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Analysis in time of linear stationary systems in state-space representation

• The analysis problem

• The state transition matrix

• Sylvester expansion

• Lagrange formula

• Similarity transformations

• Diagonalisation

• Jordan’s form

• Modes

O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Representation and analysis
State-space representation

O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Representation and analysis

Consider a linear and stationary system of order n

• Let p be the number of outputs

• Let r be the number of inputs

The state-space representation of the system

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

• x(t) is the state vector (n components)

• ẋ(t) is the derivative of the state vector (n components)

• u(t) is the input vector (r components)

• y(t) is the output vector (p components)

A (n × n), B (n × r), C (p × n) and D (p × r) are matrices

• The elements are not function of time
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The analysis problem

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Determine the behaviour of state x(t) and output y(t) for t ≥ t0

• We are given the input function u(t), for t ≥ t0

• We are given the initial state x(t0)

The solution

• The Lagrange formula

• We discuss it at length
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The state transition matrix

Consider some square matrix A

Its exponential eA is a matrix

! eA = I+A+
A2

2!
+

A3

3!
+ · · · =

∞∑

k=0

Ak

k !

The state transition matrix eAt is a matrix exponential

! Its elements are functions of time
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The state transition matrix (cont.)

The exponential function

Let z be some scalar, by definition its exponential is a scalar

ez = 1 + z +
z2

2!
+

z3

3!
+ · · · =

∞∑

k=0

zk

k !

The series always converges

The matrix exponential

LetA be a (n × n) matrix, by definition its exponential is a (n × n) matrix

eA = I+A+
A2

2!
+

A3

3!
+ · · · =

∞∑

k=0

Ak

k !

The series always converges
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The state transition matrix (cont.)

The scalar-matrix product

Let s ∈ R and let A = {ai,j } be a (m × n) matrix

B = sA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s · a1,1 · · · s · a1,j · · · s · a1,n
...

. . .
...

. . .
...

s · ai,1 · · · s · ai,j · · · s · ai,n
...

. . .
...

. . .
...

s · am,1 · · · s · am,j · · · s · am,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The product of A and s is defined as the (m × n) matrix B = {bi,j }

B = {bi,j = s · ai,j }
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The state transition matrix (cont.)

The matrix product

LetA = {ai,j } be a (m × n) matrix and letB = {bi,j } be a (n × p) matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 · · · a1,k · · · a1,n
...

. . .
...

. . .
...

ai,1 · · · ai,k · · · ai,n
...

. . .
...

. . .
...

am,1 · · · am,k · · · am,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1,1 · · · b1,j · · · b1,p
...

. . .
...

. . .
...

bk,1 · · · bk,j · · · bk,p
...

. . .
...

. . .
...

bn,1 · · · bn,j · · · bn,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The product between A and B is defined as a (m × p) matrix C = {ci,j }

C = {ci,j =
n∑

k=1

ai,k bk,j }
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The state transition matrix (cont.)

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1,1 · · · c1,j · · · c1,p
...

. . .
...

. . .
...

ci,1 · · · ci,j · · · ci,p
...

. . .
...

. . .
...

cm,1 · · · cm,j · · · cm,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Element ci,j of matrix C is given by the dot product between a′
i and bj

ci,j = a′
ibj =

[
ai,1 ai,2 · · · ai,k · · · ai,n

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1,j
b2,j
...

bk,j
...

bn,j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ai,1b1,j + ai,2b2,j + · · ·+ ai,n bn,j =
n∑

k=1

ai,k bk,j
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The state transition matrix (cont.)

For every (m × n) matrix A, we have

Im
︸ ︷︷ ︸

(m×m)

A
︸ ︷︷ ︸

(m×n)

= A
︸ ︷︷ ︸

(m×n)

In
︸ ︷︷ ︸

(n×n)

= A
︸ ︷︷ ︸

(m×n)

Right- and left-multiplication of matrix A by an identity matrix (In or Im )
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The state transition matrix (cont.)

Matrix product is not necessarily commutative, AB ≠ BA

A
︸︷︷︸

(m×n)

B
︸︷︷︸

(n×p)

= C
︸︷︷︸

(m×p)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 · · · a1,k · · · a1,n
...

. . .
...

. . .
...

ai,1 · · · ai,k · · · ai,n
...

. . .
...

. . .
...

am,1 · · · am,k · · · am,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1,1 · · · b1,j · · · b1,p
...

. . .
...

. . .
...

bk,1 · · · bk,j · · · bk,p
...

. . .
...

. . .
...

bn,1 · · · bn,j · · · bn,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The product BA is not even defined

For AB = BA, A and B must be both square and of the same order

• (necessary condition)

A (n × n) diagonal matrix D commutes with any (n × n) matrix A

DA = AD

"
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The state transition matrix (cont.)

The product of several matrices

The product of A and B is only possible when the matrixes are compatible

• Number of columns of A must equal the number of rows of B

The same applies to the product of several matrixes

M
︸︷︷︸

(m×n)

= A1
︸︷︷︸

(m×m1)

A2
︸︷︷︸

(m1×m2)

· · · Ak−1
︸ ︷︷ ︸

(mk−2×mk−1)

Ak
︸︷︷︸

(mk−1×n)
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The state transition matrix (cont.)

Powers of a matrix

Let A be an order-n square matrix

The k -th power of matrix A is defined as the n-order matrix Ak

Ak =AA · · ·A
︸ ︷︷ ︸

k times

Special cases,

! Ak=0 = I

! Ak=1 = A
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The state transition matrix

Definition

The state transition matrix

Consider the state-space model with (n × n) matrix A

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

The state transition matrix is the (n × n) matrix eAt

eAt =
∞∑

k=0

Ak tk

k !
(2)

The state transition matrix is well defined for any square matrix A

• (The series always converges)

"
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The state transition matrix (cont.)

Not convenient to determine the state transition matrix from its definition

! There are more efficient procedures for the task

! One exception, when A is (block-)diagonal
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The state transition matrix (cont.)

The matrix exponential of block-diagonal matrixes

Consider any block-diagonal matrix A, we have

A =

⎡

⎢
⎢
⎢
⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Aq

⎤

⎥
⎥
⎥
⎦

! eA =

⎡

⎢
⎢
⎢
⎣

eA1 0 · · · 0
0 eA2 · · · 0
...

...
. . .

...
0 0 · · · eAq

⎤

⎥
⎥
⎥
⎦
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The state transition matrix (cont.)

Proof

For all k ∈ N , we have

Ak =

⎡

⎢
⎢
⎢
⎣

Ak
1 0 · · · 0
0 Ak

2 · · · 0
...

...
. . .

...
0 0 · · · Ak

q

⎤

⎥
⎥
⎥
⎦

Thus,

eA =
∞∑

k=0

Ak

k !
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑∞
k=0

Ak
1

k !
0 · · · 0

0
∑∞

k=0

Ak
2

k !
· · · 0

...
...

. . .
...

0 0 · · ·
∑∞

k=0

Ak
q

k !

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

"



O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

The state transition matrix (cont.)

The matrix exponential of diagonal matrixes

For any diagonal (n × n) matrix A, we have

A =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn

⎤

⎥
⎥
⎥
⎦

! eA =

⎡

⎢
⎢
⎢
⎣

eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
. . . 0

0 0 · · · eλn

⎤

⎥
⎥
⎥
⎦

The result is a special case of the previous proposition
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The state transition matrix (cont.)

Proposition

Consider the state-space model with (n × n) diagonal matrix A

We have,

A =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn

⎤

⎥
⎥
⎥
⎦

! eAt =

⎡

⎢
⎢
⎢
⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . . 0

0 0 · · · eλn t

⎤

⎥
⎥
⎥
⎦

Proof

We have,

At =

⎡

⎢
⎢
⎢
⎣

λ1t 0 · · · 0
0 λ2t · · · 0
...

...
. . . 0

0 0 · · · λn t

⎤

⎥
⎥
⎥
⎦

! eAt =

⎡

⎢
⎢
⎢
⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . . 0

0 0 · · · eλnt

⎤

⎥
⎥
⎥
⎦

This matrix is diagonal, we used the result from the previous proposition
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The state transition matrix (cont.)

Example

Consider the state-space model with (2× 2) diagonal matrix A

A =

[
−1 0
0 −2

]

We are interested in the corresponding state transition matrix

We have,

eAt =

[
e(−1)t 0

0 e(−2)t

]
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The state transition matrix (cont.)
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We present some fundamental results about the state transition matrix eAt

! They are needed to derive Lagrange formula
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Proposition

Derivative of the state transition matrix

Consider the state transition matrix eAt

We have,
d

dt
eAt = AeAt = eAtA

Proof

To prove the first equality, we differentiate eAt =
∑∞

k=0 A
k tk/k !

d

dt
eAt =

d

dt

∞∑

k=0

Ak tk

k !
=

∞∑

k=0

d

dt

Ak tk

k !
=

∞∑

k=1

Akktk−1

k !

! = A
∞∑

k=1

Ak−1tk−1

(k − 1)!
= A

∞∑

k=0

Ak tk

k !
= AeAt

The second equality is obtained by collecting A on the right

"
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By using the derivative property, we have that A commutes with eAt

! That is, AeAt = eAtA

A and eAt commute (this result is important)
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Proposition

Composition of two state transition matrices

Consider the two state transition matrices eAt and eAτ

We have,
eAteAτ = eA(t+τ)
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Proof

We expand both exponentials in their corresponding series and multiply

eAteAτ =
(

I+At +
A2t2

2!
+

A3t3

3!
+ · · ·

)(

I +Aτ +
A2τ2

2!
+

A3τ3

3!
+ · · ·

)

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I + Aτ +
A2τ2

2!
+

A3τ3

3!
+

A4τ4

4!
· · ·

+ At + A2tτ +
A3tτ2

2!
+

A4tτ3

3!
· · ·

+
A2t2

2!
+

A3t2τ

2!
+

A4t2τ2

2!2!
· · ·

+
A3t3

3!
+

A4t3τ

3!
· · ·

+
A4t4

4!
· · ·

· · ·

= I+A(t + τ) +
A2

2!
(t2 + 2tτ + τ2)2 +

A3

3!
(t3 + 3t2τ + 3tτ2 + τ3)

+
A4

4!
(t4 + 4t3τ + 6t2τ2 + 4tτ3 + τ4) + · · ·
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eAteAτ = I+A(t + τ) +
A2(t + τ)

2!
+

A3(t + τ)3

3!
+

A4(t + τ)4

4!
+ · · ·

! =
∞∑

k=0

Ak (t + τ)k

k !
= eA(t+τ)

"
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The previous result is not trivial

In the scalar case, we always have eateaτ = ea(t+τ) or eatebt = e(a+b)t

In the matrix case, it is not necessarily true that eAteBt = e(A+B)t

! Equality holds if and only if AB = BA

! (If the matrices commute)
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Proposition

Inverse of the state transition matrix

Let eAt be a state transition matrix

Its inverse
(

eAt
)−1

is matrix e−At

eAte−At = e−AteAt = I

Proof

Based on the previous proposition, we have

eAte−At = eA(t−t) = eA·0 = I+A · 0 +
A2 · 02

2!
+

A3 · 03

3!
+ · · · = I
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A state transition matrix eAt is always invertible (non-singular)

• Even if A were singular

The result follows from the previous proposition
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Matrix inverse

Consider a square matrix A of order n

We define the inverse of A the square matrix of order n, A−1

A−1A = AA−1 = I

The inverse of matrix A exists if and only if A is non-singular

• When the inverse exists it is unique
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Matrix minors

Consider a square matrix A of order n ≥ 2

The minor (i , j ) of matrix A is a square matrix Ai,j of order (n − 1)

Ai,j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 · · ·
✟
✟a1,j · · · a1,p

a2,1 a2,2 · · ·
✟✟
a2,j · · · a2,p

...
...

. . .
...

. . .
...

✟✟
ai,1 ✟✟

ai,2 · · ·
✟✟
ai,j · · ·

✟✟
ai,p

...
...

. . .
...

