltu
Complex eitgenvalu
Jordan form
Basis of generalised
eigenvectors
$\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { ched }}$
General
matrix
Trasitio
Transition and
Transition ar
modes
Representation and analysis

The analysis problem

$$
\left\{\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t) & =\mathbf{C x}(t)+\mathbf{D u}(t)
\end{aligned}\right.
$$

Determine the behaviour of state $\mathbf{x}(t)$ and output $\mathbf{y}(t)$ for $t \geq t_{0}$

- We are given the input function $\mathbf{u}(t)$, for $t \geq t_{0}$
- We are given the initial state $\mathbf{x}\left(t_{0}\right)$

The solution

- The Lagrange formula
- We discuss it at length

We first introduce the state transition matrix

Consider some square matrix \mathbf{A}
Its exponential $e^{\mathbf{A}}$ is a matrix

$$
\rightsquigarrow \quad e^{\mathbf{A}}=\mathbf{I}+\mathbf{A}+\frac{\mathbf{A}^{2}}{2!}+\frac{\mathbf{A}^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{\mathbf{A}^{k}}{k!}
$$

The state transition matrix $e^{\mathbf{A} t}$ is a matrix exponential
\rightsquigarrow Its elements are functions of time

The state transition matrix

State-space representation

The state transition matrix (cont.)
2018.1
Representation
and analysis
State transition
matrix
Definitic

Basis of generalised
eigenvectors

eigenvectors
Generalised modal
matrix
${ }_{\text {Gatrix }}$
Transition and
Transition and
modes
ufcha
UFC/DC
$\mathrm{SA}_{2018.1}^{(\mathrm{CKO191}}$
Repr
and
a
State transitio
State trix
matrix
${ }^{\text {Deroperties }}$
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
ansformation
Diagonalisation
Transition matrix
Complex eigenvalu
dan form

The exponential function
Let z be some scalar, by definition its exponential is a scalar

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}
$$

The series always converges

The matrix exponential
Let A be a $(n \times n)$ matrix, by definition its exponential is a $(n \times n)$ matrix

$$
e^{\mathbf{A}}=\mathbf{I}+\mathbf{A}+\frac{\mathbf{A}^{2}}{2!}+\frac{\mathbf{A}^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{\mathbf{A}^{k}}{k!}
$$

The series always converges

State-space
representation
representation $\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}$ ${ }_{2018.1}$

```
Representation
```

State transition
State t
matrix
matrix
Definition
Properties
Sylvester expansion
Lagrange
formula
Force free and
forced evolution
forced evolution
Impulse response
Impulse respons
Similarity
transformatio
Diagonalisation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Baxis of general
eigenvectors
eigenvect
Generais
matrix

The state transition matrix (cont.)

Element $c_{i, j}$ of matrix \mathbf{C} is given by the dot product between \mathbf{a}_{i}^{\prime} and \mathbf{b}_{j}

$$
=a_{i, 1} b_{1, j}+a_{i, 2} b_{2, j}+\cdots+a_{i, n} b_{n, j}=\sum_{k=1}^{n} a_{i, k} b_{k, j}
$$

State-space representation

UFC/DC

State transition
State tran
matrix
Definition
Properties
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
transformation
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors $\underset{\substack{\text { Generaliss } \\ \text { matrix }}}{\text { and }}$
Generahsed modal
matrix
Trasition matrix
Transition matrix
Transition a
modes
$\underset{\substack{\text { State-space } \\ \text { representation }}}{\text { Stan }}$
representation
 2018.1

Representation
and analysis
State transition
matrix
matrix
Properties
Sylvester expansion
Lagrange
formula
$\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }$
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalues
Jordan form
Bais of yeneralised
Basis of generali
eigenvectors $\underset{\substack{\text { Ceneralisee } \\ \text { matrix }}}{\text { and }}$

$$
\mathbf{C}=\left\{c_{i, j}=\sum_{k=1}^{n} a_{i, k} b_{k, j}\right\}
$$

The state transition matrix (cont.)
The matrix product
Let $\mathbf{A}=\left\{a_{i, j}\right\}$ be a $(m \times n)$ matrix and let $\mathbf{B}=\left\{b_{i, j}\right\}$ be a $(n \times p)$ matrix

The product between \mathbf{A} and \mathbf{B} is defined as a $(m \times p)$ matrix $\mathbf{C}=\left\{c_{i, j}\right\}$

The state transition matrix (cont.)

For every $(m \times n)$ matrix A, we have

$$
\underbrace{\mathbf{I}_{m}}_{(m \times m)} \underbrace{\mathbf{A}}_{(m \times n)}=\underbrace{\mathbf{A}}_{(m \times n)} \underbrace{\mathbf{I}_{n}}_{(n \times n)}=\underbrace{\mathbf{A}}_{(m \times n)}
$$

Right- and left-multiplication of matrix \mathbf{A} by an identity matrix (\mathbf{I}_{n} or \mathbf{I}_{m})
The state transition matrix (cont.)
Matrix product is not necessarily commutative, $\mathrm{AB} \neq \mathrm{BA}$

The product BA is not even defined
For $\mathbf{A B}=\mathbf{B A}, \mathbf{A}$ and \mathbf{B} must be both square and of the same order

- (necessary condition)
A $(n \times n)$ diagonal matrix \mathbf{D} commutes with any $(n \times n)$ matrix \mathbf{A}

$$
\mathbf{D A}=\mathbf{A D}
$$

The state transition matrix (cont.)

The state transition matrix (cont.)

$\mathrm{UFC} / \mathrm{DC}$ $\mathrm{A}_{2018.1}(\mathrm{CKO191}$

```
Representation
```

transition
State t
matrix
Definition
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Impulse respon
Similarity
transformatio
Diagonalisation
Diagonalisation
Transition matrix
Comptex eigenvatue
Jordan form
Basis of generalised
Basis of gene
eigenvectors
$\underset{\substack{\text { Generali } \\ \text { matrix } \\ \text { Transitia }}}{\substack{\text { and }}}$
Transition matrix
Powers of a matrix
Powers of a matrix
Let A be an order- n square matrix
State-space
$\underset{\substack{\text { State-space } \\ \text { representation }}}{\text { Stan }}$
representation
$\underset{\mathrm{SA}(\mathrm{CKO191})}{\mathrm{UFC} / \mathrm{DC}}$
$\underset{2018.1}{ }$
2018.1
Representation
and analysis
State tral
matrix
Pronctites
The k-th power of matrix \mathbf{A} is defined as the n-order matrix \mathbf{A}^{k}

$$
\mathbf{A}^{k}=\underbrace{\mathbf{A} \mathbf{A} \cdots \mathbf{A}}_{k}
$$

Special cases,
$\rightsquigarrow \mathbf{A}^{k=0}=\mathbf{I}$
$\rightsquigarrow \mathbf{A}^{k=1}=\mathbf{A}$

Definition

State transition matrix
The state transition matrix
The state transition matrix
Consider the state-space model with $(n \times n)$ matrix \mathbf{A}

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.
$$

The state transition matrix is the $(n \times n)$ matrix $e^{\mathbf{A} t}$

$$
\begin{equation*}
e^{\mathbf{A} t}=\sum_{k=0}^{\infty} \frac{\mathbf{A}^{k} t^{k}}{k!} \tag{2}
\end{equation*}
$$

The state transition matrix is well defined for any square matrix A

- (The series always converges) SA (CKO191)
Representation
and analysis
Definitio
roperties
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
Diagonalisation
Transition matrix
Jordan form
Basis of generalised
eigenvectors
Generalised modal
General
matrix
Trasitit
Transition and
Transition
modes

The state transition matrix (cont.)

The matrix exponential of block-diagonal matrixes

Consider any block-diagonal matrix A, we have

$$
\mathbf{A}=\left[\begin{array}{cccc}
\mathbf{A}_{1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_{q}
\end{array}\right] \rightsquigarrow e^{\mathbf{A}}=\left[\begin{array}{cccc}
e^{\mathbf{A}_{1}} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & e^{\mathbf{A}_{2}} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & e^{\mathbf{A}_{q}}
\end{array}\right]
$$

State-space
representation UFC/DC
UF (CK0191) $\mathrm{A}_{2018.1}(\mathrm{CK} 0191)$ Representation
and analysis

```
Matrix
```

Definition
Sylvester expansion
Lagrange
formula
Forree-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Bacis of genera
Basis of general
eigenvectors

The state transition matrix (cont.)

eigenvecali
Generali
matrix
Transitio
Transition matrix
Transition and
Transit
modes

State-space
representation
UFC/DC $\underset{\text { SA (CK0191) }}{\text { UFC/DC }}$ ${ }_{2018.1}$

```
Mepresentatio,
```

State transitio
Definition
Properties
${ }^{\text {Properties }}$
Lagrange
formula
Force-free and
Force-free and
forced evolution
Impulse response
Similarity
transformatio
Diagonalisation
Transition matrix
Complex eigenvalu
Basis of generalised
eigenvectors
$\substack{\text { Generatised modal } \\ \text { matrix }}$
$\underset{\substack{\text { Generali } \\ \text { matrix }}}{\text {. }}$
Transition matrix
Transition an
modes
$\underset{\text { State-space }}{\text { representation }}$
State-space
representation
$\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}$
2018.1
Representation
Representatio
and analysis
State tr
matrix
Definition
Properties
Sylvester expans
Lagrange
formula
$\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }$
Force-free and
forced evolution
Impulse respons
Similarity
transformatio
Diagonalisation
Transition matrix
Complex eigenvalu
Jordan form
Basis of generalised
Basis of generalis
eigenvectors

eigenvecto
Generalise

matrix

The state transition matrix (cont.)

Not convenient to determine the state transition matrix from its definition
\rightsquigarrow There are more efficient procedures for the task
\rightsquigarrow One exception, when \mathbf{A} is (block-)diagonal

The state transition matrix (cont.)

Proof
For all $k \in \mathcal{N}$, we have

$$
\mathbf{A}^{k}=\left[\begin{array}{cccc}
\mathbf{A}_{1}^{k} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{2}^{k} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_{q}^{k}
\end{array}\right]
$$

Thus,

$$
e^{\mathbf{A}}=\sum_{k=0}^{\infty} \frac{\mathbf{A}^{k}}{k!}=\left[\begin{array}{cccc}
\sum_{k=0}^{\infty} \frac{\mathbf{A}_{1}^{k}}{k!} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \sum_{k=0}^{\infty} \frac{\mathbf{A}_{2}^{k}}{k!} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \sum_{k=0}^{\infty} \frac{\mathbf{A}_{q}^{k}}{k!}
\end{array}\right]
$$

State-space
representation
representation $\underset{\mathrm{SA}(\mathrm{CK} 0191)}{\mathrm{UFC} / \mathrm{DC}}$
 2018.1

The state transition matrix (cont.)

Consider the state-space model with (2×2) diagonal matrix \mathbf{A}

$$
\mathbf{A}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]
$$

We are interested in the corresponding state transition matrix

We have,

$$
e^{\mathbf{A} t}=\left[\begin{array}{cc}
e^{(-1) t} & 0 \\
0 & e^{(-2) t}
\end{array}\right]
$$

State-space representation

(
$\underset{\substack{\mathrm{UFC} / \mathrm{DC} \\(\mathrm{CKO191} \\ 2018}}{\mathrm{US}}$
2018.1

The state transition matrix (cont.)

Proposition
Consider the state-space model with $(n \times n)$ diagonal matrix \mathbf{A}
We have,

$$
\mathbf{A}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \rightsquigarrow e^{\mathbf{A} t}=\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & e^{\lambda_{n} t}
\end{array}\right]
$$

Proof
We have,

$$
\mathbf{A} t=\left[\begin{array}{cccc}
\lambda_{1} t & 0 & \cdots & 0 \\
0 & \lambda_{2} t & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n} t
\end{array}\right] \rightsquigarrow e^{\mathbf{A} t}=\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & e^{\lambda_{n} t}
\end{array}\right]
$$

This matrix is diagonal, we used the result from the previous proposition
$\underset{\substack{\text { State-space } \\ \text { representation }}}{\text { Stan }}$
representation
$\underset{\text { SA }}{\mathrm{UFC} / \mathrm{DKC}}$ $\mathrm{SA}_{2018.1}^{(\mathrm{CKO19}}$ Representatio
and analysis
State transition
matrix
Definition
Properties
Sylvester expan
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalise

Basis of generalised
eigenvectors

$\substack{\text { Generalised modal } \\ \text { matrix } \\ \hline \text { Transition matrix }}$

Transition and

The state transition matrix (cont.)

Properties

We present some fundamental results about the state transition matrix $e^{\mathbf{A} t}$
\rightsquigarrow They are needed to derive Lagrange formula

State-space
epresentation
presenta SA (CK0191) 2018.1 Representation
and analycis tate transition
Properties
Sylvester ex
Lagrange
formula
$\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }$
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvatue
Jordan form
Basis of generalised
Basis of generali
eigenvectors
$\underset{\substack{\text { Generalis } \\ \text { matrix }}}{\text { and }}$
matrix
Transition and
modes

Properties (cont.)

By using the derivative property, we have that \mathbf{A} commutes with $e^{\mathbf{A} t}$

$$
\rightsquigarrow \text { That is, } \mathbf{A} e^{\mathbf{A} t}=e^{\mathbf{A} t} \mathbf{A}
$$

A and $e^{\mathbf{A} t}$ commute (this result is important)

Properties (cont.)

Composition of two state transition matrices
Consider the two state transition matrices $e^{\mathbf{A} t}$ and $e^{\mathbf{A} \tau}$
We have,

$$
e^{\mathbf{A} t} e^{\mathbf{A} \tau}=e^{\mathbf{A}(t+\tau)}
$$

tate transition
Definition
roperties
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformatio
Diagonalisation Transition matrix
Complex eigenvalue
Jordan form
Bacis of general
Batis of genera
eigenvectors $\underset{\substack{\text { Generalis } \\ \text { matrix }}}{\substack{\text { and } \\ \hline}}$

Properties (cont.)

$$
\begin{aligned}
e^{\mathbf{A} t} e^{\mathbf{A} \tau} & =\mathbf{I}+\mathbf{A}(t+\tau)+\frac{\mathbf{A}^{2}(t+\tau)}{2!}+\frac{\mathbf{A}^{3}(t+\tau)^{3}}{3!}+\frac{\mathbf{A}^{4}(t+\tau)^{4}}{4!}+\cdots \\
\rightsquigarrow \quad & =\sum_{k=0}^{\infty} \frac{\mathbf{A}^{k}(t+\tau)^{k}}{k!}=e^{\mathbf{A}(t+\tau)}
\end{aligned}
$$

Properties (cont.)

Proof
We expand both exponentials in their corresponding series and multiply

$$
e^{\mathbf{A} t} e^{\mathbf{A} \tau}=\left(\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\frac{\mathbf{A}^{3} t^{3}}{3!}+\cdots\right)\left(\mathbf{I}+\mathbf{A} \tau+\frac{\mathbf{A}^{2} \tau^{2}}{2!}+\frac{\mathbf{A}^{3} \tau^{3}}{3!}+\cdots\right)
$$

$$
\begin{aligned}
& =\left\{\begin{array}{rlll}
\mathbf{I} & +\mathbf{A} \tau & +\frac{\mathbf{A}^{2} \tau^{2}}{2!} & +\frac{\mathbf{A}^{3} \tau^{3}}{3!} \\
+\mathbf{A} t+\frac{\mathbf{A}^{4} \tau^{4}}{4!} & \cdots \\
& +\frac{\mathbf{A}^{2} t \tau}{\mathbf{A}^{3} t \tau^{2}} & +\frac{\mathbf{A}^{4} t \tau^{3}}{2!} & \cdots \\
& +\frac{\mathbf{A}^{3} t^{2} \tau}{3!} & +\frac{\mathbf{A}^{4} t^{2} \tau^{2}}{2!2!} & \cdots \\
& +\frac{\mathbf{A}^{3!} t^{3}}{3!} & +\frac{\mathbf{A}^{4} t^{3} \tau}{3!} & \cdots \\
& & & \\
\mathbf{A}^{3!} t^{4} \\
4! & \cdots
\end{array}\right. \\
& =\mathbf{I}+\mathbf{A}(t+\tau)+\frac{\mathbf{A}^{2}}{2!}\left(t^{2}+2 t \tau+\tau^{2}\right)^{2}+\frac{\mathbf{A}^{3}}{3!}\left(t^{3}+3 t^{2} \tau+3 t \tau^{2}+\tau^{3}\right) \\
& +\frac{\mathbf{A}^{4}}{4!}\left(t^{4}+4 t^{3} \tau+6 t^{2} \tau^{2}+4 t \tau^{3}+\tau^{4}\right)+\cdots
\end{aligned}
$$

State-space
representation
representation
UFC/DC 2018.1

Properties (cont.)

The previous result is not trivial

In the scalar case, we always have $e^{a t} e^{a \tau}=e^{a(t+\tau)}$ or $e^{a t} e^{b t}=e^{(a+b) t}$ In the matrix case, it is not necessarily true that $e^{\mathbf{A} t} e^{\mathbf{B} t}=e^{(\mathbf{A}+\mathbf{B}) t}$
\rightsquigarrow Equality holds if and only if $\mathbf{A B}=\mathbf{B A}$
\rightsquigarrow (If the matrices commute)

Properties (cont.)

UFC/DC

presentation ${ }_{2018.1}$
Representyation
Representyation
State tran
Serion
Properties
Lagrange
formula
$\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{\text { 俍 }}$
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of teneralised
Basis of generalisen
eigenvectors
Generalised modal
matrix
matrix
Transitio
Trancition and
ransition and
odes
Inverse of the state transition matri
Let $e^{\mathbf{A} t}$ be a state transition matrix
Its inverse $\left(e^{\mathbf{A} t}\right)^{-1}$ is matrix $e^{-\mathbf{A} t}$

$$
e^{\mathbf{A} t} e^{-\mathbf{A} t}=e^{-\mathbf{A} t} e^{\mathbf{A} t}=\mathbf{I}
$$

Proof
Based on the previous proposition, we have

$$
e^{\mathbf{A} t} e^{-\mathbf{A} t}=e^{\mathbf{A}(t-t)}=e^{\mathbf{A} \cdot 0}=\mathbf{I}+\mathbf{A} \cdot 0+\frac{\mathbf{A}^{2} \cdot 0^{2}}{2!}+\frac{\mathbf{A}^{3} \cdot 0^{3}}{3!}+\cdots=\mathbf{I}
$$

State-space
representation $\underset{\mathrm{SA}(\mathrm{CK} / \mathrm{DC}}{\mathrm{UFO})}$ ${ }_{2018.1}$

```
Representation
```


,

State tran
matrix
Definition
Properties
Properties
Sylvester exp
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response Similarity ${ }_{\text {Similarity }}$ ${ }_{\text {Diagonalisation }}$ Diagonalisation
Transition matrix Complex eigenvalue Jordan form

Basis of general | Basis of gen |
| :--- |
| eigenvectors | ${ }_{\substack{\text { Generalise } \\ \text { matrix }}}$

Properties (cont.)

Matrix inverse

Consider a square matrix \mathbf{A} of order n
We define the inverse of \mathbf{A} the square matrix of order n, \mathbf{A}^{-1}

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
$$

The inverse of matrix \mathbf{A} exists if and only if \mathbf{A} is non-singular

- When the inverse exists it is unique

State-space representation
 UFC/DC

 SA (CK0191) 2018.1```
Mepresentatio
```

State transit
matrix
Definition
Properties
Lagrange
formula

| formula |
| :--- |
| Force-free and |


| Force-free and |
| :---: |
| forced evolution |

Impulse response
Similarity
transformation
Diagonalisation Transition matrix
Jordan form
Basis of generalised
eigenvectors $\underset{\substack{\text { Generalis } \\ \text { matrix }}}{ }$ ${ }_{-}^{\text {Generaal }}$ matrix Transition and Transition ar
modes Transitio
modes

## Properties (cont.)

A state transition matrix $e^{\mathbf{A} t}$ is always invertible (non-singular)

- Even if A were singular

The result follows from the previous proposition

State-space
representation
UFC/DC 2018.1

Representation
State transition
matrix
Definition
Properties
roperties
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Impulse resparity
Similarity
transformation
transformation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvatue
Jordan form
Basis of generalised
eigenvectors Generalised
matrix
mat matrix

## Properties (cont.)

## Matrix minors

Consider a square matrix $\mathbf{A}$ of order $n \geq 2$
The minor $(i, j)$ of matrix $\mathbf{A}$ is a square matrix $\mathbf{A}_{i, j}$ of order $(n-1)$


It is obtained from A by deleting the $i$-th row and the $j$-th column


| State-space |
| :---: |
| representation |

UFC/DC
SA (CK0191)
2018.1

## Sylvester expansion

We determine the analytical expression of the state transition matrix $e^{\mathbf{A} t}$

- (without necessarily calculating the infinite expansion)

The procedure is known as Sylvester expansion

- There are also other procedures
- (We discuss them later on)



## Sylvester expansion (cont.)

Proposition
The Sylvester expansion
Let A be a $(n \times n)$ matrix
The corresponding state transition matrix is $e^{\mathbf{A} t}$
We have,

$$
\begin{align*}
e^{\mathbf{A} t}=\sum_{i=0}^{n-1} \beta_{i}(t) & \mathbf{A}^{i} \\
& =\beta_{0}(t) \mathbf{I}+\beta_{1}(t) \mathbf{A}+\beta_{2}(t) \mathbf{A}^{2}+\cdots+\beta_{n-1}(t) \mathbf{A}^{n-1} \tag{3}
\end{align*}
$$

The coefficients of the expansion $\beta_{i}$ are appropriate functions of time
$\rightsquigarrow$ They can be determined by solving a set of linear equations
State-space
representation
$\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}$ $\mathrm{SA}_{2018.1}^{(\mathrm{CKO191})}$
$$
\begin{subarray}{c}{\mathrm{ Ropreamtatid}}\\{\mathrm{ and malysase}}\end{subarray}
$$
$$
\begin{subarray}{c}{\mathrm{ Ropreamtatid}}\\{\mathrm{ and malysase}}\end{subarray}
$$
State tran
matrix
${ }_{\text {Definition }}$
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
Diagonalisation
Transition matrix
Jordan form
Basis of generalised
eigenvectors
Generalised mo
General
matrix
Trasitio
Transition and

```
State-space
epresentation
 UFC/DC
 A(CK0191)
l
State transition
l
Definition
Sylvester expansion
Lagrange
\begin{subarray}{c}{\mathrm{ Force-free and}}\\{\mathrm{ foreec evolution }}\end{subarray}
#
Similarity
Similarity
Diagonalisation
Miagonalisation
Transition matrix
Jordan form
\
c
| Generali
Transtion matrix
```

Transiti
modes

We discuss how to determine the coefficients of the expansion
We individually consider several cases
$\rightsquigarrow$ Eigenvalues of A have multiplicity one
$\rightsquigarrow$ Eigenvalues of A have multiplicity larger than one
$\rightsquigarrow$ Matrix A has complex eigenvalues (with multiplicity one)

## Sylvester expansion (cont.)

## Sylvester expansion (cont.)

Consider a square matrix A of order $n$ whose elements are real numbers
Matrix A has $n$ (not necessarily distinct) eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

- They can be real numbers or conjugate-complex pairs

If $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$, we say that matrix $\mathbf{A}$ has multiplicity one

## State-space representation

$\underset{\text { SA (CK0191) }}{\mathrm{UFC/DC}}$ $\mathrm{SA}_{2018.1}^{(\mathrm{CKO191})}$

