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Analysis in time of linear stationary systems in state-space representation

e The analysis problem
e The state transition matrix

e Sylvester expansion

e Lagrange formula

e Similarity transformations
e Diagonalisation

e Jordan’s form

e Modes
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Representation and analysis

Consider a linear and stationary system of order n
e Let p be the number of outputs

e Let r be the number of inputs

The state-space representation of the system

x(t) = Ax(t) +Bu(t) ()
y(t) = Cx(t) + Du(t)

e x(t) is the state vector (n components)

e x(t) is the derivative of the state vector (n components)

e u(t) is the input vector (r components)

e y(t) is the output vector (p components)

A (nxn),B(nxr),C(pxn)and D (p x ) are matrices

e The elements are not function of time
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Representation and analysis

The analysis problem

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Determine the behaviour of state x(¢) and output y(t) for ¢t > to

e We are given the input function u(¢), for t > o

e We are given the initial state x (o)

The solution
e The Lagrange formula

e We discuss it at length

We first introduce the state transition matrix
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The state transition matrix

Consider some square matrix A
Its exponential e is a matrix
A2 A.‘S o Ak

A 4 4= i
R e D Dl

The state transition matrix e is a matrix exponential

~ Its elements are functions of time
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The state transition matrix (cont.)

The exponential function

Let z be some scalar, by definition its exponential is a scalar

22 23 o0 ZA'.
ef=1+z4+—4+—+-= —
] ! |
2! 3! o k!

The series always converges

The matrix exponential

Let A be a (n X n) matrix, by definition its exponential is a (n X n) matrix

2 3 o) k
2l 3l = k!

The series always converges
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The state transition matrix (cont.)

The scalar-matrix product
Let s € R and let A = {a;;} be a (m X n) matrix

s-ai,1 oo s-aly
B=sA=|s5-a;1 5+ a;,

$+am,1 S Am,j

B ={bi; =sai;}

S ain

S - ai,n

S$ Gm,n

The product of A and s is defined as the (m x n) matrix B = {b; ; }
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The state transition matrix (cont.)

The matrix product
Let A = {a; ; } bea (m x n) matrix and let B = {b; ; } be a (n X p) matrix

a1 o Gk ottt Gl
A= (7] Q4 k Qg n

am,1 am k" am,n

bia cer biy e bip
B=|bg1 - bpy 0 bry

bn,l bn.] bn,p

The product between A and B is defined as a (m x p) matrix C = {¢; ; }

n
C={ci; = Z @ik bk 5}
k=1
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The state transition matrix (cont.)

oy Clp

C=ci1 - ¢y o cip

Cm,1 Cm,j " Cm,p

Element ¢; ; of matrix C is given by the dot product between a/ and b;

/
ci,; =a;b; = [a,‘] aio vt ik

n

b1'7
b2,

azxn} bk’ )
0\

bn,;

= aj,1 by \j + Ufz,.2b2,_7 +- 4+ Qj,n bn,,_y = § Qi k bkj
k=1
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The state transition matrix (cont.)

For every (m x n) matrix A, we have
Im A = A In - A
N — ——

S—— e — e
(mxm) (mxmn) (mxn) (nxn) (mxn)

Right- and left-multiplication of matrix A by an identity matrix (I, or I,,)
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The state transition matrix (cont.)

Matrix product is not necessarily commutative, AB # BA

A B C

~ =~ ~N~
(mxn) (nxp) (mxp)

a1 0 ark v an | [bia e b1y oo bip
= | Qi1 c [ § Qj.n bk,l te bku]' ce bk‘,p
am,1 - am,k " am,n bpa e bn,j bn,p

The product BA is not even defined

For AB = BA, A and B must be both square and of the same order

e (necessary condition)

A (n x n) diagonal matrix D commutes with any (n X n) matrix A

DA =AD
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The state transition matrix (cont.)

The product of several matrices

The product of A and B is only possible when the matrixes are compatible

e Number of columns of A must equal the number of rows of B

The same applies to the product of several matrixes

M = A Az - Ap Ay,
~ ~~ ~~
(mxn)  (mxmy) (myxXmg) (mp_oxmy_1) (Mr_1xn)
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The state transition matrix (cont.)

Powers of a matrix
Let A be an order-n square matrix
The k-th power of matrix A is defined as the n-order matrix A*

AF=AA. ... A
N —

k times
Special cases,

— Ak‘:() =1
~ AP = A
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The state transition matrix

Consider the state-space model with (n x n) matriz A

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)+ Du(t)

The state transition matriz is the (n X n) matriz et
o k1k
A%t
At _
c T }2% k! @

The state transition matriz is well defined for any square matriz A

e (The series always converges)
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The state transition matrix (cont.)

Not convenient to determine the state transition matrix from its definition

~» There are more efficient procedures for the task

~» One exception, when A is (block-)diagonal
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The matrix exponential of block-diagonal matrixes

Consider any block-diagonal matrix A, we have

Ay 0 .- 0 efM1 0 o0

0 A, -~ 0 0 ef2 ... 0
A= . LN . B =

0 0 A, 0 0 e
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The state transition matrix (cont.)

Proof

For all k € N, we have

AF 0 0
. 0 A} 0
A" = .
&
0o o Al
Thus,
Ak
>ilo k—.l
! N
> A 0 Do T
A _ _ =0 k1
et = Z ik k
k=0
0 0
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The matrix exponential of diagonal matrixes

For any diagonal (n x n) matrix A, we have

N0 -0 eM 0 -0

0 X -~ 0 0 e ... 0
A= . . . ~ eh =

o .0 : : .0

0 0 - Ay 0 0 - et

The result is a special case of the previous proposition
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Consider the state-space model with (n x n) diagonal matriz A

We have,
A1
0
A=
0
Proof
We have,
At
0
At = .
0

0

0
Aot

0 ert
0 0
el CAt f—

0

)\7? 0
0 eAIt
0 0

d eAt =

0

Ant 0

0
A2t

This matrix is diagonal, we used the result from the previous proposition
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Consider the state-space model with (2 x 2) diagonal matrix A

We are interested in the corresponding state transition matrix

We have,

At e(—l)t 0
€ 0 e(=2)t
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1| HF B
0.5 b |
or ! ! . [ . . . L
0 2 4 6 8 0 2 4 6 8

t t
L T r T ]
0.5 b |
0 . . . [ ! . . L
0 2 4 6 8 0 2 4 6 8

t t

0.5

0.5
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We present some fundamental results about the state transition matrix e/t

~+ They are needed to derive Lagrange formula
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Derivative of the state transition matrix

Consider the state transition matriz e

We have,
d
Al _ A Al — JATA
dt

Proof

To prove the first equality, we differentiate et = Do ARtk /K

d d & AFRtE 20 d ARth &2 ARkt
T R T w W C h
k=0 : :=0 : k=1 :
k—14k— k
~ 7A§:A L AR,
(k- 1) — k!

The second equality is obtained by collecting A on the right
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By using the derivative property, we have that A commutes with e

~ That is, AeAl = eALA

A and e®! commute (this result is important)
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Composition of two state transition matrices

Consider the two state transition matrices et and eAT

We have,
At AT _ LA(t+T)

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Definition

Properties

Properties (cont.)

Proof

‘We expand both exponentials in their corresponding series and multiply

A2t2 A3t3 A2T2 A37‘3
At AT __
eAleAT = (T+ At + S T+ )(1+ A7+ . Tt )
A2T2 A3T3 A4T4
I + AT + 2 + i + o
AStr2 Atir3
+ At 4+ A%t 4 ' + 31
) A2 . A2 N A2
= 2! ! 212!
N AT N At
3! !
Aglt4
+ 4!

A? A3 . .
=I+A(t+7)+ ?(tz +2tr +12)% + ?(t“ +3t27 + 3t72 4 7°)

A4
+ T(t‘l + 437 4+ 66272 4 4t 4 7Y 4+
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A2(t+71) A3(t+T)3 At +7)t
+ + +
2! 3! 4!

eAeAT — T+ A(t+71) +

_ i AF(t 4 1)k — oA(t+T)

!
= k!
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The previous result is not trivial

In the scalar case, we always have e%e?™ = ¢@(t1+7) op gat bt — g(atb)t

In the matrix case, it is not necessarily true that eAteBt = ¢(A+B)t

~ Equality holds if and only if AB = BA

~- (If the matrices commute)
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Inverse of the state transition matriz

Let e®! be a state transition matriz

-1 At

Its inverse (eAf') is matrix e

(At —At _ At At _

Proof
Based on the previous proposition, we have

A2.02 A3.03
+—

eAteAt — (A1) _ (A0 T A.Q4 T 3!
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At

A state transition matrix e“*' is always invertible (non-singular)

e Even if A were singular

The result follows from the previous proposition
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Matrix inverse
Consider a square matrix A of order n
We define the inverse of A the square matrix of order n, A~!

ATTA=AA' =1

The inverse of matrix A exists if and only if A is non-singular

e When the inverse exists it is unique
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Matrix minors
Consider a square matrix A of order n > 2

The minor (7,7) of matrix A is a square matrix A; ; of order (n — 1)

a1,1 a2 o Gyg o ai,p
a2,1 a2,2 v G2y v az,p

VA M M %/ it
Gy

am,1 am,2 am,p

It is obtained from A by deleting the i-th row and the j-th column
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Matrix determinant
Consider a square matrix A of order n
The determinant of A is a real number

det (A) = |A|

e For n =1, let A = [a1,1], we have
~ det (A) = a1,1

e For n > 2, we have

n

~ det (A) =a1,1G1,1 + a2,182,1 + -+ an,1dn,1 = E ai1a;1
i=1

a;,; denotes the cofactor of element (7,7), it is a scalar

e It is equal to the determinant of minor A, ; multiplied by (—1)"*/
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Sylvester expansion

We determine the analytical expression of the state transition matrix et

o (without necessarily calculating the infinite expansion)

The procedure is known as Sylvester expansion
e There are also other procedures

e (We discuss them later on)
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Sylvester expansion (cont.)