. . .
...

am,1 am,2 · · · ✘✘am,j · · · am,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It is obtained from A by deleting the i-th row and the j -th column
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Matrix determinant

Consider a square matrix A of order n

The determinant of A is a real number

det (A) = |A|

• For n = 1, let A = [a1,1], we have

! det (A) = a1,1

• For n ≥ 2, we have

! det (A) = a1,1 â1,1 + a2,1 â2,1 + · · ·+ an,1ân,1 =
n∑

i=1

ai,1âi,1

âi,j denotes the cofactor of element (i , j ), it is a scalar

• It is equal to the determinant of minor Ai,j multiplied by (−1)i+j O
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Sylvester expansion

We determine the analytical expression of the state transition matrix eAt

• (without necessarily calculating the infinite expansion)

The procedure is known as Sylvester expansion

• There are also other procedures

• (We discuss them later on)
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Sylvester expansion (cont.)

Proposition

The Sylvester expansion

Let A be a (n × n) matrix

The corresponding state transition matrix is eAt

We have,

eAt =
n−1∑

i=0

βi (t)A
i

= β0(t)I + β1(t)A+ β2(t)A
2 + · · ·+ βn−1(t)A

n−1 (3)

The coefficients of the expansion βi are appropriate functions of time

! They can be determined by solving a set of linear equations

"
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We discuss how to determine the coefficients of the expansion

We individually consider several cases

! Eigenvalues of A have multiplicity one

! Eigenvalues of A have multiplicity larger than one

! Matrix A has complex eigenvalues (with multiplicity one)
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Sylvester expansion (cont.)

Eigenvalues and eigenvectors

Let λ ∈ R be some scalar and let v ≠ 0 be a (n × 1) column vector

Consider a square matrix A of order n

Suppose that the identify holds

Av = λv

The scalar λ is called an eigenvalue of A

The vector v is called the associated eigenvector
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Sylvester expansion (cont.)

Consider a square matrix A of order n whose elements are real numbers

Matrix A has n (not necessarily distinct) eigenvalues λ1,λ2, . . ., λn

• They can be real numbers or conjugate-complex pairs

If λi ≠ λj for i ≠ j , we say that matrix A has multiplicity one
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Sylvester expansion (cont.)

Eigenvalues of triangular and diagonal matrices

Let matrix A = {ai,j } be triangular or diagonal

The eigenvalues of A are the n diagonal elements {ai,i}, i = 1, 2, . . . ,n
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Sylvester expansion (cont.)

Characteristic polynomial

The characteristic polynomial of a square matrix A of order n

• The n-order polynomial in the variable s

P(s) = det (sI −A)

Computing eigenvalues and eigenvectors

The eigenvalues of matrix A of order n solve its characteristic polynomial

! The roots of the equation P(s) = det (sI −A) = 0

Let λ be an eigenvalue of matrix A

Each eigenvector v associated to it is a non-trivial solution to the system

(λI −A)v = 0

0 is a (n × 1) column-vector whose elements are all zero
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Sylvester expansion (cont.)

Proof

An eigenvalue λ and an eigenvector v must satisfy

Av = λv

(λI−A)v = 0 follows from this identity

The non-trivial solution v ≠ 0 is admissible iff matrix (λI−A) is singular

! det (λI−A) = 0

Thus, λ is root to the characteristic polynomial of matrix A

"
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Sylvester expansion (cont.)

Systems of linear equations

Consider a system of n linear equations in n unknowns

Ax = b

! A is a (n × n) matrix of coefficients

! b is a (n × 1) vector of known terms

! x is a (n × 1) vector of unknowns

If matrix A is non-singular, the system admits one and only one solution

If A is singular, let M = [A|b] be a [n × (n + 1)] matrix

• If rank(A) = rank(M), system has infinite solutions

• If rank(A) < rank(M), system has no solutions O
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Matrix rank

The rank of a (m × n) matrix A is equal to the number of columns (or
rows) of the matrix that are linearly independent

rank(A)

Define the minors of matrix A as any matrix obtained from A by deleting
an arbitrary number of rows and columns

• rank(A) equals the order of the largest non-singular square minor
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Matrix kernel or null space

Consider a (m × n) matrix A

We define the null space or kernel

ker(A) =
{
x ∈ Rn |Ax = 0

}

It is all vectors x ∈ Rn that left-multiplied by A produce the null vector

The set is a vector space, its dimension is called the nullity of matrix A

null(A)
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Sylvester expansion (cont.)

Eigenvalues with multiplicity one

Let matrix A have distinct eigenvalues λ1, λ2, . . .,λn

eAt =
n−1∑

i=0

βi (t)A
i

= β0(t)I + β1(t)A+ β2(t)A
2 + · · ·+ βn−1(t)A

n−1

The n unknown functions βi (t) are those that solve the system

!

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1β0(t) + λ1β1(t) + λ2
1β2(t) + · · ·+ λn−1

1 βn−1(t) = eλ1t

1β0(t) + λ2β1(t) + λ2
2β2(t) + · · ·+ λn−1

2 βn−1(t) = eλ2t

· · ·

1β0(t) + λnβ1(t) + λ2
nβ2(t) + · · ·+ λn−1

n βn−1(t) = eλn t

(4)
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Sylvester expansion (cont.)

Or, equivalently,
Vβ = η (5)

• The vector of unknowns

! β =
[
β0(t) β1(t) · · · βn−1(t)

]T

• The coefficients matrix1

! V =

⎡

⎢
⎢
⎢
⎢
⎣

1 λ1 λ2
1 · · · λn−1

1
1 λ2 λ2

2 · · · λn−1
2

...
...

...
. . .

...
1 λn λ2

n · · · λn−1
n

⎤

⎥
⎥
⎥
⎥
⎦

• The known vector

! η =
[

eλ1t eλ2t · · · eλn t
]T

1A matrix in this form is known as Vandermonde matrix.
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Sylvester expansion (cont.)

η =
[
eλ1t eλ2t · · · eλn t

]T

The components of vector η are functions of time, eλt

! Functions eλt are the modes of matrix A

! Mode eλt associates with eigenvalue λ

Each element of eAt is a linear combination of such modes
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Sylvester expansion (cont.)

Example

Consider the (2 × 2) matrix A

A =

[
−1 1
0 −2

]

We want to determine eAt

Matrix A is triangular, the eigenvalues correspond to the diagonal elements

Matrix A has 2 distinct eigenvalues

! λ1 = −1

! λ2 = −2

To determine eAt , we write the system

{

1β0(t) + λ1β1(t) = eλ1t

1β0(t) + λ2β1(t) = eλ2t
!

{

β0(t) + (−1)β1(t) = e(−1)t

β0(t) + (−2)β1(t) = e(−2)t
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Sylvester expansion (cont.)

By simple manipulation, we get

!

{

β0(t) = 2e−t − e−2t

β1(t) = e−t − e−2t
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{

β0(t) = 2e−t − e−2t

β1(t) = e−t − e−2t

Thus,

eAt = β0(t)I2 + β1(t)A

= (2e−t − e−2t)

[
1 0
0 1

]

+ (e−t − e−2t)

[
−1 1
0 −2

]

=

[
e−t (e−t − e−2t)
0 e−2t

]

Each element of matrix eAt is a linear combination of the two modes

! e−t

! e−2t O
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Eigenvalues with multiplicity larger than one

Let matrix A have eigenvalues with multiplicity larger than one

As in the previous case, we build a system of equations

Eigenvalues λ of multiplicity ν associate to ν equations

!

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

β0(t) + λβ1(t) + · · ·+ λn−1βn−1(t)
]

= eλt

d

dλ

[

β0(t) + λβ1(t) + · · ·+ λn−1βn−1(t)
]

=
d

dλ
eλt

d2

dλ2

[

β0(t) + λβ1(t) + · · ·+ λn−1βn−1(t)
]

=
d2

dλ2
eλt

...
dν−1

dλν−1

[

β0(t) + λβ1(t) + · · ·+ λn−1βn−1(t)
]

=
dν−1

dλν−1
eλt

(6)
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That is,

!

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1β0(t) + λβ1(t) + · · ·+ λn−1βn−1(t) = eλt

1β1(t) + 2λβ2(t) + · · ·+ (n − 1)λn−2βn−1(t) = teλt

...
(ν − 1)!

0!
βν−1(t) + · · ·+

(n − 1)!

(n − ν)!
λn−νβn−1(t) = tν−1eλt

(7)

It is again possible to re-write the linear system in compact form

! Vβ = η
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Vβ = η

Consider the eigenvalues λ with multiplicity ν

• They are associated with ν rows in the coefficient matrix2 V

!

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 λ λ2 · · · λν−1 · · · λn−1

0 1 2λ · · · (ν − 1)λν−2 · · · (n − 1)λn−2

...
...

...
. . .

...
. . .

...

0 0 0 · · · (ν − 1)! · · ·
(n − 1)!

(n − ν)!
λn−ν

⎤

⎥
⎥
⎥
⎥
⎥
⎦

• They are associated with ν rows in the vector of known terms η

!
[

eλt teλt · · · tν−1eλt
]T

The vector of unknowns β

! β =
[
β0(t) β1(t) · · · βn−1(t)

]T

2A matrix of this form is known as confluent Vandermonde matrix.
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Example

Consider the (3 × 3) matrix

A =

⎡

⎣

3 0 1
2 −1 1.5
0 0 3

⎤

⎦

We want to determine eAt

The characteristic polynomial of matrix A

P(s) = (s − 3)2(s + 1)

Matrix A has two eigenvalues

! λ1 = +3 (multiplicity 2)

! λ2 = −1 (multiplicity 1)
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We can write the system

⎧

⎪⎨

⎪⎩

β0(t) + λ1β1(t) + λ2
1β2(t) = eλ1t

β1(t) + 2λ1β2(t) = teλ1t

β0(t) + λ2β1(t) + λ2
2β2(t) = eλ2t

!

⎧

⎪⎨

⎪⎩

β0(t) + 3β1(t) + 9β2(t) = e(+3)t

β1(t) + 6β2(t) = te(+3)t

β0(t) − β1(t) + β2(t) = e(−1)t

We get,

!

⎧

⎪⎨

⎪⎩

β0(t) = 1/16(7e3t − 12te3t + 9e−t )

β1(t) = 1/8(3e3t − 4te3t − 3e−t)

β2(t) = 1/16(−e3t + 4te3t + e−t)

Thus,

eAt = β0(t)I3 + β1(t)A + β2(t)A
2

=

⎡

⎣

e3t 0 te3t

(0.5e3t − 0.5e−t ) e−t (0.25e3t + 0.5te3t − 0.25e−t)
0 0 e3t

⎤

⎦

"
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Complex eigenvalues

Let matrix A have complex eigenvalues

We can still determine the coefficients β of the Sylvester expansion

It is convenient to modify the procedure

! To avoid computations that involve complex numbers

We only discuss only the case of eigenvalues with multiplicity one

O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Sylvester expansion (cont.)

Let matrix A have distinct eigenvalues λ1, λ2, . . .,λn

The n unknown functions βi (t) are those that solve the system

!

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β0(t) + λ1β1(t) + λ2
1β2(t) + · · ·+ λn−1

1 βn−1(t) = eλ1t

β0(t) + λ2β1(t) + λ2
2β2(t) + · · ·+ λn−1

2 βn−1(t) = eλ2t

...

β0(t) + λnβ1(t) + λ2
nβ2(t) + · · ·+ λn−1

n βn−1(t) = eλn t

(8)

Suppose that two of the n eigenvalues of A are complex-conjugate

! λ,λ′ = α± jω
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In the resulting system, there should appear the two equations

!

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1β0(t) + λβ1(t) + λ2β2(t) + · · ·+ λn−1βn−1(t)

= eλt = eαtejωt

1β0(t) + λ′β1(t) + (λ′)2β2(t) + · · ·+ (λ′)n−1βn−1(t)

= eλ
′t = eαte−jωt

(9)

We can substitute these two equations with two equivalent ones

!

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

β0(t) + Re(λ)β1(t) + Re(λ2)β2(t) + · · ·+ Re(λn−1)βn−1(t)

= eαt cos (ωt)

Im(λ)β1(t) + Im(λ2)β2(t) + · · ·+ Im(λn−1)βn−1(t)

= eαt sin (ωt)

(10)

The goal is to remove complex terms

! Re(λ) = α

! Im(λ) = ω
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⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1β0(t) + λβ1(t) + λ2β2(t) + · · ·+ λn−1βn−1(t)

= eλt = eαtejωt

1β0(t) + λ′β1(t) + (λ′)2β2(t) + · · ·+ (λ′)n−1βn−1(t)

= eλ
′t = eαte−jωt

The first equation, is obtained by summing the two equations above

• Then, by dividing by 2

The second one, by subtracting the second equation from the first one

• Then, by dividing by 2j

!