```
M Representatio
```

State $\operatorname{tr}$
matrix
$\underset{\substack{\text { matrix } \\ \text { Definition }}}{ }$
Properties
Sylvester expansion
Lagrange
formula
formula
Force-free and
Force-free and
forced evolution
Impulse response
${ }^{\text {Similiarity }}$ transformat
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors
$\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}$
Generahn
matrix
Transitio
Transition matrix
Transition an
modes
modes


## Sylvester expansion (cont.)

Eigenvalues of triangular and diagonal matrices
Let matrix $\mathbf{A}=\left\{a_{i, j}\right\}$ be triangular or diagonal
The eigenvalues of $\mathbf{A}$ are the $n$ diagonal elements $\left\{a_{i, i}\right\}, i=1,2, \ldots, n$

```
$tate-space
 UFC/DC
 SA(CK0191)
```

Representation
and analysis
$\underset{\text { Definition }}{\text { matix }}$
${ }^{\text {Properties }}$
Sylvester expansion
Lagrange
formula

| Force-free and |
| :---: |
| forced evolution |

mpule response
Similarity
transformation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalu
Jordan form
Easis of generalised
eigenvectors
$\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { Sta }}$
Generahn
matrix
Transitio
Transitition and

Sylvester expansion (cont.)

## Characteristic polynomial

The characteristic polynomial of a square matrix $\mathbf{A}$ of order $n$

- The $n$-order polynomial in the variable $s$

$$
P(s)=\operatorname{det}(s \mathbf{I}-\mathbf{A})
$$

Computing eigenvalues and eigenvectors
The eigenvalues of matrix $\mathbf{A}$ of order $n$ solve its characteristic polynomial
$\rightsquigarrow$ The roots of the equation $P(s)=\operatorname{det}(s \mathbf{I}-\mathbf{A})=0$
Let $\lambda$ be an eigenvalue of matrix $A$
Each eigenvector $\mathbf{v}$ associated to it is a non-trivial solution to the system

$$
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0}
$$

0 is a $(n \times 1)$ column-vector whose elements are all zero

```
State-space
epresentation
 UFC/DC
 SA(CK0191)
```

State tran
matrix
Definition
Properties
Sylvester expansion
Lagrange
formula
Force free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Basis of generalise
Basis of general
eigenvectors
$\underbrace{\text { cigene }}_{\substack{\text { Generalised modal } \\ \text { matrix }}}$
$\underset{\substack{\text { Generalise } \\ \text { matrix } \\ \text { Tranition }}}{ }$

## Sylvester expansion (cont.)

Systems of linear equations
Consider a system of $n$ linear equations in $n$ unknowns

$$
\mathbf{A x}=\mathbf{b}
$$

$\rightsquigarrow \mathbf{A}$ is a $(n \times n)$ matrix of coefficients
$\rightsquigarrow \mathbf{b}$ is a $(n \times 1)$ vector of known terms
$\rightsquigarrow \mathrm{x}$ is a $(n \times 1)$ vector of unknowns
If matrix $\mathbf{A}$ is non-singular, the system admits one and only one solution
If $\mathbf{A}$ is singular, let $\mathbf{M}=[\mathbf{A} \mid \mathbf{b}]$ be a $[n \times(n+1)]$ matrix

- If $\operatorname{rank}(\mathbf{A})=\operatorname{rank}(\mathbf{M})$, system has infinite solutions
- If $\operatorname{rank}(\mathbf{A})<\operatorname{rank}(\mathbf{M})$, system has no solutions $\underset{\substack{\text { (CK0191) } \\ 2018.1}}{ }$

```
Representatio,
l
```

State transition
$\underset{\text { matrix }}{\text { Definition }}$
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors
$\underset{\substack{\text { Genenvatiseds } \\ \text { Gatrix } \\ \text { modal }}}{\text { eiter }}$
${ }^{\text {Gentrix }}$
Transtron matrix
Transition an

Proof
An eigenvalue $\lambda$ and an eigenvector $\mathbf{v}$ must satisfy

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

$(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0}$ follows from this identity
The non-trivial solution $\mathbf{v} \neq \mathbf{0}$ is admissible iff matrix $(\lambda \mathbf{I}-\mathbf{A})$ is singular

$$
\rightsquigarrow \quad \operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=0
$$

Thus, $\lambda$ is root to the characteristic polynomial of matrix $\mathbf{A}$

```
c
representation
SA(CK0191)
 2018.1
 2018.1
```

Representation
and amalysais
State transition
State tran
matrix
Definition
Definition
Pronerties
Sylvester expansion
Lagrange
formula
formula
$\substack{\text { Force-free and } \\ \text { forced evolution }}$
Force-free and
forced evolution
Impulse eesponse
Impulse response
Similarity
transformation
Diagonalisation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalu
Jordan form
Basis of generalise
Basis of generalised
eigenvectors
$\underset{\substack{\text { Generalise } \\ \text { matrix }}}{\text { Tindita }}$
${ }_{-}^{\text {matrix }}$
Transition matrix

## Sylvester expansion (cont.)

## Matrix rank

The rank of a $(m \times n)$ matrix $\mathbf{A}$ is equal to the number of columns (or rows) of the matrix that are linearly independent
$\operatorname{rank}(\mathbf{A})$

Define the minors of matrix A as any matrix obtained from A by deleting an arbitrary number of rows and columns

- $\operatorname{rank}(\mathbf{A})$ equals the order of the largest non-singular square minor



## Properties (cont.)

Matrix kernel or null space
Consider a $(m \times n)$ matrix A
We define the null space or kernel

$$
\operatorname{ker}(\mathbf{A})=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{A} \mathbf{x}=\mathbf{0}\right\}
$$

It is all vectors $\mathrm{x} \in \mathcal{R}^{n}$ that left-multiplied by $\mathbf{A}$ produce the null vector
The set is a vector space, its dimension is called the nullity of matrix A null(A)

```
State-space
epresentation
 UFC/DC \({ }_{2018.1}\) 2018.1
```

```
Representatio
```

Representatio
State transition
matrix
D Detimition
Sylvester expansion
Magrange
Force-free and
forced evolution
mpulse respons
Similarity
transformation
Diagonalisation
Complex eigenvalue
Jordan form
\
C
|

```

\section*{Sylvester expansion (cont.)}

Or, equivalently,
- The vector of unknowns
\[
\rightsquigarrow \quad \boldsymbol{\beta}=\left[\begin{array}{llll}
\beta_{0}(t) & \beta_{1}(t) & \cdots & \beta_{n-1}(t)
\end{array}\right]^{T}
\]
- The coefficients matrix \({ }^{1}\)
\[
\rightsquigarrow \quad \mathbf{V}=\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} \\
1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \lambda_{n} & \lambda_{n}^{2} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]
\]
- The known vector
\[
\rightsquigarrow \quad \eta=\left[\begin{array}{llll}
e^{\lambda_{1} t} & e^{\lambda_{2} t} & \cdots & e^{\lambda_{n} t}
\end{array}\right]^{T}
\]
\({ }^{1}\) A matrix in this form is known as Vandermonde matrix.

\section*{Sylvester expansion (cont.)}

Eigenvalues with multiplicity one
Let matrix \(\mathbf{A}\) have distinct eigenvalues \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\)
\[
e^{\mathbf{A} t}=\sum_{i=0}^{n-1} \beta_{i}(t) \mathbf{A}^{i}
\]
\[
=\beta_{0}(t) \mathbf{I}+\beta_{1}(t) \mathbf{A}+\beta_{2}(t) \mathbf{A}^{2}+\cdots+\beta_{n-1}(t) \mathbf{A}^{n-1}
\]

The \(n\) unknown functions \(\beta_{i}(t)\) are those that solve the system
\[
\rightsquigarrow\left\{\begin{array}{c}
1 \beta_{0}(t)+\lambda_{1} \beta_{1}(t)+\lambda_{1}^{2} \beta_{2}(t)+\cdots+\lambda_{1}^{n-1} \beta_{n-1}(t)=e^{\lambda_{1} t} \tag{4}\\
1 \beta_{0}(t)+\lambda_{2} \beta_{1}(t)+\lambda_{2}^{2} \beta_{2}(t)+\cdots+\lambda_{2}^{n-1} \beta_{n-1}(t)=e^{\lambda_{2} t} \\
\cdots \\
1 \beta_{0}(t)+\lambda_{n} \beta_{1}(t)+\lambda_{n}^{2} \beta_{2}(t)+\cdots+\lambda_{n}^{n-1} \beta_{n-1}(t)=e^{\lambda_{n} t}
\end{array}\right.
\]
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalis } \\ \text { matrix }}}{\text { and }}\)
Transition matrix
ansition and
odes
Representation
and analysis
State trar
matrix
\({ }^{\text {Definition }}\)
Properties
Sylvester expansion
Lagrange
formula
\(\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }\)
Impulse response
\({ }_{\substack{\text { Similarity } \\ \text { transformation }}}\)
Diagonalisation
Diagonalisation
Transition matrix
 ransition matrix
Complex eigenvaluea
Complex eigenvalu
ardan form
\({ }^{\text {Generatrix }}\)
\begin{tabular}{c}
State-space \\
representation
\end{tabular}
UFC/DC
SA (CK0191)
2018.1

\section*{Sylvester expansion (cont.)}
\[
\boldsymbol{\eta}=\left[\begin{array}{llll}
e^{\lambda_{1} t} & e^{\lambda_{2} t} & \cdots & e^{\lambda_{n} t}
\end{array}\right]^{T}
\]

The components of vector \(\eta\) are functions of time, \(e^{\lambda t}\)
\(\rightsquigarrow\) Functions \(e^{\lambda t}\) are the modes of matrix \(\mathbf{A}\)
\(\rightsquigarrow\) Mode \(e^{\lambda t}\) associates with eigenvalue \(\lambda\)
Each element of \(e^{\mathbf{A} t}\) is a linear combination of such modes 2018.1

\section*{Sylvester expansion (cont.)}

\section*{xamı}

Consider the \((2 \times 2)\) matrix \(\mathbf{A}\)
\[
\mathbf{A}=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]
\]

We want to determine \(e^{\mathbf{A} t}\)
Matrix A is triangular, the eigenvalues correspond to the diagonal elements
Matrix \(\mathbf{A}\) has 2 distinct eigenvalues
\(\rightsquigarrow \lambda_{1}=-1\)
\(\rightsquigarrow \lambda_{2}=-2\)
To determine \(e^{\mathbf{A} t}\), we write the system
\[
\left\{\begin{array} { l }
{ 1 \beta _ { 0 } (t) + \lambda _ { 1 } \beta _ { 1 } (t) = e ^ { \lambda _ { 1 } t } } \\
{ 1 \beta _ { 0 } (t) + \lambda _ { 2 } \beta _ { 1 } (t) = e ^ { \lambda _ { 2 } t } }
\end{array} \rightsquigarrow \quad \left\{\begin{array}{l}
\beta_{0}(t)+(-1) \beta_{1}(t)=e^{(-1) t} \\
\beta_{0}(t)+(-2) \beta_{1}(t)=e^{(-2) t}
\end{array}\right.\right.
\]
Generalised
matrix
matrix
Transition matrix
Trancition and
Transition and
modes

State-space
representatio \(\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}\) \(\mathrm{A}_{2018.1}(\mathrm{CKO191}\)

\section*{Sylvester expansion (cont.)}
\[
\left\{\begin{array}{l}
\beta_{0}(t)=2 e^{-t}-e^{-2 t} \\
\beta_{1}(t)=e^{-t}-e^{-2 t}
\end{array}\right.
\]

Thus,
\[
\begin{aligned}
e^{\mathbf{A} t} & =\beta_{0}(t) \mathbf{I}_{2}+\beta_{1}(t) \mathbf{A} \\
& =\left(2 e^{-t}-e^{-2 t}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left(e^{-t}-e^{-2 t}\right)\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{-t} & \left(e^{-t}-e^{-2 t}\right) \\
0 & e^{-2 t}
\end{array}\right]
\end{aligned}
\]

Each element of matrix \(e^{\mathbf{A} t}\) is a linear combination of the two modes
\(\rightsquigarrow e^{-t}\)
\(\rightsquigarrow e^{-2 t}\)

\section*{State-space
representation}

UFC/DC \(\underset{\substack{\mathrm{UFC} / \mathrm{DC} \\ \text { SA } \\ 2018.1 \\ \text { (CK0191) }}}{ }\)

```

Definition

```
Sylvester expansion
Lagrange
formula
formula
Force-free and
Force-free and
forced evolution
Impulse response
Similarity
Diagonalisation
Transition matrix
Complex eigenvalue
Bardan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\)
Transition matrix
Transition and

\section*{Sylvester expansion (cont.)}

By simple manipulation, we get
\(\rightsquigarrow\left\{\begin{array}{l}\beta_{0}(t)=2 e^{-t}-e^{-2 t} \\ \beta_{1}(t)=e^{-t}-e^{-2 t}\end{array}\right.\)

\section*{Sylvester expansion (cont.)}


```

$$
\begin{array}{c}{\mathrm{ State-space}}\\{\mathrm{ representatio}}\end{array}
$$)
UFC/DC
SA(CKO191)

```
Representatio
and analysis
and analysis
State trans
matrix
Definition
\({ }^{\text {Detimition }}\)
Sylvester expansion
Lagrange
formula
formula
Force-free and
\begin{tabular}{c}
Force-free and \\
fored evolution \\
\hline
\end{tabular}
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\substack{\text { siden }}}\)
\begin{tabular}{l}
\(\substack{\text { Generali } \\
\text { matrix } \\
\hline \text { Transitio }}\) \\
\hline
\end{tabular}
Transsition mand
Transitio
modes

\section*{Sylvester expansion (cont.)}

Eigenvalues with multiplicity larger than one
Let matrix A have eigenvalues with multiplicity larger than one
As in the previous case, we build a system of equations
Eigenvalues \(\lambda\) of multiplicity \(\nu\) associate to \(\nu\) equations
\[
\rightsquigarrow\left\{\begin{array}{cc}
& {\left[\beta_{0}(t)+\lambda \beta_{1}(t)+\cdots+\lambda^{n-1} \beta_{n-1}(t)\right]=e^{\lambda t}} \tag{6}\\
\frac{\mathrm{~d}}{\mathrm{~d} \lambda} & {\left[\beta_{0}(t)+\lambda \beta_{1}(t)+\cdots+\lambda^{n-1} \beta_{n-1}(t)\right]=\frac{\mathrm{d}}{\mathrm{~d} \lambda} e^{\lambda t}} \\
\frac{\mathrm{~d}^{2}}{\mathrm{~d} \lambda^{2}} & {\left[\beta_{0}(t)+\lambda \beta_{1}(t)+\cdots+\lambda^{n-1} \beta_{n-1}(t)\right]=\frac{\mathrm{d}^{2}}{\mathrm{~d} \lambda^{2}} e^{\lambda t}} \\
\vdots \\
\frac{\mathrm{~d}^{\nu-1}}{\mathrm{~d} \lambda^{\nu-1}} & {\left[\beta_{0}(t)+\lambda \beta_{1}(t)+\cdots+\lambda^{n-1} \beta_{n-1}(t)\right]=\frac{\mathrm{d}^{\nu-1}}{\mathrm{~d} \lambda^{\nu-1}} e^{\lambda t}}
\end{array}\right.
\]

\section*{Sylvester expansion (cont.)}
\[
\mathbf{V} \beta=\eta
\]

Consider the eigenvalues \(\lambda\) with multiplicity \(\nu\)
- They are associated with \(\nu\) rows in the coefficient matrix \({ }^{2} \mathbf{V}\)
\[
\rightsquigarrow\left[\begin{array}{ccccccc}
1 & \lambda & \lambda^{2} & \cdots & \lambda^{\nu-1} & \cdots & \lambda^{n-1} \\
0 & 1 & 2 \lambda & \cdots & (\nu-1) \lambda^{\nu-2} & \cdots & (n-1) \lambda^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & (\nu-1)! & \cdots & \frac{(n-1)!}{(n-\nu)!} \lambda^{n-\nu}
\end{array}\right]
\]
- They are associated with \(\nu\) rows in the vector of known terms \(\eta\)
\[
\rightsquigarrow \quad\left[\begin{array}{llll}
e^{\lambda t} & t e^{\lambda t} & \cdots & t^{\nu-1} e^{\lambda t}
\end{array}\right]^{T}
\]

The vector of unknowns \(\boldsymbol{\beta}\)
\[
\rightsquigarrow \quad \boldsymbol{\beta}=\left[\begin{array}{llll}
\beta_{0}(t) & \beta_{1}(t) & \cdots & \beta_{n-1}(t)
\end{array}\right]^{T}
\]

\footnotetext{
\({ }^{2}\) A matrix of this form is known as confluent Vandermonde matrix.
}

\section*{Sylvester expansion (cont.)}

That is,
\[
\rightsquigarrow\left\{\begin{array}{l}
1 \beta_{0}(t)+\lambda \beta_{1}(t)+\cdots+\lambda^{n-1} \beta_{n-1}(t)=e^{\lambda t} \tag{7}\\
1 \beta_{1}(t)+2 \lambda \beta_{2}(t)+\cdots+(n-1) \lambda^{n-2} \beta_{n-1}(t)=t e^{\lambda t} \\
\vdots \\
\frac{(\nu-1)!}{0!} \beta_{\nu-1}(t)+\cdots+\frac{(n-1)!}{(n-\nu)!} \lambda^{n-\nu} \beta_{n-1}(t)=t^{\nu-1} e^{\lambda t}
\end{array}\right.
\]

It is again possible to re-write the linear system in compact form

\section*{Sylvester expansion (cont.)}

Consider the \((3 \times 3)\) matrix
\[
\mathbf{A}=\left[\begin{array}{ccc}
3 & 0 & 1 \\
2 & -1 & 1.5 \\
0 & 0 & 3
\end{array}\right]
\]

We want to determine \(e^{\mathbf{A} t}\)
The characteristic polynomial of matrix \(\mathbf{A}\)
\[
P(s)=(s-3)^{2}(s+1)
\]

Matrix A has two eigenvalues
\(\rightsquigarrow \lambda_{1}=+3\) (multiplicity 2)
\(\rightsquigarrow \lambda_{2}=-1\) (multiplicity 1)

\section*{Sylvester expansion (cont.)}

We can write the system
\[
\left\{\begin{array}{l}
\beta_{0}(t)+\lambda_{1} \beta_{1}(t)+\lambda_{1}^{2} \beta_{2}(t)=e^{\lambda_{1} t} \\
\beta_{1}(t)+2 \lambda_{1} \beta_{2}(t)=t e^{\lambda_{1} t} \\
\beta_{0}(t)+\lambda_{2} \beta_{1}(t)+\lambda_{2}^{2} \beta_{2}(t)=e^{\lambda_{2} t}
\end{array}\right.
\]
\[
\left\{\begin{array}{l}
\beta_{0}(t)+3 \beta_{1}(t)+9 \beta_{2}(t)=e^{(+3) t} \\
\beta_{1}(t)+6 \beta_{2}(t)=t e^{(+3) t} \\
\beta_{0}(t)-\beta_{1}(t)+\beta_{2}(t)=e^{(-1) t}
\end{array}\right.
\]

We get,
\[
\rightsquigarrow \quad\left\{\begin{array}{l}
\beta_{0}(t)=1 / 16\left(7 e^{3 t}-12 t e^{3 t}+9 e^{-t}\right) \\
\beta_{1}(t)=1 / 8\left(3 e^{3 t}-4 t e^{3 t}-3 e^{-t}\right) \\
\beta_{2}(t)=1 / 16\left(-e^{3 t}+4 t e^{3 t}+e^{-t}\right)
\end{array}\right.
\]

Thus,
\[
\begin{aligned}
e^{\mathbf{A} t} & =\beta_{0}(t) \mathbf{I}_{3}+\beta_{1}(t) \mathbf{A}+\beta_{2}(t) \mathbf{A}^{2} \\
& =\left[\begin{array}{ccc}
e^{3 t} & 0 & t e^{3 t} \\
\left(0.5 e^{3 t}-0.5 e^{-t}\right) & e^{-t} & \left(0.25 e^{3 t}+0.5 t e^{3 t}-0.25 e^{-t}\right) \\
0 & 0 & e^{3 t}
\end{array}\right]
\end{aligned}
\]

\section*{State-space
representation \\ UFC/DC UFC/DC
SA (CK0191) 2018.1}
and analysis
State transition
State trans
matrix
Definition
Properties
Sylvester expansion
Lagrange
formula
formula
\(\begin{gathered}\text { Force-free and } \\ \text { forced evolution }\end{gathered}\)
\begin{tabular}{l}
forced evolution \\
Impulse response \\
\hline
\end{tabular}
Similarity
transformation
transformation
Diagonalisation
Transition matrix Complex eigenvalue
Jordan form Basis of generalised
eigenvectors \(\underset{\substack{\text { Generalised } \\ \text { matrix }}}{ }\) Generaha
matrix
Transitic

\section*{Sylvester expansion (cont.)}

\section*{State-space
epresentation \\ epresentation \\ SA (CK0191)
2018.1} Representation
and analysis
\(\qquad\) State tran
matrix
Definition
```

M Definition

```
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
Force-free and
forced evolution
Impulse response
Simpulare respons
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalu
Jordan form
Baxis of generali
aicenvetere
Baxis of gener
eigenvectors
\(\underset{\substack{\text { Generalised } \\ \text { matrix }}}{\substack{\text { and }}}\)
\begin{tabular}{l}
matrix \\
\hline Transition matrix \\
\hline
\end{tabular}
Transition and
Transitio
modes

Let matrix \(\mathbf{A}\) have distinct eigenvalues \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\)
The \(n\) unknown functions \(\beta_{i}(t)\) are those that solve the system
\[
\rightsquigarrow\left\{\begin{array}{l}
\beta_{0}(t)+\lambda_{1} \beta_{1}(t)+\lambda_{1}^{2} \beta_{2}(t)+\cdots+\lambda_{1}^{n-1} \beta_{n-1}(t)=e^{\lambda_{1} t} \tag{8}\\
\beta_{0}(t)+\lambda_{2} \beta_{1}(t)+\lambda_{2}^{2} \beta_{2}(t)+\cdots+\lambda_{2}^{n-1} \beta_{n-1}(t)=e^{\lambda_{2} t} \\
\vdots \\
\beta_{0}(t)+\lambda_{n} \beta_{1}(t)+\lambda_{n}^{2} \beta_{2}(t)+\cdots+\lambda_{n}^{n-1} \beta_{n-1}(t)=e^{\lambda_{n} t}
\end{array}\right.
\]

Suppose that two of the \(n\) eigenvalues of \(\mathbf{A}\) are complex-conjugate \(\rightsquigarrow \lambda, \lambda^{\prime}=\alpha \pm j \omega\)

\section*{Sylvester expansion (cont.)}

\section*{Complex eigenvalues}

Let matrix A have complex eigenvalues
We can still determine the coefficients \(\beta\) of the Sylvester expansion