The Sylvester expansion

Let A be a (n X n) matric

The corresponding state transition matriz is et

We have,

n—1

oAt _ Z Bi(t)A

1=0
= Bo()I + B1(t)A + B2()AZ + - + 81 ()AL (3)

The coefficients of the expansion [3; are appropriate functions of time

~ They can be determined by solving a set of linear equations
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Sylvester expansion (cont.)

We discuss how to determine the coefficients of the expansion

We individually consider several cases
~ Eigenvalues of A have multiplicity one
~ Eigenvalues of A have multiplicity larger than one

~» Matrix A has complex eigenvalues (with multiplicity one)
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Sylvester expansion (cont.)

Eigenvalues and eigenvectors

Let A € R be some scalar and let v # 0 be a (n x 1) column vector
Consider a square matrix A of order n

Suppose that the identify holds

Av =)v

The scalar )\ is called an eigenvalue of A

The vector v is called the associated eigenvector
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Sylvester expansion (cont.)

Consider a square matrix A of order n whose elements are real numbers

Matrix A has n (not necessarily distinct) eigenvalues A1, A2, ..., Ay,

e They can be real numbers or conjugate-complex pairs

If A\; # \; for i # j, we say that matrix A has multiplicity one
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Sylvester expansion (cont.)

Eigenvalues of triangular and diagonal matrices
Let matrix A = {a;;} be triangular or diagonal

The eigenvalues of A are the n diagonal elements {a;;}, i =1,2,...,
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Sylvester expansion (cont.)

Characteristic polynomial

The characteristic polynomial of a square matrix A of order n
e The n-order polynomial in the variable s

P(s) =det (sI — A)

Computing eigenvalues and eigenvectors

The eigenvalues of matrix A of order n solve its characteristic polynomial

~ The roots of the equation P(s) = det (sI —A) =0

Let A\ be an eigenvalue of matrix A
Each eigenvector v associated to it is a non-trivial solution to the system

(MI—-A)v=0

0 is a (n x 1) column-vector whose elements are all zero
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Sylvester expansion (cont.)

Proof
An eigenvalue A and an eigenvector v must satisfy
Av =)v

(AI — A)v = 0 follows from this identity

The non-trivial solution v # 0 is admissible iff matrix (AI — A) is singular

~  det(\I—A) =0

Thus, A is root to the characteristic polynomial of matrix A
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Sylvester expansion (cont.)

Systems of linear equations
Consider a system of n linear equations in n unknowns
Ax=Db

~» A is a (n X n) matrix of coefficients
~ bisa (n x 1) vector of known terms

~ xis a (n x 1) vector of unknowns

If matrix A is non-singular, the system admits one and only one solution

If A is singular, let M = [A|b] be a [n x (n + 1)] matrix
o If rank(A) = rank(M), system has infinite solutions
o If rank(A) < rank(M), system has no solutions
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Sylvester expansion (cont.)

Matrix rank

The rank of a (m x n) matrix A is equal to the number of columns (or
rows) of the matrix that are linearly independent

rank(A)

Define the minors of matrix A as any matrix obtained from A by deleting
an arbitrary number of rows and columns

e rank(A) equals the order of the largest non-singular square minor
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Matrix kernel or null space
Consider a (m x n) matrix A
We define the null space or kernel
ker(A) = {x € R"|Ax =0}

It is all vectors x € R"™ that left-multiplied by A produce the null vector

The set is a vector space, its dimension is called the nullity of matrix A

null(A)
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Sylvester expansion (cont.)

Eigenvalues with multiplicity one
Let matrix A have distinct eigenvalues A1, A2, ..., Ay
n—1

A =" Bi(t)A’

=0
= Bo(t) I+ B1(t)A + Ba(t)A% + -+ Bp1 (t)A™TT

The n unknown functions j3;(¢) are those that solve the system

1“30(15) + A6 (f) =+ A%ﬁg(f/) + -4+ )\711'71[7171 (f) = Mt
180(t) + X2B1(t) + A2Ba(t) + -+ 4+ Ay~ Bua(t) = et2!

180(t) + A Br(t) + X282 (L) + -+ 4+ Ay Buo1(t) = et

(4)
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Sylvester expansion (cont.)

Or, equivalently,

VB=n (5)
e The vector of unknowns
w B=[Bo(t) Bi(t) - Baa(®)]”
e The coefficients matrix!
1A A2 . ot
I X A3 - At
~ V =
'y A“f,, . /\Z-’l
e The known vector
N~ [EA]A erat HA,,z}l

1A matrix in this form is known as Vandermonde matrix.
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Sylvester expansion (cont.)

At gAat eknt}T

n=|

The components of vector 7 are functions of time, e

At

~ Functions e*" are the modes of matrix A

~ Mode e* associates with eigenvalue A

At

Each element of e”' is a linear combination of such modes
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By simple manipulation, we get

{ﬁo(t) =2et — e

_||=1 1 Bi(t) = et — 2t
Sylvester expansion Sylvester expansion
We want to determine eA? ‘ ‘
1+ = -1
: e Matrix A is triangular, the eigenvalues correspond to the diagonal elements
Matrix A has 2 distinct eigenvalues 8@ 051 1L 1o SH
A =1 St )
Compl ' A ' C 1 ol L 1o
To determine e, we write the system | | L | | | | L | |
sa Sasis 0 2 4 6 8 0 2 4 6 8
i 18o(t) + Aufu(t) = et Bo(t) + (=1)Bu(t) = (=D A — t t
1Bo(t) + A2B1(t) = er2! Bo(t) + (=2)B1(t) = e~ e ‘
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Bo(t) =2e~t — e 2
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Sylvester expansion (cont.)

Eigenvalues with multiplicity larger than one

Let matrix A have eigenvalues with multiplicity larger than one

As in the previous case, we build a system of equations

Eigenvalues \ of multiplicity v associate to v equations

[B0(6) + 281 () + -+ A" Ba (1) = M
d d
dy [Bo(®) + 281(8) ++ -+ A" 11 (8)] = @M
d d
w S BB + 4 ATIB ()] = e
dufl del
o[B80+ N ()] = e

(6)
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Sylvester expansion (cont.)

That is,
180(t) + AB1(t) + -+ A" 1B, _1(t) = e
181 (f) + 2/\/32(75) —+ -+ (n, — l))\”’ 2671, 1 (f) = tet
- : @)
—1)! n—1)! )
LG NI Uil L R S P ST Y
0! (n—v)!

It is again possible to re-write the linear system in compact form

~ V@3 =n
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Sylvester expansion (cont.)

VB =n

Consider the eigenvalues A with multiplicity v

e They are associated with v rows in the coefficient matrix? V

1 A N2 ... Av—1 An—1
’70 12X (v —1)Av—2 (n—1)A"—2 —‘
, ) (n—1)!
0 0 0 (U, [)[ A ¥ el 4
(n —v)!
e They are associated with v rows in the vector of known terms n
- [()M teMt n 1())\/,]7"
The vector of unknowns 3
~  B=[Bo(t) Pui(t) Bu-1(t)]"

2 A matrix of this form is known as confluent Vandermonde matrix.
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Sylvester expansion (cont.)

Consider the (3 x 3) matrix

We want to determine et

The characteristic polynomial of matrix A
P(s) = (s =3)*(s +1)
Matrix A has two eigenvalues

~ A1 = +3 (multiplicity 2)
~ Az = —1 (multiplicity 1)
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We can write the system

Bo(t) + M B1(t) + AfBa(t) = et
,81(25) + 2)\1ﬂ2(t) = teMt
Bo(t) + A2Bi(t) + A2Ba(t) = et2t
Bo(t) + 3B1(t) + 9B2(t) = e(+3)!
~ B1(t) + 682(t) = te(+3)t
Bo(t) — Bu(t) + Ba(t) = e~ 11

We get,
Bo(t) = 1/16(7e3 — 12te3t + 9e~ 1)
~ B1(t) = 1/8(3e3! — 4te3t — 3e™?)
B2(t) = 1/16(—e3! + 4ted! + e 1)
Thus,

et = Bo(t)I3 + B1(t)A + Ba2(t)A?
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Complex eigenvalues
Let matrix A have complex eigenvalues

We can still determine the coefficients 3 of the Sylvester expansion

It is convenient to modify the procedure

~ To avoid computations that involve complex numbers

‘We only discuss only the case of eigenvalues with multiplicity one

edt 0 ted?t dal
= |(0.5€3" —0.5e7") e~' (0.25¢3" +0.5te3" — 0.25¢7")
0 0 e3!
|
State-space Sylvester expansion (cont.) State-space Sylvester expansion (cont.)
representation representation
UFC/DC UFC/DC
A K0191 A Ki 1
° 25518(.)19 ) s 2(0018?11 = In the resulting system, there should appear the two equations
1Bo(t) + AB1(t) + A2B2(t) + -+ A" 1Bn_1(t)
Let matrix A have distinct eigenvalues A1, A2, ..., A\, =M= el (9)
LBo(t) + NB1(t) + (N)2B2(t) + -+ (V)" 1 Br_1(t)
_ Nt _ ot ,—jwt
The n unknown functions /3;(¢) are those that solve the system =ett=e*e™
-1
Bo(t) + A1B1() + A3 B2(t) + -+ AT T Ba—1(t) = e We can substitute these two equations with two equivalent ones
Bo(t) + AaBu (£) + N3Balt) + -+ NI B (1) = X2t
e ~ . (8) - o Bo(t) + Re(N)B1(t) + Re(A\2)Ba(t) + - - + Re(A\" 1) B —1 (1)
4 = e cos (wt) 1
Bo(t) + AnBr(t) + A2B2(t) + -+ + N B (1) = eMnt (10)

Suppose that two of the n eigenvalues of A are complex-conjugate
~ M =atjw

Im(\)B1 (1) + Im(A2)Ba(t) + -+ +Im(A" 1) B, —1(t)

= e%'sin (wt)

The goal is to remove complex terms

~ Re(A) =«
~ Im(A) = w
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Sylvester expansion (cont.)