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

β0(t) + Re(λ)β1(t) + Re(λ2)β2(t) + · · ·+Re(λn−1)βn−1(t)

= eαt cos (ωt)

Im(λ)β1(t) + Im(λ2)β2(t) + · · ·+ Im(λn−1)βn−1(t)

= eαt sin (ωt) O
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Sine and cosine terms on the RHS are from Euler formulæ

As λ and λ′ are conjugate-complex, so are λk and (λ′)k

Thus,

λk + (λ′)k= 2Re(λk )

λk − (λ′)k= 2j Im(λk )
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Example

Consider a state-space system with (2× 2) matrix A

A =

[
α ω
−ω α

]

We are interested in the state transition matrix eAt

Matrix A has characteristic polynomial

P(s) = s2 − 2αs + (α2 + ω2)

Matrix A has distinct eigenvalues

! λ,λ′ = α± jω O
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To determine the state-transition matrix eAt , we write the system

{

β0(t) + Re(λ)β1(t) = eαt cos (ωt)

Im(λ)β1(t) = eαt sin (ωt)

!

{

β0(t) + αβ1(t) = eαt cos (ωt)

ωβ1(t) = eαt sin (ωt)

We obtain, ⎧

⎪⎪⎨

⎪⎪⎩

β0(t) = eαt cos (ωt)−
αeαt

ω
sin (ωt)

β1(t) =
eαt

ω
sin (ωt)

Thus,

eAt = β0(t)I2 + β1(t)A = eαt

[
cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)

]

"



O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Lagrange formula
State-space representation

O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Lagrange formula

We can now prove the solution to the analysis problem for MIMO systems

• Lagrange formula
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Theorem

Lagrange formula

Consider the SS representation of a stationary linear system of order n

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

• x(t), state vector (n components)

• ẋ(t), derivative of the state vector (n components)

• u(t), input vector (r components)

• y(t), output vector (p components)

The solution for t ≥ t0, for an initial state x(t0) and an input u(t |t ≥ t0)

{

x(t) = eA(t−t0)x(t0) +
∫ t
t0

eA(t−τ)Bu(τ)dτ

y(t) = CeA(t−t0)x(t0) +C
∫ t
t0

eA(t−τ)Bu(τ)dτ +Du(t)
(11) O
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Proof

Multiply the state equation ẋ(t) = Ax(t) +Bu(t) by e−At

We get,
e−At ẋ(t) = e−AtAx(t) + e−AtBu(t)

The resulting state equation can be rewritten,

e−At ẋ(t)− e−AtAx(t) = e−AtBu(t)

Then, by using the result on the derivative of the state transition matrix3,

d

dt

[

e−Atx(t)
]

= e−AtBu(t)

3Derivative of the state transition matrix

d

dt

[

e
−At

x(t)
]

= e
−At

[ d

dt
x(t)

]

+
[ d

dt
e
At

]

x(t)

= e
−At

ẋ(t) − e
−At

Ax(t)

. (12)
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d

dt

[

e−Atx(t)
]

= e−AtBu(t)

By integrating between t0 and t , we obtain

[

e−Aτx(τ)
]t

t0
=

∫ t

t0

e−AτBu(τ)dτ

That is,

eAtx(t)− e−At0x(t0) =

∫ t

t0

e−AτBu(t)

Thus,

e−Atx(t) = e−At0x(t0) +

∫ t

t0

e−AτBu(t) O
C
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e−Atx(t) = e−At0x(t0) +

∫ t

t0

e−AτBu(t)

The first Lagrange formula is obtained by multiplying both sides by eAt

! x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

The second formula is obtained by substituting x(t) in the output equation

y(t) = Cx(t) +Du(t)

! C
[

eA(t−t0)x(t0) +C

∫ t

t0

eA(t−τ)Bu(τ)dτ

︸ ︷︷ ︸

x(t)

]

+Du(t)

"
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Force-free and forced evolution

x(t) = eA(t−t0)x(t0)
︸ ︷︷ ︸

xu (t)

+

∫ t

t0

eA(t−τ)Bu(τ)dτ

︸ ︷︷ ︸

xf (t)

We can write the state solution (for t ≥ t0) as the sum of two terms

x(t) = xu(t) + xf (t)

! The force-free evolution of the state, xu (t)

! The forced evolution of the state, xf (t)
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Force-freee and forced evolution (cont.)

x(t) = eA(t−t0)x(t0)
︸ ︷︷ ︸

force-free evolution xu (t)

+

∫ t

t0

eA(t−τ)Bu(τ)dτ

︸ ︷︷ ︸

forced evolution xf (t)

The force-free evolution of the state, from the initial condition x(t0)

! xl (t) = eA(t−t0)x(t0) (13)

! eA(t−t0) indicates the transition from x(t0) to x(t)

! In the absence of contribution from the input

The forced evolution of the state

! xf (t) =

∫ t

t0

eA(t−τ)Bu(τ)dτ =

∫ t−t0

0
eAtBu(t − τ)dτ (14)

! The contribution of u(τ) to state x(t)

! Thru a weighting function, eA(t−τ)B
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Force-free and forced evolution (cont.)

y(t) = CeA(t−t0)x(t0)
︸ ︷︷ ︸

force-free evolution yu (t)

+C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)

︸ ︷︷ ︸

forced evolution yf (t)

We can write the output solution (for t ≥ t0) as the sum of two terms

y(t) = yl (t) + yf (t)

! The force-free evolution of the output, yu (t)

! The forced evolution of the output, yf (t)
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Free and forced evolution (cont.)

y(t) = CeA(t−t0)x(t0)
︸ ︷︷ ︸

force-free evolution yu (t)

+C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)

︸ ︷︷ ︸

forced evolution yf (t)

The force-free evolution of the output, from initial condition y(t0) = Cx(t0)

! yu (t) = CeA(t−t0)x(t0) = Cxu (t) (15)

The forced-evolution of the output

! yf (t) = C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t) = Cxf (t) +Du(t) (16)
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Free and forced evolution (cont.)

Note that for t0 = 0, we have

!

{

x(t) = eAtx(0) +
∫ t
0 eA(t−τ)Bu(τ)dτ

y(t) = CeAtx(0) +C
∫ t
0 eA(t−τ)Bu(τ)dτ +Du(t)
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Free and forced evolution (cont.)

Example

Consider a system with the SS representation,
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

ẋ1(t)

ẋ2(t)

]

=

[

−1 0

0 −2

][

x1(t)

x2(t)

]

+

[

0

1

]

u(t)

y(t) =
[

2 1
]
[

x1(t)

x2(t)

] (17)

We want to determine the state and the output evolution for t ≥ 0

We consider the input signal u(t)

u(t) = 2δ−1(t)

We consider the initial state x(0)

x(0) =

[
3
4
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Free and forced evolution (cont.)

The state transition matrix for this SS representation,

eAt =

[
e−t (e−t − e−2t )
0 e−2t

]

We computed it earlier
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Free and forced evolution (cont.)

The force-free evolution of the state, for t ≥ 0

! xu (t) = eAtx(0) =

[
e−t (e−t − e−2t )
0 e−2t

] [
3
4

]

=

[
(7e−t − 4e−2t )

4e−2t

]

0 2 4

0

1

2

3

t

x (1)
u (t)

0 2 4

0

2

4

t

x (2)
u (t)
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Free and forced evolution (cont.)

The force-free evolution of the output, for t ≥ 0

! yu (t) = Cxu(t) =
[
2 1

]
[
(7e−t − 4e−2t )

4e−2t

]

= 14e−t − 4e−2t

0 2 4

0

5

10

t

yu(t)
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Free and forced evolution (cont.)

The forced evolution of the state, for t ≥ 0

! xf (t) =

∫ t

0
eAtBu(t − τ)dτ =

∫ t

0

[
e−τ (e−τ − e−2τ )
0 e−2τ

] [
0
1

]

2dτ

= 2

∫ t

0

[
(e−τ − e−2τ )

e−2τ

]

dτ = 2

[∫ t
0 (e−τ − e−2τ )dτ

∫ t
0 e−2tdτ

]

= 2

[
(1− e−t)− 1/2(1 − e−2t)

1/2(1 − e−2t )

]

=

[
(1 − 2e−t + e−2t )

(1− e−2t )

]

0 2 4

0

0.5

1

t

x
(1)
f (t)

0 2 4

0

0.5

1

t

x
(2)
f (t)
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Free and forced evolution (cont.)

Since D = 0, the forced evolution of the output for t ≥ 0

! yf (t) = Cxf (t) =
[
2 1

]
[
(1 − 2e−t + e−2t )

(1− e−2t )

]

= 3− 4e−t + e−2t

0 2 4

0

1

2

3

t

yf (t)
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Impulse response

We discussed the impulse response for systems in IO representation

• The forced response due to a unit impulse

We complete the presentation for systems in SS representation
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Impulse response (cont.)

Proposition

Impulse response

Consider the SS representation of a SISO system

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) + Du(t)

The impulse response

w(t) = CeAtB+ Dδ(t) (18)

Proof

The impulse response is the forced response due to a unit impulse

Let u(t) = δ(t) and substitute it in the Lagrange formula

w(t) = C

∫ t

0
eA(t−τ)Bδ(τ)dτ +Dδ(t)
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Impulse response (cont.)

Consider a continuous function f of t

By the properties of the Dirac function, we have that f (t−τ)δ(τ) = f (t)δ(τ)

Thus, we have

w(t) = C

∫ t

0
eAtBδ(τ)dτ +Dδ(t) = CeAtB

∫ t

0
δ(τ)dτ

︸ ︷︷ ︸

1

+Dδ(t)

"
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Impulse response (cont.)

w(t) = CeAtB+ Dδ(t)

If the system is strictly proper, we have that D = 0

• w(t) is a linear combination of modes

• Through matrix eAt

If the system is not strictly proper, we have D ≠ 0

• w(t) is a linear combination of modes

• Plus, an impulse term
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Impulse response (cont.)

The forced response can be calculated using Lagrange formula

It corresponds to what was derived by the Durhamel’s integral

! yf (t)=

∫ t

0
w(t − τ)u(τ)dτ =

∫ t

0

[

CeA(t−τ)B+ Dδ(t − τ)
]

u(τ)dτ

=

∫ t

0
CeA(t−τ)Bu(τ)dτ +

∫ t

0
Dδ(τ − t)u(τ)dτ

= C

∫ t

0
eA(t−τ)Bu(τ)dτ + Du(t)
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Similarity transformation
State-space representation
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Similarity tranformation

The form of the state space representation depends on the choice of states

• The choice is not unique

There is an infinite number of different representations of the same system

• They are all related by a similarity transformation

We define the concept of similarity transformation
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Similarity tranformation (cont.)

The main advantage of the similarity transformation procedure is flexibility

• We can change to easier system representations

The state matrix can be set in canonical form

! Diagonal form

! Jordan form

There are other canonical forms
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Similarity tranformation (cont.)

Definition

Similarity transformation

Consider the SS representation of a linear stationary system of order n

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

• x(t), state vector (n components)

• u(t), input vector (r components)

• y(t), output vector (p components)

Let vector z(t) be related to x(t) by a linear transformation P

x(t) = Pz(t) (19)

P is any (n × n) non-singular matrix of constants

• Thus, the inverse of P always exists

• We have z(t) = P−1x(t)

Transformation/matrix P is called similarity transformation/matrix

"
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Similarity tranformation (cont.)

Proposition

Similar representation

Consider the SS representation of a linear stationary system of order n

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(20)

Let P be some transformation matrix such that x(t) = Pz(t)

Vector z(t) satisfies the new SS representation

{

ż(t) = A′z(t) +B′u(t)

y(t) = C′z(t) +D′u(t)
(21)

! A′ = P−1AP

! B′ = P−1B

! C′ = CP

! D′ = D
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Similarity tranformation (cont.)

Proof

Take the time-derivative of x(t) = Pz(t)

We get,
! ẋ(t) = Pż(t) (22)

Substitute x(t) and ẋ(t) into the SS representation

We get,

!

{

Pż(t) = APz(t) +Bu(t)

y(t) = CPz(t) +Du(t)

Pre-multiply the state equation by P−1, to complete the proof

"
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Similarity tranformation (cont.)

{

ż(t) = A′z(t) +B′u(t)

y(t) = C′z(t) +D′u(t)

We obtained a different SS representation of the same system

• Input u(t) and output y(t) are unchanged

• The new state is indicated by z(t)

There is an infinite number of non-singular matrixes P

! An infinite number of equivalent representations
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Similarity tranformation (cont.)