It is convenient to modify the procedure
\(\rightsquigarrow\) To avoid computations that involve complex numbers

We only discuss only the case of eigenvalues with multiplicity one

\section*{Sylvester expansion (cont.)}

In the resulting system, there should appear the two equations
\[
\rightsquigarrow\left\{\begin{array}{c}
1 \beta_{0}(t)+\lambda \beta_{1}(t)+\lambda^{2} \beta_{2}(t)+\cdots+\lambda^{n-1} \beta_{n-1}(t) \tag{9}\\
\quad=e^{\lambda t}=e^{\alpha t} e^{j \omega t} \\
1 \beta_{0}(t)+\lambda^{\prime} \beta_{1}(t)+\left(\lambda^{\prime}\right)^{2} \beta_{2}(t)+\cdots+\left(\lambda^{\prime}\right)^{n-1} \beta_{n-1}(t) \\
=e^{\lambda^{\prime} t}=e^{\alpha t} e^{-j \omega t}
\end{array}\right.
\]

We can substitute these two equations with two equivalent ones
\[
\rightsquigarrow\left\{\begin{array}{l}
\beta_{0}(t)+\operatorname{Re}(\lambda) \beta_{1}(t)+\operatorname{Re}\left(\lambda^{2}\right) \beta_{2}(t)+\cdots+\operatorname{Re}\left(\lambda^{n-1}\right) \beta_{n-1}(t) \tag{10}\\
\quad=e^{\alpha t} \cos (\omega t) \\
\operatorname{Im}(\lambda) \beta_{1}(t)+\operatorname{Im}\left(\lambda^{2}\right) \beta_{2}(t)+\cdots+\operatorname{Im}\left(\lambda^{n-1}\right) \beta_{n-1}(t) \\
=e^{\alpha t} \sin (\omega t)
\end{array}\right.
\]

The goal is to remove complex terms
\(\rightsquigarrow \operatorname{Re}(\lambda)=\alpha\)
\(\rightsquigarrow \operatorname{Im}(\lambda)=\omega\) \({ }_{2018.1}\)

Representatio
and analysis
State tran
matrix
\({ }_{\text {Definition }}\)
\({ }^{\text {Properties }}\)
Sylvester expansion
Lagrange
formula
\begin{tabular}{l}
Force-free and \\
forced evolution \\
\hline
\end{tabular}
Impulse response
Similarity
transformation
Diagonalisation Transition matrix Complex eigenvalue Easis of generalise
sichenvectors \(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{ }\) matrix Transition matrix Transition an
modes

\section*{Sylvester expansion (cont.)}
\[
\left\{\begin{array}{l}
1 \beta_{0}(t)+\lambda \beta_{1}(t)+\lambda^{2} \beta_{2}(t)+\cdots+\lambda^{n-1} \beta_{n-1}(t) \\
\quad=e^{\lambda t}=e^{\alpha t} e^{j \omega t} \\
1 \beta_{0}(t)+\lambda^{\prime} \beta_{1}(t)+\left(\lambda^{\prime}\right)^{2} \beta_{2}(t)+\cdots+\left(\lambda^{\prime}\right)^{n-1} \beta_{n-1}(t) \\
\quad=e^{\lambda^{\prime} t}=e^{\alpha t} e^{-j \omega t}
\end{array}\right.
\]

The first equation, is obtained by summing the two equations above
- Then, by dividing by 2

The second one, by subtracting the second equation from the first one
- Then, by dividing by \(2 j\)
\[
\rightsquigarrow\left\{\begin{array}{l}
\beta_{0}(t)+\operatorname{Re}(\lambda) \beta_{1}(t)+\operatorname{Re}\left(\lambda^{2}\right) \beta_{2}(t)+\cdots+\operatorname{Re}\left(\lambda^{n-1}\right) \beta_{n-1}(t) \\
\quad=e^{\alpha t} \cos (\omega t) \\
\operatorname{Im}(\lambda) \beta_{1}(t)+\operatorname{Im}\left(\lambda^{2}\right) \beta_{2}(t)+\cdots+\operatorname{Im}\left(\lambda^{n-1}\right) \beta_{n-1}(t) \\
\quad=e^{\alpha t} \sin (\omega t)
\end{array}\right.
\]

State-space
representation
UFC/DC \({ }_{2018.1}\)

Representation
and analysis
State transition
matrix
Definition
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forceed evolution
\begin{tabular}{|l|l|}
\hline forced evolution \\
Impulse response
\end{tabular}
Similarity
Similarity
transformatio
Diagonalisation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Basis of general
eigenvectors
\begin{tabular}{l}
Baisi of generali \\
eigenvectors \\
\hline
\end{tabular} \(\underset{\substack{\text { Generalised } \\ \text { matrix }}}{\text { mat }}\)

\section*{Sylvester expansion (cont.)}

Consider a state-space system with \((2 \times 2)\) matrix A
\[
\mathbf{A}=\left[\begin{array}{cc}
\alpha & \omega \\
-\omega & \alpha
\end{array}\right]
\]

We are interested in the state transition matrix \(e^{\mathbf{A} t}\)
Matrix A has characteristic polynomial
\[
P(s)=s^{2}-2 \alpha s+\left(\alpha^{2}+\omega^{2}\right)
\]

Matrix \(\mathbf{A}\) has distinct eigenvalues
\(\leadsto \lambda, \lambda^{\prime}=\alpha \pm j \omega\)

\section*{State-space
epresentation \\ UFC/DC \(\underset{\text { SA (CK0191) }}{\text { UFC/DC }}\)} 2018.1

State transition
```

Definition

```
\({ }^{\text {Properties }}\)
Sylvester expansion
Lagrange
formula
formula
Force-free and
Force-free and
forced evolution
Impulse response
Similarity
transformation
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors

\begin{tabular}{l}
Generalis \\
matrix \\
\hline Tranaitio
\end{tabular}
Transition matrix
Transition an
modes
Transitio
modes

\section*{Sylvester expansion (cont.)}

Sine and cosine terms on the RHS are from Euler formulæ
As \(\lambda\) and \(\lambda^{\prime}\) are conjugate-complex, so are \(\lambda^{k}\) and \(\left(\lambda^{\prime}\right)^{k}\)
Thus,
\[
\begin{aligned}
\lambda^{k}+\left(\lambda^{\prime}\right)^{k} & =2 \operatorname{Re}\left(\lambda^{k}\right) \\
\lambda^{k}-\left(\lambda^{\prime}\right)^{k} & =2 j \operatorname{Im}\left(\lambda^{k}\right)
\end{aligned}
\]

\section*{State-space \\ representation \(\underset{\mathrm{SA}}{\mathrm{UFC} / \mathrm{DC}} \mathrm{CK0191)}\) A \({ }_{2018.1}\)}

Representation
and analysis
State transition
Definition
Definition
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
Tormule
forced evolution
Impulse response
Impulse response
Similarity
transformation
Diagonalisation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalise
eigenvectors \(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{\text { mat }}\)

\section*{Sylvester expansion (cont.)}

To determine the state-transition matrix \(e^{\mathbf{A} t}\), we write the system
\(\left\{\begin{array}{l}\beta_{0}(t)+\operatorname{Re}(\lambda) \beta_{1}(t)=e^{\alpha t} \cos (\omega t) \\ \operatorname{Im}(\lambda) \beta_{1}(t)=e^{\alpha t} \sin (\omega t)\end{array}\right.\)
\[
\rightsquigarrow\left\{\begin{array}{l}
\beta_{0}(t)+\alpha \beta_{1}(t)=e^{\alpha t} \cos (\omega t) \\
\omega \beta_{1}(t)=e^{\alpha t} \sin (\omega t)
\end{array}\right.
\]

We obtain,
\[
\left\{\begin{array}{l}
\beta_{0}(t)=e^{\alpha t} \cos (\omega t)-\frac{\alpha e^{\alpha t}}{\omega} \sin (\omega t) \\
\beta_{1}(t)=\frac{e^{\alpha t}}{\omega} \sin (\omega t)
\end{array}\right.
\]

Thus,
\[
t\left[\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right]
\]

\section*{Lagrange formula}

\section*{\(\underset{\text { State-space }}{\substack{\text { epresentation }}}\) \\ epresentatio SA (CK0191) 2018.1}
```

Representatio

```
State transitio
matrix
Definition
Properties
Properties
Sylvester expans
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
Similarity
transformation
\({ }^{\text {transformation }}\)
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
Basis of generalised
eigenvectors
Generalised
matrix
\({ }^{\text {matrix }}\)
Transition and
Transition
modes

\section*{Lagrange formula (cont.)}
heorer
Lagrange formula
Consider the SS representation of a stationary linear system of order \(n\)
\[
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.
\]
- \(\mathbf{x}(t)\), state vector (\(n\) components)
- \(\dot{\mathbf{x}}(t)\), derivative of the state vector (\(n\) components)
- \(\mathbf{u}(t)\), input vector (\(r\) components)
- \(\mathbf{y}(t)\), output vector (\(p\) components)

The solution for \(t \geq t_{0}\), for an initial state \(\mathbf{x}\left(t_{0}\right)\) and an input \(\mathbf{u}\left(t \mid t \geq t_{0}\right)\)
\[
\left\{\begin{array}{l}
\mathbf{x}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \tag{11}\\
\mathbf{y}(t)=\mathbf{C} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right)+\mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t)
\end{array}\right.
\]

\(\square\)

\section*{State-space
representation \\ representation \\ \(\underset{\mathrm{SA}}{\mathrm{UFC} / \mathrm{DC}} \mathrm{CK0191)}\) \({ }_{2018.1}\)}
```

l

```
State transition
matrix
\begin{tabular}{l}
matrix \\
Definition \\
\hline
\end{tabular}
Definition
Propertics
Properties
Sylvester expan
Lagrange
\(\underset{\substack{\text { Lagrange } \\ \text { formula }}}{ }\)
Force- free and
forced evolution
forced evolution
Impulse response
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Bandis of generalised
Basis of generalised
eigenvectors
Generlieed
\(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{ }\)
\({ }_{\text {Thanis }}^{\text {mation matrix }}\)
Transition and

\section*{Lagrange formula (cont.)}

\section*{Proof}

Multiply the state equation \(\dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t)\) by \(e^{-\mathbf{A} t}\)
We get,
\[
e^{-\mathbf{A} t} \dot{\mathbf{x}}(t)=e^{-\mathbf{A} t} \mathbf{A} \mathbf{x}(t)+e^{-\mathbf{A} t} \mathbf{B u}(t)
\]

The resulting state equation can be rewritten,
\[
e^{-\mathbf{A} t} \dot{\mathbf{x}}(t)-e^{-\mathbf{A} t} \mathbf{A} \mathbf{x}(t)=e^{-\mathbf{A} t} \mathbf{B u}(t)
\]

Then, by using the result on the derivative of the state transition matrix \({ }^{3}\),
\[
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{-\mathbf{A} t} \mathbf{x}(t)\right]=e^{-\mathbf{A} t} \mathbf{B} \mathbf{u}(t)
\]
\[
\begin{aligned}
& { }^{3} \text { Derivative of the state transition matrix } \\
& \qquad \frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{-\mathbf{A} t} \mathbf{x}(t)\right]=e^{-\mathbf{A} t}\left[\frac{\mathrm{~d}}{\mathrm{~d} t} \mathbf{x}(t)\right]+\left[\frac{\mathrm{d}}{\mathrm{~d} t} e^{\mathbf{A} t}\right] \mathbf{x}(t) .
\end{aligned}
\]

State tran
matrix
Definition
Properties
Lagrange
formula
ormula
\(\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }\)
Impulse respons
Similarity
transformatio
Diagonalisation Transition matrix Jordan form Basis of generalised
eigenvectors \(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{ }\) Generanin
matrix
Transitio Trancition and Transition an
modes
\[
e^{\mathbf{A} t} \mathbf{x}(t)-e^{-\mathbf{A} t_{0}} \mathbf{x}\left(t_{0}\right)=\int_{t_{0}}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(t)
\]

Thus,
\[
e^{-\mathbf{A} t} \mathbf{x}(t)=e^{-\mathbf{A} t_{0}} \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-\mathbf{A} \tau} \mathbf{B} \mathbf{u}(t)
\]

Lagrange formula (cont.)
\[
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{-\mathbf{A} t} \mathbf{x}(t)\right]=e^{-\mathbf{A} t} \mathbf{B} \mathbf{u}(t)
\]

By integrating between \(t_{0}\) and \(t\), we obtain
\[
\left[e^{-\mathbf{A} \tau} \mathbf{x}(\tau)\right]_{t_{0}}^{t}=\int_{t_{0}}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) \mathrm{d} \tau
\]

That is,

State-space
representation
 \({ }_{2018.1}{ }^{\text {SA (CK0191) }}\) Representation
and analyation State transition \begin{tabular}{l}
matrix \\
Definition \\
\hline
\end{tabular} Definition
Properties \({ }^{\text {Properties }}\) Sylvester expat Lagrange
formula Force-free and
forced evolution forced evolution Similarity Similarity
transformatio transformation \begin{tabular}{|l|l|}
\hline Diagonalisation \\
Transition matrix
\end{tabular} Complex eigenvalu Basis of generalised Baxis of gen
eigenvectors
Ceneralised \begin{tabular}{|l|l|}
\hline Generalise \\
matrix \\
\hline
\end{tabular}

\section*{State-space
epresentation}

UFC/DC \(\mathrm{SA}_{(\mathrm{CKO18.1}}\)

State transition
Matrix
Definition
Properties
Lagrange
\(\underset{\text { formula }}{\text { Lagrange }}\)
Force-free and
forced evolution
Impulse respons
\(\underset{\substack{\text { Similarity } \\ \text { transformation }}}{ }\)
Diagonalisation Transition matrix
Jordan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{ }\)
\({ }^{\text {Gentraxix }}\)
Transition matrix Transition and
nodes

Lagrange formula (cont.)
\[
e^{-\mathbf{A} t} \mathbf{x}(t)=e^{-\mathbf{A} t_{0}} \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-\mathbf{A} \tau} \mathbf{B} \mathbf{u}(t)
\]

The first Lagrange formula is obtained by multiplying both sides by \(e^{\mathbf{A t}}\)
\[
\rightsquigarrow \quad \mathbf{x}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau
\]

The second formula is obtained by substituting \(\mathbf{x}(t)\) in the output equation
\[
\begin{aligned}
\mathbf{y}(t) & =\mathbf{C x}(t)+\mathbf{D u}(t) \\
& \rightsquigarrow \mathbf{C}[\underbrace{e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right)+\mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau}_{\mathbf{x}(t)}]+\mathbf{D u}(t)
\end{aligned}
\]

\section*{Force-free and forced evolution}
\[
\mathbf{x}(t)=\underbrace{e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right)}_{\mathbf{x}_{u}(t)}+\underbrace{\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau}_{\mathbf{x}_{f}(t)}
\]

We can write the state solution (for \(t \geq t_{0}\)) as the sum of two terms
\[
\mathbf{x}(t)=\mathbf{x}_{u}(t)+\mathbf{x}_{f}(t)
\]
\(\rightsquigarrow\) The force-free evolution of the state, \(\mathbf{x}_{u}(t)\)
\(\rightsquigarrow\) The forced evolution of the state, \(\mathbf{x}_{f}(t)\)

State tran
matrix
\({ }_{\text {Definition }}\)
Propertios
\({ }^{\text {Lagrange }}\)
\(\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }\)
Impulse response
Similarity
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalise
eigenvectors Generalised modal matrix Transition and

\section*{Force-freee and forced evolution (cont.)}

The force-free evolution of the state, from the initial condition \(\mathbf{x}\left(t_{0}\right)\)
\[
\begin{equation*}
\rightsquigarrow \quad \mathbf{x}_{l}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right) \tag{13}
\end{equation*}
\]
\(\rightsquigarrow e^{\mathbf{A}\left(t-t_{0}\right)}\) indicates the transition from \(\mathbf{x}\left(t_{0}\right)\) to \(\mathbf{x}(t)\)
\(\rightsquigarrow\) In the absence of contribution from the input

The forced evolution of the state
\[
\begin{equation*}
\rightsquigarrow \quad \mathbf{x}_{f}(t)=\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau=\int_{0}^{t-t_{0}} e^{\mathbf{A} t} \mathbf{B u}(t-\tau) \mathrm{d} \tau \tag{14}
\end{equation*}
\]
\(\rightsquigarrow\) The contribution of \(\mathbf{u}(\tau)\) to state \(\mathbf{x}(t)\)
\(\rightsquigarrow\) Thru a weighting function, \(e^{\mathbf{A}(t-\tau)} \mathbf{B}\)

\section*{State-space
representation}
(
\(\substack{\mathrm{UFC} / \mathrm{DC} \\ \text { SA (CK0191) } \\ 2018.1}\)

State transition
\(\underset{\text { Definition }}{\text { matrix }}\)
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
Impulse respons
\(\underset{\substack{\text { Similarity } \\ \text { transformation }}}{ }\)
transformation
Diagonalisation
Transition matrix Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors
Generalised modal
matrix matrix
Transition and ransition an

Force-free and forced evolution (cont.)
\[
\mathbf{y}(t)=\underbrace{\mathbf{C} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right)}_{\text {force-free evolution } \mathbf{y}_{u}(t)}+\underbrace{\mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau+\mathbf{D u}(t)}_{\text {forced evolution } \mathbf{y}_{f}(t)}
\]

We can write the output solution (for \(t \geq t_{0}\)) as the sum of two terms
\[
\mathbf{y}(t)=\mathbf{y}_{l}(t)+\mathbf{y}_{f}(t)
\]
\(\rightsquigarrow\) The force-free evolution of the output, \(\mathbf{y}_{u}(t)\)
\(\rightsquigarrow\) The forced evolution of the output, \(\mathbf{y}_{f}(t)\)

\section*{Free and forced evolution (cont.)}
\[
\mathbf{y}(t)=\underbrace{\mathbf{C} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right)}_{\text {force-free evolution } \mathbf{y}_{u}(t)}+\underbrace{\mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau+\mathbf{D u}(t)}_{\text {forced evolution } \mathbf{y}_{f}(t)}
\]

The force-free evolution of the output, from initial condition \(\mathbf{y}\left(t_{0}\right)=\mathbf{C x}\left(t_{0}\right)\)
\[
\begin{equation*}
\rightsquigarrow \quad \mathbf{y}_{u}(t)=\mathbf{C} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}\left(t_{0}\right)=\mathbf{C} \mathbf{x}_{u}(t) \tag{15}
\end{equation*}
\]

The forced-evolution of the output
\[
\begin{equation*}
\rightsquigarrow \quad \mathbf{y}_{f}(t)=\mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau+\mathbf{D} \mathbf{u}(t)=\mathbf{C} \mathbf{x}_{f}(t)+\mathbf{D u}(t) \tag{16}
\end{equation*}
\]

Free and forced evolution (cont.)

The state transition matrix for this SS representation,
\[
e^{\mathbf{A} t}=\left[\begin{array}{cc}
e^{-t} & \left(e^{-t}-e^{-2 t}\right) \\
0 & e^{-2 t}
\end{array}\right]
\]

We computed it earlier

State-space
representation
 2018.1

Representatio
and analysis
State transition
matrix
Definition
Properties
Sylvester ex
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse restions
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eizenvalue
Jordan form
Basis of generalised
eigenvectors
Banis of generahised
eigenvectors
Ceneravised
\(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{ }\)
\begin{tabular}{l}
matriix \\
Transition matrix \\
\hline
\end{tabular}
Transition and

Free and forced evolution (cont.)

The force-free evolution of the output, for \(t \geq 0\)
\(\rightsquigarrow \quad y_{u}(t)=\mathbf{C} \mathbf{x}_{u}(t)=\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{c}\left(7 e^{-t}-4 e^{-2 t}\right) \\ 4 e^{-2 t}\end{array}\right]=14 e^{-t}-4 e^{-2 t}\)

```

Mepresentati

```
tate transit
matrix
Definition
Propertios
Sylvester ex
agrange
Force-free and
forced evolutio
Yorced evolution
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalu
Jordan form
Basis of generalised
eigenvectors \(\underset{\substack{\text { Generalised } \\ \text { matrix }}}{\text { and }}\) General
matrix
Trasitio
Transition and

\section*{Free and forced evolution (cont.)}

The forced evolution of the state, for \(t \geq 0\)
\(\rightsquigarrow \quad \mathbf{x}_{f}(t)=\int_{0}^{t} e^{\mathbf{A} t} \mathbf{B} u(t-\tau) \mathrm{d} \tau=\int_{0}^{t}\left[\begin{array}{cc}e^{-\tau} & \left(e^{-\tau}-e^{-2 \tau}\right) \\ 0 & e^{-2 \tau}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right] 2 \mathrm{~d} \tau\)
\[
=2 \int_{0}^{t}\left[\begin{array}{c}
\left(e^{-\tau}-e^{-2 \tau}\right) \\
e^{-2 \tau}
\end{array}\right] \mathrm{d} \tau=2\left[\begin{array}{c}
\int_{0}^{t}\left(e^{-\tau}-e^{-2 \tau}\right) \mathrm{d} \tau \\
\int_{0}^{t} e^{-2 t} \mathrm{~d} \tau
\end{array}\right]
\]
\[
=2\left[\begin{array}{c}
\left(1-e^{-t}\right)-1 / 2\left(1-e^{-2 t}\right) \\
1 / 2\left(1-e^{-2 t}\right)
\end{array}\right]=\left[\begin{array}{c}
\left(1-2 e^{-t}+e^{-2 t}\right) \\
\left(1-e^{-2 t}\right)
\end{array}\right]
\]

\section*{State-space
representatio}
\(\mathrm{UFC/DC}\)
\(\mathrm{SA}(\mathrm{CKO191})\) \(\mathrm{SA}_{2018.1}^{(\mathrm{CKO191}}\)
```

Representatio,

```
State tran
matrix
Definition
Properties
Sylvester ex
Lagrange
formula
Force-free and
forced evolution
Impulse reeponse
\(\underset{\substack{\text { Similarity } \\ \text { transformatio }}}{ }\)
transformation
Diagonalisation
Transition matrix
Complex eigenvalu
Jordan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{ }\)
\(\underset{\substack{\text { Generali: } \\ \text { matrix }}}{ }\)
Transition matrix
Transition
modes
\(\square\)

State-space
representation
representation
\(\underset{\mathrm{SA}}{\mathrm{UFC} / \mathrm{DC}} \mathrm{CK0191)}\) 2018.1
```

Representation

```
and analysis
State transition
matrix
matrix
Definition
Properties
Sylvester expansion
Lagrange
formula
\begin{tabular}{c}
Force-free and \\
forced evolution \\
\hline
\end{tabular}
forced evolution
Impulse response
Impulse respons
Similarity
transformation
transformation
Diagonalisation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalues
Jordan form
Basisis of teneralised
Basis of generalis
eigenvectors
\begin{tabular}{|l|l}
\(\substack{\text { Generalised } \\
\text { matrix } \\
\text { Transition }}\) \\
\hline
\end{tabular}
Transition matrix

State-space
representation \(\underset{\mathrm{SA}(\mathrm{CK0191})}{\mathrm{UFC} / \mathrm{DC}}\) \(\mathrm{SA}_{2018.1}\) Representation
and analysis