180() + AB1(t) + A2 Ba(t) 4+ --- + A" Bp—1(2)

— C/\I — (,(}lc/w/
180(t) + N B1(t) + (N)2Ba(t) + -+ (A)" 1 Br_1(2)
= Nt = patg—jwt

The first equation, is obtained by summing the two equations above
e Then, by dividing by 2

The second one, by subtracting the second equation from the first one

e Then, by dividing by 2j

Bo(t) +Re(N)B1(t) + Re(A%)Ba2(t) + - -- + Re(A"~1)Bn_1(t)
= et cos (wt)
Im(\)B1(t) +Im(A2)Ba(t) + - - - + Im(A* 1) Br_1(t)

= e“!sin (wt)
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Sylvester expansion (cont.)

Sine and cosine terms on the RHS are from Euler formulae
As X and )\ are conjugate-complex, so are \¥ and (\)
Thus,

AP+ (V)= 2Re(A)

XE = (V)= 2jTm(AF)
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Sylvester expansion (cont.)

Consider a state-space system with (2 X 2) matrix A
A { a w}
—w o«
We are interested in the state transition matrix eA?
Matrix A has characteristic polynomial

P(s) = 5% — 2as + (a? 4+ w?)

Matrix A has distinct eigenvalues
~ M =atjw
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Sylvester expansion (cont.)

At

To determine the state-transition matrix e**; we write the system

Bo(t) + Re(N)B1(t) = e®t cos (wt)
Im(A\)B1(t) = et sin (wt)
y Bo(t) + aBi(t) = et cos (wt)
wBi(t) = et sin (wt)

We obtain,

at

Bo(t) = et cos (wt) — 2 sin (wt)

eat
B1(t) = Tsin (wt)

Thus,
cos (wt)  sin(wt)
—sin (wt) cos (wt)

A= Bo(t)Iz + Bi(t)A = e
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Properties Propert

S Lagrange formula

Lagrange R ‘We can now prove the solution to the analysis problem for MIMO systems
formula State-space representation formula

Force-free and

orced evolutior

e Lagrange formula

Impulse response

Transition matrix

Complex eigenvalue

Generalised modal

matrix

matrix

Transition matrix Transition matrix

St Lagrange formula (cont.) ey Lagrange formula (cont.)
representation representation
UFC/DC UFC/DC
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Lagrange formula . X . -
Multiply the state equation %(t) = Ax(t) + Bu(t) by e~ A?
Consider the SS representation of a stationary linear system of order n

We get,
—At, _ —At —At
S {»’cm — Ax(t) + Bu(t) L B = TP BN
Sylvester expansion y t) = Cx(t) + Du(t Sylvester expansion . . .
o ®) ®) ® ) The resulting state equation can be rewritten,
—At, —At —At
1 e x(1), state vector (n components) Moo cuxl e Ax(t) — e A AX(L) = e A Bu(t)
EETED SEDREr o x(t), derivative of the state vector (n components) e FeETem:
e u(t), input vector (r components) Then, by using the result on the derivative of the state transition matrix?,
o y(t), output vector (p components) d [ )/ (t)] _arg ®
Transition matrix Transition matrix —le "X = e ‘Bu
Complex eigenvalue Complex eigenvalue dt

The solution for t > ty, for an initial state x(ty) and an input u(t|t > ty)

St e x(t) = eAU—t0)x(ty) + fti’) eAU=T)Bu(r)dr (11) o e
y(t) = CeAlt=0)x(t9) + C [ eAU!=")Bu(r)dr + Du(t) -

ransition matrix

Transition matrix

3Derivative of the state transition matrix

i[eiAtx(t)] =

_ d d
T =M o]+ [Fxo,

= e Ax(t) — e AT AX(t)

(12)
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Lagrange formula (cont.)

e [e_Atx(t)] = e A'Bu(t)

By integrating between ty and ¢, we obtain

[e*ATX(T)]t = /tt e ATBu(r)dr

to 0

That is,
t
ePtx(t) — e Alox(tp) :/ e ATBu(t)

to
Thus,
t
e Alx(t) = e*Afox(to)Jr/ e ATBu(t)
to
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Impulse response

Transition matrix

Complex eigenval

Basis of generalised

ei ctors

Generalised modal
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Transition matrix

Lagrange formula (cont.)

e Ax(t) = e Alox(ty) + /t e ATBu(t)

to

The first Lagrange formula is obtained by multiplying both sides by e/t

t
o x(t) = eAlT0)x (1) +/ AT Bu(r)dr
to

The second formula is obtained by substituting x(¢) in the output equation
y(t) = Cx(t) + Du(t)

t
- c[eA(t‘Wx(to)Jrc/ eA<t*T>Bu(T)dT]+Du(t)
to

x(t)
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Force-free and forced evolution

Lagrange formula
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Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalt

n

Basis of generalised

eigenvectors

Generalised moda
matrix

Transition matrix

Force-free and forced evolution

t
x(t) = eAtt)x (1) + [ eAU-TBu(r)dr
—_— to

xu ()
xy(t)

We can write the state solution (for ¢ > {y) as the sum of two terms

x(t) = xu(t) + x5 (?)

~+ The force-free evolution of the state, x,(t)

~» The forced evolution of the state, x(t)
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Force-freee and forced evolution (cont.)

t
x(t) = EA(F*‘OX(LO) + eA(f’*T)Bu(T)dT
— to

force-free evolution x,,(t)
forced evolution x; (t)

The force-free evolution of the state, from the initial condition x(ty)

~ox(t) = A% (1) (13)
At

~oe

~10) indicates the transition from x(fo) to x(t)

~ In the absence of contribution from the input

The forced evolution of the state

t t—to
~ o oxp(t) = / AT Bu(r)dr :/0 eA'Bu(t — 7)dr (14)

Jto
~+ The contribution of u(7) to state x(t)

~~ Thru a weighting function, ¢A(!~ ") B
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Impulse response

Transition matrix

Complex eigenvalues
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Transition matrix

Force-free and forced evolution (cont.)

t
y(t)= CeAl-)x(y) +C/ AT Bu(r)dr 4 Du(t)
—_———

to

force-free evolution y (t)
forced evolution yy (t)

We can write the output solution (for ¢ > ty) as the sum of two terms

y(t) =yi(t) +ys(t)

~ The force-free evolution of the output, y(t)

~» The forced evolution of the output, y(¢)
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Impulse response

Transition matrix

Complex eigenvalues
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Free and forced evolution (cont.)

t
y(t)= CeAl-x(tg) +C [ AU"TBu(r)dr + Du(t)
— to

force-free evolution y, (t)
forced evolution yy(t)

The force-free evolution of the output, from initial condition y (#y) = Cx(to)

~  yu(t) = CeA(tftO)X(to) = Cxu(t) (15)

The forced-evolution of the output

~  yp(t)=C LeA<t*T>Bu(T)dT+Du(t):CXf(t)+Du(t) (16)

to
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Free and forced evolution (cont.)

Note that for tp = 0, we have

x(t) = eAtx(0) + [f eAU-TBu(r)dr
y(t) = CeA'x(0) + C jof eAl=T)Bu(r)dr 4 Du(t)
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Free and forced evolution (cont.)

Consider a system with the SS representation,
0
u(t
1] (0

()| |-1 0| |=(t)

[ig(t):| - [0 2} |:x2(t)] +
.’m(t)

u(t) [2 1] ch(t)}

We want to determine the state and the output evolution for ¢ > 0

7

We consider the input signal wu(t)

u(t) = 26_1(t)

We consider the initial state x(0)

-]
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Free and forced evolution (cont.)

The state transition matrix for this SS representation,

At eft (eft _ef2t)
e I 0 e—2t

We computed it earlier
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Free and forced evolution (cont.)

The force-free evolution of the state, for ¢ > 0

0 4 4e—2t
21 (t) 22 (t)

5 T T 040 T n
2 | - .

2 | - .
1 | - .
o, ! ! 100, ! . |

0 2 4 0 2 4
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Free and forced evolution (cont.)

The force-free evolution of the output, for ¢ > 0

~ yu(t) = Cxu(t) = [2 1} |:(7e’;;_421t€72t):| — 14e—!t — 42t

Yu(t)
T T
10 [~ -
5 |- -]
U ! ! |
0 2 4
t
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Free and forced evolution (cont.)

The forced evolution of the state, for ¢ > 0

R ey et [

= 2/: [(6_:;267_27)] dr =2 [fot (77— e*’“)dq

Jo e72tar
T—e ) —1/21—e2 1—2e t4e 2
=2 [( 1/%(1 —/eEQt) )} = {( (1—e=2t) )}
M (#) 72 (1)

1F 1 1F ]
0.5 405} :
O ! ! 1 o0, ! ! |

0 2 4 0 2 4

t t

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and
forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Basis of generalised

ei ctors

Generalised modal
matrix

Transition matrix

Free and forced evolution (cont.)

Since D = 0, the forced evolution of the output for ¢ > 0

-y =oxn =2 4 [T A

=3—4e 4 e %

yr (1)
i T n
27 .
17 .
oL’ ! ! |
0 2 4
t
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Impulse response

Lagrange formula
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Impulse response

We discussed the impulse response for systems in IO representation

e The forced response due to a unit impulse

‘We complete the presentation for systems in SS representation
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Impulse response (cont.)

Impulse response

Consider the SS representation of a SISO system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

The tmpulse response

w(t) = Ce'B + Dé(t) (18)

Proof
The impulse response is the forced response due to a unit impulse

Let u(t) = 6(t) and substitute it in the Lagrange formula

t
w(t) = c/ AC=TIB§(r)dr + Do(t)
0
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Impulse response

Impulse response (cont.)