Example

Consider a system with SS representation {A,B,C,D}

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

ẋ1(t)

ẋ2(t)

]

=

A
︷ ︸︸ ︷
[

−1 1

0 −2

][

x1(t)

x2(t)

]

+

B
︷︸︸︷
[

0

1

]

u(t)

[

y1(t)

y2(t)

]

=

[

2 1

0 2

]

︸ ︷︷ ︸

C

[

x1(t)

x2(t)

]

+

[

1.5

0

]

︸ ︷︷ ︸

D

u(t)

Consider the similarity transformation of the state

[
x1(t)
x2(t)

]

=

[
1 1
1 0

]

︸ ︷︷ ︸

P

[
z1(t)
z2(t)

]

What is the {A′,B′,C′,D′} SS representation corresponding to state z(t)
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Similarity tranformation (cont.)

We have,

P =

[
1 1
1 0

]

! P−1 =

[
0 1
1 −1

]

Since z(t) = P−1x(t), we have

[
z1(t)
z2(t)

]

=

[
0 1
1 −1

] [
x1(t)
x2(t)

]

=

[
x2(t)

x1(t) − x2(t)

]

! The first component of z(t) is the second component of x(t)

! The second component of z(t) is the difference between the first and
the second component of x(t)
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Similarity tranformation (cont.)

In addition,

A′ = P−1AP =

[
0 1
1 −1

] [
−1 1
0 −2

] [
1 1
1 0

]

=

[
0 1
1 −1

] [
0 −1
−2 0

]

=

[
−2 0
2 −1

]

B′ = P−1B =

[
0 1
1 −1

] [
0
1

]

=

[
−1
1

]

C′ = CP =

[
2 1
0 2

] [
1 1
1 0

]

=

[
3 2
2 0

]

D′ = D =

[
1.5
0

]

"
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Similarity tranformation (cont.)

Proposition

Similarity and state transition matrix

Consider the state matrix A′ = P−1AP from a similarity transformation

The corresponding state transition matrix,

eA
′t = P−1eAtP

Proof

Note that

(A′)k = (P−1AP) · (P−1AP) · · · (P−1AP)
︸ ︷︷ ︸

k times

= P−1 AA · · ·A
︸ ︷︷ ︸

k times

P = P−1AkP O
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Similarity tranformation (cont.)

Thus, by definition

eA
′t =

∞∑

k=0

(A′)k tk

k !
=

∞∑

k=0

(P−1AkP)tk

k !

! = P−1
( ∞∑

k=0

Ak tk

k !

)

P = P−1eAtP

"



O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Similarity tranformation (cont.)

We show how two similar representations describe the same IO relation
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Similarity tranformation (cont.)

Proposition

Invariance of the IO relationship by similarity

Consider two similar SS representations of the same stationary system

! {A,B,C,D} and {A′,B′,C′,D′}

! P is the transformation matrix

Let the system be subjected to some input u(t)

The two representations produce the same forced response

! yf (t)
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Similarity tranformation (cont.)

Proof

Consider the original SS representation of the system

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Consider a modified SS representation of the system

{

ż(t) = A′z(t) +B′u(t)

y(t) = C′z(t) +D′u(t)

! A′ = P−1AP

! B′ = P−1B

! C′ = CP

! D′ = D O
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Similarity tranformation (cont.)

Consider the Lagrange formula

The forced response of the second representation due to input u(t)

yf (t) = C′

∫ t

t0

eA
′(t−τ)B′u(τ)dτ +Du(t)

= CP

∫ t

t0

P−1eA(t−τ)P
︸ ︷︷ ︸

eA
′(t−τ)

P−1B
︸ ︷︷ ︸

B′

u(τ)dτ +Du(t)

= C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)

This response corresponds to that of the first SS representation

yf (t) = C

∫ t

t0

eA(t−τ)Bu(τ)dτ +Du(t)
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Similarity tranformation (cont.)

Proposition

Invariance of the eigenvalues under similarity transformations

Matrix A and P−1AP have the same characteristic polynomial

Proof

The characteristic polynomial of matrix A′

det (λI −A′) = det (λI−P−1AP) = det (λP−1P
︸ ︷︷ ︸

I

−P−1AP)

= det [P−1(λI −A)P] = det (P−1) det (λI−A) det (P)

= det (λI−A)

The last equality is obtained from det(P−1)det(P) = 1

A and A′ share the same characteristic polynomial

! Thus, also the eigenvalues are the same
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Similarity tranformation (cont.)

Two similar SS representations have the same modes

• The modes characterise the dynamics

The modes are independent of the representation

! This is important
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Similarity tranformation (cont.)

Example

Consider two similar SS representations of the same LTI system

A =

[
−1 1
0 −2

]

A′ =

[
−2 0
2 −1

]

The similarity transformation matrix

P =

[
1 1
1 0

]

We are interested in the eigenvalues and modes of the system

Matrix A and A have two eigenvectors

• λ1 = −1 and λ2 = −2

The system modes are e−t and e−2t
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Diagonalisation

We consider a special similarity transformation P

• We seek for a diagonal matrix A′

! Λ = P−1AP

A SS representation with diagonal state matrix

• Diagonal canonical form
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Diagonalisation (cont.)

Consider a SISO LTI system characterised by the following state equation

⎡

⎢
⎢
⎢
⎣

ẋ1(t)
ẋ2(t)
...

ẋn(t)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1(t)
x2(t)
...

xn (t)

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎣

b1
b2
...
bn

⎤

⎥
⎥
⎥
⎦
u(t)

The evolution of the i-th component of the state vector

! ẋi(t) = λixi (t) + biu(t)

State derivatives are not related to other components
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Diagonalisation (cont.)

We think of a system with diagonal matrix A as a collection of sub-systems

! Each sub-system is described by a single state component

! Each state component evolves independently

! The representation is decoupled

! n first-order subsystems

The characteristic polynomial of the system for the i-th component

! Pi (s) = (s − λi )

This subsystem has mode e−λi t
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Diagonalisation (cont.)

A special similarity transformation to get a representation in diagonal form

• A special similarity matrix
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Diagonalisation (cont.)

Definition

Modal matrix

Consider a system in state-space representation with (n × n) matrix A

• Let v1,v2, . . .,vn be a set of the eigenvectors of matrix A

• Suppose that they correspond to eigenvalues λ1,λ2, . . .,λn

Suppose that eigenvectors in this set are linearly independent

We define the modal matrix of A as the (n × n) matrix V

V =
[
v1|v2| · · · |vn

]
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Diagonalisation (cont.)

If a matrix A has n distinct eigenvalues, then its modal matrix exists

• As its n eigenvectors are linearly independent

Distinct eigenvalues

Let A be a n-order matrix whose n eigenvalues λ1, λ2, . . ., λn are distinct

Then, there is a set of n linearly independent eigenvectors

• Vectors v1,v2, . . .,vn form a basis for Rn
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Diagonalisation (cont.)

Example

Consider the state-space representation of a system with matrix A

A =

[
2 1
3 4

]

We are interested in the modal matrix V of A

The eigenvalues and eigenvectors of A

! λ1 = 1 and v1 =
[
1 −1

]T

! λ2 = 5 and v2 =
[
1 3

]T

The modal matrix V,

V =
[

v1|v2
]

=

[
1 1
−1 3

]

O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Diagonalisation (cont.)

The eigenvectors are determined up to a scaling constant

• (Plus, the ordering of the eigenvalues is arbitrary)

It is clear that there can be more than one modal matrix

These two modal matrices of matrix A are equivalent

V′ =
[

v2|v1
]

=

[
2 3
−2 9

]

V′′ =
[
2v1|3v2

]
=

[
1 1
3 −1

]

"
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Diagonalisation (cont.)

Consider a matrix A whose eigenvalues have multiplicity ν larger than one

• The modal matrix exists if and only if to each eigenvalue λ with mul-
tiplicity ν is possible to associate ν linearly independent eigenvectors

v1,v2, . . . ,vν

This is not always possible
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Diagonalisation (cont.)

Example

Consider the state space representation of a system with matrix A

A =

[
2 0
0 2

]

Its eigenvalue λ = 2 has multiplicity ν = 2

Its eigenvectors are obtained by solving the system
[

λI−A
]

v = 0

[

2I −A
]

v =

[

0 0
0 0

] [

a
b

]

=

[

0
0

]

!

{

0 = 0

0 = 0

We can choose any two linearly independent eigenvectors for λ

• As the equation is satisfied for any value of a and b

The modal matrix by choosing the eigenvectors from the canonical basis

! V =
[
v1|v2

]
=

[
1 0
0 1

]
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Diagonalisation (cont.)

Example

Consider the state space representation of a system with matrix A

A =

[
2 1
0 2

]

Its eigenvalue λ = 2 has multiplicity ν = 2

Its eigenvectors are obtained by solving the system
[

λI−A
]

v = 0

[2I−A]v =

[
0 −1
0 0

] [
a
b

]

=

[
0
0

]

!

{

−b = 0

0 = 0

As b = 0, we can choose only one linearly independent eigenvector for λ

v1 =

[
1
0

]

Matrix A does not admit a modal matrix
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But, ...

If a matrix admits a modal matrix, then it can be diagonalised

• (This is what matters to us)
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Diagonalisation (cont.)

Proposition

Diagonalisation

Consider the state-space representation of a system with matrix A

Let λ1, λ2, . . .,λn be its eigenvalues

Let V =
[

v1|v2| · · · |vn

]

be one of its modal matrices

Matrix Λ from this similarity transformation is diagonal

! Λ = V−1AV
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Diagonalisation (cont.)

Proof

V =
[
v1|v2| · · · |vn

]

Note that the modal matrix is non-singular and can be inverted

• Its columns are linearly independent, by definition

By the definition of eigenvalue and eigenvector, we have

λivi = Avi , for i = 1, . . . ,n

By combining these expressions, we have

!
[
λ1v1|λ2v2| · · · |λnvn

]
=

[
Av1|Av2| · · · |Avn

]
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Diagonalisation (cont.)

We can rewrite this identity,

[

v1|v2| · · · |vn

]

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎤

⎥
⎥
⎥
⎦
= A

[

v1|v2| · · · |vn

]

That is,

V

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎤

⎥
⎥
⎥
⎦

= AV

By left-multiplying both sides by V−1, we have

! Λ =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎤

⎥
⎥
⎥
⎦
= V−1AV

"

O
C
T
07
,
20
18

–
FC

–

State-space
representation

UFC/DC
SA (CK0191)

2018.1

Representation
and analysis

State transition
matrix

Definition

Properties

Sylvester expansion

Lagrange
formula

Force-free and
forced evolution

Impulse response

Similarity
transformation

Diagonalisation

Transition matrix

Complex eigenvalues

Jordan form

Basis of generalised
eigenvectors

Generalised modal
matrix

Transition matrix

Transition and
modes

Diagonalisation (cont.)

Example

Consider a system with SS representation {A,B,C,D}

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[

ẋ1(t)

ẋ2(t)

]

=

[

−1 1

0 −2

][

x1(t)

x2(t)

]

+

[

0

1

]

u(t)

[

y1(t)

y2(t)

]

=

[

2 1

0 2

][

x1(t)

x2(t)

]

+

[

1.5

0

]

u(t)

We are interested in a diagonal representation by similarity

The eigenvalues and eigenvectors of A

• λ1 = −1 and v1 =

[
1
0

]

• λ2 = −2 and v2 =

[
1
−1

]
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Diagonalisation (cont.)

The modal matrix and its inverse

V =

[
1 1
0 −1

]

V−1 =

[
1 1
0 −1

]

Thus,

A′ = Λ = V−1AV =

[
1 1
0 −1

] [
−1 1
0 −2

] [
1 1
0 −1

]

=

[
1 1
0 −1

] [
−1 −2
0 2

]

=

[
−1 0
0 −2

]

B′ = V−1B =

[
1 1
0 −1

] [
0
1

]

=

[
1
−1

]

C′ = CV =

[
2 1
0 2

] [
1 1
0 −1

]

=

[
2 1
0 −2

]

D′ = D =

[
1.5
0

]
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Diagonalisation
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State transition matrix by diagonalisation

An alternative to Sylvester expansion to compute the state transition matrix

We assume a SS representation whose matrix A can be diagonalised
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Transition matrix by diagonalisation (cont.)