State tran
matrix
Definition
Properties
\({ }^{\text {Properties }}\)
Lagrange
formula
Force-free and
forced evolution
\begin{tabular}{|l}
forced evolution \\
Impulse response
\end{tabular}
\({ }^{\text {Impulse resp }}\) Similarity
Similarity
transformatio
transformation
Diagonalisation
Transition matrix
Jordan form
Baseis of yeneralised
Bacis of general
eigenvectors \({ }_{\substack{\text { Generalise } \\ \text { matrix }}}\)

\section*{Impulse response}

Lagrange formula

\section*{Impulse response}

We discussed the impulse response for systems in IO representation
- The forced response due to a unit impulse

We complete the presentation for systems in SS representation SA (CKO191) 2018.1

\section*{Impulse response (cont.)}

\section*{Representatio
and analysis}

\section*{State transitio}

Definitio
Properties
Lagrange
formula
formula
\begin{tabular}{l}
Force-riee and \\
forced evolution \\
\hline
\end{tabular}
Impulse response
Similarity
Diagonalisation Transition matrix Complex eitenvalu Basis of generalised
aisenvectors Generalised modal matrix
Transitio
Transtion matrix Transition and
modes
ronosition
Impulse response
Consider the SS representation of a SISO system

The impulse response

\section*{Proof} Let \(u(t)=\delta(t)\) and substitute it in the Lagrange formula
\[
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t)
\end{array}\right.
\]
\[
\{\mathbf{y}(t)=\mathbf{C x}(t)+D \mathbf{u}(t)
\]
\[
\begin{equation*}
w(t)=\mathbf{C} e^{\mathbf{A} t} \mathbf{B}+D \delta(t) \tag{18}
\end{equation*}
\]

The impulse response is the forced response due to a unit impulse
\[
w(t)=\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \delta(\tau) \mathrm{d} \tau+D \delta(t)
\]

\section*{Impulse response (cont.)}

Consider a continuous function \(f\) of \(t\)
By the properties of the Dirac function, we have that \(f(t-\tau) \delta(\tau)=f(t) \delta(\tau)\)
Thus, we have
\[
w(t)=\mathbf{C} \int_{0}^{t} e^{\mathbf{A} t} \mathbf{B} \delta(\tau) \mathrm{d} \tau+D \delta(t)=\mathbf{C} e^{\mathbf{A} t} \mathbf{B} \underbrace{\int_{0}^{t} \delta(\tau) \mathrm{d} \tau}_{1}+D \delta(t)
\]

State-space
representation
SA (CK0191) 2018.1

\section*{Impulse response (cont.)}

The forced response can be calculated using Lagrange formula It corresponds to what was derived by the Durhamel's integral
\(\rightsquigarrow \quad y_{f}(t)=\int_{0}^{t} w(t-\tau) u(\tau) \mathrm{d} \tau=\int_{0}^{t}\left[\mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B}+D \delta(t-\tau)\right] u(\tau) \mathrm{d} \tau\)
\[
=\int_{0}^{t} \mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) \mathrm{d} \tau+\int_{0}^{t} D \delta(\tau-t) u(\tau) \mathrm{d} \tau
\]
\[
=\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) \mathrm{d} \tau+D u(t)
\]

\section*{Similarity tranformation (cont.)}

The main advantage of the similarity transformation procedure is flexibility
- We can change to easier system representations

The state matrix can be set in canonical form
\(\rightsquigarrow\) Diagonal form
\(\rightsquigarrow\) Jordan form
There are other canonical forms

\section*{State-space
epresentation}

UFC/DC \(\mathrm{UFC} / \mathrm{DC}\)
\(\mathrm{SA}(\mathrm{CKO191})\)
2018.1

Representatio
and analysis
and analysis
State transition
\(\underset{\text { Definition }}{\text { matix }}\)
Properties
Sylvester expansio
Lagrange
formula
Force-free and
forced evolution
Impulse respons
Similarity
transformat
transformation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalu
\begin{tabular}{c}
Basis of genera \\
eisenvectors \\
\hline
\end{tabular}
\begin{tabular}{l}
eigenvectors \\
Generaised modal \\
\hline
\end{tabular}
\({ }^{\text {Gentrix }}\)
Transition matrix
Transition and Transition an
modes

State-space
representation
\(\underset{\mathrm{SA}(\mathrm{CK} / \mathrm{DC}}{\mathrm{UFP1})}\) \({ }_{2018.1}\)

\section*{Similarity tranformation}

The form of the state space representation depends on the choice of states
- The choice is not unique

There is an infinite number of different representations of the same system
- They are all related by a similarity transformation

We define the concept of similarity transformation

\section*{Similarity tranformation (cont.)}

Similarity transformation
Consider the SS representation of a linear stationary system of order \(n\)
\[
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.
\]
- \(\mathbf{x}(t)\), state vector (\(n\) components)
- \(\mathbf{u}(t)\), input vector (r components)
- \(\mathbf{y}(t)\), output vector (\(p\) components)

Let vector \(\mathbf{z}(t)\) be related to \(\mathbf{x}(t)\) by a linear transformation \(\mathbf{P}\)
\[
\begin{equation*}
\mathbf{x}(t)=\mathbf{P z}(t) \tag{19}
\end{equation*}
\]
\(\mathbf{P}\) is any \((n \times n)\) non-singular matrix of constants
- Thus, the inverse of \(\mathbf{P}\) always exists
- We have \(\mathbf{z}(t)=\mathbf{P}^{-1} \mathbf{x}(t)\)

Transformation/matrix \(\mathbf{P}\) is called similarity transformation/matrix

\section*{Similarity tranformation (cont.)}
Similar representation
Consider the SS representation of a linear stationary system of order \(n\)
\[
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \tag{20}\\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.
\]
Let \(\mathbf{P}\) be some transformation matrix such that \(\mathbf{x}(t)=\mathbf{P z}(t)\)
Vector \(\mathbf{z}(t)\) satisfies the new SS representation
\[
\left\{\begin{array}{l}
\dot{\mathbf{z}}(t)=\mathbf{A}^{\prime} \mathbf{z}(t)+\mathbf{B}^{\prime} \mathbf{u}(t) \tag{21}\\
\mathbf{y}(t)=\mathbf{C}^{\prime} \mathbf{z}(t)+\mathbf{D}^{\prime} \mathbf{u}(t)
\end{array}\right.
\]
\(\rightsquigarrow \mathbf{A}^{\prime}=\mathbf{P}^{-1} \mathbf{A P}\)
\(\rightsquigarrow \mathbf{B}^{\prime}=\mathbf{P}^{-1} \mathbf{B}\)
\(\leadsto \mathrm{C}^{\prime}=\mathbf{C P}\)
\(\rightsquigarrow \mathbf{D}^{\prime}=\mathbf{D}\)
\begin{tabular}{l|l}
\begin{tabular}{c}
State-space \\
representation
\end{tabular} & Similarity tranformation (cont.) \\
\begin{tabular}{c}
UFC/DC \\
SA (CK0191) \\
2018.1
\end{tabular} & \\
\begin{tabular}{l}
Representation \\
and analysis
\end{tabular} & \\
\begin{tabular}{l}
State transition \\
matrix \\
Definition \\
Properties \\
Sylvester expansion
\end{tabular} & \(\left\{\begin{array}{l}\dot{\mathbf{z}}(t)=\mathbf{A}^{\prime} \mathbf{z}(t)+\mathbf{B}^{\prime} \mathbf{u}(t) \\
\mathbf{y}(t)=\mathbf{C}^{\prime} \mathbf{z}(t)+\mathbf{D}^{\prime} \mathbf{u}(t)\end{array}\right.\)
\end{tabular}

Lagrange
formula
Force free and
forced evolution
Impulse respons
Similarity
transformat
Diagonalisation Diagonalisation
Transition matrix Transition matrix
Complex eigenvalue Jordan form \begin{tabular}{l}
Basis of general \\
eigenvectors \\
\hline
\end{tabular} \(\underset{\substack{\text { Generalised } \\ \text { matrix }}}{\substack{\text { and } \\ \text { and }}}\)

We obtained a different SS representation of the same system
- Input \(\mathbf{u}(t)\) and output \(\mathbf{y}(t)\) are unchanged
- The new state is indicated by \(\mathbf{z}(t)\)

There is an infinite number of non-singular matrixes \(\mathbf{P}\)
\(\rightsquigarrow\) An infinite number of equivalent representations State transition
\(\qquad\)
\(\qquad\) Properties Sylvester expansion Lagrange
formula Force-free and
forced evolution Impulse respons \(\underset{\substack{\text { Similarity } \\ \text { transformat }}}{ }\) transformation Diagonalisation
Transition matrix Transition matrix Jordan form Basis of generalised
eigenvectors Generalised modal
matrix matrix
Transition matrix Transition ar
modes

\section*{Similarity tranformation (cont.)}

Proof
Take the time-derivative of \(\mathbf{x}(t)=\mathbf{P z}(t)\)
We get,
\[
\rightsquigarrow \quad \dot{\mathbf{x}}(t)=\mathbf{P} \dot{\mathbf{z}}(t)
\]

Substitute \(\mathbf{x}(t)\) and \(\dot{\mathbf{x}}(t)\) into the SS representation
We get,
\[
\rightsquigarrow\left\{\begin{array}{l}
\mathbf{P} \dot{\mathbf{z}}(t)=\mathbf{A P z}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C P z}(t)+\mathbf{D u}(t)
\end{array}\right.
\]

Pre-multiply the state equation by \(\mathbf{P}^{-1}\), to complete the proof
 2018.1
\(\qquad\)

State transition
matrix
Definition
Properties
Sylvester expan
Lagrange
formula
Force-free and
forced evolution
Impulse respons
Similarity
transformatio
Diagonalisation Diagonalisation
Transition matrix Complex eigenvalue Jordan form
Basis of generalised Baxis of generalised
eigenvectors \(\underbrace{}_{\substack{\text { Generalised modal } \\ \text { matrix }}}\) matrix Transition and

\section*{Similarity tranformation (cont.)}

Consider a system with SS representation \(\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}\)
\[
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x_{1}}(t) \\
\dot{x_{2}}(t)
\end{array}\right]=\overbrace{\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]}^{\mathbf{A}}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\overbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}^{\mathbf{B}} u(t)} \\
{\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]}_{\mathbf{C}}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\underbrace{\left[\begin{array}{c}
1.5 \\
0
\end{array}\right]}_{\mathbf{D}} u(t)}
\end{array}\right.
\]

Consider the similarity transformation of the state
\[
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]}_{\mathbf{P}}\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t)
\end{array}\right]
\]

What is the \(\left\{\mathbf{A}^{\prime}, \mathbf{B}^{\prime}, \mathbf{C}^{\prime}, \mathbf{D}^{\prime}\right\}\) SS representation corresponding to state \(\mathbf{z}(t)\)

\section*{State-space
Ser epresentati \(\underset{\mathrm{SA}(\mathrm{CK} 0191)}{\mathrm{OFCDC}}\) 2018.1}

\section*{Similarity tranformation (cont.)}

\section*{1}

Similarity and state transition matrix
Consider the state matrix \(\mathbf{A}^{\prime}=\mathbf{P}^{-1} \mathbf{A P}\) from a similarity transformation The corresponding state transition matrix
\[
e^{\mathbf{A}^{\prime} t}=\mathbf{P}^{-1} e^{\mathbf{A} t} \mathbf{P}
\]

\section*{Proof}

Note that
\[
\begin{aligned}
&\left(\mathbf{A}^{\prime}\right)^{k}=\underbrace{\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right) \cdot\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right) \cdots\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right)}_{k \text { times }} \\
&=\mathbf{P}^{-1} \underbrace{\mathbf{A} \mathbf{A} \cdots \mathbf{A}}_{k \text { times }} \mathbf{P}=\mathbf{P}^{-1} \mathbf{A}^{k} \mathbf{P}
\end{aligned}
\]
\(\qquad\)
Definition
Definition
Properties
\({ }^{\text {Properties }}\)
Lagrange
formula
formula
Force-free and
Force-free and
forced evolution
Similarity
Similarity
transformation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalise
eigenvectors
Generalised modal
Generahne
matrix
Transition
Transition and

In addition,
\[
\begin{aligned}
\mathbf{A}^{\prime} & =\mathbf{P}^{-1} \mathbf{A P}=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
2 & -1
\end{array}\right] \\
\mathbf{B}^{\prime} & =\mathbf{P}^{-1} \mathbf{B}=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
\mathbf{C}^{\prime} & =\mathbf{C P}=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right] \\
\mathbf{D}^{\prime} & =\mathbf{D}=\left[\begin{array}{c}
1.5 \\
0
\end{array}\right]
\end{aligned}
\]

\section*{Similarity tranformation (cont.)}

\section*{Similarity tranformation (cont.)}

Thus, by definition
\[
e^{\mathbf{A}^{\prime} t}=\sum_{k=0}^{\infty} \frac{\left(\mathbf{A}^{\prime}\right)^{k} t^{k}}{k!}=\sum_{k=0}^{\infty} \frac{\left(\mathbf{P}^{-1} \mathbf{A}^{k} \mathbf{P}\right) t^{k}}{k!}
\]
\[
\rightsquigarrow \quad=\mathbf{P}^{-1}\left(\sum_{k=0}^{\infty} \frac{\mathbf{A}^{k} t^{k}}{k!}\right) \mathbf{P}=\mathbf{P}^{-1} e^{\mathbf{A} t} \mathbf{P}
\]

\section*{\(\underset{\substack{\text { State-space } \\ \text { representation }}}{\text { and }}\) \\ Sresentatio \(\underset{\mathrm{SA}}{\mathrm{UFC} / \mathrm{DCO}}\) \({ }_{2018.1}\)}
\(\qquad\)
Representatio
and analysis
State trans
Dinatit
Definition
Properties
Properties
Sylvester expansio
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
\(\underset{\text { Sransformation }}{\text { Similarity }}\)
Diagonalisation
Transition matrix Transition matrix

Jordan form
Basis of generalised
Baisis of generalised
eigenvectors \(\underset{\substack{\text { Generalis } \\ \text { matrix }}}{\substack{\text { and }}}\)

\section*{Similarity tranformation (cont.)}

Proof
Consider the original SS representation of the system
\[
\left\{\begin{array}{r}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.
\]

Consider a modified SS representation of the system
\[
\left\{\begin{array}{l}
\dot{\mathbf{z}}(t)=\mathbf{A}^{\prime} \mathbf{z}(t)+\mathbf{B}^{\prime} \mathbf{u}(t) \\
\mathbf{y}(t)=\mathbf{C}^{\prime} \mathbf{z}(t)+\mathbf{D}^{\prime} \mathbf{u}(t)
\end{array}\right.
\]
\(\rightsquigarrow \mathbf{A}^{\prime}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\)
\(\rightsquigarrow \mathbf{B}^{\prime}=\mathbf{P}^{-1} \mathbf{B}\)
\(\rightsquigarrow \mathbf{C}^{\prime}=\mathbf{C P}\)
\(\rightsquigarrow \mathbf{D}^{\prime}=\mathbf{D}\)

\section*{\(\underset{\substack{\text { State-space } \\ \text { representation }}}{ }\) \\ \(\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}\)} \({ }_{2018.1}\)

\section*{Representatio
and analysis}

State transition
State tran
matrix
Definition
Properties
Properties
Sylvester expansion
Lagrange
formula
formula
\(\begin{aligned} & \text { Force-free and } \\ & \text { forced evolution }\end{aligned}\)
\begin{tabular}{c}
forced evolution \\
Impulise response \\
\hline
\end{tabular}
Similarity
transformation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{\text { Eld }}\)
Generaha
matrix
Transitio
Transition matrix
Transition an
modes

\section*{Similarity tranformation (cont.)}

Invariance of the IO relationship by similarity
Consider two similar SS representations of the same stationary system
\(\rightsquigarrow\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}\) and \(\left\{\mathbf{A}^{\prime}, \mathbf{B}^{\prime}, \mathbf{C}^{\prime}, \mathbf{D}^{\prime}\right\}\)
\(\rightsquigarrow \mathbf{P}\) is the transformation matrix
Let the system be subjected to some input \(\mathbf{u}(t)\)
The two representations produce the same forced response
\(\rightsquigarrow \mathbf{y}_{f}(t)\)

State-space
representation
UFC/DC \({ }_{2018.1}\)

\section*{Similarity tranformation (cont.)}

Consider the Lagrange formula
The forced response of the second representation due to input \(\mathbf{u}(t)\)
\[
\begin{aligned}
\mathbf{y}_{f}(t) & =\mathbf{C}^{\prime} \int_{t_{0}}^{t} e^{\mathbf{A}^{\prime}(t-\tau)} \mathbf{B}^{\prime} \mathbf{u}(\tau) \mathrm{d} \tau+\mathbf{D} \mathbf{u}(t) \\
& =\mathbf{C P} \int_{t_{0}}^{t} \underbrace{\mathbf{P}^{-1} e^{\mathbf{A}(t-\tau)} \mathbf{P}}_{e^{\mathbf{A}^{\prime}(t-\tau)}} \underbrace{\mathbf{P}^{-1} \mathbf{B}}_{\mathbf{B}^{\prime}} \mathbf{u}(\tau) \mathrm{d} \tau+\mathbf{D} \mathbf{u}(t) \\
& =\mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau+\mathbf{D u}(t)
\end{aligned}
\]

This response corresponds to that of the first SS representation
\[
\mathbf{y}_{f}(t)=\mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) \mathrm{d} \tau+\mathbf{D u}(t)
\]

\section*{Similarity tranformation (cont.)}

\section*{opositio}
Invariance of the eigenvalues under similarity transformations Matrix \(\mathbf{A}\) and \(\mathbf{P}^{-1} \mathbf{A P}\) have the same characteristic polynomial
Proof
The characteristic polynomial of matrix \(\mathbf{A}^{\prime}\)
\[
\begin{aligned}
\operatorname{det}\left(\lambda \mathbf{I}-\mathbf{A}^{\prime}\right) & =\operatorname{det}\left(\lambda \mathbf{I}-\mathbf{P}^{-1} \mathbf{A P}\right)=\operatorname{det}(\lambda \underbrace{\mathbf{P}^{-1} \mathbf{P}}_{\mathbf{I}}-\mathbf{P}^{-1} \mathbf{A P}) \\
& =\operatorname{det}\left[\mathbf{P}^{-1}(\lambda \mathbf{I}-\mathbf{A}) \mathbf{P}\right]=\operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) \operatorname{det}(\mathbf{P}) \\
& =\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})
\end{aligned}
\]
The last equality is obtained from \(\operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}(\mathbf{P})=1\)
\(\mathbf{A}\) and \(\mathbf{A}^{\prime}\) share the same characteristic polynomial
\(\rightsquigarrow\) Thus, also the eigenvalues are the same

Representatio
and analysis
tate transition

\section*{Definition}

Properties
Sylvester expansio
Lagrange
formula
\(\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }\)
Impulse respon
Similarity
transforma
transformation
Diagonalisation
Transition matrix Complex eigenvalue Jordan form \({ }_{\substack{\text { Bais of general } \\ \text { eigenvectors }}}\) Generalised
matrix matrix

Similarity tranformation (cont.)

Example
Consider two similar SS representations of the same LTI system
\[
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right] \\
\mathbf{A}^{\prime} & =\left[\begin{array}{cc}
-2 & 0 \\
2 & -1
\end{array}\right]
\end{aligned}
\]

The similarity transformation matrix
\[
\mathbf{P}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
\]

We are interested in the eigenvalues and modes of the system

\section*{Matrix \(\mathbf{A}\) and \(\mathbf{A}\) have two eigenvectors}
- \(\lambda_{1}=-1\) and \(\lambda_{2}=-2\)

The system modes are \(e^{-t}\) and \(e^{-2 t}\)

Representatio
and analysis
and analysis
State transition
\(\underset{\text { Definition }}{\text { matrix }}\) \({ }^{\text {Properties }}\) Sylvester expans Lagrange
formula Force-free and
forced evolution Impulse respons \(\underset{\text { Similarity }}{\text { transformat }}\) transformation Diagonalisation
Transition matrix Transition matrix
Complex eigenvalue Jordan form Basis of generalised
eigenvectors \(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\) matrix

\section*{Similarity tranformation (cont.)}

Two similar SS representations have the same modes
- The modes characterise the dynamics

The modes are independent of the representation
\(\rightsquigarrow\) This is important

\section*{State-space \\ representation \\ \(\underset{\mathrm{SA}(\mathrm{CKO191})}{\mathrm{UFC} / \mathrm{DC}}\)} 2018.1
```

l

```


State transition
matrix
Definition
Properties
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Impulse respon
transformation
Diagonalisation
Transition matrix Complex eigenvalue

\section*{Jordan form}

Baxis of generalised
eigenvectors eigenvect

\section*{Diagonalisation}

State-space representation

\section*{State-space
representation \\ UFC/DC SA (CK0191) \({ }_{2018.1}\)}
```

l

```

State transiti
matrix
\begin{tabular}{l}
Definition \\
\hline Properties
\end{tabular}
Properties
Sylvester expansion
Lagrange
formula
 Impulse response Similarity Diagonalisation Diagonalisation
Transition matrix Complex eigenvalue Jordan form Basis of generalised Basis of gener
eigenvectors \(\underset{\substack{\text { Generali } \\ \text { matrix }}}{ }\)

\section*{Diagonalisation (cont.)}

We think of a system with diagonal matrix \(\mathbf{A}\) as a collection of sub-systems
\(\rightsquigarrow\) Each sub-system is described by a single state component
\(\rightsquigarrow\) Each state component evolves independently
\(\rightsquigarrow\) The representation is decoupled
\(\rightsquigarrow n\) first-order subsystems

The characteristic polynomial of the system for the \(i\)-th component
\[
\rightsquigarrow \quad P_{i}(s)=\left(s-\lambda_{i}\right)
\]

This subsystem has mode \(e^{-\lambda_{i} t}\)
State-space
representation
\(\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}\) \(\mathrm{SA}_{2018.1}^{(\mathrm{CKO191}}\)
Representation
Representation
State tr
matrix
\begin{tabular}{l}
matrix \\
Definition \\
\hline
\end{tabular}
Properties
Lagrange
formula
\begin{tabular}{l}
Force-free and \\
forced evolution \\
\hline
\end{tabular}
Impulse respons
Similarity
transformatio
Diagonalisation
Transition matrix
Complex eigenvalue
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\)
\(\underset{\substack{\text { Generali } \\ \text { matrix }}}{\text { Trasitit }}\)
Transition and
```

N State-space
epresentatio
UFC/DC
2018.1
Mepresentatio
State tra
Definition

```
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulso response
Impulse respons
Similarity
transformation
Diagonalisation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Baxis of generalised
eigenvectors
\(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{ }\)
\({ }_{-2}{ }^{\text {matrix }}\) Transition matrix
Transition and
Transit
modes

Consider a SISO LTI system characterised by the following state equation
\[
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
\vdots \\
\dot{x}_{n}(t)
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] u(t)
\]

The evolution of the \(i\)-th component of the state vector
\[
\rightsquigarrow \quad \dot{x}_{i}(t)=\lambda_{i} x_{i}(t)+b_{i} u(t)
\]