Consider a continuous function f of ¢
By the properties of the Dirac function, we have that f(t—7)5(7) = f(t)d(T)

Thus, we have

w(t) = C/Ot eA'Bo(r)dT 4+ Dé(t) = CeA'B /Ot o(r)dT +D4(t)

——
1
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Impulse response

Impulse response (cont.)

w(t) = CeA'B + Di(t)

If the system is strictly proper, we have that D = 0
e w(t) is a linear combination of modes

e Through matrix e/t

If the system is not strictly proper, we have D # 0
e w(t) is a linear combination of modes

e Plus, an impulse term
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Impulse response (cont.)

The forced response can be calculated using Lagrange formula

It corresponds to what was derived by the Durhamel’s integral

¢ ¢
~ o yp(t)= /U w(t — T)u(r)dr = /U [c@A“*ﬂB + D§(t — 1) | u(r)dr
o y
= / Ce2=TBuy(r)dr + / Do(r — t)u(r)dr
0 Jo

¢
= C/ AT By(r)dr + Du(t)
0
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Definition Definition

Properties R The form of the state space representation depends on the choice of states

Similarity transformation « The choice is not unique

State-space representation There is an infinite number of different representations of the same system

T Force-free and
forced evolution forced evolutior

e They are all related by a similarity transformation

Impulse response Impulse response

Similarity Similarity £ . .
transformation transformation We define the concept of similarity transformation
Transition matrix Transition matrix

Complex eigenvalues Complex eigenvaluc

f generalisec Basis of generalised

Generalised modal
matrix

Transition matrix Transition matrix
St Similarity tranformation (cont.) St Similarity tranformation (cont.)
representation representation
(SHons sy
SA (CK0191) SA (CK0191)
2018 20184 Similarity transformation
Consider the SS representation of a linear stationary system of order n
x(t) = Ax(t) + Bu(t)
i“u The main advantage of the similarity transformation procedure is flexibility “”]“ y(t) = Cx(t) + Du(t)
Sylvester expansion e We can change to easier system representations Sylvester expansion
e x(t), state vector (n components)
e e The state matrix can be set in canonical form e o u(t), input vector (r components)
forced evolution forced evolutior

~ Diagonal form e y(t), output vector (p components)

Impulse response Impulse response

Similarity ~+ Jordan form Similarity . )
transformation transformation Let vector z(t) be related to x(t) by a linear transformation P
There are other canonical forms
Transition matrix — x(t) = Pz(t) (19)
St et R E—

P is any (n x n) non-singular matriz of constants

Basis of generalisec Basis of generalised

o Thus, the inverse of P always exists

e e e o We have z(t) = P~ 1x(t)

matrix matrix

Transition matrix Transition matrix

Transformation/matriz P is called similarity transformation/matriz
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Similarity tranformation (cont.)

Similar representation

Consider the SS representation of a linear stationary system of order n

x(t) = Ax(t) + Bu(t) (20)
y(t) = Cx(t) + Du(t)

Let P be some transformation matriz such that x(t) = Pz(t)

Vector z(t) satisfies the new SS representation
z(t) = A’z(t) + B'u(¢) (21)
y(t) = C'z(t) + D’u(t)

~ A’ =P~ LAP
~ B'=P7'B
~ C'=CP

~ D' =D
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Similarity
transformation

Similarity tranformation (cont.)

Proof
Take the time-derivative of x(t) = Pz(t)
We get,
~  x%(t) = Pz(t) (22)
Substitute x(¢) and %(t) into the SS representation

We get,
Pz(t) = APz(t) + Bu(t)
y(t) = CPz(t) + Du(t)

Pre-multiply the state equation by P~!, to complete the proof
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Similarity
transformation

Similarity tranformation (cont.)

z(t) = A’z(t) + B'u(t)
y(t) = C'z(t) + D'u(t)

We obtained a different SS representation of the same system
e Input u(¢) and output y(¢) are unchanged
e The new state is indicated by z(?)

There is an infinite number of non-singular matrixes P

~~ An infinite number of equivalent representations
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Similarity
transformation

Similarity tranformation (cont.)

Consider a system with SS representation {A,B,C,D}

A B
—N—

Z1(t) _ =2 1 z1(t) 0 u

L:Q(t)] = {o —2} [zg(t) | u®

y(t)| _ (2 1| |21(t) 15|
o =l 3 0]+ [5]

C D

Consider the similarity transformation of the state

] =1 o [20)
—

What is the {A’,B’,C’, D’} SS representation corresponding to state z(t)




St Similarity tranformation (cont.) ey Similarity tranformation (cont.)
representation representation
UFC/DC UFC/DC
SA (CK0191) SA (CK0191)
2018.1 2018.1
We have, In addition,
1 1 —1 0 1
p:[ :|->P :{ } y oian O 17[-1 171 1
: 10 1 -1 A'=PAP= " 11, Lalli o
-
Yivest nsios ) Sylve 0 1 0o -1 -2 0
_p-1 _ _
Since z(t) = P~1x(t), we have = [1 71] [72 0 :| = [ 9 71]
Force-free and z1(t)] _ [0 1] [z(2)| _ z2(t) reo-free anc , 1 0 1]fo] [-1
e 1t P SR S T L A
S ' -—cp= [g ﬂ B HE [g (2)]
~> The first component of z(t) is the second component of x(t)
o N ~» The second component of z(t) is the difference between the first and [ D'=D= { 05}
the second component of x(t)
Gen d lal
I I n t
St Similarity tranformation (cont.) ey Similarity tranformation (cont.)
representation representation
UFC/DC UFC/DC
SA (CK0191) SA (CK0191)
Similarity and state transition matric
Consider the state matriz A’ = P~ AP from a similarity transformation
b Definition Thus, by definition
Pr The corresponding state transition matriz,
Yivest neios oo Nkik —1AkP)4k
At _ p—1_At At (AN)Fer (P~LAFP)
e =P "e™'P e = Z R Z o
o - k=0 k=0
. utior or o Akh
Impulse resp Proof Impulse response vy L Pfl(z - )P — p-l.Atp
Similarity ) Sinli}arit_v ) k=0
transformation Note that transformation
(A = (P~1AP) - (P~1AP)... (P1AP) T
k times )
=P 'AA...AP=P'A'P g
N—_—— Gen d modal
k times e
I I n t
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Similarity
transformation

Similarity tranformation (cont.)

We show how two similar representations describe the same IO relation

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Similarity
transformation

Similarity tranformation (cont.)

Invariance of the IO relationship by similarity

Consider two similar SS representations of the same stationary system
~ {A,B,C,D} and {A’,B’,C’',D’}
~ P is the transformation matriz

Let the system be subjected to some input u(t)

The two representations produce the same forced response

~ y5(t)
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representation
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Similarity
transformation

Similarity tranformation (cont.)

Proof

Consider the original SS representation of the system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Consider a modified SS representation of the system

z(t) = A'z(t) + B'u(t)
y(t) = C’z(t) + D'u(t)

~ A’ =P 1AP
~ B'=P~'B
~ C'=CP

~ D'=D

State-space
representation
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Similarity
transformation

Similarity tranformation (cont.)

Consider the Lagrange formula
The forced response of the second representation due to input u(t)

t ’
yi(t) = c// A (=T B/ u(r)dr 4+ Du(t)

to

¢
:CP/ P LAt PP-IBu(r)dr + Du(t)
—_———

to
Al (t—T) B/

¢
=C eAC—T)Bu(r)dr + Du(t)

to
This response corresponds to that of the first SS representation

t
yi(t) = C/ A= Bu(r)dr + Du(t)
to
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Similarity
transformation

Similarity tranformation (cont.)

Invariance of the eigenvalues under similarity transformations

Matriz A and P~'AP have the same characteristic polynomial

Proof
The characteristic polynomial of matrix A’
det A\ — A’) =det A\l — P7'AP) =det A\P~!P —P~1AP)
N——
I
= det [P71(AI — A)P] = det (P~ 1) det (AL — A) det (P)
=det (A\I— A)

The last equality is obtained from det(P~!)det(P) = 1

A and A’ share the same characteristic polynomial

~» Thus, also the eigenvalues are the same
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representation
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Definition
Propert

Sylvester expansior

ced evolutior
Impulse response

Similarity
transformation

Similarity tranformation (cont.)

Two similar SS representations have the same modes

e The modes characterise the dynamics

The modes are independent of the representation

~~ This is important

State-space
representation
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Impulse response

Similarity
transformation

Similarity tranformation (cont.)

Exemple |
Consider two similar SS representations of the same LTI system

=l

7= 4
The similarity transformation matrix

P=i o

We are interested in the eigenvalues and modes of the system
Matrix A and A have two eigenvectors

e \i=—1land Ao = -2

The system modes are e~* and e™2*
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Impulse response

Diagonalisation
T nsition matr

Complex eigenvalue

Diagonalisation

State-space representation
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Transition matrix
Complex eigenvalues
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eigenvector
Generalised modal

matrix

Transition matrix

Diagonalisation

We consider a special similarity transformation P
e We seek for a diagonal matrix A’
~ A =P~ 1AP

A SS representation with diagonal state matrix

e Diagonal canonical form
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Properties
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forced evolutior

Impulse response

Diagonalisation

Transition matrix

Complex eigenvalues

Basis of generalised
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Generalised modal
matrix

Transition matrix

Diagonalisation (cont.)

Consider a SISO LTT system characterised by the following state equation

r'r,l(A) A1 0 0 .T,1(/,) b1
T2 (t) 0 A2 .- 0 x2(t) b2

= | . . ) . . + | . ] u(t)
(1) 0 0 - A Lea®]  Lbw

The evolution of the i-th component of the state vector

~ o gi(t) = Nim () + biu(t)

State derivatives are not related to other components
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Definition
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forced evolution

Impulse response

Diagonalisation
Transition matrix
Complex eigenvalues
Basis of generalised
eigenvector
Generalised modal

matrix

Transition matrix

Diagonalisation (cont.)