Proposition

State transition matrix by diagonalisation

Consider a (n × n) state matrix A and let λ1,λ2, . . .,λn be the eigenvalues

Suppose that A admits the modal matrix V

We have for the state transition matrix

eAt = VeΛtV−1 = V

⎡

⎢
⎢
⎢
⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

⎤

⎥
⎥
⎥
⎦
V−1 (23)

The diagonal state matrix

Λ =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎤

⎥
⎥
⎥
⎦
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State transition matrix by diagonalisation (cont.)

Proof

We have already shown the identity (see similarity and state transition ma-
trices4)

eΛt = V−1eAtV

To complete, multiply both sides by V on the left and by V−1 on the right

"

4Given A′ = P−1AP, we have eA
′t = P−1eAtP.
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State transition matrix by diagonalisation (cont.)

Example

Consider a system with SS representation {A,B,C,D}

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[

ẋ1(t)

ẋ2(t)

]

=

[

−1 1

0 −2

][

x1(t)

x2(t)

]

+

[

0

1

]

u(t)

[

y1(t)

y2(t)

]

=

[

2 1

0 2

][

x1(t)

x2(t)

]

+

[

1.5

0

]

u(t)

We are interested in the state transition matrix eAt
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State transition matrix by diagonalisation (cont.)

We already computed the modal matrix of A and its inverse, V and V−1

V =

[
1 1
0 −1

]

V−1 =

[
1 1
0 −1

]

Thus, we have

eAt = V

[
eλ1t 0
0 eλ2t

]

V−1 =

[
1 1
0 −1

] [
e−t 0
0 e−2t

] [
1 1
0 −1

]

=

[
1 1
0 −1

] [
e−t e−t

0 −e−2t

]

=

[
e−t (e−t − e−2t)
0 e−2t

]

This is the same result we determined by using the Sylvester expansion
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Complex eigenvalues

The diagonalisation procedure applies to matrices with complex eigenvalues

! The corresponding eigenvectors are conjugate-complex

! Modal matrix and diagonal state matrix are complex

We prefer to choose a similarity matrix that differs from the modal matrix

• The objective is a real canonical form

• With some desirable properties

To each pair of conjugate-complex eigenvalues associate a order 2 real block
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Complex eigenvalues (cont.)

Consider a system with state-space representation with matrix A

Suppose that A has a pair of complex conjugate eigenvalues

! λ,λ′ = α± jω

Suppose that the remaining eigenvalues are real and distinct

! λ1, λ2, · · · ,λR

The eigenvectors v and v′ associated to λ and λ′

v= Re(v) + j Im(v) = u+ jω

v′= Re(v′) + j Im(v′) = u− jω

They are also conjugate complex
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Complex eigenvalues (cont.)

First of all, we want to show that u and ω are linearly independent

Then, that they are linearly independent of the other eigenvectors

• (Those associated to the other eigenvalues)
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Complex eigenvalues (cont.)

By the definition of eigenvalue/eigenvector, we have

Av= λv

A(u + jω)= (α+ jω)(u+ jω)

We consider real and imaginary parts individually

Au= (αu − ωω)

Aω= (ωu + αω)
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Complex eigenvalues (cont.)

We choose a particular similarity matrix Ṽ

Columns associated to real eigenvalues are the corresponding eigenvectors

• (As with the conventional modal matrix)

We associate columns u and v to the pair of conjugate complex eigenvalues

By the definition of eigenvalue and eigenvector (λv = Av), we have

!
[
λ1v1|λ2v2| · · · |λRvR|αu− ωω|ωu+ αω

]

=
[

Av1|Av2| · · · |AvR|Au|Aω
]

This matrix is quasi-diagonal
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Complex eigenvalues (cont.)

We can re-write this equation,

!
[
v1|v2| · · · |vR|u|ω

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 · · · 0 0 0
0 λ2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · λR 0 0
0 0 · · · 0 α ω
0 0 · · · 0 −ω α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= A
[

v1|v2| · · · |vR|u|ω
]

That is,

Λ̃ = Ṽ−1AṼ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 · · · 0 0 0
0 λ2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · λR 0 0
0 0 · · · 0 α ω
0 0 · · · 0 −ω α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Complex eigenvalues (cont.)

We associated to the pair of eigenvalues λ,λ′ = α± jω to a block

The block represents the eigenvalues in matrix form

! H =

[
α ω
−ω α

]
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Complex eigenvalues (cont.)

Consider a more general state matrix A

• R distinct real roots, λi , i = 1, . . . ,R

• S pairs of distinct conjugate complex roots. λi , λ′
i , i = R + 1, . . . ,R + S

Matrix A can be written in a canonical quasi-diagonal form using matrix Ṽ

We use the matrix transformation Ṽ

Λ̃ = Ṽ−1AṼ

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 · · · 0 0 0 · · · 0
0 λ2 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · λR 0 0 · · · 0
0 0 · · · 0 HR+1 0 · · · 0
0 0 · · · 0 0 HR+2 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · HR+S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)
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Complex eigenvalues (cont.)

To pairs of conjugate complex roots λi ,λ′
i = αi ± jωi associate a real block

The block that represents the pair in matrix form

! Hi =

[
αi ωi

−ωi αi

]
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Complex eigenvalues (cont.)

Example

Consider a system in state-space representation with matrix A

A =

⎡

⎣

−1 2 0
−2 −1 0
−3 −2 −4

⎤

⎦

We are interested in a (quasi-) diagonal representation

The characteristic polynomial of matrix A

P(s) = s3 + 6s2 + 13s + 20

The eigenvalues and the eigenvectors

! λ1 = −4 and v1 =

⎡

⎣

0
0
1

⎤

⎦

! λ2, λ′
2 = 1± j2 and v2,v′

2 = u2 ± jω2 =

⎡

⎣

1
0
−1

⎤

⎦± j

⎡

⎣

0
1
0

⎤

⎦
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Complex eigenvalues (cont.)

Consider the matrix Ṽ =
[
v1 u2 ω2

]

We have,

Λ̃ = Ṽ−1AṼ =

⎡

⎣

−4 0 0
0 −1 2
0 −2 −2

⎤

⎦

"
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Complex eigenvalues (cont.)

Λ̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 · · · 0 0 0 · · · 0
0 λ2 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · λR 0 0 · · · 0
0 0 · · · 0 HR+1 0 · · · 0
0 0 · · · 0 0 HR+2 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · HR+S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Computing the exponential of a block-diagonal matrix is straightforward

• (We derived a proposition)

Λ̃ is a block-diagonal state matrix
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Complex eigenvalues (cont.)

The resulting state transition matrix

eΛ̃t =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1t 0 · · · 0 0 0 · · · 0
0 eλ2t · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · eλRt 0 0 · · · 0
0 0 · · · 0 eHR+1t 0 · · · 0
0 0 · · · 0 0 eHR+2t · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · eHR+S t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Complex eigenvalues (cont.)

Let λi ,λ′
i = αi ± jωi be a pair of complex-conjugate roots

For each such pair there is a canonical block

Hi =

[
αi ωi

−ωi αi

]

Block Hi represents the pair λ,λ′ in matrix form

The matrix exponential for this matrix (block)

! eHi t = eαi t

[
cos (ωi t) sin (ωi t)
− sin (ωi t) cos (ωi t)

]

The state transition matrix for matrix A is thus

! eAt = ṼeΛ̃t Ṽ−1
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Complex eigenvalues (cont.)

Example

Consider a system with SS representation with matrix A

A =

⎡

⎣

−1 2 0
−2 −1 0
−3 −2 −4

⎤

⎦

We are interested in its matrix exponential, eAt = Ṽe
˜̃t Ṽ−1

• From its (quasi-) diagonal form Ṽ

The eigenvalues and the eigenvectors

! λ1 = −4 and v1 =

⎡

⎣

0
0
1

⎤

⎦

! λ2, λ′
2 = 1± j2 and v2,v′

2 = u2 ± jω2 =

⎡

⎣

1
0
−1

⎤

⎦± j

⎡

⎣

0
1
0

⎤

⎦

Let Ṽ = [v1|u2|ω2], matrix A can be written in quasi-diagonal form

Λ̃ = Ṽ−1AṼ =

⎡

⎣

−4 0 0
0 −1 2
0 −2 −2

⎤

⎦
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Complex eigenvalues (cont.)

Thus, we obtain

eΛ̃t =

⎡

⎣

e−4t 0 0
0 e−t cos (2t) e−t sin (2t)
0 −e−t sin (2t) e−t cos (2t)

⎤

⎦

We also have,

eAt = ṼeΛ̃t Ṽ−1

⎡

⎣

e−t cos (2t) e−t sin (2t) 0
−e−t sin (2t) e−t cos (2t) 0

e−4t − e−t cos (2t) −e−t sin (2t) e−4t

⎤

⎦

"
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Jordan form

Consider a state-space representation of a system with (n × n) matrix A

Let its eigenvalues have multiplicity larger than one

The existence of n linearly independent eigenvectors cannot be guaranteed

! Needed for the construction of the modal matrix

We cannot necessarily go to a diagonal form by similarity transformation
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Jordan form (cont.)

We can still find a set of n linearly independent generalised eigenvectors

• We need to extend the concept of eigenvector

Generalised eigenvectors are used to build a generalised modal matrix

! By similarity, we obtain J = V−1AV

! A block-diagonal canonical form

! A Jordan form
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Jordan form (cont.)

Definition

Jordan block of order p

Let λ ∈ C be a complex number and let p ≥ 1 be a natural number

The (p × p) matrix is a order p Jordan block associated to λ

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Diagonal entries equal λ, entries of the superdiagonal equal 1

• (All the other entries are zero)

λ is an eigenvalue (multiplicity p) of this Jordan block

"
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Definition

Jordan form

Matrix J is said to be in Jordan form if it is in block-diagonal form

Each block Ji along the diagonal must be a Jordan block

J =

⎡

⎢
⎢
⎢
⎣

J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jp

⎤

⎥
⎥
⎥
⎦
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More than one Jordan block can be associated to the same eigenvalue

The Jordan form generalises the conventional diagonal form

• (With order 1 blocks along the diagonal)
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Example

Matrix J1, J2 and J2 are all in Jordan form

J1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 1 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 3 1
0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

J2 =

⎡

⎣

2 0 0
0 2 0
0 0 3

⎤

⎦

J3 =

⎡

⎣

2 1 0
0 2 0
0 0 0

⎤

⎦
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J1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 1 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 3 1
0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Eigenvalues λ1 = 2 (multiplicity 4) and λ2 = 3 (multiplicity 2)

• λ1 = 2 associates with two Jordan blocks (order 3 and 1)

• λ2 = 3 associates with a single Jordan block (order 2)
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Jordan form (cont.)

J2 =

⎡

⎣

2 0 0
0 2 0
0 0 3

⎤

⎦

Eigenvalues λ1 = 2 (multiplicity 2) and λ2 = 3 (multiplicity 1)

• λ1 = 2 associates with two Jordan blocks (order 1)

• λ2 = 3 associates with a single Jordan block (order 1)

J3 =

⎡

⎣

2 1 0
0 2 0
0 0 0

⎤

⎦

Eigenvalues λ1 = 2 (multiplicity 2) and λ2 = 0 (multiplicity 1)

• λ1 = 2 associates with a single Jordan blocks (order 2)

• λ2 = 0 associates with a single Jordan block (order 1)
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Jordan form (cont.)

Proposition

Jordan form

A square matrix A can always be written in a Jordan canonical form J

• This can be done by using a similarity transformation

The resulting form is unique, up to block permutations

"

Proposition

Jordan form

Let λ be an eigenvalue with multiplicity ν for A

• Let µ be its geometric multiplicity5

• Let pi be the order of i-th block

We have,
µ
∑

i=1

pi = ν

"

5The number of linearly independent eigenvectors associated to it (1 ≤ µ ≤ ν).
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Jordan form (cont.)