State derivatives are not related to other components

\section*{Diagonalisation (cont.)}
t related to other components

\section*{Diagonalisation (cont.)}

A special similarity transformation to get a representation in diagonal form
- A special similarity matrix

\section*{Diagonalisation (cont.)}
f a matrix \(\mathbf{A}\) has \(n\) distinct eigenvalues, then its modal matrix exists
- As its \(n\) eigenvectors are linearly independent

\section*{Distinct eigenvalues}

Let \(\mathbf{A}\) be a \(n\)-order matrix whose \(n\) eigenvalues \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\) are distinct
Then, there is a set of \(n\) linearly independent eigenvectors
- Vectors \(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\) form a basis for \(\mathcal{R}^{n}\)

\section*{\(\underset{\substack{\text { State-space } \\ \text { epresentation }}}{\substack{\text { and } \\ \text { and }}}\) \\ UFC/DC 2018.1}

Representation
and analysiic
State transition
Definition
Properties
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
Diagonalisation Transition matrix
Complex e igenvalu

Jordan form
Basis of generalised
eigenvectors Batis of gene
eigenvectors \(\underset{\substack{\text { Generali } \\ \text { matrix }}}{\text {. }}\)

\section*{Diagonalisation (cont.)}

Consider the state-space representation of a system with matrix \(\mathbf{A}\)
\[
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]
\]

We are interested in the modal matrix \(\mathbf{V}\) of \(\mathbf{A}\)
The eigenvalues and eigenvectors of \(\mathbf{A}\)
\(\rightsquigarrow \lambda_{1}=1\) and \(\mathbf{v}_{1}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}\)
\(\rightsquigarrow \lambda_{2}=5\) and \(\mathbf{v}_{2}=\left[\begin{array}{ll}1 & 3\end{array}\right]^{T}\)
The modal matrix \(\mathbf{V}\),
\[
\mathbf{V}=\left[\mathbf{v}_{1} \mid \mathbf{v}_{2}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right]
\]

\section*{Diagonalisation (cont.)}

The eigenvectors are determined up to a scaling constant
- (Plus, the ordering of the eigenvalues is arbitrary)

It is clear that there can be more than one modal matrix
These two modal matrices of matrix \(\mathbf{A}\) are equivalent
\[
\begin{aligned}
\mathbf{V}^{\prime} & =\left[\mathbf{v}_{2} \mid \mathbf{v}_{1}\right]=\left[\begin{array}{cc}
2 & 3 \\
-2 & 9
\end{array}\right] \\
\mathbf{V}^{\prime \prime} & =\left[2 \mathbf{v}_{1} \mid 3 \mathbf{v}_{2}\right]=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]
\end{aligned}
\]

\section*{Diagonalisation (cont.)}
Consider a matrix A whose eigenvalues have multiplicity \(\nu\) larger than one
- The modal matrix exists if and only if to each eigenvalue \(\lambda\) with multiplicity \(\nu\) is possible to associate \(\nu\) linearly independent eigenvectors
\[
\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\nu}
\]
This is not always possible
\begin{tabular}{c}
State-space \\
representation
\end{tabular}
UFC/DC
SA (CK0191)
2018.1
\(\underset{\substack{\text { SA } \\ 2018.1}}{\mathrm{OFC/DC191})}\)
Representation
State transition
matrix
Properties
Lagrestange
formula
for
Lagrange
formula
Force-free a
\begin{tabular}{l}
Force-free and \\
forced evolution \\
\hline
\end{tabular}
Impulse respons
Similarity
transformation
Diagonalisation Transition matrix Jordan form \begin{tabular}{l}
Badis of generalised \\
eigenvectors \\
\hline
\end{tabular} \(\underset{\substack{\text { Generalis } \\ \text { matrix }}}{\substack{\text { and }}}\) Transition matrix Transition and

\section*{Diagonalisation (cont.)}

Consider the state space representation of a system with matrix A
\[
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
\]

Its eigenvalue \(\lambda=2\) has multiplicity \(\nu=2\)

Its eigenvectors are obtained by solving the system \([\lambda \mathbf{I}-\mathbf{A}] \mathbf{v}=\mathbf{0}\)
\[
[2 \mathbf{I}-\mathbf{A}] \mathbf{v}=\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \rightsquigarrow\left\{\begin{array}{l}
-b=0 \\
0=0
\end{array}\right.
\]

As \(b=0\), we can choose only one linearly independent eigenvector for \(\lambda\)
\[
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\]

Matrix A does not admit a modal matrix

\section*{Diagonalisation (cont.)}

Proof
\[
\mathbf{V}=\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{n}\right]
\]

Note that the modal matrix is non-singular and can be inverted
- Its columns are linearly independent, by definition

By the definition of eigenvalue and eigenvector, we have
\[
\lambda_{i} \mathbf{v}_{i}=\mathbf{A} \mathbf{v}_{i}, \text { for } i=1, \ldots, n
\]

By combining these expressions, we have
\[
\rightsquigarrow \quad\left[\lambda_{1} \mathbf{v}_{1}\left|\lambda_{2} \mathbf{v}_{2}\right| \cdots \mid \lambda_{n} \mathbf{v}_{n}\right]=\left[\mathbf{A} \mathbf{v}_{1}\left|\mathbf{A} \mathbf{v}_{2}\right| \cdots \mid \mathbf{A} \mathbf{v}_{n}\right]
\]

\section*{State-space}
presentatio
\(\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}\) \({ }_{2018.1}\) (CK0191)

Representation
State transition
matrix
Definition
Properties
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forceed evolution forced evolution
Impulse response Similarity
Similarity
transformation
Diagonalisation Transition matrix
Complex eicenvalues Jordan form Basis of generalised Baisis of generan
eigectors \(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\) matrix
Transiti

\section*{Diagonalisation (cont.)}

We can rewrite this identity,
\[
\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{n}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=\mathbf{A}\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{n}\right]
\]

That is,
\[
\mathbf{V}\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=\mathbf{A V}
\]

By left-multiplying both sides by \(\mathbf{V}^{-1}\), we have
\[
\rightsquigarrow \quad \boldsymbol{\Lambda}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=\mathbf{V}^{-1} \mathbf{A V}
\]

\section*{State-space \\ epresentatio \\ \(\mathrm{UAFC/DC}\) 2018.1}

Representation
and analycis
tate transition
matrix
Definition
Properties
Sylvester expan
Lagrange
formula
Force-free and
forced evolutution
Impulse response
Similarity
transformation
Diagonalisation Transition matrix
Complex eigenvaluce Complex eigenvalue
Jordan form Basis of generalised Basis of generalised
eigenvetors Generalised modal
matrix matrix
Transitic

\section*{Diagonalisation (cont.)}

Consider a system with SS representation \(\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}\)
\[
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x_{1}}(t) \\
\dot{x_{2}}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)} \\
{\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
1.5 \\
0
\end{array}\right] u(t)}
\end{array}\right.
\]

We are interested in a diagonal representation by similarity

The eigenvalues and eigenvectors of \(\mathbf{A}\)
- \(\lambda_{1}=-1\) and \(\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]\)
- \(\lambda_{2}=-2\) and \(\mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]\)

 \(\underset{\mathrm{SA}(\mathrm{CK} 0191)}{\mathrm{UFC} / \mathrm{DC}}\) 2018.1

An alternative to Sylvester expansion to compute the state transition matrix
We assume a SS representation whose matrix \(\mathbf{A}\) can be diagonalised

State-space
representation representatio \(\underset{\mathrm{SA}(\mathrm{CK} 0191)}{\mathrm{UFC} / \mathrm{DC}}\) \(\mathrm{A}_{2018.1}(\mathrm{CKO191}\)

State transition matrix by diagonalisation (cont.)

We already computed the modal matrix of \(\mathbf{A}\) and its inverse, \(\mathbf{V}\) and \(\mathbf{V}^{-1}\)
\[
\begin{aligned}
\mathbf{V} & =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \\
\mathbf{V}^{-1} & =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]
\end{aligned}
\]

Thus, we have
\[
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{V}\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right] \mathbf{V}^{-1}=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-2 t}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
e^{-t} & e^{-t} \\
0 & -e^{-2 t}
\end{array}\right]=\left[\begin{array}{cc}
e^{-t} & \left(e^{-t}-e^{-2 t}\right) \\
0 & e^{-2 t}
\end{array}\right]
\end{aligned}
\]

This is the same result we determined by using the Sylvester expansion
Jordan form
Basis of generali
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{\text { Cigen }}\)
\(\underset{\substack{\text { General } \\ \text { matrix }}}{\text { and }}\)
Transition matrix
Transition and
modes

Consider a system with SS representation \(\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}\)
\[
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x_{1}}(t) \\
\dot{x_{2}}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)} \\
{\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
1.5 \\
0
\end{array}\right] u(t)}
\end{array}\right.
\]

We are interested in the state transition matrix \(e^{\mathbf{A} t}\)
\(\square\)

\section*{State-space
representation \\ representation \\ \({ }_{2018.1}\) \\ ```
Representation
``` \\ State t,
matrix
Definition \\ \begin{tabular}{l}
\(\begin{array}{l}\text { Definition } \\
\text { Properties }\end{array}\) \\
\hline
\end{tabular} \\ \({ }^{\text {Properties }}\) Sylvester expansion \\ Complex eigenvalues}

Lagrange
formula
Force-free and
forced evolution
俍
forced evolution
Impulse response
Impule respa
Similarity
transformatior
Diagonalisation Transition matnix
Complex eigenvalues

Jordan form
Basis of generalised
Basis of gene
eigenvectors Generalise
matrix

State transition matrix by diagonalisation (cont.)

Diagonalisation
State-space
representation
A (CK019 2018.1
State
matrix
Definition
Properties
Sylvester ex
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
transformation
Diagonalisation
Complex eigenvalues
Basis of generalised
eigenvectors
Generalised
Transit
Transition and
Transition and

The diagonalisation procedure applies to matrices with complex eigenvalues
\(\rightsquigarrow\) The corresponding eigenvectors are conjugate-complex
\(\rightsquigarrow\) Modal matrix and diagonal state matrix are complex
We prefer to choose a similarity matrix that differs from the modal matrix
- The objective is a real canonical form
- With some desirable properties

To each pair of conjugate-complex eigenvalues associate a order 2 real block

\section*{\(\underset{\text { State-space }}{\text { representation }}\) \\ \(\underset{\text { SA (CK0191) }}{\mathrm{UFC/DC}}\) \(\mathrm{SA}_{2018.1}^{(\mathrm{CKO191}}\)}
```

Mepresentation

```
State \(\operatorname{tr}\)
matrix
\(\underset{\text { Definition }}{ }\)
Properties
Sylvester expar
Lagrange
formula
\(\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{ }\)
Impulse response
\(\underset{\substack{\text { Similarity } \\ \text { transformation }}}{ }\)
Diagonalisation
Transition matrix
Complex eigenvalues
Basis of generalised
eigenvectors
Generalised modal
Generani
matrix
Trasitit
Transition matrix
Transition and
modes

\section*{Complex eigenvalues (cont.)}

Consider a system with state-space representation with matrix \(\mathbf{A}\)
Suppose that A has a pair of complex conjugate eigenvalues \(\rightsquigarrow \lambda, \lambda^{\prime}=\alpha \pm j \omega\)
Suppose that the remaining eigenvalues are real and distinct
\(\rightsquigarrow \lambda_{1}, \lambda_{2}, \cdots, \lambda_{R}\)

The eigenvectors \(\mathbf{v}\) and \(\mathbf{v}^{\prime}\) associated to \(\lambda\) and \(\lambda^{\prime}\)
\[
\mathbf{v}=\operatorname{Re}(\mathbf{v})+j \operatorname{Im}(\mathbf{v})=\mathbf{u}+j \boldsymbol{\omega}
\]
\[
\mathbf{v}^{\prime}=\operatorname{Re}\left(\mathbf{v}^{\prime}\right)+j \operatorname{Im}\left(\mathbf{v}^{\prime}\right)=\mathbf{u}-j \boldsymbol{\omega}
\]

They are also conjugate complex
State tran
matrix
Definition
Properties
Properties
Sylvester expansion
Lagrange
formula
formula
\(\begin{aligned} & \text { Force-free and } \\ & \text { forced evolution }\end{aligned}\)
forced evolution
Impulse response
Similarity
Similarity
transformation
transformation
Transition matrix
Complex eigenvalues
Jordan form
Basis of generalised
aiceneter
Baisis of genera
eigenvectors
\begin{tabular}{|l|l|}
\(\substack{\text { Generali } \\
\text { matrix }}\) \\
\hline Transitio \\
\hline
\end{tabular}
Transition matrix
Transit

\section*{Complex eigenvalues (cont.)}
```

Repreamtation

```
```

Repreamtation

```

First of all, we want to show that \(\mathbf{u}\) and \(\omega\) are linearly independent Then, that they are linearly independent of the other eigenvectors
- (Those associated to the other eigenvalues)

\section*{State-space}
representation
UFC/DC \(\underset{2018.1}{ }\)
Representation
and analysis
and analysis
State tra
matrix
Definition
Properties
Sylvester expansio
Sylvester ex
formula
Formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Complex eigenvalues
ordan form
Basis of generalis
eigenvectors
\(\underset{\substack{\text { Generalis } \\ \text { matrix }}}{\text { mat }}\)
\(\underset{\substack{\text { Generaines } \\ \text { matrix } \\ \text { Trasitio }}}{ }\)
Transition matrix
Transition and
Transiti
modes

\section*{Complex eigenvalues (cont.)}

By the definition of eigenvalue/eigenvector, we have
\[
\begin{aligned}
\mathbf{A} \mathbf{v} & =\lambda \mathbf{v} \\
\mathbf{A}(\mathbf{u}+j \boldsymbol{\omega}) & =(\alpha+j \omega)(\mathbf{u}+j \boldsymbol{\omega})
\end{aligned}
\]

We consider real and imaginary parts individually
\[
\begin{aligned}
& \mathbf{A} \mathbf{u}=(\alpha \mathbf{u}-\omega \boldsymbol{\omega}) \\
& \mathbf{A} \boldsymbol{\omega}=(\omega \mathbf{u}+\alpha \boldsymbol{\omega})
\end{aligned}
\]


\(\underset{\text { State-space }}{\substack{\text { epresentation }}}\)
UFC/DC A (CK019
2018.1
\(\qquad\)
\(\qquad\)

\section*{Complex eigenvalues (cont.)}

We associated to the pair of eigenvalues \(\lambda, \lambda^{\prime}=\alpha \pm j \omega\) to a block
The block represents the eigenvalues in matrix form
\[
\rightsquigarrow \quad \mathbf{H}=\left[\begin{array}{cc}
\alpha & \omega \\
-\omega & \alpha
\end{array}\right]
\]

\section*{State-space
representation \\ UFC/DC \\ \(\underset{\substack{\mathrm{UFC} / \mathrm{DC} \\ \text { SA } \\ 2018.1}}{(\mathrm{CKO191})}\)}

\section*{Complex eigenvalues (cont.)}

We can re-write this equation,
```

Representatio

```
State transition
```

Definition

```
Properties
\({ }^{\text {Properties }}\) Sysester expan
Lagrange
formula
formula
Force-free and
Force-free and
forced evolution
Impulse response
Similarity
transformatio
Similarity
transformation
Transition matrix
Complex eigenvalues
Jordan form
Basis of generalised
eigenvectors
Generalised modal
Generalis
matrix
manditio
Transition and
\begin{tabular}{c} 
State-space \\
representation
\end{tabular}
UFC/DC
SA (CK0191)
2018.1

\section*{Complex eigenvalues (cont.)}

Consider a more general state matrix \(\mathbf{A}\)
- \(R\) distinct real roots, \(\lambda_{i}, i=1, \ldots, R\)
- \(S\) pairs of distinct conjugate complex roots. \(\lambda_{i}, \lambda_{i}^{\prime}, i=R+1, \ldots, R+S\)

Matrix A can be written in a canonical quasi-diagonal form using matrix \(\tilde{\mathbf{V}}\)
We use the matrix transformation \(\tilde{\mathbf{V}}\)
\[
\begin{align*}
& \tilde{\mathbf{\Lambda}}=\tilde{\mathbf{V}}^{-1} \mathbf{A} \tilde{\mathbf{V}} \\
& \quad=\left[\begin{array}{cccccccc}
\lambda_{1} & 0 & \cdots & 0 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\
0 & \lambda_{2} & \cdots & 0 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{R} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{H}_{R+1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{H}_{R+2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{H}_{R+S}
\end{array}\right] \tag{24}
\end{align*}
\]


\section*{Complex eigenvalues (cont.)}

Framp
Consider a system in state-space representation with matrix A
\[
\mathbf{A}=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
-2 & -1 & 0 \\
-3 & -2 & -4
\end{array}\right]
\]

We are interested in a (quasi-) diagonal representation

The characteristic polynomial of matrix \(\mathbf{A}\)
\[
P(s)=s^{3}+6 s^{2}+13 s+20
\]

The eigenvalues and the eigenvectors
\(\rightsquigarrow \lambda_{1}=-4\) and \(\mathbf{v}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\)
\(\rightsquigarrow \lambda_{2}, \lambda_{2}^{\prime}=1 \pm j 2\) and \(\mathbf{v}_{2}, \mathbf{v}_{2}^{\prime}=\mathbf{u}_{2} \pm j \boldsymbol{\omega}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \pm j\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\)


\section*{Complex eigenvalues (cont.)}

Consider the matrix \(\tilde{\mathbf{V}}=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{u}_{2} & \boldsymbol{\omega}_{2}\end{array}\right]\)
We have,
\[
\tilde{\mathbf{\Lambda}}=\tilde{\mathbf{V}}^{-1} \mathbf{A} \tilde{\mathbf{V}}=\left[\begin{array}{ccc}
-4 & 0 & 0 \\
0 & -1 & 2 \\
0 & -2 & -2
\end{array}\right]
\]


Complex eigenvalues (cont.)


Computing the exponential of a block-diagonal matrix is straightforward
- (We derived a proposition)
\(\tilde{\boldsymbol{\Lambda}}\) is a block-diagonal state matrix

\section*{Complex eigenvalues (cont.)}

The resulting state transition matrix
\(e^{\tilde{\boldsymbol{\Lambda}} t}=\left[\begin{array}{cccccccc}\lambda_{1} t & 0 & \cdots & 0 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ 0 & e^{\lambda_{2} t} & \cdots & 0 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_{R} t} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & e^{\mathbf{H}_{R+1} t} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & e^{\mathbf{H}_{R+2} t} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & e^{\mathbf{H}_{R+S} t}\end{array}\right]\)

\section*{Complex eigenvalues (cont.)}
\[
\mathbf{A}=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
-2 & -1 & 0 \\
-3 & -2 & -4
\end{array}\right]
\]

We are interested in its matrix exponential, \(e^{\mathbf{A} t}=\tilde{\mathbf{V}} e^{\tilde{z}} \tilde{\mathbf{V}}^{-1}\)
- From its (quasi-) diagonal form \(\tilde{\mathbf{V}}\)

The eigenvalues and the eigenvectors
\(\rightsquigarrow \lambda_{1}=-4\) and \(\mathbf{v}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\)
\(\rightsquigarrow \lambda_{2}, \lambda_{2}^{\prime}=1 \pm j 2\) and \(\mathbf{v}_{2}, \mathbf{v}_{2}^{\prime}=\mathbf{u}_{2} \pm j \boldsymbol{\omega}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \pm j\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\)
Let \(\tilde{\mathbf{V}}=\left[\mathbf{v}_{1}\left|\mathbf{u}_{2}\right| \boldsymbol{\omega}_{2}\right]\), matrix \(\mathbf{A}\) can be written in quasi-diagonal form
\[
\tilde{\mathbf{\Lambda}}=\tilde{\mathbf{V}}^{-1} \mathbf{A} \tilde{\mathbf{V}}=\left[\begin{array}{ccc}
-4 & 0 & 0 \\
0 & -1 & 2 \\
0 & -2 & -2
\end{array}\right]
\]

Representation
and analysis

\section*{and analysis
State transition}
```