‘We think of a system with diagonal matrix A as a collection of sub-systems

~~ KEach sub-system is described by a single state component
~ Each state component evolves independently
~~ The representation is decoupled

~ n first-order subsystems

The characteristic polynomial of the system for the i-th component
o Pi(s) = (s — M)

This subsystem has mode e~ *it
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Properties

Sylvester expansion
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forced evolutior

Impulse response

Diagonalisation

Transition matrix

Complex eigenvalues

Basis of generalised

eigenvectors

Generalised modal
matrix

Transition matrix

Diagonalisation (cont.)

A special similarity transformation to get a representation in diagonal form

e A special similarity matrix
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Diagonalisation
I'ran n matrix
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mplex walu

Diagonalisation (cont.)

Modal matrix

Consider a system in state-space representation with (n X n) matriz A
o Letvi,va,..., vy be a set of the eigenvectors of matriz A

o Suppose that they correspond to eigenvalues A1, A2, ..., \n
Suppose that eigenvectors in this set are linearly independent
We define the modal matriz of A as the (n X n) matric V

V = [vl\vg\-~~|vn}
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Diagonalisation
T 1sition matr

Complex eigenvalue

Diagonalisation (cont.)

If a matrix A has n distinct eigenvalues, then its modal matrix exists

e As its n eigenvectors are linearly independent

Distinct eigenvalues
Let A be a n-order matrix whose n eigenvalues A1, \a, ..., A, are distinct

Then, there is a set of n linearly independent eigenvectors

e Vectors vi,vo,..., v, form a basis for R"
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Diagonalisation
I'ran n matrix

Comple 1luc
mplex walu

Diagonalisation (cont.)

Consider the state-space representation of a system with matrix A
2 1
A-fi
We are interested in the modal matrix V of A

The eigenvalues and eigenvectors of A

~ )\1:1andv1:[1 —1}T
w Az=5andva=[1 3]"

The modal matrix V,
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Diagonalisation
T 1sition matr

Complex eigenvalue

Diagonalisation (cont.)

The eigenvectors are determined up to a scaling constant

e (Plus, the ordering of the eigenvalues is arbitrary)

It is clear that there can be more than one modal matrix
These two modal matrices of matrix A are equivalent
2 3
1 _
V' = [valvi] = {_2 9}

=]} )
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Diagonalisation
I'ran n matrix

Complex walue

Diagonalisation (cont.)

Consider a matrix A whose eigenvalues have multiplicity v larger than one

e The modal matrix exists if and only if to each eigenvalue A\ with mul-
tiplicity v is possible to associate v linearly independent eigenvectors

Vi,V2,...,Vy

This is not always possible

State-space
representation
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Diagonalisation
T 1sition matr

Complex eigenvalue

Diagonalisation (cont.)

Consider the state space representation of a system with matrix A
a-f Y

Its eigenvalue A = 2 has multiplicity v = 2

Its eigenvectors are obtained by solving the system [)\I - A]v =0

S I I

We can choose any two linearly independent eigenvectors for A

e As the equation is satisfied for any value of a and b

The modal matrix by choosing the eigenvectors from the canonical basis

- V== [y ]
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Diagonalisation
I'ran n matrix

Complex walue

Diagonalisation (cont.)

Consider the state space representation of a system with matrix A
r=[i 3

Its eigenvalue A = 2 has multiplicity v = 2

Its eigenvectors are obtained by solving the system [)\I - A]v =0

e | R bt

As b = 0, we can choose only one linearly independent eigenvector for A

ol

Matrix A does not admit a modal matrix
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Diagonalisation
T 1sition matr

Complex eigenvalue

Diagonalisation (cont.)

But, ...

If a matrix admits a modal matrix, then it can be diagonalised

o (This is what matters to us)
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Diagonalisation (cont.)

Diagonalisation
Consider the state-space representation of a system with matriz A
Let M1, Ao, ..., A\, be its eigenvalues

Let V = [vl\vz\ S \vn} be one of its modal matrices

Matriz A from this similarity transformation is diagonal

~ A=VTlAV

State-space
representation
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2018.1

Diagonalisation

Diagonalisation (cont.)

Proof

V = [vi|va| - |va]

Note that the modal matrix is non-singular and can be inverted

e Its columns are linearly independent, by definition

By the definition of eigenvalue and eigenvector, we have

Aiv; =Av;, fori=1,...,n

By combining these expressions, we have

~ o [Arvideval - [Anva] = [Avi|Aval - |Avy]
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Diagonalisation
I'ran

Con

Diagonalisation (cont.)

We can rewrite this identity,

1 0 - 07

0 A2 0
[V1|V2|"'|Vn] : : . . :A[Vl\vﬂuwv"]
LO 0 An
That is,

A1 0 07

0 A2 0
\% = AV
LO 0 - Anl

By left-multiplying both sides by V~1, we have

AT 0O - 0
0 X - 0

~ A= =VTlAV
0 0 - A
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representation
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Diagonalisation

Diagonalisation (cont.)

Consider a system with SS representation {A,B,C,D}
f(t)|  [—1 1| |z(t) 0 "
[m'z(t)} B [0 —2} ch(t)] + H )
()| _ |2 1| [=(P) 15|
o) =l 3 [0+ [7]

We are interested in a diagonal representation by similarity

The eigenvalues and eigenvectors of A

e \{ =—1and vi = {(1)]

0/\2:—2andvgz{l}
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Diagonalisation (cont.)

The modal matrix and its inverse

w<f 2]
b

Thus,
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State transition matrix by

diagonalisation

Diagonalisation
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Transition matrix

Complex eigenvalue

State transition matrix by diagonalisation

An alternative to Sylvester expansion to compute the state transition matrix

We assume a SS representation whose matrix A can be diagonalised
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Transition matrix by diagonalisation (cont.)

State transition matriz by diagonalisation

Consider a (n X n) state matriz A and let A1, \2,..., A\, be the eigenvalues

Suppose that A admits the modal matrizc V

We have for the state transition matriz

eMt 0 ... 0
0 el2t .. 0
At — VeAty-l — v ‘ _ ‘ ‘ v-!
0 0 ernt
The diagonal state matrixz
A1 0 0
0 A2 0

0 0 - A

(23)
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Transition matrix

Complex eigenvalue

State transition matrix by diagonalisation (cont.)

Proof

We have already shown the identity (see similarity and state transition ma-
trices?)
At _ 1Aty
To complete, multiply both sides by V on the left and by V—! on the right
| |

4Given A/ = PflAP, we have eA,i =P leAlp,
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State transition matrix by diagonalisation (cont.)

Consider a system with SS representation {A,B,C,D}

#(t)|  |-1 1 z1(t) 0 u
[@(tﬂ - [0 —2} Lzm] ' H w
n(t)| |2 1| |z(t) 1.5 "
[yz(t)} - [0 2} |:z2(t):| + {o} ()

We are interested in the state transition matrix e®?
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Transition matrix

Complex eigenvalue

State transition matrix by diagonalisation (cont.)

We already computed the modal matrix of A and its inverse, V and V—1

o= "o~
|
—_

Thus, we have

=l A5 =l

This is the same result we determined by using the Sylvester expansion
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Complex eigenvalues

Complex eigenvalues

Diagonalisation




State-space
representation

UFC/DC
SA (CKO0191)
2018.1

Definition
Properties

Sylvester expansion

Force-free and

forced evolution

Impulse response

Transition matrix

Complex eigenvalues

Generalised modal
matrix

Transition matrix

Complex eigenvalues

The diagonalisation procedure applies to matrices with complex eigenvalues

~ The corresponding eigenvectors are conjugate-complex

~ Modal matrix and diagonal state matrix are complex

We prefer to choose a similarity matrix that differs from the modal matrix
e The objective is a real canonical form

e With some desirable properties

To each pair of conjugate-complex eigenvalues associate a order 2 real block
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Transition matrix

Complex eigenvalues
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Generalised modal

matrix

Transition matrix

Complex eigenvalues (cont.)

Consider a system with state-space representation with matrix A

Suppose that A has a pair of complex conjugate eigenvalues
~ MV =atjw

Suppose that the remaining eigenvalues are real and distinct
~ A1, A2, AR

The eigenvectors v and v’ associated to A and N

v=Re(v) +jIm(v) = u+ jw
v/=Re(v') +jIm(v') = u — jw

They are also conjugate complex
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Transition matrix

Complex eigenvalues

Generalised modal
matrix

Transition matrix

Complex eigenvalues (cont.)

First of all, we want to show that u and w are linearly independent

Then, that they are linearly independent of the other eigenvectors

e (Those associated to the other eigenvalues)
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matrix

Transition matrix

Complex eigenvalues (cont.)

By the definition of eigenvalue/eigenvector, we have

Av= v
A(u+jw)= (a+jw)(u+jw)

‘We consider real and imaginary parts individually

Au= (au — ww)

Aw= (wu + aw)
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matrix

Transition matrix

Complex eigenvalues (cont.)

We choose a particular similarity matrix V

Columns associated to real eigenvalues are the corresponding eigenvectors

o (As with the conventional modal matrix)

We associate columns u and v to the pair of conjugate complex eigenvalues

By the definition of eigenvalue and eigenvector (Av = Av), we have

~ [ Arvi|devel - [Arvg|ou — wwlwu + aw)

= [Avi|Ava| - |Av|Au|Aw]

This matrix is quasi-diagonal
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Transition matrix

Complex eigenvalues (cont.)

‘We can re-write this equation,

A1 0o .- 0 0 0

0 X 0 0 0
~~ [v1|vz|---\v1g|u\w] :

0 AR 0 0

0 0 0 « w

0 0 0 —w o«

= A[Vl\vz\ ce |vR|u|w]
That is,
A1 0 0 0 0
0 A2 0 0 0
A=VIAV = :

0 0 AR 0 0
0 0 0 « w
0 0 0 —w o«
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Transition matrix

Complex eigenvalues (cont.)

We associated to the pair of eigenvalues A\, \ = o & jw to a block

The block represents the eigenvalues in matrix form

<[

—Ww «
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Complex eigenvalues (cont.)