Algebraic multiplicity

Consider a square matrix A or order n

Suppose that A has r ≤ n distinct eigenvalues λ1,λ2, . . . , λr

! λi ≠ λj , for i ≠ j

The characteristic polynomial can be written in the form

P(s) = (s − λ1)
ν1 (s − λ2)

ν2 · · · (s − λr )
νr , with

r∑

i=1

νi = n

! We call νi ∈ N+ the algebraic multiplicity of λi
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Geometric multiplicity

Consider a square matrix A

Suppose that A has r ≤ n distinct eigenvalues λ1,λ2, . . . , λr

! λi ≠ λj , for i ≠ j

We define the geometric multiplicity/nullity of the eigenvalue λi

! Number µi of linearly independent eigenvectors associated to it

The geometric multiplicity µi of λi with algebraic multiplicity νi

! µ = null(λI −A) ≤ ν
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Definition

Eigenvalue index

Let A be a matrix that can be written in Jordan form J

Let λ be an eigenvalue with multiplicity ν

Let π be the order of the Jordan block in J associated with eigenvalue λ

! π is the eigenvalue index of λ

1 ≤ π ≤ ν

"
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Knowledge of eigenvalues and their algebraic and geometric multiplicity

• It is sufficient to determine the Jordan form

• (And, thus the index of the eigenvalues)
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Example

Consider the 3-order matrix A

A =

⎡

⎣

3 1 2
−1 1 −2
−2 −2 0

⎤

⎦

We are interested in its Jordan form

The characteristic polynomial

P(s) = s3 − 4s2 + 4s = s(s − 2)2

Its eigenvalues and eigenvectors

! λ1 = 0, multiplicity ν1 = 1

! λ2 = 2, multiplicity ν2 = 2 O
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Eigenvalue with multiplicity one has unit geometric multiplicity and index

• λ1, with ν1 = 1

! µ1 = 1

! π1 = 1

λ1 associates with a single 1-order block
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Jordan form (cont.)

As for the geometric multiplicity of the second eigenvalue, we have

µ2 = null(λ2I−A) = n − rank(λ2I−A)

= 3− rank
(

⎡

⎣

−1 −1 −2
1 1 2
2 2 2

⎤

⎦

)

= 3− 2 = 1

λ2 associates with a single 2-order block

! π2 = 2
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Jordan form (cont.)

The resulting Jordan form,

J =

⎡

⎣

0 0 0
0 2 1
0 0 2

⎤

⎦

Equivalently, by block-permutation

J =

⎡

⎣

2 1 0
0 2 0
0 0 0

⎤

⎦

"
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There are cases eigenvalues and their algebraic and geometric multiplicity is
not sufficient to characterise neither the Jordan form nor eigenvalues’ index
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Example

Consider some (5× 5) matrix A

Let λ1 and λ2 be its eigenvalues

! λ1, multiplicity ν1 = 4

! λ2, multiplicity ν2 = 1

We are interested in its Jordan form

We let eigenvalue λ2 associate to a Jordan block of order 1

To eigenvalue λ1 we can associate one or more blocks

• Depending on its geometric multiplicity

• µ1 ≤ ν1 = 4

We can consider four possible cases
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µ1 = 4

The eigenvalue associates with as many Jordan blocks as its multiplicity

• Each Jordan block has order 1

• The index of eigenvalue is π1 = 1

The resulting diagonal (aka diagonalisable) form

J1 =

⎡

⎢
⎢
⎢
⎣

λ1 0 0 0 0
0 λ1 0 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2

⎤

⎥
⎥
⎥
⎦
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µ1 = 3

The eigenvalue associates with three different Jordan blocks

• The order of the blocks is p1 = 2, p2 = 1, p3 = 1

• (As p1 + p2 + p3 = ν1 = 4)

The index of the eigenvalue is π1 = 2

The resulting form

J2 =

⎡

⎢
⎢
⎢
⎣

λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2

⎤

⎥
⎥
⎥
⎦
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Jordan form (cont.)

µ1 = 2

The eigenvalue associates with two Jordan blocks

• The order of the blocks is p1, p2

• (As p1 + p2 = ν1 = 4)

Two resulting Jordan structures are possible

• p1 = 2, p2 = 2, the index of the eigenvalue is π1 = 2

J3 =

⎡

⎢
⎢
⎢
⎣

λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ1 1 0
0 0 0 λ1 0
0 0 0 0 λ2

⎤

⎥
⎥
⎥
⎦

• p1 = 3, p2 = 1, the index of the eigenvalue is π1 = 3

J4 =

⎡

⎢
⎢
⎢
⎣

λ1 1 0 0 0
0 λ1 1 0 0
0 0 λ1 0 0
0 0 0 λ1 0
0 0 0 0 λ2

⎤

⎥
⎥
⎥
⎦
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Jordan form (cont.)

µ1 = 1

The eigenvalue associates with a single Jordan block of order 4

• The index of eigenvalue is π1 = 4

The resulting (non-derogatory) form

J5 =

⎡

⎢
⎢
⎢
⎣

λ1 1 0 0 0
0 λ1 1 0 0
0 0 λ1 1 0
0 0 0 λ1 0
0 0 0 0 λ2

⎤

⎥
⎥
⎥
⎦

"
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The general way to determine the Jordan form J of a matrix A

• We must compute the generalised modal matrix

• It generates the Jordan form, by similarity

We describe this procedure (not a fundamental read)
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Basis of generalised eigenvectors

We have introduced informally the concept of generalised eigenvector

• We provide a formal definition

We determine a set of n linearly independent generalised eigenvectors

• A set that is a basis for R
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Basis of generalised eigenvectors (cont.)

Definition

Generalised eigenvector

Consider a (n × n) matrix A

Let v be vector in Rn

Suppose that the following holds true

{

(λI −A)kv= 0

(λI −A)k−1v≠ 0
(25)

v is a generalised eigenvector of order k associated to eigenvalue λ

"
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Basis of generalised eigenvectors (cont.)

An eigenvector is thus a special generalised eigenvector

! k = 1

That is,

(λI−A)v = 0

v ≠ 0

The equations are satisfied by v and λ
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Basis of generalised eigenvectors (cont.)

Example

Consider the matrix A

A =

⎡

⎢
⎢
⎣

5 0 0 4
1 3 0 1
−1 0 3 −2
−1 0 0 1

⎤

⎥
⎥
⎦

We are interested in the existence of a generalised eigenvector

The characteristic polynomial

P(s) = det (sI −A) = (s − 3)4

One single eigenvalue λ = 3

• Multiplicity ν = 4
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Basis of generalised eigenvectors (cont.)

We have,

(3I −A) =

⎡

⎢
⎢
⎣

−2 0 0 −4
−1 0 0 −1
1 0 0 2
1 0 0 2

⎤

⎥
⎥
⎦

Moreover,

(3I −A)2 =

⎡

⎢
⎢
⎣

0 0 0 0
1 0 0 2
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦
,

(3I−A)3 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦
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Basis of generalised eigenvectors (cont.)

Let v =
[
a b c d

]T
be a generalised eigenvector

We must have

(3I −A)3v =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

= 0

(3I −A)2v =

⎡

⎢
⎢
⎣

0
a + 2d

0
0

⎤

⎥
⎥
⎦

≠ 0

! The first system is satisfied for any a, b, c, d

! The second system is satisfied by a + 2d ≠ 0
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Basis of generalised eigenvectors (cont.)

a + 2d ≠ 0

Let a = 1 and d = 0, we have

v3 =
[
1 0 0 0

]T

Let a = 0 and d = 1, we have

v′
3 =

[
0 0 0 1

]T

"
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Basis of generalised eigenvectors (cont.)

Proposition

Chain of generalised eigenvectors

Consider a square matrix A

Let vk be a k-order generalised eigenvector associated to eigenvalue λ

For j = 1, . . . , k − 1, the j -order generalised eigenvector

vj = −(λI −A)vj+1 = (A− λI)vj+1 (26)

The k-long chain of generalised eigenvectors

vk → vk−1 → · · · → v1
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Basis of generalised eigenvectors (cont.)

Proof

We need to show that each vector in the chain is a generalised eigenvector

If vj = (A− λI)vj+1, for j = 1, . . . , k − 1, then we have

! vj = (A− λI)vk−j vk

If vk is a k -order generalised eigenvector, then we have

{

(A − λI)kvk = 0

(A − λI)k−1vk ≠ 0
!

{

(A− λI)jvj = 0

(A− λI)j−1vj ≠ 0

Vector vk is thus a j -order generalised eigenvector
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Basis of generalised eigenvectors (cont.)

Example

Consider the matrix A

A =

⎡

⎢
⎢
⎣

5 0 0 4
1 3 0 1
−1 0 3 −2
−1 0 0 1

⎤

⎥
⎥
⎦

The characteristic polynomial

P(s) = det (sI −A) = (s − 3)4

One eigenvalue λ = 3, multiplicity ν = 4
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Basis of generalised eigenvectors (cont.)

v3 =
[
1 0 0 0

]T
is a generalised eigenvector of order 3

• We can construct the chain of length 3

v3 =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

→ v2 = (A− λI)v3 =

⎡

⎢
⎢
⎣

2
1
−1
−1

⎤

⎥
⎥
⎦

→ v1 = (A− λI)v2 =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

• We have that v1 is an eigenvector of A

v′
3 =

[
0 0 0 1

]T
is a generalised eigenvector of order 3

• We can construct the chain of length 3

v′
3 =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

→ v′
2 = (A− λI)v′

3 =

⎡

⎢
⎢
⎣

4
1
−2
−2

⎤

⎥
⎥
⎦

→ v′
1 = (A− λI)v′

2 =

⎡

⎢
⎢
⎣

0
2
0
0

⎤

⎥
⎥
⎦

• We have that v′
1 is an eigenvector of A
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Basis of generalised eigenvectors (cont.)

v3 and v′
3 are linearly independent, v2 and v′

2 (and v1 and v′
1) are not

• They differ by a multiplicative constant

"
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Basis of generalised eigenvectors (cont.)

Proposition

The structure of generalised eigenvectors

Consider a (n × n) matrix A

Let λ be an eigenvalue with multiplicity ν and geometric multiplicity µ

It is possible to assign to such an eigenvalue λ a structure of ν linearly
independent eigenvectors consisting of µ chains

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(1)
p1 → · · · → v(1)

2 → v(1)
1 , chain 1

v
(2)
p2 → · · · → v

(2)
2 → v

(2)
1 , chain 2

...

v
(µ)
pµ → · · · → v

(µ)
2 → v

(µ)
1 , chain µ

Let pi be the length of the generic chain i

We have,
µ
∑

i=1

pi = ν
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Basis of generalised eigenvectors (cont.)

Proof

The theorem can be proved in a constructive way

• An algorithm to determine the structure

• (For a specific eigenvalue)

"
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Basis of generalised eigenvectors (cont.)

Start by noticing that each chain terminates with an eigenvector

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v
(1)
p1 → · · · → v

(1)
2 → v

(1)
1 , chain 1

v
(2)
p2 → · · · → v

(2)
2 → v

(2)
1 , chain 2

...

v(µ)
pµ → · · · → v(µ)

2 → v(µ)
1 , chain µ

The number of chains of an eigenvalue equals the geometric multiplicity µ

• The number of linearly independent eigenvectors associated to it
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Basis of generalised eigenvectors (cont.)

Consider the structure of generalised eigenvectors from some eigenvalue

It corresponds to the Jordan block structure from that eigenvalue

In the Jordan form there are µ blocks (one per chain)

! The length of the longest chain associated with λ

! It equals the index of that eigenvalue

! π = max (p1, p2, . . . , pµ)
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Basis of generalised eigenvectors (cont.)

Consider some (n × n) matrix A

Let λ be one of its eigenvalues

• Multiplicity ν

Consider the matrix (λI−A) and its nullity

! α1 = null(λI−A) = n − rank(λI−A)

This is the dimensionality of the vector subspace

! ker(λI −A) = {x ∈ Rn |(λI −A)x = 0}

Number of linearly independent vectors x such that (λI−A)x = 0
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Basis of generalised eigenvectors (cont.)

Parameter α1 corresponds to the geometric multiplicity µ of eigenvalue λ

The geometric multiplicity has two important meanings

• Number of linearly independent generalised eigenvectors of A from λ

• As each chain of generalised eigenvectors ends with an eigenvector

! (Number of chains that can be associated with λ)
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Basis of generalised eigenvectors (cont.)

Consider matrix (λI −A) and its nullity

! α2 = n − rank(λI −A)2

This is the dimensionality of the vector subspace

! ker(λI−A)2 =
{

x ∈ Rn |(λI −A)2x = 0
}

The number of linearly independent vectors x such that (λI −A)2x = 0
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Basis of generalised eigenvectors (cont.)