Matrix

```
Properties
Sylvester expan
Lagrange
formula
\begin{tabular}{l} 
formula \\
\(\begin{array}{l}\text { Force-frea and } \\
\text { forced evolution }\end{array}\) \\
\hline
\end{tabular}
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalues
\begin{tabular}{l} 
Jordan form \\
\(\begin{array}{l}\text { Basis of generalised } \\
\text { eigenvectors }\end{array}\) \\
\hline
\end{tabular}
eigenvectors
Generalised modal
\(\underset{\substack{\text { Generalise } \\ \text { matrix } \\ \text { Transition }}}{\text { and }}\)
Transition matrix
Transition an
\(\square\)

\section*{Complex eigenvalues (cont.)}

Let \(\lambda_{i}, \lambda_{i}^{\prime}=\alpha_{i} \pm j \omega_{i}\) be a pair of complex-conjugate roots
For each such pair there is a canonical block
\[
\mathbf{H}_{i}=\left[\begin{array}{cc}
\alpha_{i} & \omega_{i} \\
-\omega_{i} & \alpha_{i}
\end{array}\right]
\]

Block \(\mathbf{H}_{i}\) represents the pair \(\lambda, \lambda^{\prime}\) in matrix form
The matrix exponential for this matrix (block)
\[
\rightsquigarrow \quad e^{\mathbf{H}_{i} t}=e^{\alpha_{i} t}\left[\begin{array}{cc}
\cos \left(\omega_{i} t\right) & \sin \left(\omega_{i} t\right) \\
-\sin \left(\omega_{i} t\right) & \cos \left(\omega_{i} t\right)
\end{array}\right]
\]

The state transition matrix for matrix \(\mathbf{A}\) is thus
\[
\rightsquigarrow \quad e^{\mathbf{A} t}=\tilde{\mathbf{V}} e^{\tilde{\mathbf{\Lambda}} t} \tilde{\mathbf{V}}^{-1}
\]

State-space
representation \(\underset{\text { UFC/DC }}{\text { UFO }}\) \({ }_{2018.1}\)

\section*{Representation}

State transition
Definition
Properties
Sylvester expan
Lagrange
formula
Force free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Complex eigenvalues
Basis of generalised Baisis of general
eigenvectors \begin{tabular}{|l}
\(\substack{\text { Generalis } \\
\text { matrix }}\) \\
\hline 左 \\
\hline
\end{tabular}

\section*{Complex eigenvalues (cont.)}

Thus, we obtain
\[
e^{\tilde{\boldsymbol{\Lambda}} t}=\left[\begin{array}{ccc}
e^{-4 t} & 0 & 0 \\
0 & e^{-t} \cos (2 t) & e^{-t} \sin (2 t) \\
0 & -e^{-t} \sin (2 t) & e^{-t} \cos (2 t)
\end{array}\right]
\]

We also have,
\[
e^{\mathbf{A} t}=\tilde{\mathbf{V}} e^{\tilde{\boldsymbol{\Lambda}} t} \tilde{\mathbf{V}}^{-1}\left[\begin{array}{ccc}
e^{-t} \cos (2 t) & e^{-t} \sin (2 t) & 0 \\
-e^{-t} \sin (2 t) & e^{-t} \cos (2 t) & 0 \\
e^{-4 t}-e^{-t} \cos (2 t) & -e^{-t} \sin (2 t) & e^{-4 t}
\end{array}\right]
\]
 Transit
modes

\section*{Jordan form (cont.)}

We can still find a set of \(n\) linearly independent generalised eigenvectors
- We need to extend the concept of eigenvector

Generalised eigenvectors are used to build a generalised modal matrix
\(\rightsquigarrow\) By similarity, we obtain \(\mathbf{J}=\mathrm{V}^{-1} \mathrm{AV}\)
\(\rightsquigarrow\) A block-diagonal canonical form
\(\rightsquigarrow\) A Jordan form


\section*{Jordan form}

Consider a state-space representation of a system with \((n \times n)\) matrix \(\mathbf{A}\) Let its eigenvalues have multiplicity larger than one
The existence of \(n\) linearly independent eigenvectors cannot be guaranteed \(\rightsquigarrow\) Needed for the construction of the modal matrix

We cannot necessarily go to a diagonal form by similarity transformation


\section*{Jordan form (cont.)}

Jordan block of order \(p\)
Let \(\lambda \in \mathcal{C}\) be a complex number and let \(p \geq 1\) be a natural number The \((p \times p)\) matrix is a order \(p\) Jordan block associated to \(\lambda\)
\(\left[\begin{array}{cccccc}\lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda\end{array}\right]\)

Diagonal entries equal \(\lambda\), entries of the superdiagonal equal 1
- (All the other entries are zero)
\(\lambda\) is an eigenvalue (multiplicity \(p\) ) of this Jordan block


\section*{Jordan form (cont.)}

More than one Jordan block can be associated to the same eigenvalue
The Jordan form generalises the conventional diagonal form
- (With order 1 blocks along the diagonal)


Eigenvalues \(\lambda_{1}=2\) (multiplicity 4\()\) and \(\lambda_{2}=3\) (multiplicity 2 )
- \(\lambda_{1}=2\) associates with two Jordan blocks (order 3 and 1 )
- \(\lambda_{2}=3\) associates with a single Jordan block (order 2) SA (CKO191) \({ }_{2018.1}\)

State tran
matrix
Definition
roperties
Sylvester expan
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
transformation
Diagonalisation Transition matrix
Complex eigenvalue
Jordan form
Basis of general
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\) matrix
Transitio
Transition and Transition and
modes

\section*{Jordan form (cont.)}
\[
\mathbf{J}_{2}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
\]

Eigenvalues \(\lambda_{1}=2\) (multiplicity 2\()\) and \(\lambda_{2}=3\) (multiplicity 1 )
- \(\lambda_{1}=2\) associates with two Jordan blocks (order 1)
- \(\lambda_{2}=3\) associates with a single Jordan block (order 1)
\[
\mathbf{J}_{3}=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Eigenvalues \(\lambda_{1}=2\) (multiplicity 2\()\) and \(\lambda_{2}=0\) (multiplicity 1 )
- \(\lambda_{1}=2\) associates with a single Jordan blocks (order 2)
- \(\lambda_{2}=0\) associates with a single Jordan block (order 1)
State-space
representation
UFC/DC \(\mathrm{A}_{2018.1}(\mathrm{CKO191}\)
Representation
Representation
tate tran
natrix
Properties
Sylvester expansion
Lagrange
ormula
Force-free and
forced evolution
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Jordan form
Bardan form
Baisis of general
eigenvectors
\(\underset{\substack{\text { Generalis } \\ \text { matrix }}}{ }\) manation and ranastion and

\section*{Jordan form (cont.)}

\section*{Algebraic multiplicity}

Consider a square matrix A or order \(n\)
Suppose that A has \(r \leq n\) distinct eigenvalues \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\)
\(\rightsquigarrow \lambda_{i} \neq \lambda_{j}\), for \(i \neq j\)
The characteristic polynomial can be written in the form
\[
P(s)=\left(s-\lambda_{1}\right)^{\nu_{1}}\left(s-\lambda_{2}\right)^{\nu_{2}} \cdots\left(s-\lambda_{r}\right)^{\nu_{r}}, \text { with } \sum_{i=1}^{r} \nu_{i}=n
\]
\(\rightsquigarrow\) We call \(\nu_{i} \in \mathcal{N}^{+}\)the algebraic multiplicity of \(\lambda_{i}\)


\section*{Jordan form (cont.)}

\section*{Proposition}

Jordan form
A square matrix A can always be written in a Jordan canonical form J
- This can be done by using a similarity transformation

The resulting form is unique, up to block permutations

\section*{ropositior}

Jordan form
Let \(\lambda\) be an eigenvalue with multiplicity \(\nu\) for \(\mathbf{A}\)
- Let \(\mu\) be its geometric multiplicity \({ }^{5}\)
- Let \(p_{i}\) be the order of \(i\)-th block

We have,
\[
\sum_{i=1}^{\mu} p_{i}=\nu
\]
\({ }^{5}\) The number of linearly independent eigenvectors associated to it ( \(1 \leq \mu \leq \nu\) ).

\section*{State-space}
epresentatio
UFC/DC 2018.1

Representation

\section*{State transition}
matrix
Definition
Definition
Properties
Properties
Sylvester expansio
```

M

```
\(\underset{\substack{\text { Force-free and } \\ \text { forced evolution }}}{\text { and }}\)
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Diagonalisation
Transition matrix Complex eigenvalu
Jordan form Jordan form
Basis of generalised
eigenvectors
Cent \(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{ }\)

\section*{Jordan form (cont.)}

Geometric multiplicity
Consider a square matrix A
Suppose that A has \(r \leq n\) distinct eigenvalues \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\)
\(\rightsquigarrow \lambda_{i} \neq \lambda_{j}\), for \(i \neq j\)
We define the geometric multiplicity/nullity of the eigenvalue \(\lambda_{i}\)
\(\rightsquigarrow\) Number \(\mu_{i}\) of linearly independent eigenvectors associated to it
The geometric multiplicity \(\mu_{i}\) of \(\lambda_{i}\) with algebraic multiplicity \(\nu_{i}\)
\[
\rightsquigarrow \quad \mu=\operatorname{null}(\lambda \mathbf{I}-\mathbf{A}) \leq \nu
\]


\section*{Jordan form (cont.)}

Knowledge of eigenvalues and their algebraic and geometric multiplicity
- It is sufficient to determine the Jordan form
- (And, thus the index of the eigenvalues)

\section*{State-space}
representatio
UFC/DC 2018.1

State transition
matrix
Definition
Properties
Properties
Sylvester expansi
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Tragosition matrix
Jordan form
Jordan form
Basis of gener
Basis of generalised
eigenvetors \(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{ }\)

Its eigenvalues and eigenvectors
\(\rightsquigarrow \lambda_{1}=0\), multiplicity \(\nu_{1}=1\)
\(\rightsquigarrow \lambda_{2}=2\), multiplicity \(\nu_{2}=2\)

\section*{Jordan form (cont.)}

Eigenvalue with multiplicity one has unit geometric multiplicity and index
- \(\lambda_{1}\), with \(\nu_{1}=1\)
\(\rightsquigarrow \mu_{1}=1\)
\(\rightsquigarrow \pi_{1}=1\)
\(\lambda_{1}\) associates with a single 1-order block

\section*{Jordan form (cont.)}
As for the geometric multiplicity of the second eigenvalue, we have
\[
\begin{aligned}
\mu_{2} & =\operatorname{null}\left(\lambda_{2} \mathbf{I}-\mathbf{A}\right)=n-\operatorname{rank}\left(\lambda_{2} \mathbf{I}-\mathbf{A}\right) \\
& =3-\operatorname{rank}\left(\left[\begin{array}{ccc}
-1 & -1 & -2 \\
1 & 1 & 2 \\
2 & 2 & 2
\end{array}\right]\right) \\
& =3-2=1
\end{aligned}
\]
\(\lambda_{2}\) associates with a single 2 -order block
\(\rightsquigarrow \pi_{2}=2\)

\section*{\(\underset{\substack{\text { State-space } \\ \text { representation }}}{ }\) \\ representatio UFC/DC \({ }_{2018.1}\) \\ Representation \\ State transiti
matrix \\ matrix \\ Properties}

Sylvester expansion
Lagrange
formula
Force free and
forced evolution
torced evolution
Impulse response Similarity Similarity
transformatio Diagonalisation Diagonalisation
Transition matrix Transition matrix
Complex eigenvalue Jordan form Basis of generalised Basis of general
eigenvectors Generalise
matrix

\section*{Jordan form (cont.)}

There are cases eigenvalues and their algebraic and geometric multiplicity is not sufficient to characterise neither the Jordan form nor eigenvalues' index

\section*{State-space
representation \\ UFC/DC \\ }
```

Representation

```

State transitio
State tran
matrix
Deffitition
Properties
\({ }^{\text {Properteses }}\) Sylvester expansior
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
transformation
Diagonalisation
Complex eigenvalues
Jordan form
Basis of generat
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{ }\)
Generahn
matrix
Transitio
Transition matrix Transitio
modes

\section*{Jordan form (cont.)}

The resulting Jordan form,
\[
\mathbf{J}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
\]

Equivalently, by block-permutation
\[
\mathbf{J}=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

\section*{State-space
representation \\ epresentatio \\ UFC/DC 2018.1}

Jordan form (cont.)

\section*{Consider some \((5 \times 5)\) matrix \(\mathbf{A}\)}

Let \(\lambda_{1}\) and \(\lambda_{2}\) be its eigenvalues
\(\rightsquigarrow \lambda_{1}\), multiplicity \(\nu_{1}=4\)
\(\rightsquigarrow \lambda_{2}\), multiplicity \(\nu_{2}=1\)
We are interested in its Jordan form

We let eigenvalue \(\lambda_{2}\) associate to a Jordan block of order 1
To eigenvalue \(\lambda_{1}\) we can associate one or more blocks
- Depending on its geometric multiplicity
- \(\mu_{1} \leq \nu_{1}=4\)

We can consider four possible cases


\section*{Jordan form (cont.)}
\(\mu_{1}=2\)
The eigenvalue associates with two Jordan blocks
- The order of the blocks is \(p_{1}, p_{2}\)
- \(\left(\right.\) As \(\left.p_{1}+p_{2}=\nu_{1}=4\right)\)

Two resulting Jordan structures are possible
- \(p_{1}=2, p_{2}=2\), the index of the eigenvalue is \(\pi_{1}=2\)
\[
\mathbf{J}_{3}=\left[\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 1 & 0 \\
0 & 0 & 0 & \lambda_{1} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right]
\]
- \(p_{1}=3, p_{2}=1\), the index of the eigenvalue is \(\pi_{1}=3\)
\[
\mathbf{J}_{4}=\left[\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & 0 & 0 \\
0 & \lambda_{1} & 1 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 \\
0 & 0 & 0 & \lambda_{1} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right]
\]

\section*{\(\underset{\text { State-space }}{\text { representation }}\) \\ representatio \\ UFC/DC 2018.1}
```

M}\begin{array}{l}{\mathrm{ Representation }}
{\mathrm{ and analysis }}Representatio
and analysis

```
State trans
matilix



Lagrange
formula
Force-free and
forced evolutionforced evolution
Impulse respons
Similarity
transformatic
Diagonalisation
Jordan formJordan form
Basis of general
eicenvectorsBasis of generalise
eigenvectors
Cenertion
matrix
Transitio
    \(\underset{\substack{\text { UFC/DC } \\ 2018.1}}{\mathrm{UCK0191})}\)
```

Representation

```
State tra
matrix
Properties
Sylvester expansio
Lagrange
formula
Force-freo and
forced evolution
forced evolution
Impulse response
Similarity
transformatio
transformation
Diagonalisation
Transition matrix
Jordan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{ }\)
General
matrix
Tranait
Transition and
Transition matrix

\section*{Jordan form (cont.)}
\(\mu_{1}=3\)
The eigenvalue associates with three different Jordan blocks
- The order of the blocks is \(p_{1}=2, p_{2}=1, p_{3}=1\)
- (As \(\left.p_{1}+p_{2}+p_{3}=\nu_{1}=4\right)\)

The index of the eigenvalue is \(\pi_{1}=2\)
The resulting form
\[
\mathbf{J}_{2}=\left[\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 \\
0 & 0 & 0 & \lambda_{1} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right]
\]

\section*{Jordan form (cont.)}
\(\mu_{1}=1\)
The eigenvalue associates with a single Jordan block of order 4
- The index of eigenvalue is \(\pi_{1}=4\)

The resulting (non-derogatory) form
\[
\mathbf{J}_{5}=\left[\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & 0 & 0 \\
0 & \lambda_{1} & 1 & 0 & 0 \\
0 & 0 & \lambda_{1} & 1 & 0 \\
0 & 0 & 0 & \lambda_{1} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right]
\]


\section*{Basis of generalised eigenvectors}

\section*{ \\ UFC/DC} 2018.1
ate transition
State tran
matrix
Definition
Properties
Properties
Sylvester expansio
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalis
Basis of gen
eigenvectors
\({ }_{\substack{\text { General } \\ \text { matrix }}}\)
matrix
Transition matrix
Transition and

Jordan form

Basis of generalised eigenvectors (cont.)

\section*{Generalised eigenvector}

Consider a \((n \times n)\) matrix A
Let v be vector in \(\mathcal{R}^{n}\)
Suppose that the following holds true
\[
\left\{\begin{array}{l}
(\lambda \mathbf{I}-\mathbf{A})^{k} \mathbf{v}=\mathbf{0}  \tag{25}\\
(\lambda \mathbf{I}-\mathbf{A})^{k-1} \mathbf{v} \neq \mathbf{0}
\end{array}\right.
\]
v is a generalised eigenvector of order \(k\) associated to eigenvalue \(\lambda\)

\section*{Basis of generalised eigenvectors}

We have introduced informally the concept of generalised eigenvector
- We provide a formal definition

We determine a set of \(n\) linearly independent generalised eigenvectors
- A set that is a basis for \(\mathcal{R}\)


Basis of generalised eigenvectors (cont.)

An eigenvector is thus a special generalised eigenvector
\(\rightsquigarrow k=1\)
That is,
\[
\begin{aligned}
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\mathbf{v} & \neq \mathbf{0}
\end{aligned}
\]

The equations are satisfied by \(\mathbf{v}\) and \(\lambda\)
Jordan form
Basis of generalised
eigenvectors
eigenvectors
Generalised modal
\(\underset{\substack{\text { Generali: } \\ \text { matrix }}}{\text { and }}\)
Transition matrix
Transition ar
modes
\begin{tabular}{l} 
Transition \\
modes \\
\hline
\end{tabular}

State-space
representation representation \(\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}\) \(\mathrm{SA}_{2018.1}^{(\mathrm{CKO19})}\)
```

Representatic

```
State transit
matrix
Definition
\({ }^{\text {Defimition }}\)
Sylvester expans
Lagrange
formula
Force-free and
foreed evolution
torced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalu
Jordan form
Basis of general
eigenvectors
\(\underset{\substack{\text { Generral } \\ \text { matrix }}}{\text { and }}\)
\begin{tabular}{l} 
matrix \\
Transition matrix \\
\hline
\end{tabular}
Transition and
Transit
modes

Basis of generalised eigenvectors (cont.)

We have,
\[
(3 \mathbf{I}-\mathbf{A})=\left[\begin{array}{cccc}
-2 & 0 & 0 & -4 \\
-1 & 0 & 0 & -1 \\
1 & 0 & 0 & 2 \\
1 & 0 & 0 & 2
\end{array}\right]
\]

Moreover,
\[
\begin{aligned}
(3 \mathbf{I}-\mathbf{A})^{2} & =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \\
(3 \mathbf{I}-\mathbf{A})^{3} & =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
\]


Basis of generalised eigenvectors (cont.)

Let \(\mathbf{v}=\left[\begin{array}{llll}a & b & c & d\end{array}\right]^{T}\) be a generalised eigenvector
We must have
\[
\begin{aligned}
& (3 \mathbf{I}-\mathbf{A})^{3} \mathbf{v}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]=\mathbf{0} \\
& (3 \mathbf{I}-\mathbf{A})^{2} \mathbf{v}=\left[\begin{array}{c}
0 \\
a+2 d \\
0 \\
0
\end{array}\right] \neq \mathbf{0}
\end{aligned}
\]
\(\rightsquigarrow\) The first system is satisfied for any \(a, b, c, d\)
\(\rightsquigarrow\) The second system is satisfied by \(a+2 d \neq 0\)
Basis of generalised eigenvectors (cont.)
\[
a+2 d \neq 0
\]
Let \(a=1\) and \(d=0\), we have
\[
\mathbf{v}_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{T}
\]
Let \(a=0\) and \(d=1\), we have
\[
\mathbf{v}_{3}^{\prime}=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{T}
\]

Basis of generalised eigenvectors (cont.)

Proof
We need to show that each vector in the chain is a generalised eigenvector If \(\mathbf{v}_{j}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{j+1}\), for \(j=1, \ldots, k-1\), then we have
\[
\rightsquigarrow \mathbf{v}_{j}=(\mathbf{A}-\lambda \mathbf{I})^{\mathbf{v}_{k-j}} \mathbf{v}_{k}
\]

If \(\mathbf{v}_{k}\) is a \(k\)-order generalised eigenvector, then we have
\[
\left\{\begin{array} { l } 
{ ( \mathbf { A } - \lambda \mathbf { I } ) ^ { k } \mathbf { v } _ { k } = \mathbf { 0 } } \\
{ ( \mathbf { A } - \lambda \mathbf { I } ) ^ { k - 1 } \mathbf { v } _ { k } \neq \mathbf { 0 } }
\end{array} \quad \rightsquigarrow \left\{\begin{array}{l}
(\mathbf{A}-\lambda \mathbf{I})^{j} \mathbf{v}_{j}=\mathbf{0} \\
(\mathbf{A}-\lambda \mathbf{I})^{j-1} \mathbf{v}_{j} \neq \mathbf{0}
\end{array}\right.\right.
\]

Vector \(\mathbf{v}_{k}\) is thus a \(j\)-order generalised eigenvector

Chain of generalised eigenvectors
Consider a square matrix A
Let \(\mathbf{v}_{k}\) be ak-order generalised eigenvector associated to eigenvalue \(\lambda\)
For \(j=1, \ldots, k-1\), the \(j\)-order generalised eigenvector
\[
\begin{equation*}
\mathbf{v}_{j}=-(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}_{j+1}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{j+1} \tag{26}
\end{equation*}
\]

The \(k\)-long chain of generalised eigenvectors
\[
\mathbf{v}_{k} \rightarrow \mathbf{v}_{k-1} \rightarrow \cdots \rightarrow \mathbf{v}_{1}
\]

\section*{State-space}
representation
UFC/DC 2018.1

Basis of generalised eigenvectors (cont.)

Consider the matrix A
\[
\mathbf{A}=\left[\begin{array}{cccc}
5 & 0 & 0 & 4 \\
1 & 3 & 0 & 1 \\
-1 & 0 & 3 & -2 \\
-1 & 0 & 0 & 1
\end{array}\right]
\]

The characteristic polynomial
\[
P(s)=\operatorname{det}(s \mathbf{I}-\mathbf{A})=(s-3)^{4}
\]

One eigenvalue \(\lambda=3\), multiplicity \(\nu=4\) \({ }_{2018.1}\)

Basis of generalised eigenvectors (cont.)
\(\mathbf{v}_{3}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}\) is a generalised eigenvector of order 3
- We can construct the chain of length 3
\[
\mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \rightarrow \mathbf{v}_{2}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
1 \\
-1 \\
-1
\end{array}\right] \rightarrow \mathbf{v}_{1}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
\]
- We have that \(\mathbf{v}_{1}\) is an eigenvector of \(\mathbf{A}\)
\(\mathbf{v}_{3}^{\prime}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}\) is a generalised eigenvector of order 3
- We can construct the chain of length 3
\[
\mathbf{v}_{3}^{\prime}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \rightarrow \mathbf{v}_{2}^{\prime}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{3}^{\prime}=\left[\begin{array}{c}
4 \\
1 \\
-2 \\
-2
\end{array}\right] \rightarrow \mathbf{v}_{1}^{\prime}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}^{\prime}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right]
\]
- We have that \(\mathbf{v}_{1}^{\prime}\) is an eigenvector of \(\mathbf{A}\)

State-space
representation
epresentatio \(\underset{\text { SA (CKO191) }}{\text { UFC/DC }}\) 2018.1

\section*{Basis of generalised eigenvectors (cont.)}

The structure of generalised eigenvectors
Consider a \((n \times n)\) matrix \(\mathbf{A}\)
Let \(\lambda\) be an eigenvalue with multiplicity \(\nu\) and geometric multiplicity \(\mu\)
It is possible to assign to such an eigenvalue \(\lambda\) a structure of \(\nu\) linearly independent eigenvectors consisting of \(\mu\) chains
\[
\left\{\begin{array}{rlrl}
\mathbf{v}_{p_{1}}^{(1)} \rightarrow \cdots \rightarrow \mathbf{v}_{2}^{(1)} \rightarrow \mathbf{v}_{1}^{(1)}, & \text { chain } 1 \\
\mathbf{v}_{p_{2}}^{(2)} \rightarrow \cdots \rightarrow \mathbf{v}_{2}^{(2)} \rightarrow \mathbf{v}_{1}^{(2)}, & \text { chain } 2 \\
& \vdots \\
\mathbf{v}_{p_{\mu}}^{(\mu)} \rightarrow \cdots \rightarrow \mathbf{v}_{2}^{(\mu)} \rightarrow \mathbf{v}_{1}^{(\mu)}, & & \\
\text { chain } \mu
\end{array}\right.
\]

Let \(p_{i}\) be the length of the generic chain \(i\)
We have,
\[
\sum_{i=1}^{\mu} p_{i}=\nu
\]

Representatio
and analysis
and analysis
State transition
matrix
Definition
Properties
Sylvester expansion
```

Lagrange

```
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
transformatio
transformation
Diagonalisation
Transition matrix
Transition matrix
Jordan form
Basis of generalised
eigenvectors
\({ }^{\text {eigenvectors }}\) Generalised modal
\(\underset{\substack{\text { Generaii } \\ \text { matrix }}}{\text { and }}\)
Transition matrix
Transition ar
modes
Transition
modes

Basis of generalised eigenvectors (cont.)
\(\mathbf{v}_{3}\) and \(\mathbf{v}_{3}^{\prime}\) are linearly independent, \(\mathbf{v}_{2}\) and \(\mathbf{v}_{2}^{\prime}\left(\right.\) and \(\mathbf{v}_{1}\) and \(\left.\mathbf{v}_{1}^{\prime}\right)\) are not
- They differ by a multiplicative constant

State-space
representation
\(\underset{\mathrm{SA}(\mathrm{CK} 0191)}{\mathrm{OFCDC}}\) 2018.1
```

l}\begin{array}{l}{\mathrm{ Representation }}
{\mathrm{ and analysis }}

```
State transition
matrix
State trans
matrix
Definition
\begin{tabular}{|l|l|}
\hline Definition \\
\hline Properties \\
\hline
\end{tabular}
Properties
Sylvester expans
Lagrange
formula
Force-free and
forced eevtution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generaal
eigenvectors
\(\underset{\substack{\text { Generali } \\ \text { matrix }}}{\text { Sta }}\)
matrix

Basis of generalised eigenvectors (cont.)

\section*{Proof}

The theorem can be proved in a constructive way
- An algorithm to determine the structure
- (For a specific eigenvalue)
eigenvectors
\(\underset{\substack{\text { Generalis } \\ \text { matrix }}}{\substack{\text { and }}}\)
Transition matrix
Transition and
modes
```