Consider a more general state matrix A
e R distinct real roots, \;, it =1,..., R
o S pairs of distinct conjugate complex roots. \j, X, i=R+1,..., R+ S

Matrix A can be written in a canonical quasi-diagonal form using matrix V

We use the matrix transformation V

A=V 1AV
i 0 -~ 0 0 0 0
0 X --- 0 0 0 0
o o AR 0 0 0
“lo o 0 Hp,, © 0 (24)
0O o0 0 0 Hpio 0
0 O 0 0 0 Hp, s |
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Complex eigenvalues (cont.)

To pairs of conjugate complex roots \;, A, = «; + jw; associate a real block

The block that represents the pair in matrix form
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Complex eigenvalues

Complex eigenvalues (cont.)

Consider a system in state-space representation with matrix A

-1 2 0
A=|-2 -1 0
-3 -2 -4

We are interested in a (quasi-) diagonal representation

The characteristic polynomial of matrix A

P(s) = s34+ 6s2 +13s +20

The eigenvalues and the eigenvectors

Complex eigenvalues
0
~ A =—4and vi = |0
1
; % 1 0
’ ~ Ao, My =1%j2and vo,vh =us £jwa= | 0 | £5 |1
-1 0
Svempee | Complex eigenvalues (cont.) stempme  Complex eigenvalues (cont.)
representation representation
UFC/DC UFC/DC
SA (CK0191) SA (CK0191)
2018.1 2018.1
A1 0 0 0 0 0
0 )Xo 0 0 0
Propert Consider the matrix V = [V1 us wz] . ‘ : p .
- nsior Sy . A— 0 o0 AR 0 0 0
We have, ) 0 0 Hpy 0 0
~ ~ ~ -4 0 0 0 0 0 Hpio 0
Forad eyl tios A=VIAV=|0 -1 2
Impulse resp 0o -2 =2 : : 2 : : : . :
L O o - 0 0 0 <o+ Hpig]

Complex eigenvalues

Transition matr

Complex eigenvalues

Computing the exponential of a block-diagonal matrix is straightforward

e (We derived a proposition)

Aisa block-diagonal state matrix
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Complex eigenvalues (cont.)

The resulting state transition matrix

it .. 0 0 0 0 7
0 et 0 0 0 0
JA¢ 0 0 et 0 0 0
~lo0 0 0 eHr+1t 0 0
0 0 0 0 eHrtat 0

L O 0 0 0 0 eHrtst |
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Transition matr

Complex eigenvalues

Complex eigenvalues (cont.)

Let A;, \) = o & jw; be a pair of complex-conjugate roots
For each such pair there is a canonical block
e
Block H; represents the pair A\, \’ in matrix form
The matrix exponential for this matrix (block)

v QHit _ ot cog(;u,t) sin (w;t)
—sin (wit) cos (wit)

The state transition matrix for matrix A is thus

oAt Aty
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Complex eigenvalues

Complex eigenvalues (cont.)

Consider a system with SS representation with matrix A

-1 2 0
A=1]-2 -1 0
-3 -2 -4

We are interested in its matrix exponential, eA! = Ve tV~1

e From its (quasi-) diagonal form V

The eigenvalues and the eigenvectors

0
~ A1 =—4and vi = |0
1
1 0
~ Ao, Ay =1+j2and vo,vi=ustjwe=| 0 | £5 |1
-1 0

Let V = [vi|ua|ws], matrix A can be written in quasi-diagonal form
-4 0 0

A=Vv'Av=|0 -1 2
0 -2 -2
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Transition matr

Complex eigenvalues

Complex eigenvalues (cont.)

Thus, we obtain

- e—4t 0 0
eAt=1 0 e~tcos(2t) e~ lsin(2t)
0 —e~tsin(2t) e~tcos(2t)
‘We also have,
A e~ ! cos (2t) e~ !sin (2t)
eAt = Vehtvt —e~tsin (2t) et cos (2t)
e~ —e~tcos(2t) —e tsin(2t)

0
0

ef4t
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Jordan form

Consider a state-space representation of a system with (n x n) matrix A
Let its eigenvalues have multiplicity larger than one
The existence of n linearly independent eigenvectors cannot be guaranteed

~~ Needed for the construction of the modal matrix

‘We cannot necessarily go to a diagonal form by similarity transformation
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matrix

Transition matrix

Jordan form (cont.)

We can still find a set of n linearly independent generalised eigenvectors

e We need to extend the concept of eigenvector

Generalised eigenvectors are used to build a generalised modal matrix
~ By similarity, we obtain J = V- 1AV
~~ A block-diagonal canonical form

~ A Jordan form
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matrix
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Jordan form (cont.)

Jordan block of order p
Let \ € C be a complex number and let p > 1 be a natural number

The (p X p) matriz is a order p Jordan block associated to A

A1 0 --- 0 O
o x 1 --- 0 O
0o 0 x --- 0 O
0 0 O A1
0 0 O 0 A

Diagonal entries equal A\, entries of the superdiagonal equal 1

o (All the other entries are zero)

A is an eigenvalue (multiplicity p) of this Jordan block
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Jordan form
Matriz J is said to be in Jordan form if it is in block-diagonal form

Each block J; along the diagonal must be a Jordan block

J 0 -~ 0

0 J, -~ 0
J =

o 0o - J,
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Transition matr

Complex eigenvalue

Jordan form

Jordan form (cont.)

More than one Jordan block can be associated to the same eigenvalue

The Jordan form generalises the conventional diagonal form

e (With order 1 blocks along the diagonal)
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Jordan form (cont.)

Matrix J1, J2 and Jo are all in Jordan form

2 1 0 0 0 0
02 1 0 0 0
J1:002000
00 0 2 0 O
00 0 0 3 1
L0 0 0 0 0 3
[2 0 0
Jo=10 2 O
0 0 3
2 1 0
J3=10 2 0
0 0 0O
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Jordan form (cont.)

2 1 0 0 0 O

2 1 0 0 O

J = 0 0 2 0 0 O
0 0 0 2 0 O

0O 0 0 0 3 1

o 0 0 0 0 3

Eigenvalues A1 = 2 (multiplicity 4) and A2 = 3 (multiplicity 2)

e )\ = 2 associates with two Jordan blocks (order 3 and 1)

e )2 = 3 associates with a single Jordan block (order 2)




State-space
representation

UFC/DC
SA (CK0191)
2018.1

Cc lex ¢ 1lue
mplex nvalu

Jordan form

Jordan form (cont.)

2 0 0
Jo=10 2 0
0 0 3

Eigenvalues A1 = 2 (multiplicity 2) and A2 = 3 (multiplicity 1)
e A1 = 2 associates with two Jordan blocks (order 1)

e )\ = 3 associates with a single Jordan block (order 1)

2 1 0
Js=10 2 0
0 0 0

Eigenvalues A1 = 2 (multiplicity 2) and A2 = 0 (multiplicity 1)
e A1 = 2 associates with a single Jordan blocks (order 2)

e )2 = 0 associates with a single Jordan block (order 1)
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Jordan form (cont.)

Jordan form
A square matriz A can always be written in a Jordan canonical form J

e This can be done by using a similarity transformation

The resulting form is unique, up to block permutations

|
Jordan form
Let \ be an eigenvalue with multiplicity v for A
o Let ;1 be its geometric multiplicity®
o Let p; be the order of i-th block
We have,

> pi=v

i=1

5The number of linearly independent eigenvectors associated to it (1 < pu < v).
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Jordan form (cont.)

Algebraic multiplicity
Consider a square matrix A or order n

Suppose that A has r < n distinct eigenvalues A1, Ao, ..., Ay
~ Ni £ N, for i £

The characteristic polynomial can be written in the form
”
P(s) = (s —A1)"1(s — X2)"2 -+ (s — \p)"", with Z”‘ =n
i=1

~ We call v; € Nt the algebraic multiplicity of \;
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Jordan form (cont.)

Geometric multiplicity

Consider a square matrix A

Suppose that A has r < n distinct eigenvalues A, A2,..., A\,
~ Ni # Nj, for i £ g

We define the geometric multiplicity /nullity of the eigenvalue \;

~~ Number p; of linearly independent eigenvectors associated to it

The geometric multiplicity p; of A\; with algebraic multiplicity v;

~  p=nullAI-A) <v
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FEigenvalue index
Let A be a matriz that can be written in Jordan form J
Let X\ be an eigenvalue with multiplicity v

Let  be the order of the Jordan block in J associated with eigenvalue \

~ T is the etgenvalue index of A

1<n<v

Jordan form (cont.)
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Knowledge of eigenvalues and their algebraic and geometric multiplicity
e It is sufficient to determine the Jordan form

it e (And, thus the index of the eigenvalues)

Jordan form
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Jordan form (cont.)

Consider the 3-order matrix A
3 1 2
A=]-1 1 —2
-2 =2 0

We are interested in its Jordan form
The characteristic polynomial

P(s) = 53 —4s% + 45 = s(s — 2)2
Its eigenvalues and eigenvectors

~ A1 = 0, multiplicity v1 =1
~ Ag = 2, multiplicity v = 2
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Propert Eigenvalue with multiplicity one has unit geometric multiplicity and index
e A\, withv) =1
ol = 1

=1

A1 associates with a single 1-order block

Complex eigenvalue

Jordan form
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Jordan form (cont.)

As for the geometric multiplicity of the second eigenvalue, we have

p2 = null(A2I — A) = n — rank(A2I — A)
-1 -1 =2
=3- rank( 1 1 2 )
2 2 2

=3-2=1

Mg associates with a single 2-order block

~ g = 2
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Jordan form (cont.)

The resulting Jordan form,

0 0 O
J=10 2 1
0 0 2
Equivalently, by block-permutation
2 1 0
J=1(0 2 0
0 0 O
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Jordan form

Jordan form (cont.)

There are cases eigenvalues and their algebraic and geometric multiplicity is
not sufficient to characterise neither the Jordan form nor eigenvalues’ index
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Jordan form (cont.)