If x = ker(sI −A), then x ∈ ker(sI −A)

• We have, α1 < α2

α2 equals the number of linearly independent generalised eigenvectors of
order 2 that can be chosen linearly independent of the α1 eigenvectors
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Basis of generalised eigenvectors (cont.)

By the same token, consider matrix (λI −A)h and its nullity

! αh = n − rank(λI −A)h = ν

In this case, we have α1 < α2 < · · · < αh

Thus, there are ν generalised eigenvectors of A that are linearly independent

! Their order is smaller or equal to h

Moreover, βh = αh − αh−1 of them are of order h
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Basis of generalised eigenvectors (cont.)

Consider the case in which βi+1 (i = 1, 2, . . . , h − 1)

The number of eigenvectors of order i is such that βi ≥ βi+1

• For each generalised eigenvector of order i + 1, it is possible to deter-
mine a generalised eigenvector of order i

• (We proved a proposition about this fact)

The difference γi = βiβi+1 indicates the number of new chains of order i

• They originate from a generalised eigenvector of order i
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Basis of generalised eigenvectors (cont.)

Computing a set of linearly independent generalised eigenvalues

Given a (n × n) matrix A and one of its eigenvalues λ with multiplicity ν

1 Compute αi = nrank(λI −A)i for i = 1, . . . , h until αh = ν

2 Build the table

i 1 2 · · · h − 1 h
αi α1 α2 · · · αh−1 αh

βi α1 α2 − α1 · · · αh−1 − αh−2 αh − αh−1

γi β1 − β2 β2 − β3 · · · βh−1 − βh βh

! αi is the nullity of (λI − A)i

! βi is the number of linearly independent generalised eigenvectors of
order i of matrix A (β1 = α1, and βi = αi − αi−1 for i = 2, · · · , h

! γi is the number of chains of generalised eigenvectors of length i of
matrix A (γi = βi − βi−1, for i = 1, · · · , h − 1 and γh = βh)

3 If γi > 0, determine γi linearly independent generalised eigenvectors
of order i and compute for each of them the chain of length i

The algorithm determines
∑h

i=1 γi = α1 chains, a number that equals the

geometric multiplicity of λ, an total of
∑h

i=1 iγi = ν generalised eigenvectors
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Basis of generalised eigenvectors (cont.)

Example

Consider the matrix A

A =

⎡

⎢
⎢
⎣

5 0 0 4
1 3 0 1
−1 0 3 −2
−1 0 0 1

⎤

⎥
⎥
⎦

One eigenvalue λ = 3, multiplicity ν = 4

We have,

α1 = n − rank(3I −A) = 4− 2 = 2

α2 = n − rank(3I −A)2 = 4− 1 = 3

α3 = n − rank(3I −A)3 = 4− 0 = 4

As α3 = 4 = ν, we have h = 3
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Basis of generalised eigenvectors (cont.)

A =

⎡

⎢
⎢
⎣

5 0 0 4
1 3 0 1
−1 0 3 −2
−1 0 0 1

⎤

⎥
⎥
⎦

We can build the table

i 1 2 3
αi 2 3 4
βi 2 1 1
γi 1 0 1
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Basis of generalised eigenvectors (cont.)

As γ3 = 1, we must choose a generalised eigenvector of order 3

• It will generate a chain of length 3

We denote by (1) at the exponent all vectors belonging to such a chain

Choose the generalised eigenvector of order 3, v(1)
3 =

[
1 0 0 0

]T

We get,

v(1)
3 =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦
→ v(1)

2 =

⎡

⎢
⎢
⎣

2
1
−1
−1

⎤

⎥
⎥
⎦

→ v(1)
1 =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦
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Basis of generalised eigenvectors (cont.)

As γ2 = 0, we do not determine other generalised eigenvectors of order 2
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Basis of generalised eigenvectors (cont.)

As γ1 = 1, we must choose a generalised eigenvector of order 1

• A conventional eigenvector

This is the fourth vector we get

We denote by (2) at exponent vectors belonging to such a chain of length 1

Choose the eigenvector v =
[
a b c d

]T
≠ 0

We get,

(3I −A)v =

⎡

⎢
⎢
⎣

−2a − 4d
−a − d
a + 2d
a + d

⎤

⎥
⎥
⎦

= 0

We can have that a = d = 0

We could choose b = 1 and c = 0 or b = 0 and c = 1
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Basis of generalised eigenvectors (cont.)

Suppose that we choose b = 1 and c = 0, we get v
(1)
1

Suppose that we choose b = 0 and c = 1, we get

v(2)
1 =

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

"
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Basis of generalised eigenvectors (cont.)

It is possible to associate to an eigenvalue λ and multiplicity ν a structure

• ν linearly independent generalised eigenvectors

This extends to generalised eigenvectors a classical theorem

A matrix with n distinct eigenvalues has n linearly independent eigenvectors
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Basis of generalised eigenvectors (cont.)

Proposition

The generalised eigenvectors associated to distinct eigenvalues are linearly
independent

Proposition

Consider a (n × n) matrix A

A possesses n linearly independent generalised eigenvectors
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Generalised modal matrix

Suppose we have determined n linearly independent generalised eigenvectors

We can use them to build a non-singular matrix
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Generalised modal matrix (cont.)

Definition

Generalised modal matrix

Consider a (n × n) matrix A

Consider a set of linearly independent generalised eigenvectors of A

Suppose that to eigenvalue λ correspond µ chains of generalised eigenvectors

! Lengths p1, p2, . . ., pµ

We can sort the generalised eigenvectors of λ and build a matrix Vλ

⎡

⎣

[

v(1)
1 |v(1)

2 | · · · |v(1)
p1

]

︸ ︷︷ ︸

chain 1

[

v(2)
1 |v(2)

2 | · · · |v(2)
p2

]

︸ ︷︷ ︸

chain 2

· · ·
[

v(µ)
1 |v(µ)

2 | · · · |v(µ)
pµ

]

︸ ︷︷ ︸

chain µ

⎤

⎦

Suppose that matrix A has r distinct eigenvalues λi (i = 1, . . . , r)

We define the (n × n) generalised modal matrix of A

V =
[

Vλ1 |Vλ2 | · · · |Vλr

]

"
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Generalised modal matrix (cont.)

Consider the definition of generalised modal matrix V

• The ordering of the chain is not essential

• The choice is arbitrary

It is important however that the columns that are associated to the gener-
alised eigenvectors belonging to the same chain are positioned side-by-side

• Moreover, they must ordered

• From the eigenvector to the generalised eigenvector of maximum order
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Generalised modal matrix (cont.)

Example

Consider the (4 × 4) matrix A

A =

⎡

⎢
⎢
⎣

5 0 0 4
1 3 0 1
−1 0 3 −1
−1 0 0 1

⎤

⎥
⎥
⎦

The characteristic polynomial P(s) = det (sI −A) = (s − 4)4

• Eigenvalue λ = 3, multiplicity ν = 4

To this eigenvalue correspond two chains of generalised eigenvalues

• Lengths 3 and 1
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Generalised modal matrix (cont.)

There is a single distinct eigenvalue

Hence, the modal matrix

V =
[

v
(1)
1 v

(1)
2 v

(1)
3 v

(2)
1

]

=

⎡

⎢
⎢
⎣

0 −2 1 0
1 −2 0 0
0 1 0 1
0 1 0 0

⎤

⎥
⎥
⎦

By swapping the order of the chains, we obtain a different modal matrix

V′ =
[

v(2)
1 v(1)

1 v(2)
2 v(1)

3

]

=

⎡

⎢
⎢
⎣

0 0 −2 1
1 1 −1 0
0 0 1 0
0 0 1 0

⎤

⎥
⎥
⎦
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Generalised modal matrix (cont.)

We thus have,

J = −1AV =

⎡

⎢
⎢
⎣

3 1 0 0
0 3 1 1
0 0 3 0
0 0 0 3

⎤

⎥
⎥
⎦

The index of eigenvalue λ = 3 is π = 3
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Generalised modal matrix (cont.)

Proposition

Consider a square matrix A and let V be its generalised modal matrix

Matrix J from similarity transformation J = −1AV is in Jordan form

There are µ chains of generalised eigenvectors correspond to eigenvalue λ

! Lengths p1, p2, . . ., pµ

Thus, µ Jordan blocks of order p1, p2, . . ., pµ
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Generalised modal matrix (cont.)

Proof

The columns of the generalised modal matrix are linearly independent

• The generalised modal matrix is non-singular

• It can be inverted

Consider the j -th chain of length p associated to λ

By definition,

λv(j)
1 = Av(j)

1

For the i-th (generalised eigen-) vector (of order i > 1) v(j)
i

v
(j)
i−1 = (A − λI)v

(j)
i ! λv

(j)
i + v

(j)
i−1 = Av

(j)
i
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Generalised modal matrix (cont.)

By combining equations, let the j -th chain contributes the first p columns

[

λv(j)
1

∣
∣
∣λv

(j)
2 + v(j)

1

∣
∣
∣ · · ·

∣
∣
∣λv

(j)
p + v(j)

p−1

∣
∣
∣ · · ·

]

=
[

Av(j)
1

∣
∣
∣Av(j)

2

∣
∣
∣ · · ·

∣
∣
∣Av(j)

p

∣
∣
∣ · · ·

]

That is,

[

v(j)
1

∣
∣
∣v

(j)
2

∣
∣
∣ · · ·

∣
∣
∣v

(j)
p−1

∣
∣
∣v

(j)
p

∣
∣
∣ · · ·

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 · · · 0 0 · · ·
0 λ · · · 0 0 · · ·
...

...
. . .

...
...

...
0 0 · · · λ 1 · · ·
0 0 · · · 0 λ · · ·
...

... · · ·
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= A
[

v(j)
1

∣
∣
∣v

(j)
2

∣
∣
∣ · · ·

∣
∣
∣v

(j)
p−1

∣
∣
∣v

(j)
p

∣
∣
∣ · · ·
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Generalised modal matrix (cont.)

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 · · · 0 0 · · ·
0 λ · · · 0 0 · · ·
...

...
. . .

...
...

...
0 0 · · · λ 1 · · ·
0 0 · · · 0 λ · · ·
...

... · · ·
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

That is, we have
VJ = AV

The chain of length p associates to a block of order p in J

To complete the proof, left-multiply this equation by V−1

"
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Generalised modal matrix (cont.)

Example

Consider the (4 × 4) matrix A

A =

⎡

⎢
⎢
⎣

5 0 0 4
1 3 0 1
−1 0 3 −1
−1 0 0 1

⎤

⎥
⎥
⎦

The characteristic polynomial P(s) = det (sI −A) = (s − 4)4

• Eigenvalue λ = 3, multiplicity ν = 4

To this eigenvalue correspond two chains of generalised eigenvalues

• Lengths 3 and 1

The matrix can be written in Jordan form by similarity

• To blocks, order 3 and 1, to eigenvalue λ = 3 O
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Generalised modal matrix (cont.)

We can choose a generalised modal matrix V

V =
[

v(1)
1 v(1)

2 v(1)
3 v(2)

1

]

=

⎡

⎢
⎢
⎣

0 −2 1 0
1 −2 0 0
0 1 0 1
0 1 0 0

⎤

⎥
⎥
⎦

Its inverse

V′ =

⎡

⎢
⎢
⎣

0 1 0 1
0 0 0 −1
1 0 0 2
0 0 1 −1

⎤

⎥
⎥
⎦

We have,

J = V−1AV =

⎡

⎢
⎢
⎣

3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 3

⎤

⎥
⎥
⎦

The index of the eigenvalue λ = 3 is π = 3
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A formula for computing the matrix exponential of a matrix in Jordan form
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Transition matrix by Jordan (cont.)

Proposition

Consider a matrix in Jordan form

J =

⎡

⎢
⎢
⎢
⎣

J1 0 · · · 0
0 J2 · · · 0
...

... J3 0
0 0 · · · Jq

⎤

⎥
⎥
⎥
⎦

Its matrix exponential

eJt =

⎡

⎢
⎢
⎢
⎣

eJ1t 0 · · · 0
0 eJ2t · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥
⎥
⎥
⎦ O
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Transition matrix by Jordan (cont.)