State-space
UFC/DC
SA(CK0191)
Representatio
Na analysis
State tr
Deffmtiol
Properties
Lagrange
mmuta
$$
\begin{subarray}{c}{\mathrm{ Force-free and }}\\{\mathrm{ forced evolution }}\end{subarray}
$$
Impulse response
Similarity
transformation
Diagonalisation
Complex eigenvalu
Jordan form
\
Cigenvectors
M matrix
Transition matrix
Transition an
modes

```

Basis of generalised eigenvectors (cont.)

Start by noticing that each chain terminates with an eigenvector
\[
\left\{\begin{array}{cc}
\mathbf{v}_{p_{1}}^{(1)} \rightarrow \cdots \rightarrow \mathbf{v}_{2}^{(1)} \rightarrow \mathbf{v}_{1}^{(1)}, & \text { chain } 1 \\
\mathbf{v}_{p_{2}}^{(2)} \rightarrow \cdots \rightarrow \mathbf{v}_{2}^{(2)} \rightarrow \mathbf{v}_{1}^{(2)}, & \text { chain } 2 \\
\vdots \\
\mathbf{v}_{p_{\mu}}^{(\mu)} \rightarrow \cdots \rightarrow \mathbf{v}_{2}^{(\mu)} \rightarrow \mathbf{v}_{1}^{(\mu)}, & \text { chain } \mu
\end{array}\right.
\]

The number of chains of an eigenvalue equals the geometric multiplicity \(\mu\)
- The number of linearly independent eigenvectors associated to it
```

Mepresentation

```
State transitio
State tran
matrix
Definition
Definition
Propertios
Properties
Sylvester expansio
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Jordan form
Basis of generalised
eigenvectors
Generalis
matrix
matrix
Transition matrix
Transition matrix
Transition and
Transitit
modes

\section*{Basis of generalised eigenvectors (cont.)}

\section*{Consider some \((n \times n)\) matrix \(\mathbf{A}\)}

Let \(\lambda\) be one of its eigenvalues
- Multiplicity \(\nu\)

Consider the matrix \((\lambda I-\mathbf{A})\) and its nullity
\[
\rightsquigarrow \quad \alpha_{1}=\operatorname{null}(\lambda \mathbf{I}-\mathbf{A})=n-\operatorname{rank}(\lambda \mathbf{I}-\mathbf{A})
\]

This is the dimensionality of the vector subspace
\[
\rightsquigarrow \quad \operatorname{ker}(\lambda \mathbf{I}-\mathbf{A})=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\lambda \mathbf{I}-\mathbf{A}) \mathbf{x}=\mathbf{0}\right\}
\]

Number of linearly independent vectors \(\mathbf{x}\) such that \((\lambda \mathbf{I}-\mathbf{A}) \mathbf{x}=\mathbf{0}\)
State-space
representation
\(\mathrm{UFC} / \mathrm{DC}\)
SA (CK0191) \(\mathrm{SA}_{2018.1}^{(\mathrm{CKO191}}\)
M Representatio
M Representatio
State transitio
State trar
matrix
Definition
Definition
Properties
\({ }^{\text {Properties }}\) Syester expan
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Jordan form
Basis of generalised
eigenvectors
eigenvectors
Generali
matrix
Trasitio
Transition matrix
Transition an
modes

State-space
representation
\(\underset{\mathrm{SA}}{\mathrm{UFC/DC}}(\mathrm{CK} 0191)\) \({ }_{2018.1}\)
```

M Representation

```
State transition
State tr
matrix
Definition
Properties
Sylvester expan
Lagrange
formula
Force-free and
forced avolution
Force-free and
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenval
Basis of generalised
eigenvectors
\begin{tabular}{|l|l}
\hline Generalise \\
matrix \\
TTensition
\end{tabular}
Transition matrix
Transit
modes

Basis of generalised eigenvectors (cont.)

Consider the structure of generalised eigenvectors from some eigenvalue
It corresponds to the Jordan block structure from that eigenvalue
In the Jordan form there are \(\mu\) blocks (one per chain)
\(\rightsquigarrow\) The length of the longest chain associated with \(\lambda\)
\(\rightsquigarrow\) It equals the index of that eigenvalue
\(\rightsquigarrow \pi=\max \left(p_{1}, p_{2}, \ldots, p_{\mu}\right)\)

\section*{Basis of generalised eigenvectors (cont.)}

Parameter \(\alpha_{1}\) corresponds to the geometric multiplicity \(\mu\) of eigenvalue \(\lambda\)
The geometric multiplicity has two important meanings
- Number of linearly independent generalised eigenvectors of A from \(\lambda\)
- As each chain of generalised eigenvectors ends with an eigenvector
\(\rightsquigarrow\) (Number of chains that can be associated with \(\lambda\) )

State-space
representation
\(\mathrm{UFC} / \mathrm{DC}\)
\(\mathrm{SA}(\) CK0191 \(\mathrm{SA}_{2018.1}^{(\mathrm{CKO19})}\)
M
M
State tra
matrix
Definition
\({ }^{\text {Propertios }}\)
Sylvester ex
Lagrange
formula
Force-free and
forced evolution
\({ }^{\text {Impulse response }}\)
Similarity
Diagonalisation
Transition matrix
Jordan form
Basis of generalised
eigenvectors
eigenvectors
Ceneralised mot
matrix
General
matrix
Trasitit
Transition and
modes
```

State-space
representation
UFC/DC
SA (CK0191)

```
Representation
and analysis
State tran
matrix
matrix
Definition
\({ }^{\text {Definition }}\)
Properties
Sylvester expansio
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
Basis of genera
eigenvectors
\(\underset{\substack{\text { Generali } \\ \text { matrix }}}{ }\)
\begin{tabular}{|c} 
matrix \\
Transition matrix
\end{tabular}
Transition and
Transit
modes

Consider matrix \((\lambda \mathbf{I}-\mathbf{A})\) and its nullity
\[
\rightsquigarrow \quad \alpha_{2}=n-\operatorname{rank}(\lambda \mathbf{I}-\mathbf{A})^{2}
\]

This is the dimensionality of the vector subspace
\[
\rightsquigarrow \quad \operatorname{ker}(\lambda \mathbf{I}-\mathbf{A})^{2}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\lambda \mathbf{I}-\mathbf{A})^{2} \mathbf{x}=\mathbf{0}\right\}
\]

The number of linearly independent vectors \(\mathbf{x}\) such that \((\lambda \mathbf{I}-\mathbf{A})^{2} \mathbf{x}=\mathbf{0}\)
Basis of generalised eigenvectors (cont.)

\section*{Basis of generalised eigenvectors (cont.)}

By the same token, consider matrix \((\lambda \mathbf{I}-\mathbf{A})^{h}\) and its nullity
\[
\rightsquigarrow \quad \alpha_{h}=n-\operatorname{rank}(\lambda \mathbf{I}-\mathbf{A})^{h}=\nu
\]

In this case, we have \(\alpha_{1}<\alpha_{2}<\cdots<\alpha_{h}\)
Thus, there are \(\nu\) generalised eigenvectors of A that are linearly independent
\(\rightsquigarrow\) Their order is smaller or equal to \(h\)
Moreover, \(\beta_{h}=\alpha_{h}-\alpha_{h-1}\) of them are of order \(h\)
State-space
representation
\(\underset{\text { SA (CK0191) }}{\mathrm{UFC/DC}}\) \(\mathrm{SA}_{2018.1}^{(\mathrm{CKO191}}\)
Representation
Representation
State trar
matrix
Definition
Properties
Lagrange
formula
Force-free and
Force-free and
forced evolution
tmpule response
\(\underset{\substack{\text { Similarity } \\ \text { transformation }}}{ }\)
Diagonalisation
Transition matrix
ordan form
Basis of generalised
eigenvectors
Generalised
Generaik
matrix
Trasitit
Transition and
Transition an
modes

\section*{State-space}
epresentatio
UFC/DC 2018.1
```

l

```
State transition
State tr
matrix
Definition
Properties
Properties
Sylvester expansio
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalues
Basis of generalised
Basis of general
eigenvectors
\(\underset{\substack{\text { Generali } \\ \text { matrix }}}{ }\)
\begin{tabular}{|l|l|}
\hline matrix \\
Transiti \\
\hline
\end{tabular}
Transition matrix
Transiti
modes

If \(\mathbf{x}=\operatorname{ker}(s \mathbf{I}-\mathbf{A})\), then \(\mathbf{x} \in \operatorname{ker}(s \mathbf{I}-\mathbf{A})\)
- We have, \(\alpha_{1}<\alpha_{2}\)
\(\alpha_{2}\) equals the number of linearly independent generalised eigenvectors of order 2 that can be chosen linearly independent of the \(\alpha_{1}\) eigenvectors
Basis of generalised eigenvectors (cont.)

\section*{Basis of generalised eigenvectors (cont.)}

Consider the case in which \(\beta_{i+1}(i=1,2, \ldots, h-1)\)
The number of eigenvectors of order \(i\) is such that \(\beta_{i} \geq \beta_{i+1}\)
- For each generalised eigenvector of order \(i+1\), it is possible to determine a generalised eigenvector of order \(i\)
- (We proved a proposition about this fact)

The difference \(\gamma_{i}=\beta_{i} \beta_{i+1}\) indicates the number of new chains of order \(i\)
- They originate from a generalised eigenvector of order \(i\) SA (CK0191) 2018.1

Representatio
and analysis
\(\underset{\text { Definition }}{\text { matrix }}\)
\({ }^{\text {Properties }}\)
\({ }^{\text {SyIvester ex }}\)
formula
Force-free and
forced evolution
Impulse response
Similarity
transformation
transformation
Diagonalisation Transition matrix Complex eigenvalu
Jordan form Basis of generalised
eigenvectors eigenvectors
Generalised modal \begin{tabular}{l} 
matrix \\
\hline Transitio \\
\hline
\end{tabular} Transition matrix
Transition and

Basis of generalised eigenvectors (cont.)

Computing a set of linearly independent generalised eigenvalues Given a \((n \times n)\) matrix \(\mathbf{A}\) and one of its eigenvalues \(\lambda\) with multiplicity \(\nu\)
(1) Compute \(\alpha_{i}=n \operatorname{rank}(\lambda \mathbf{I}-\mathbf{A})^{i}\) for \(i=1, \ldots, h\) until \(\alpha_{h}=\nu\)
(2) Build the table
\begin{tabular}{c|c|c|c|c|c}
\(i\) & 1 & 2 & \(\cdots\) & \(h-1\) & \(h\) \\
\hline\(\alpha_{i}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\cdots\) & \(\alpha_{h-1}\) & \(\alpha_{h}\) \\
\(\beta_{i}\) & \(\alpha_{1}\) & \(\alpha_{2}-\alpha_{1}\) & \(\cdots\) & \(\alpha_{h-1}-\alpha_{h-2}\) & \(\alpha_{h}-\alpha_{h-1}\) \\
\(\gamma_{i}\) & \(\beta_{1}-\beta_{2}\) & \(\beta_{2}-\beta_{3}\) & \(\cdots\) & \(\beta_{h-1}-\beta_{h}\) & \(\beta_{h}\)
\end{tabular}
\(\rightsquigarrow \alpha_{i}\) is the nullity of \((\lambda \mathbf{I}-\mathbf{A})^{i}\)
\(\rightsquigarrow \beta_{i}\) is the number of linearly independent generalised eigenvectors of order \(i\) of matrix A \(\left(\beta_{1}=\alpha_{1}\right.\), and \(\beta_{i}=\alpha_{i}-\alpha_{i-1}\) for \(i=2, \cdots, h\) \(\leadsto \gamma_{i}\) is the number of chains of generalised eigenvectors of length \(i\) of matrix \(\mathbf{A}\left(\gamma_{i}=\beta_{i}-\beta_{i-1}\right.\), for \(i=1, \cdots, h-1\) and \(\left.\gamma_{h}=\beta_{h}\right)\)
(3) If \(\gamma_{i}>0\), determine \(\gamma_{i}\) linearly independent generalised eigenvectors of order \(i\) and compute for each of them the chain of length \(i\)

The algorithm determines \(\sum_{i=1}^{h} \gamma_{i}=\alpha_{1}\) chains, a number that equals the geometric multiplicity of \(\lambda\), an total of \(\sum_{i=1}^{h} i \gamma_{i}=\nu\) generalised eigenvectors

\section*{Basis of generalised eigenvectors (cont.)}
\[
\mathbf{A}=\left[\begin{array}{cccc}
5 & 0 & 0 & 4 \\
1 & 3 & 0 & 1 \\
-1 & 0 & 3 & -2 \\
-1 & 0 & 0 & 1
\end{array}\right]
\]

We can build the table
\[
\begin{array}{c|c|c|c}
i & 1 & 2 & 3 \\
\hline \alpha_{i} & 2 & 3 & 4 \\
\beta_{i} & 2 & 1 & 1 \\
\gamma_{i} & 1 & 0 & 1
\end{array}
\]
\[
\mathbf{A}=\left[\begin{array}{cccc}
5 & 0 & 0 & 4 \\
1 & 3 & 0 & 1 \\
-1 & 0 & 3 & -2 \\
-1 & 0 & 0 & 1
\end{array}\right]
\]

One eigenvalue \(\lambda=3\), multiplicity \(\nu=4\)
We have,
\[
\begin{aligned}
& \alpha_{1}=n-\operatorname{rank}(3 \mathbf{I}-\mathbf{A})=4-2=2 \\
& \alpha_{2}=n-\operatorname{rank}(3 \mathbf{I}-\mathbf{A})^{2}=4-1=3 \\
& \alpha_{3}=n-\operatorname{rank}(3 \mathbf{I}-\mathbf{A})^{3}=4-0=4
\end{aligned}
\]

As \(\alpha_{3}=4=\nu\), we have \(h=3\)

\section*{State-space}
representation \(\underset{\mathrm{SA}}{\mathrm{UFC/DC}}(\mathrm{CK} 0191)\) 2018.1

Basis of generalised eigenvectors (cont.)

As \(\gamma_{3}=1\), we must choose a generalised eigenvector of order 3
- It will generate a chain of length 3

We denote by (1) at the exponent all vectors belonging to such a chain Choose the generalised eigenvector of order \(3, \mathbf{v}_{3}^{(1)}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}\) We get,
\[
\mathbf{v}_{3}^{(1)}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \rightarrow \mathbf{v}_{2}^{(1)}=\left[\begin{array}{c}
2 \\
1 \\
-1 \\
-1
\end{array}\right] \rightarrow \mathbf{v}_{1}^{(1)}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
\]


Basis of generalised eigenvectors (cont.)

Suppose that we choose \(b=1\) and \(c=0\), we get \(\mathbf{v}_{1}^{(1)}\)
Suppose that we choose \(b=0\) and \(c=1\), we get
\[
\mathbf{v}_{1}^{(2)}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
\]

\section*{State-space
epresentation \\ \(\mathrm{UFC} / \mathrm{DC}\)
SA (CK0191) \({ }_{2018.1}\)}
```

Representatio

```
and analysis
State transition
State tran
matrix
Definition
\({ }^{\text {Properties }}\)
\({ }^{\text {Properties }}\) Sysester expansion
Lagrange
formula
formula
Force-free and
\begin{tabular}{l} 
Force-free and \\
forced evolution \\
\hline
\end{tabular}
Impulse response
\({ }^{\text {Similarity }}\)
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
\(\underset{\substack{\text { Basis of generalised } \\ \text { eiegnuectors }}}{\substack{\text {. } \\ \text {. } \\ \text {. }}}\)
\({ }_{\text {enten }}^{\text {eigenvectors }}\) Genalised mo
Generali
matrix
Trasitio
Transition matrix
Transition an
modes


Basis of generalised eigenvectors (cont.)

As \(\gamma_{1}=1\), we must choose a generalised eigenvector of order 1
- A conventional eigenvector

This is the fourth vector we get
We denote by (2) at exponent vectors belonging to such a chain of length 1
Choose the eigenvector \(\mathbf{v}=\left[\begin{array}{llll}a & b & c & d\end{array}\right]^{T} \neq \mathbf{0}\)
We get,
\[
(3 \mathbf{I}-\mathbf{A}) \mathbf{v}=\left[\begin{array}{c}
-2 a-4 d \\
-a-d \\
a+2 d \\
a+d
\end{array}\right]=\mathbf{0}
\]

We can have that \(a=d=0\)
We could choose \(b=1\) and \(c=0\) or \(b=0\) and \(c=1\)

It is possible to associate to an eigenvalue \(\lambda\) and multiplicity \(\nu\) a structure
- \(\nu\) linearly independent generalised eigenvectors

This extends to generalised eigenvectors a classical theorem
A matrix with \(n\) distinct eigenvalues has \(n\) linearly independent eigenvectors

\(\underset{\text { State-space }}{\substack{\text { Sepresentation }}}\)
representation \(\underset{\text { SA (CK0191) }}{\text { UFC/DC }}\) 2018.1 Representation
and analysis
```

State transitio

```
State tran
matrix
Definition
Properties
Sylvester expan
Lagrange
Lagrange
formula
Force. free and
forced evolution
Impulse response
Similarity
Similarity
transformatio
transformation
Diagonalisation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors
Generalised modal
matrix
Transition and
Transit
modes

Suppose we have determined \(n\) linearly independent generalised eigenvectors We can use them to build a non-singular matrix

Generalised modal matrix (cont.)
\(\underset{\text { State-space }}{\text { representation }}\)
\(\underset{\text { SAFC/DC }}{\text { UF }}\) A (CK019 2018.1

State transition
State trans
matrix
Dafinition
Defintion
Properties
Properties
Sylvester expansion
Lagrange
formula
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvaluc
Jordan form
Bordan of forme
Baisenvectised
eised
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\)
matrix
Transition and

\section*{Definition}

Generalised modal matrix
Consider a \((n \times n)\) matrix \(\mathbf{A}\)
Consider a set of linearly independent generalised eigenvectors of \(\mathbf{A}\)
Suppose that to eigenvalue \(\lambda\) correspond \(\mu\) chains of generalised eigenvectors
\(\rightsquigarrow\) Lengths \(p_{1}, p_{2}, \ldots, p_{\mu}\)
We can sort the generalised eigenvectors of \(\lambda\) and build a matrix \(\mathbf{V}_{\lambda}\)


Suppose that matrix A has \(r\) distinct eigenvalues \(\lambda_{i}(i=1, \ldots, r)\)
We define the \((n \times n)\) generalised modal matrix of \(\mathbf{A}\)
\[
\mathbf{V}=\left[\mathbf{V}_{\lambda_{1}}\left|\mathbf{V}_{\lambda_{2}}\right| \cdots \mid \mathbf{V}_{\lambda_{r}}\right]
\]
\(\mathrm{UFC} / \mathrm{DC}\)
\(\mathrm{SA}(\mathrm{CK019}\) \({ }_{2018.1}\)

State transition
matrix
Definition
\({ }^{\text {Properties }}\)
Sylvester expan
Lagrange
formula
Force-free and
forced evolution Impulse response
Similarity
transformation
Diagonalisation Transition matrix
Complex eigenvalue
\begin{tabular}{c} 
Basis of general \\
eigenvectors \\
\hline
\end{tabular}
Generalised modal matrix
Transition and
modes

\section*{Generalised modal matrix (cont.)}

Consider the definition of generalised modal matrix \(\mathbf{V}\)
- The ordering of the chain is not essential
- The choice is arbitrary

It is important however that the columns that are associated to the generalised eigenvectors belonging to the same chain are positioned side-by-side
- Moreover, they must ordered
- From the eigenvector to the generalised eigenvector of maximum order


\section*{Generalised modal matrix (cont.)}

There is a single distinct eigenvalue
Hence, the modal matrix
\[
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}_{1}^{(1)} & \mathbf{v}_{2}^{(1)} & \mathbf{v}_{3}^{(1)} & \mathbf{v}_{1}^{(2)}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -2 & 1 & 0 \\
1 & -2 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
\]

By swapping the order of the chains, we obtain a different modal matrix
\[
\mathbf{V}^{\prime}=\left[\begin{array}{llll}
\mathbf{v}_{1}^{(2)} & \mathbf{v}_{1}^{(1)} & \mathbf{v}_{2}^{(2)} & \mathbf{v}_{3}^{(1)}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & -2 & 1 \\
1 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
\]

\section*{State-space
representation}

\section*{UFC/DC} A (CK0191)

\section*{Generalised modal matrix (cont.)}

Consider the \((4 \times 4)\) matrix \(\mathbf{A}\)
\[
\mathbf{A}=\left[\begin{array}{cccc}
5 & 0 & 0 & 4 \\
1 & 3 & 0 & 1 \\
-1 & 0 & 3 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right]
\]

The characteristic polynomial \(P(s)=\operatorname{det}(s \mathbf{I}-\mathbf{A})=(s-4)^{4}\)
- Eigenvalue \(\lambda=3\), multiplicity \(\nu=4\)

To this eigenvalue correspond two chains of generalised eigenvalues
- Lengths 3 and 1
Definition
Properties
Sylvester expansion
Lagrange
Force-free and
forced evolution
\(\underset{\substack{\text { forced evolution } \\ \text { Impulse response }}}{ }\)
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Jordan form
Basis of generalised
Banis of of generalised
eisenvetors
Generatied
\(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{ }\)
\({ }_{-}^{\text {matrix }}\)

\section*{Generalised modal matrix (cont.)}

We thus have
\[
\mathbf{J}={ }^{-1} \mathbf{A} \mathbf{V}=\left[\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 1 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
\]

The index of eigenvalue \(\lambda=3\) is \(\pi=3\)

\section*{Generalised modal matrix (cont.)}
Consider a square matrix \(\mathbf{A}\) and let \(\mathbf{V}\) be its generalised modal matrix Matrix \(\mathbf{J}\) from similarity transformation \(\mathbf{J}={ }^{-1} \mathbf{A V}\) is in Jordan form There are \(\mu\) chains of generalised eigenvectors correspond to eigenvalue \(\lambda\) \(\rightsquigarrow\) Lengths \(p_{1}, p_{2}, \ldots, p_{\mu}\)
Thus, \(\mu\) Jordan blocks of order \(p_{1}, p_{2}, \ldots, p_{\mu}\)
Generahia
matrix
Transiti
Transition and
modes

\section*{Generalised modal matrix (cont.)}

By combining equations, let the \(j\)-th chain contributes the first \(p\) columns
\[
\begin{aligned}
{\left[\lambda \mathbf{v}_{1}^{(j)}\left|\lambda \mathbf{v}_{2}^{(j)}+\mathbf{v}_{1}^{(j)}\right| \cdots\left|\lambda \mathbf{v}_{p}^{(j)}+\mathbf{v}_{p-1}^{(j)}\right|\right.} & \cdots] \\
& =\left[\mathbf{A} \mathbf{v}_{1}^{(j)}\left|\mathbf{A} \mathbf{v}_{2}^{(j)}\right| \cdots\left|\mathbf{A} \mathbf{v}_{p}^{(j)}\right| \cdots\right]
\end{aligned}
\]

That is,
\[
\begin{aligned}
{\left[\mathbf{v}_{1}^{(j)}\left|\mathbf{v}_{2}^{(j)}\right| \cdots\left|\mathbf{v}_{p-1}^{(j)}\right| \mathbf{v}_{p}^{(j)} \mid \cdots\right] }
\end{aligned}\left[\begin{array}{cccccc}
\lambda & 1 & \cdots & 0 & 0 & \cdots \\
0 & \lambda & \cdots & 0 & 0 & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda & 1 & \cdots \\
0 & 0 & \cdots & 0 & \lambda & \cdots \\
\vdots & \vdots & \cdots & \vdots & \vdots & \ddots
\end{array}\right] \quad \begin{aligned}
& =\mathbf{A}\left[\mathbf{v}_{1}^{(j)}\left|\mathbf{v}_{2}^{(j)}\right| \cdots\left|\mathbf{v}_{p-1}^{(j)}\right| \mathbf{v}_{p}^{(j)} \mid \cdots\right]
\end{aligned}
\]

State-space
epresentation
UFC/DC 2018.1
```