Consider some (5 x 5) matrix A

Let A1 and A2 be its eigenvalues
~ A1, multiplicity v1 =4
~ A2, multiplicity v2 =1

We are interested in its Jordan form

We let eigenvalue A2 associate to a Jordan block of order 1

To eigenvalue A1 we can associate one or more blocks
e Depending on its geometric multiplicity

o 1 <vy=4

‘We can consider four possible cases
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Jordan form (cont.)

J251 =4

The eigenvalue associates with as many Jordan blocks as its multiplicity
e Each Jordan block has order 1

e The index of eigenvalue is 71 = 1

The resulting diagonal (aka diagonalisable) form

A1 0 0 0 0
0 A 0 0 0
Ji=1|0 0 X O 0
0 0 0 X O
0 0 0 0 X
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Complex eigenvalue

Jordan form (cont.)

pn1 =3

The eigenvalue associates with three different Jordan blocks
e The order of the blocks is p1 =2,p2 = 1,p3 =1
° (Asp1+p2t+p3=v1=4)

The index of the eigenvalue is 1 = 2

The resulting form

A1 0 0 0
0 X O 0 0
Jo= 1|0 0 X 0 0
0 0 0 X 0
0 0 0 0 X
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Jordan form (cont.)

pn1 =2

The eigenvalue associates with two Jordan blocks
e The order of the blocks is p1, p2
e (Asp1 +p2=v1 =4)

Two resulting Jordan structures are possible

o p1 = 2,p2 = 2, the index of the eigenvalue is 71 = 2

J3 =

A 1 0 0 07

0 X\ 1 0 0
Jg=10 0 X O 0
0 0 0 X O

LO 0 0 0 X
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Jordan form (cont.)

pu1 =1

The eigenvalue associates with a single Jordan block of order 4

e The index of eigenvalue is w1 =4

The resulting (non-derogatory) form

A1 1 0

T OO OO

(e}
o
o
o
&
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Transition matrix

Jordan form (cont.)

The general way to determine the Jordan form J of a matrix A
e We must compute the generalised modal matrix

o It generates the Jordan form, by similarity

We describe this procedure (not a fundamental read)
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matrix

Transition matrix

Basis of generalised eigenvectors

We have introduced informally the concept of generalised eigenvector

e We provide a formal definition

We determine a set of n linearly independent generalised eigenvectors
e A set that is a basis for R
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Basis of generalised eigenvectors (cont.)

Generalised eigenvector
Consider a (n x n) matric A
Let v be vector in R"

Suppose that the following holds true

{(AI —Alv=0 o)

(AL —A)F—1v£0

v is a generalised eigenvector of order k associated to eigenvalue \
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Basis of generalised eigenvectors (cont.)

An eigenvector is thus a special generalised eigenvector
— k=1

That is,

M-—A)jv=0
v#0

The equations are satisfied by v and A
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Basis of generalised eigenvectors (cont.)

Consider the matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 -2
-1 0 0 1

We are interested in the existence of a generalised eigenvector

The characteristic polynomial

P(s) =det (sT — A) = (s — 3)*

One single eigenvalue A = 3

e Multiplicity v = 4
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Basis of generalised eigenvectors (cont.)

We have,
-2 0 0 —4
1 0 0 -1
BI-A)= 1 0 0 2
1 0 0 2
Moreover,
0 0 0 0
2 |1 0 0 2
GL~ A% 0 0 0 0|
0 0 0 0
0 0 0 0
3_ |0 0 0 0
@I_A)"o 0 0 0
0 0 0 0
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Basis of generalised eigenvectors (cont.)

Let v = [a b ¢ d] T be a generalised eigenvector

We must have

0
(B1-APv= |0 =0

0

)
(BI-ApPv=["F 2 20

~~ The first system is satisfied for any a, b, ¢, d
~ The second system is satisfied by a + 2d # 0
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Basis of generalised eigenvectors (cont.)

a+2d#0
Let a =1 and d = 0, we have

vs=[ 0 0o 0"

Let a =0 and d = 1, we have

vi=[0 o o 17

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Definition

Impulse response

Transition matr

Complex eigenvalue

Basis of generalised
eigenvectors

Generalised modal
natrix

Basis of generalised eigenvectors (cont.)

Chain of generalised eigenvectors

Consider a square matriz A

Let v, be a k-order generalised eigenvector associated to eigenvalue \
Forj=1,...,k—1, the j-order generalised eigenvector

vi=—(AI=A)vjp = (A= AD)vj (26)

The k-long chain of generalised eigenvectors

Vi —>Vg—1 —> - —> V]
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Basis of generalised eigenvectors (cont.)

Proof
We need to show that each vector in the chain is a generalised eigenvector
If vi = (A= Al)vj41, for j=1,...,k — 1, then we have

MV = (A — )\I)vk_7vk

If vi is a k-order generalised eigenvector, then we have

(A =XDfvp =0 A=A =0
(A =XDF-1yp £0 (A - 2I)"1v,; #£0

Vector vy is thus a j-order generalised eigenvector
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Basis of generalised eigenvectors (cont.)

Consider the matrix A

|
—
cowo
cwoo
|
o

The characteristic polynomial

P(s) =det (sI — A) = (s — 3)*

One eigenvalue A\ = 3, multiplicity v = 4
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Basis of generalised eigenvectors (cont.)

vy = [1 0 0 0] Tisa generalised eigenvector of order 3

e We can construct the chain of length 3

1 2 0
0 1 1
v3 = 0 — V2 = (A—)\I)V3 = _1 — V] = (A—)\I)Vg = 0
0 -1 0
e We have that v; is an eigenvector of A
v = [O 0 0 1] Tisa generalised eigenvector of order 3
e We can construct the chain of length 3
0 4 0
;|0 r_ s |1 _ r_ |2
vi= |, —vo = (A - A)vy = _9 —vi=(A—-A)vy = 0
1 -2 0

e We have that v/ is an eigenvector of A
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Basis of generalised eigenvectors (cont.)

v3 and v} are linearly independent, v2 and v/ (and vi and v}) are not

e They differ by a multiplicative constant
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Basis of generalised eigenvectors (cont.)

The structure of generalised eigenvectors
Consider a (n X n) matric A
Let \ be an eigenvalue with multiplicity v and geometric multiplicity p

It is possible to assign to such an eigenvalue \ a structure of v linearly
independent eigenvectors consisting of p chains

(1 )

Vm) =% coo0 =2 Vg” — v(l1 , chain 1
v;? ey ng — v(lz), chain 2
V;f;) SN V:(;) — vs“), chain p

Let p; be the length of the generic chain i

We have,

I
> pi=v
i=1
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Basis of generalised eigenvectors (cont.)

Proof

The theorem can be proved in a constructive way
e An algorithm to determine the structure

e (For a specific eigenvalue)
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Basis of generalised eigenvectors (cont.)

Start by noticing that each chain terminates with an eigenvector

V§,11> — = vgl) — vﬁl), chain 1
(2) (2)

(2)

Vpy —F = Vg =V chain 2

véﬁ) — = vé“) — V(lm7 chain p

The number of chains of an eigenvalue equals the geometric multiplicity p

e The number of linearly independent eigenvectors associated to it
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Basis of generalised eigenvectors (cont.)

Consider the structure of generalised eigenvectors from some eigenvalue
It corresponds to the Jordan block structure from that eigenvalue

In the Jordan form there are ;1 blocks (one per chain)
~» The length of the longest chain associated with A
~ It equals the index of that eigenvalue

~ o =max (p1, p2,-- -, Pu)
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Basis of generalised eigenvectors (cont.)

Consider some (n X n) matrix A

Let A\ be one of its eigenvalues

e Multiplicity v
Consider the matrix (AI — A) and its nullity
~ a1 =null(A\I - A) = n — rank(AI — A)
This is the dimensionality of the vector subspace

~  ker(AI—A) ={x e R"|(\I - A)x =0}

Number of linearly independent vectors x such that (\I — A)x =0
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Basis of generalised eigenvectors (cont.)

Parameter o1 corresponds to the geometric multiplicity 1 of eigenvalue A

The geometric multiplicity has two important meanings
e Number of linearly independent generalised eigenvectors of A from A\
e As each chain of generalised eigenvectors ends with an eigenvector

~» (Number of chains that can be associated with \)
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Basis of generalised eigenvectors (cont.)

Consider matrix (AI — A) and its nullity

~ g =n —rank(AI — A)?

This is the dimensionality of the vector subspace

o ker(AI— A)? = {x € R"|(A\I - A)’x =0}

The number of linearly independent vectors x such that (A\I — A)?x = 0
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Basis of generalised eigenvectors (cont.)

If x = ker(sI — A), then x € ker(sI — A)

e We have, a1 < an

ag equals the number of linearly independent generalised eigenvectors of
order 2 that can be chosen linearly independent of the a1 eigenvectors
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Basis of generalised eigenvectors (cont.)

By the same token, consider matrix (A\I — A)" and its nullity

~ o =n—rank(A\ — A)" =0

In this case, we have a1 < an < -+ < ay,

Thus, there are v generalised eigenvectors of A that are linearly independent

~~ Their order is smaller or equal to h

Moreover, 3, = aj, — ayj,—1 of them are of order h
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Basis of generalised eigenvectors (cont.)

Consider the case in which 8,41 (¢ =1,2,...,h —1)

The number of eigenvectors of order ¢ is such that 5; > £;11

e For each generalised eigenvector of order ¢ + 1, it is possible to deter-
mine a generalised eigenvector of order

e (We proved a proposition about this fact)

The difference v; = 3;0i41 indicates the number of new chains of order 7

e They originate from a generalised eigenvector of order
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Basis of generalised eigenvectors (cont.)