Let Ji be the generic block of order p

Ji =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 0 · · · 0 0 0
0 λ 1 · · · 0 0 0
0 0 λ 0 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · λ 1 0
0 0 0 · · · 0 λ 1
0 0 0 · · · 0 0 λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Its matrix exponential

eJi t =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eλt teλt
t2

2!
eλt · · ·

tp−3

(p − 3)!
eλt

tp−2

(p − 2)!
eλt

tp−1

(p − 1)!
eλt

0 eλt teλt · · ·
tp−4

(p − 4)!
eλt

tp−3

(p − 3)!
eλt

tp−2

(p − 2)!
eλt

0 0 eλt · · ·
tp−5

(p − 5)!
eλt

tp−4

(p − 4)!
eλt

tp−3

(p − 3)!
eλt

...
...

...
. . .

...
...

...

0 0 0 · · · eλt teλt
t2

2!
eλt

0 0 0 · · · 0 eλt teλt

0 0 0 · · · 0 0 eλt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Transition matrix by Jordan (cont.)

Proof

Matrix J is in block-diagonal form, hence the form of its exponential

For the second result, determine the k -th power of block Ji

• λ is the associated eigenvalue

We have,

Jk
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(k
0

)

λk
(k
1

)

λk−1
(k
2

)

λk−2 · · ·
( k
k−p+2

)

λk−p+2
( k
p−1

)

λk−p+1

0
(k
0

)

λk
(k
1

)

λk−1 · · ·
( k
k−p+3

)

λk−p+2
( k
p−2

)

λk−p+2

0 0
(k
0

)
λk · · ·

( k
k−p+4

)
λk−p+4

( k
p−3

)
λk−p+3

...
...

...
. . .

...
...

0 0 0 · · ·
(k
0

)

λk
(k
1

)

λk−1

0 0 0 · · · 0
(k
0

)
λk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We used the definition of binomial coefficient
⎧

⎪⎨

⎪⎩

(k
j

)
=

k !

j !(k − j )!
, for j ≤ k

(k
j

)

= 0, for j > k
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Transition matrix by Jordan (cont.)

The generic element of matrix eJi t is on the upper-diagonal

• Starting from element 1, j + 1, for j = 0, . . . , p − 1

∞∑

k=0

k = 0

∞

(k

j

)

λk−j =
∞∑

k=j

tk

j !(k − j )!
λk−j =

t j

j !

( ∞∑

k=j

tk−j

(k − j )!
λk−j

)

=
t j

j !

( ∞∑

k=0

tk

k !
λk

)

=
t j

j !
eλt

This is because we have

eJi t =
∞∑

k=0

tk

k !
Jk
i

"
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Proposition

Consider a matrix A of order n and eigenvalues λ1,λ2, . . .,λn

Let V be a generalised modal matrix to get a Jordan form

J = V−1AV

We have,
eAt = VeJtV−1 (27)

"
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Transition matrix by Jordan (cont.)

Example

Consider the matrix A

A =

⎡

⎢
⎢
⎣

5 0 0 4
1 3 0 1
−1 0 3 −2
−1 0 0 1

⎤

⎥
⎥
⎦

Consider the generalised modal matrix V

V =
[

v(1)
1 v(1)

2 v(1)
3 v(2)

1

]

=

⎡

⎢
⎢
⎣

0 −2 1 0
1 −1 0 0
0 1 0 1
0 1 0 0

⎤

⎥
⎥
⎦

We can write A in Jordan form

A =

⎡

⎢
⎢
⎣

3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 3

⎤

⎥
⎥
⎦
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Transition matrix by Jordan (cont.)

We have,

eJt =

⎡

⎢
⎢
⎢
⎣

e3t te3t
t2

2
e3t 0

0 e3t te3t 0
0 0 e3t 0
0 0 0 e3t

⎤

⎥
⎥
⎥
⎦

We thus have,

eAt = VeVtV−1 =

⎡

⎢
⎢
⎣

e3t + 2e3t 0 0 4te3t

te3t + 0.5t2e3t e3t 0 te3t + t2e3t

−te3t 0 e3t −2te3t

−te3t 0 0 e3t − 2te3t

⎤

⎥
⎥
⎦

"
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Transition matrix by Jordan (cont.)

Consider a matrix A with conjugate complex eigenvalues

! Its Jordan form is not real

We can modify the diagonalisation procedure

• A modified modal matrix

We get a real canonical quasi Jordan form
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Transition matrix and modes

The modes are functions that characterise the dynamical behaviour

• We studied them for IO representations

We establish a similar concept also for SS representations
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Minimum polynomial and modes

Consider a matrix J in Jordan canonical form

• Let eJt be the state transition matrix

Consider a given block of order p associated to eigenvalue λ

Ji =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 0 · · · 0 0 0
0 λ 1 · · · 0 0 0
0 0 λ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · λ 1 0
0 0 0 · · · 0 λ 1
0 0 0 · · · 0 0 λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In the block of the matrix exponential, we will have the functions

eλt , teλt , · · ·, tp−1eλt

These functions of time are multiplied by appropriate coefficients

In the case of more blocks associated to an eigenvalue of index π (the order of
the largest block), the maximum term for to that eigenvalue will be tπ−1eλt
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Minimum polynomial and modes (cont.)

Definition

Minimum polynomial

Consider a matrix A with r distinct eigenvalues λi

• Let πi be the indexes of the eigenvalues

We define the minimum polynomial

Pmin(s) =
r∏

i=1

(s − λi )
πi

Consider the roots λi of the minimum polynomial of multiplicity πi

• To them we can associate the πi functions of time

• We call them modes

eλi t , teλi t , . . ., tπi−1eλi t

Each element of state transition matrix is a linear combination of modes

! eAt
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Minimum polynomial and modes (cont.)

Minimum and characteristic polynomial coincide in nonderogatory matrices

! (Eigenvalues with multiplicity one is a special case)
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Minimum polynomial and modes (cont.)

Example

Consider a system with SS representation
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

ẋ1(t)

ẋ2(t)

]

=

[

−1 0

0 −2

][

x1(t)

x2(t)

]

+

[

0

1

]

u(t)

y(t) =
[

2 1
]
[

x1(t)

x2(t)

]

The state matrix A has two eigenvalues, both with multiplicity one

! λ1 = −1

! λ2 = −2

Their index is unitary, too

The minimum polynomial of A and the characteristic polynomial match

Pmin(s) = P(s) = (s + 1)(s + 2)
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Minimum polynomial and modes (cont.)

The modes are e−t and e−2t

We have,

eAt =

[
e−t (e−t − e−2t )
0 e−2t

]

Each element is a linear combination of the modes
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Minimum polynomial and modes (cont.)

Example

Consider the matrix A

A =

⎡

⎢
⎢
⎣

5 0 0 4
1 3 0 1
−1 0 3 −2
−1 0 0 1

⎤

⎥
⎥
⎦

One eigenvalue λ = 3, multiplicity ν = 4, index π = 3

The characteristic and the minimum polynomial

P(s) = (s − λ)ν = (s − 3)4

Pmin(s) = (s − λ)π = (s − 3)3

The modes
e3t , te3t , t2e3t
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Minimum polynomial and modes (cont.)

The generalised modal matrix V

V =
[

v(1)
1 v(1)

2 v(1)
3 v(2)

1

]

=

⎡

⎢
⎢
⎣

0 −2 1 0
1 −1 0 0
0 1 0 1
0 1 0 0

⎤

⎥
⎥
⎦

The Jordan form of matrix A

J =

⎡

⎢
⎢
⎣

3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 3

⎤

⎥
⎥
⎦
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Minimum polynomial and modes (cont.)

Each element of matrix eAt is a linear combination of the modes

eAt = VeJtV−1 =

⎡

⎢
⎢
⎣

e3t + 2e3t 0 0 4te3t

te3t + 0.5t2e3t e3t 0 te3t + t2e3t

−te3t 0 e3t −2te3t

−te3t 0 0 e3t − 2te3t

⎤

⎥
⎥
⎦

There is no mode in the form tν−1eλt = t3e3t

• Though there is a λ = 3, with ν = 4
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On the eigenvectors

Consider the state-space representation of a system

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

We give an interpretation to the real eigenvectors of A

We start with a general result, valid for all eigenvectors

• Both real and complex eigenvectors
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On the eigenvectors (cont.)

Proposition

Let v be an eigenvector of matrix A

• λ is the associated eigenvalue

We have,
eAtv = eλtv

That is, v is an eigenvector of matrix eAt

! eλt is the associated eigenvalue
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On the eigenvectors (cont.)

Proof

Let v be an eigenvector of matrix A

• λ is the associated eigenvalue

We thus have,
Av = λv

By pre-multiplying both sides by A, we get

A2v = λAv = λ2v

The operation can be repeated, we get

Akv = λkv, for k ∈ N

We obtain,

eAtv =
∞∑

k=0

tk

k !
Akv =

∞∑

k=0

tk

k !
= eλtv
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On the eigenvectors (cont.)

Consider a linear system with SS representation

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

We are interested in its time evolution, from different initial conditions

Consider the initial state x(t0) at time t0, we have

• xu (t) defines a parameterised curve

• The curve lies in the state space

• Time t is the parameter of xu (t)

The curve is called state evolution

The set of points along the curve defines the trajectory of the evolution
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On the eigenvectors (cont.)

We can embed a physical interpretation to the real eigenvectors of A
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On the eigenvectors (cont.)

Suppose that x0 corresponds to an eigenvector of matrix A

• (λ is the associated eigenvalue)

By using Lagrange formula and eAtv = eλtv, we have

! xu (t) = eAtx0 = eλtx0

The state vector xu (t) keeps in time the direction of x0

! Its magnitude changes according to the mode eλt

• (It goes with the associated eigenvalue)
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On the eigenvectors (cont.)

Suppose that the system has a state matrix A of order n

Suppose that A has n linearly independent eigenvectors

v1,v2, . . .,vn

• (The associated eigenvalues are λ1,λ2, . . .,λn )
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On the eigenvectors (cont.)

Suppose that x0 does not coincide with vi

We can always write,

! x0 = α1v1 + α2v2 + · · ·+ αnvn =
n∑

i=1

αivi

The initial condition is a linear combination of the basis of eigenvectors

• Through appropriate coefficients αi

We have,

xu (t) = eAtx0 =
n∑

i=1

αie
Atvi =

n∑

i=1

αie
λi tvi

Time evolution is a linear combination of evolutions, along eigenvectors

• Through the same coefficients αi
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On the eigenvectors (cont.)

Example

Consider a system with state-space representation {A,B,C,D}

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[

ẋ1(t)

ẋ2(t)

]

=

[

−1 1

0 −2

][

x1(t)

x2(t)

]

+

[

0

1

]

u(t)

[

y1(t)

y2(t)

]

=

[

2 1

0 2

][

x1(t)

x2(t)

]

+

[

1.5

0

]

u(t)

The state matrix A has the eigenvalues and eigenvectors

! λ1 and v1 =

[
1
0

]

! λ2 and v2 =

[
1
−1

]
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On the eigenvectors (cont.)

The force-free evolution on the (x1, x2)-plane for different cases

Each trajectory corresponds to a different initial condition

• t increases according to the arrow

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
1

x
2

Two initial conditions are placed along the eigenvector v1

! xu (t) keeps the same direction

! Its modulo decreases, e−t is stable
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On the eigenvectors (cont.)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
1

x
2

Two initial conditions are placed along the eigenvector v2

! xu (t) keeps the same direction

! Its modulo decreases, e−2t is stable
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On the eigenvectors (cont.)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
1

x
2

Two initial conditions are placed along a combination of eigenvectors

! xu (t) keeps a curved direction, tend to zero

! Components evolve along different modes

! e−2t is (extinguishes) faster
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On the eigenvectors (cont.)

Example

Consider the SS representation of a system with state matrix A

A =

[
−1 −2
2 −1

]

The eigenvalues

! λ,λ′ = α± jω = −1± j2

We have,

eAt = e−t

[
cos (2t) sin (2t)
− sin (2t) cos (2t)

]

We want to study the force-free evolution

• From initial condition x0 =

[
1
0

]
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On the eigenvectors (cont.)

We have,

x(t) =

[
x1(t)
x2(t)

]

= eAtx0 =

[
e−t cos (2t)
−e−t sin (2t)

]

The solution determines a vector in the (x1, x2) plane

• The vector rotates clockwise

• The angular speed ω = 2

The magnitude decreases according to mode e−t

• A spiral
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On the eigenvectors (cont.)

The trajectory is the spiral starting at #, x0 =

[
1
0

]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
1

x
2

All trajectories have qualitatively similar behaviour

• Whatever the initial condition

! Starting at ⃝, x0 =

[
0
1

]

"