State C

```
Definition
Properties
Sylvester expansio
Lagrange
formula
Force-free and
forceed evolution
torced evolution
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Batis of generalised
eigenvectors
\(\underset{\substack{\text { Generalise } \\ \text { matrix }}}{\text { and }}\)
Transition matrix

State trans
matrix
Definition
Definition
Properties
Properties
Sylvester expan
Lagrange
formula
formula
\(\begin{aligned} & \text { Force-free and } \\ & \text { forced evolution }\end{aligned}\)
Torcead evolution
Impulse response
\(\underset{\substack{\text { Similarity } \\ \text { transformatio }}}{ }\)
transformation
Transition matrix
Complex eigenvalu
Jordan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\)
Generain
matrix
Trusiti
Transition and

\section*{Generalised modal matrix (cont.)}

Proof
The columns of the generalised modal matrix are linearly independent
- The generalised modal matrix is non-singular
- It can be inverted

Consider the \(j\)-th chain of length \(p\) associated to \(\lambda\)
By definition,
\[
\lambda \mathbf{v}_{1}^{(j)}=\mathbf{A} \mathbf{v}_{1}^{(j)}
\]

For the \(i\)-th (generalised eigen-) vector (of order \(i>1\) ) \(\mathbf{v}_{i}{ }^{(j)}\)
\[
\mathbf{v}_{i-1}^{(j)}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{i}^{(j)} \rightsquigarrow \lambda \mathbf{v}_{i}^{(j)}+\mathbf{v}_{i-1}^{(j)}=\mathbf{A} \mathbf{v}_{i}^{(j)}
\]

\section*{State-space}
representation
\(\underset{\text { SA }}{\mathrm{UFC} / \mathrm{DKC}}\) \({ }_{2018.1}\)

Generalised modal matrix (cont.)


That is, we have

The chain of length \(p\) associates to a block of order \(p\) in \(\mathbf{J}\) To complete the proof, left-multiply this equation by \(\mathbf{V}^{-1}\)

Generalised modal matrix (cont.)

Example
Consider the \((4 \times 4)\) matrix \(\mathbf{A}\)
\[
\mathbf{A}=\left[\begin{array}{cccc}
5 & 0 & 0 & 4 \\
1 & 3 & 0 & 1 \\
-1 & 0 & 3 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right]
\]

The characteristic polynomial \(P(s)=\operatorname{det}(s \mathbf{I}-\mathbf{A})=(s-4)^{4}\)
- Eigenvalue \(\lambda=3\), multiplicity \(\nu=4\)

To this eigenvalue correspond two chains of generalised eigenvalues
- Lengths 3 and 1

The matrix can be written in Jordan form by similarity
- To blocks, order 3 and 1 , to eigenvalue \(\lambda=3\)

\section*{State-space
representatio \\ (}

A (CK0191)
2018.1
```

Representatio

```

State tran
matrix
Definition
Properties
Sylvester expans
Lagrange
formula
formula
Force-free and
Force-frea and
forced evolution
Impulse response
Similarity
transformatio
Diagonalisation Transition matrix
Complex eifervinatur
Complex eigenvalu
Basis of generalised
cicenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\)
\({ }^{\text {Gentrix }}\)
Transcition mand Transition
modes

\section*{Generalised modal matrix (cont.)}

We can choose a generalised modal matrix \(\mathbf{V}\)
\[
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}_{1}^{(1)} & \mathbf{v}_{2}^{(1)} & \mathbf{v}_{3}^{(1)} & \mathbf{v}_{1}^{(2)}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -2 & 1 & 0 \\
1 & -2 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
\]

Its inverse
\[
\mathbf{V}^{\prime}=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]
\]

We have,
\[
\mathbf{J}=\mathbf{V}^{-1} \mathbf{A V}=\left[\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
\]

The index of the eigenvalue \(\lambda=3\) is \(\pi=3\)

\section*{Transition matrix by Jordan}



State-space
representation representation \(\underset{\mathrm{SA}(\mathrm{CK} / \mathrm{DC}}{\mathrm{UFO})}\) \({ }_{2018.1}\)

\section*{Transition matrix by Jordan (cont.)}

Proof
Matrix \(\mathbf{J}\) is in block-diagonal form, hence the form of its exponential
For the second result, determine the \(k\)-th power of block \(\mathbf{J}_{i}\)
- \(\lambda\) is the associated eigenvalue

We have,


We used the definition of binomial coefficient
\[
\begin{cases}\binom{k}{j}=\frac{k!}{j!(k-j)!}, & \text { for } j \leq k \\ \binom{k}{j}=0, & \text { for } j>k\end{cases}
\]

\section*{State-space
representation}

UFC/DC
\(\underset{\substack{\mathrm{UFC} / \mathrm{DC} \\ \text { SA } \\ 2018.1}}{\mathrm{UCO191}}\)


Its matrix exponential

\(\underset{\substack{\text { State-space } \\ \text { representation }}}{\text { Stan }}\)
UFC/DC SA (CK0191) 2018.1

\section*{Transition matrix by Jordan (cont.)}

The generic element of matrix \(e^{\mathbf{J}_{i} t}\) is on the upper-diagonal
- Starting from element \(1, j+1\), for \(j=0, \ldots, p-1\)
\[
\begin{aligned}
\sum_{k=0}^{\infty} \frac{k=0}{\infty}\binom{k}{j} \lambda^{k-j} & =\sum_{k=j}^{\infty} \frac{t^{k}}{j!(k-j)!} \lambda^{k-j}=\frac{t^{j}}{j!}\left(\sum_{k=j}^{\infty} \frac{t^{k-j}}{(k-j)!} \lambda^{k-j}\right) \\
& =\frac{t^{j}}{j!}\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \lambda^{k}\right)=\frac{t^{j}}{j!} e^{\lambda t}
\end{aligned}
\]

This is because we have
\[
e^{\mathbf{J}_{i} t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mathbf{J}_{i}^{k}
\]



Transition matrix by Jordan (cont.)

Consider the matrix \(\mathbf{A}\)
\[
\mathbf{A}=\left[\begin{array}{cccc}
5 & 0 & 0 & 4 \\
1 & 3 & 0 & 1 \\
-1 & 0 & 3 & -2 \\
-1 & 0 & 0 & 1
\end{array}\right]
\]

Consider the generalised modal matrix \(\mathbf{V}\)
\[
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}_{1}^{(1)} & \mathbf{v}_{2}^{(1)} & \mathbf{v}_{3}^{(1)} & \mathbf{v}_{1}^{(2)}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -2 & 1 & 0 \\
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
\]

We can write \(\mathbf{A}\) in Jordan form
\[
\mathbf{A}=\left[\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
\]

We have,
\[
e^{\mathbf{J} t}=\left[\begin{array}{cccc}
e^{3 t} & t e^{3 t} & \frac{t^{2}}{2} e^{3 t} & 0 \\
0 & e^{3 t} & t e^{3 t} & 0 \\
0 & 0 & e^{3 t} & 0 \\
0 & 0 & 0 & e^{3 t}
\end{array}\right]
\]

We thus have,
\[
e^{\mathbf{A} t}=\mathbf{V} e^{\mathbf{V} t} \mathbf{V}^{-1}=\left[\begin{array}{cccc}
e^{3 t}+2 e^{3 t} & 0 & 0 & 4 t e^{3 t} \\
t e^{3 t}+0.5 t^{2} e^{3 t} & e^{3 t} & 0 & t e^{3 t}+t^{2} e^{3 t} \\
-t e^{3 t} & 0 & e^{3 t} & -2 t e^{3 t} \\
-t e^{3 t} & 0 & 0 & e^{3 t}-2 t e^{3 t}
\end{array}\right]
\]

\section*{Transition matrix by Jordan (cont.)}

Consider a matrix A with conjugate complex eigenvalues
\(\rightsquigarrow\) Its Jordan form is not real
We can modify the diagonalisation procedure
- A modified modal matrix

We get a real canonical quasi Jordan form



\section*{Transition matrix and modes}

The modes are functions that characterise the dynamical behaviour
- We studied them for IO representations

We establish a similar concept also for SS representations
\(\underset{\substack{\text { State-space } \\ \text { representation }}}{ }\)
representation

\section*{A (CK0191)} 2018.1

\section*{Minimum polynomial and modes (cont.)}

\section*{Minimum polynomial}

Consider a matrix A with \(r\) distinct eigenvalues \(\lambda_{i}\)
- Let \(\pi_{i}\) be the indexes of the eigenvalues

We define the minimum polynomial
\[
P_{\min }(s)=\prod_{i=1}^{r}\left(s-\lambda_{i}\right)^{\pi_{i}}
\]

Consider the roots \(\lambda_{i}\) of the minimum polynomial of multiplicity \(\pi_{i}\)
- To them we can associate the \(\pi_{i}\) functions of time
- We call them modes
\[
e^{\lambda_{i} t}, t e^{\lambda_{i} t}, \ldots, t^{\pi_{i}-1} e^{\lambda_{i} t}
\]

Each element of state transition matrix is a linear combination of modes



Minimum polynomial and modes (cont.)

Example
Consider a system with SS representation
\[
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)} \\
y(t)=\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{array}\right.
\]

The state matrix \(\mathbf{A}\) has two eigenvalues, both with multiplicity one
\(\rightsquigarrow \lambda_{1}=-1\)
\(\rightsquigarrow \lambda_{2}=-2\)
Their index is unitary, too

The minimum polynomial of \(\mathbf{A}\) and the characteristic polynomial match
\[
P_{\min }(s)=P(s)=(s+1)(s+2)
\]

\section*{State-space \\ UFC/DC \({ }_{2018.1}\)}

Minimum polynomial and modes (cont.)

Consider the matrix \(\mathbf{A}\)
\[
\mathbf{A}=\left[\begin{array}{cccc}
5 & 0 & 0 & 4 \\
1 & 3 & 0 & 1 \\
-1 & 0 & 3 & -2 \\
-1 & 0 & 0 & 1
\end{array}\right]
\]

One eigenvalue \(\lambda=3\), multiplicity \(\nu=4\), index \(\pi=3\)
The characteristic and the minimum polynomial
\[
\begin{aligned}
P(s) & =(s-\lambda)^{\nu}=(s-3)^{4} \\
P_{\min }(s) & =(s-\lambda)^{\pi}=(s-3)^{3}
\end{aligned}
\]

The modes
\[
e^{3 t}, t e^{3 t}, t^{2} e^{3 t}
\]


State-space
representation
representation \(\underset{\text { SA (CK0191) }}{\mathrm{UFC} / \mathrm{DC}}\) \(\mathrm{SA}_{2018.1}(\mathrm{CK} 0191)\) Representation
and analysis State transition matrix Properties Sylvester expansio Lagrange
formula
Force: Free and
forced evolution forced evolution
Impulse response Similarity Similarity
transformatio
Diagonalisation
Diagonalisation
Transition matrix Complex eigenvalue
Jordan form
Basis of generali
eigenvectors \(\underset{\substack{\text { Cenerral } \\ \text { matrix }}}{\text { Cen }}\)
Transition matrix Transit
modes

Minimum polynomial and modes (cont.)

The generalised modal matrix \(\mathbf{V}\)
\[
\mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}_{1}^{(1)} & \mathbf{v}_{2}^{(1)} & \mathbf{v}_{3}^{(1)} & \mathbf{v}_{1}^{(2)}
\end{array}\right]=\left[\begin{array}{cccc}
0 & -2 & 1 & 0 \\
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
\]

The Jordan form of matrix \(\mathbf{A}\)
\[
\mathbf{J}=\left[\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
\]

On the eigenvectors

Consider the state-space representation of a system
\[
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.
\]

We give an interpretation to the real eigenvectors of \(\mathbf{A}\)
We start with a general result, valid for all eigenvectors
- Both real and complex eigenvectors


\section*{Minimum polynomial and modes (cont.)}

Each element of matrix \(e^{\mathbf{A} t}\) is a linear combination of the modes
\[
e^{\mathbf{A} t}=\mathbf{V} e^{\mathbf{J} t} \mathbf{V}^{-1}=\left[\begin{array}{cccc}
e^{3 t}+2 e^{3 t} & 0 & 0 & 4 t e^{3 t} \\
t t^{3 t}+0.5 t^{2} e^{3 t} & e^{3 t} & 0 & t e^{3 t}+t^{2} e^{3 t} \\
-t t^{3 t} & 0 & e^{3 t} & -2 t e^{3 t} \\
-t e^{3 t} & 0 & 0 & e^{3 t}-2 t e^{3 t}
\end{array}\right]
\]

There is no mode in the form \(t^{\nu-1} e^{\lambda t}=t^{3} e^{3 t}\)
- Though there is a \(\lambda=3\), with \(\nu=4\)
\(\begin{gathered}\text { State-space } \\ \text { representation }\end{gathered}\)
\(\begin{gathered}\text { UFC/DC }\end{gathered}\)
SA (CK0191) 2018.1

On the eigenvectors (cont.)

\section*{Let \(\mathbf{v}\) be an eigenvector of matrix \(\mathbf{A}\)}
- \(\lambda\) is the associated eigenvalue

We have,
\[
e^{\mathbf{A} t} \mathbf{v}=e^{\lambda t} \mathbf{v}
\]

That is, \(\mathbf{v}\) is an eigenvector of matrix \(e^{\mathbf{A} t}\)
\(\rightsquigarrow e^{\lambda t}\) is the associated eigenvalue
```

State-space
UFC/DC
SA (CK0191)

```
Representatio
and analysis
and analysis
\begin{tabular}{l}
\(\begin{array}{l}\text { State tran } \\
\text { matrix }\end{array}\) \\
\hline
\end{tabular}
Definition
\({ }^{\text {Properties }}\)
Properties
Sylvester expansio
Lagrange
formula
formula
Force-free and
Force-free and
forced evolution
Imewn
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{ }\)
Generalil
matrix
Trasitio
Transition matrix
Transition and
modes
modes

\section*{On the eigenvectors (cont.)}

Proof
Let \(\mathbf{v}\) be an eigenvector of matrix \(\mathbf{A}\)
- \(\lambda\) is the associated eigenvalue

We thus have,
\[
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
\]

By pre-multiplying both sides by \(\mathbf{A}\), we get
\[
\mathbf{A}^{2} \mathbf{v}=\lambda \mathbf{A} \mathbf{v}=\lambda^{2} \mathbf{v}
\]

The operation can be repeated, we get
\[
\mathbf{A}^{k} \mathbf{v}=\lambda^{k} \mathbf{v}, \text { for } k \in \mathcal{N}
\]

We obtain,
\[
e^{\mathbf{A} t} \mathbf{v}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mathbf{A}^{k} \mathbf{v}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!}=e^{\lambda t} \mathbf{v}
\]

\section*{On the eigenvectors (cont.)}

State-space
representation representaio \(\underset{2018.1}{\mathrm{SA}(\mathrm{CKO191})}\) 2018.1
\(\qquad\) Representatio State tran
matrix Deffinition
Properties Properties
Sylvester expansion Lagrange
formula
Force-free and
forced evolution forced evolution
Impulse response Similarity \(\underset{\substack{\text { Similarity } \\ \text { transformatior }}}{ }\) Diagonalisation Transition matrix Jordan form Basis of general Baisis of general
eigenvectors Generalise
matrix
Transition matrix
Transition and Transit
modes

State-space
representation
UFC/DC
\(\underset{\text { SA (CK0191) }}{\text { UFC/DC }}\) \({ }_{2018.1}\)
and analysis
State transition
State tran
matrix
Definition
Properties
Sylvester expan
Lagrange
formula
Force-free and
forced evolution
Impulse response
\({ }^{\text {Similarity }}\)
transformation
Diagonalisation
Transition matrix
Complex eigenvalues
Jordan form
Basis of generalise
eigenvectors
\(\underset{\substack{\text { Generalis } \\ \text { matrix }}}{\substack{\text { and }}}\)
Transition matrix
Transition and modes

On the eigenvectors (cont.)

Consider a linear system with SS representation
\[
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.
\]

We are interested in its time evolution, from different initial conditions
Consider the initial state \(\mathbf{x}\left(t_{0}\right)\) at time \(t_{0}\), we have
- \(\mathbf{x}_{u}(t)\) defines a parameterised curve
- The curve lies in the state space
- Time \(t\) is the parameter of \(\mathbf{x}_{u}(t)\)

The curve is called state evolution
The set of points along the curve defines the trajectory of the evolution

\section*{State-space}
representation
 \({ }_{2018.1}\)

On the eigenvectors (cont.)

Suppose that \(\mathbf{x}_{0}\) corresponds to an eigenvector of matrix \(\mathbf{A}\)
- ( \(\lambda\) is the associated eigenvalue)

By using Lagrange formula and \(e^{\mathbf{A} t} \mathbf{v}=e^{\lambda t} \mathbf{v}\), we have
\[
\rightsquigarrow \quad \mathbf{x}_{u}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}=e^{\lambda t} \mathbf{x}_{0}
\]

The state vector \(\mathbf{x}_{u}(t)\) keeps in time the direction of \(\mathbf{x}_{0}\)
\(\rightsquigarrow\) Its magnitude changes according to the mode \(e^{\lambda t}\)
- (It goes with the associated eigenvalue)


Suppose that the system has a state matrix A of order \(n\)
Suppose that A has \(n\) linearly independent eigenvectors
\[
\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}
\]
- (The associated eigenvalues are \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\) )

\section*{State-space
representation \\ UFC/DC \(\underset{\substack{\mathrm{UFC} / \mathrm{DC} \\ \text { SA } \\ 2018.1}}{\mathrm{U} 0191)}\)}
and analysis
State transition
Definition
Properties
Sylvester expans
Lagrange
formula
formula
\(\begin{aligned} & \text { Force-free and } \\ & \text { forced evolution }\end{aligned}\)
forcea evolution
Impulse response
Similarity
transformation
Diagonalisation
Transition matrix
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
eigenvectors
\(\underset{\substack{\text { Generalised modal } \\ \text { matrix }}}{\text { and }}\)
Transtition matma
Transition an
modes
modes

\section*{On the eigenvectors (cont.)}

Suppose that \(\mathbf{x}_{0}\) does not coincide with \(\mathbf{v}_{i}\)
We can always write,
\[
\rightsquigarrow \quad \mathbf{x}_{0}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}
\]

The initial condition is a linear combination of the basis of eigenvectors
- Through appropriate coefficients \(\alpha_{i}\)

We have,
\[
\mathbf{x}_{u}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}=\sum_{i=1}^{n} \alpha_{i} e^{\mathbf{A} t} \mathbf{v}_{i}=\sum_{i=1}^{n} \alpha_{i} e^{\lambda_{i} t} \mathbf{v}_{i}
\]

Time evolution is a linear combination of evolutions, along eigenvectors
- Through the same coefficients \(\alpha_{i}\)

State-space
representation
\(\underset{\mathrm{SA}}{\mathrm{UFC} / \mathrm{DC}} \mathrm{CK0191)}\) 2018.1
```

l

```
\(\underset{\substack{\text { State transition } \\ \text { matrix }}}{ }\)
matrix
Definition
Definition
Properties
Sylvester ex
\begin{tabular}{l}
\(\begin{array}{l}\text { Lagrange } \\
\text { formula }\end{array}\) \\
\hline
\end{tabular}
Force-free and
forced evolution
forced evolution
Impulse response
Similarity
Similarity
transformation
Diagonalisation
Transition matrix
Complex eigenvalue
Jordan form
Basis of generalised
Basis of generaised
eigenvectors
Generaised modal

\section*{On the eigenvectors (cont.)}

The force-free evolution on the ( \(x_{1}, x_{2}\) )-plane for different cases
Each trajectory corresponds to a different initial condition
- \(t\) increases according to the arrow


Two initial conditions are placed along the eigenvector \(\mathbf{v}_{1}\)
\(\rightsquigarrow \mathbf{x}_{u}(t)\) keeps the same direction
\(\rightsquigarrow\) Its modulo decreases, \(e^{-t}\) is stable

On the eigenvectors (cont.)


Two initial conditions are placed along the eigenvector \(\mathbf{v}_{2}\)
\(\rightsquigarrow \mathbf{x}_{u}(t)\) keeps the same direction
\(\rightsquigarrow\) Its modulo decreases, \(e^{-2 t}\) is stable

\section*{State-space
representation \\ UFC/DC} SA (CK0191) \({ }_{2018.1}\)
and analysis
State transition
matrix
Definition
Properties
Sylvester expan
Lagrange
formula
Force-free and
forced evolution
Impulse response
Similarity
transformation
transformation
\(\underset{\substack{\text { Diagonalisation } \\ \text { Transition matrix }}}{ }\)
Complex eigenvalue
Jordan form
Basis of generali
Basis of generalised
eigenvectors
Generalised modal
matrix
Generain
matrix
Trusiti
Transition and
modes

On the eigenvectors (cont.)


Two initial conditions are placed along a combination of eigenvectors
\(\rightsquigarrow \mathbf{x}_{u}(t)\) keeps a curved direction, tend to zero
\(\rightsquigarrow\) Components evolve along different modes
\(\rightsquigarrow e^{-2 t}\) is (extinguishes) faster
\(\underset{\text { State-space }}{\text { representation }}\)
representation
\(\underset{\mathrm{SA}}{\mathrm{UFC} / \mathrm{DC}} \mathrm{CK0191)}\) 2018.1

On the eigenvectors (cont.)

We have,
\[
\mathbf{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=e^{\mathbf{A} t} \mathbf{x}_{0}=\left[\begin{array}{c}
e^{-t} \cos (2 t) \\
-e^{-t} \sin (2 t)
\end{array}\right]
\]

The solution determines a vector in the \(\left(x_{1}, x_{2}\right)\) plane
- The vector rotates clockwise
- The angular speed \(\omega=2\)

The magnitude decreases according to mode \(e^{-t}\)
- A spiral
modes
On the eigenvectors (cont.)
The trajectory is the spiral starting at \(\square, \mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]\)


All trajectories have qualitatively similar behaviour
- Whatever the initial condition
\(\leadsto\) Starting at \(\bigcirc, \mathbf{x}_{0}=\left[\begin{array}{l}0 \\ 1\end{array}\right]\)```