Computing a set of linearly independent generalised eigenvalues

Given a (n X n) matrix A and one of its eigenvalues A with multiplicity v

® Compute a; = nrank(AI — A)’ for i = 1,...,h until aj, = v

® Build the table

R | h—1 | h
a; ay Qo ap—1 ap
Bi i az —ai Qp—1—Qp—2 | ap —Qp—1
Yi | Br—PB2 | B2—P3 Bh—1— Br Bh

i §

o; is the nullity of (AT — A)"

[ is the number of linearly independent generalised eigenvectors of
order i of matrix A (81 = a1, and 8, = a; — a1 for i =2,--- | h

~i is the number of chains of gcnorallscd eigenvectors of lcngth i of
matrix A (v; = 8, — Bi—1, for i =1, ,h — 1 and v, = ()

® If v, > 0, determine ~; linearly independent generalised eigenvectors
of order 7 and compute for each of them the chain of length

The algorithm determines Zi’:l ~; = a1 chains, a number that equals the

geometric multiplicity of A\, an total of Zf;l iy; = v generalised eigenvectors
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Basis of generalised eigenvectors (cont.)

Consider the matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 -2
-1 0 0 1

One eigenvalue A = 3, multiplicity v = 4

We have,
ar =n—rank(BI—A)=4-2=2
as=n—rank(3l—A)2=4-1=3
az=n—rank(3A— A3 =4-0=4

As a3 =4 =v, we have h = 3
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Basis of generalised eigenvectors (cont.)

5 0 0 4
1 3 0 1
A= -1 0 3 =2
-1 0 0 1

We can build the table
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Basis of generalised eigenvectors (cont.)

As v3 = 1, we must choose a generalised eigenvector of order 3

e It will generate a chain of length 3

We denote by (1) at the exponent all vectors belonging to such a chain

Choose the generalised eigenvector of order 3, vél) = [1 0 0 0} T
We get,
1 2 0
1 _ |0 w_ |1 n_ |1
Vs ) = ol 7 V2 ) = N vg 0
0 -1 0
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Basis of generalised eigenvectors (cont.)

As v2 = 0, we do not determine other generalised eigenvectors of order 2
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Basis of generalised eigenvectors (cont.)

As 1 = 1, we must choose a generalised eigenvector of order 1
e A conventional eigenvector

This is the fourth vector we get

We denote by (2) at exponent vectors belonging to such a chain of length 1

Choose the eigenvector v = [a b ¢ d] T #0

We get,
—2a —4d
—a—d
BI-A)v = at2d =0
a+d

‘We can have that a = d =0

‘We could choose b=1and c=0orb=0and c=1
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Basis of generalised eigenvectors (cont.)

(1)

Suppose that we choose b =1 and ¢ = 0, we get v;
Suppose that we choose b =0 and ¢ = 1, we get
0

2 0
v - |
0
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Basis of generalised eigenvectors (cont.)

It is possible to associate to an eigenvalue A and multiplicity v a structure

e v linearly independent generalised eigenvectors

This extends to generalised eigenvectors a classical theorem

A matrix with n distinct eigenvalues has 7 linearly independent eigenvectors
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Basis of generalised eigenvectors (cont.)

The generalised eigenvectors associated to distinct eigenvalues are linearly
independent

Consider a (n X n) matric A

A possesses n linearly independent generalised eigenvectors
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Generalised modal matrix

Suppose we have determined n linearly independent generalised eigenvectors

We can use them to build a non-singular matrix
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Generalised modal matrix (cont.)

Generalised modal matrix
Consider a (n X n) matric A
Consider a set of linearly independent generalised eigenvectors of A

Suppose that to eigenvalue \ correspond ju chains of generalised eigenvectors

~> Lengths p1,p2,...,pu

We can sort the generalised eigenvectors of A and build a matriz 'V )

1 1 1 )& 2 .
VOO D] [P 2] [V 18] v
chain 1 chain 2 chain p
Suppose that matriz A has r distinct eigenvalues \; (i =1,...,7)

We define the (n X n) generalised modal matriz of A

V= [VM Wil oo \VAJ
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Consider the definition of generalised modal matrix V
e The ordering of the chain is not essential

e The choice is arbitrary
It is important however that the columns that are associated to the gener-
alised eigenvectors belonging to the same chain are positioned side-by-side

e Moreover, they must ordered

e From the eigenvector to the generalised eigenvector of maximum order
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Generalised modal matrix (cont.)

Consider the (4 x 4) matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 -1
-1 0 0 1

The characteristic polynomial P(s) = det (sI — A) = (s — 4)%
e Eigenvalue A = 3, multiplicity v = 4

To this eigenvalue correspond two chains of generalised eigenvalues
e Lengths 3 and 1
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Generalised modal matrix (cont.)

There is a single distinct eigenvalue

Hence, the modal matrix

0 -2 1 0

_ 1 1 1 »]_ |1 =2 0 0
vl W =
0 1 0 0

By swapping the order of the chains, we obtain a different modal matrix

0o 0 -2 1

. 1 2 n]_|1 1 -1 0
V‘["§> Vit v Vé)]_ 00 1 0
0 0 1 0
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Generalised modal matrix (cont.)

‘We thus have,

J="TAvV =

S OO Ww
[=NeRVUNS
S WO
w oo

The index of eigenvalue A =3 is m = 3




Generalised modal matrix (cont.)
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ylvester expansion Consider a square matrix A and let V be its generalised modal matrix

Matriz J from similarity transformation J = ~' AV is in Jordan form

mpulse response There are p chains of generalised eigenvectors correspond to eigenvalue \

s Lengths P1,P2,---Pu
Thus, v Jordan blocks of order p1,pa,...,pu
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Generalised modal matrix (cont.)

Proof

The columns of the generalised modal matrix are linearly independent
e The generalised modal matrix is non-singular
e It can be inverted
Consider the j-th chain of length p associated to A
By definition,
) _ (9)
)\vlj = Av1J

For the i-th (generalised eigen-) vector (of order 7 > 1) vgj)

VO = A - v e A VD o A)

Generalised modal matrix (cont.)
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2018.1 .. . R . .
By combining equations, let the j-th chain contributes the first p columns

[Avgﬂ‘xvgﬂ+v§7>‘...‘xv§,f)+v§£1\-~~]

— [Av§])‘Avg>‘~--‘Av](,j)‘u-]

That is,
0 A 1 0 0
o 0 A (U
VO[T 0 >\ 1
: 0 0 0 A

0, [ ]

State-space
representation

UFC/DC
SA (CK0191)
2018.1

Generalised modal
matrix

Generalised modal matrix (cont.)

A1 0 0
0 A 0 0
T=10 o A1
0 0 0 A
That is, we have
VJ=AV

The chain of length p associates to a block of order p in J

To complete the proof, left-multiply this equation by V1
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Generalised modal matrix (cont.)

Consider the (4 x 4) matrix A

5 0 0 4
1 3 0 1
A= -1 0 3 -1
-1 0 0 1

The characteristic polynomial P(s) = det (sI — A) = (s — 4)*
e Eigenvalue A = 3, multiplicity v =4

To this eigenvalue correspond two chains of generalised eigenvalues
e Lengths 3 and 1

The matrix can be written in Jordan form by similarity

e To blocks, order 3 and 1, to eigenvalue A = 3
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Generalised modal matrix (cont.)

‘We can choose a generalised modal matrix V

0O -2 1 0

1 1 1 2 1 -2 0 O
V=[P v v WPl= g T g ]
0 1 0 0

Its inverse

0o 1 0 1

;|00 0 -1

Y = 1 0 0 2

0o 0 1 -1

‘We have,

3 1 0 O
-1 |10 3 1 0
T=V AV = 0 0 3 O
0 0 0 3

The index of the eigenvalue A =3 ism =3
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Jordan form
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Transition matrix by Jordan

A formula for computing the matrix exponential of a matrix in Jordan form
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Transition matrix by Jordan (cont.)

Consider a matriz in Jordan form

J1 0 0
0 Jo 0
J= .
. J3 0
o o - J,
Its matrix exponential
et o .- 0
0 eJ2t ... 0
Jt _
eVt = .
0 0 0
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Transition matrix by Jordan (cont.)
Let J; be the generic block of order p

A1 0 --- 0 0 O
o x 1 -~ 0 0 O
0 0 X O 0 0 O

Ji= )
o o0 o0 --- X 1 0
0 0 O 0 1
0 0 O 0 0 A
Its matrix exponential
r 2 -3 -2 -1
A pent Lot R VR S VR V'
2! p—3)! p—2)! pfl‘
O L T Y
0 eM oM ... Yl At Yl
G- G- G2
tp—5 tp—4 tpfd
0 0 e)\L l/)\[ L,AL l/,)\l
it = P-5" (-4 3
£2
0 oAt et Lot
21
0 0 0 eMt teMt
L O 0 0 0 0 eM
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Transition matrix by Jordan (cont.)

Proof
Matrix J is in block-diagonal form, hence the form of its exponential

For the second result, determine the k-th power of block J;

e ) is the associated eigenvalue

We have,
(BN Nt N e (B (e
0 (o)A (11Ak’1 (k7£+,)kk’p+2 (p;z)k’“”’+2
g | 0 (o) A* (bopaa) NETPHE () AP H3
v .
0 0 0 ()AF DA
0 0 0 0 (F)yxk
0
We used the definition of binomial coefficient
k!
By M P <
(]) j!(k—j)f for j <k
(f) =0, forj >k
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Transition matrix by Jordan (cont.)

The generic element of matrix e”Ji

e Starting from element 1,5+ 1, for j =0,...,p —1

O k-0 oo tk i, 2 ki
E:_ )\k17§:7)\k*72_§:
oo <) = 'k —3)! j!(k:j (k=)

J! J!

9, &tk tJ
-S(E ) -
k=0 """

This is because we have
> 4k

is on the upper-diagonal

A7)
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Transition matrix by Jordan (cont.)

Consider the matrix A

5 0 0
1 3 0 1
s Proposition | A=l 0 5 -
e ) ) . e -1 0 0 1
s Consider a matrix A of order n and eigenvalues A1, A2, ..., Ay e
Let V be a generalised modal matriz to get a Jordan form Consider the generalised modal matrix V
Forc 1
= _ vl
A J=V7 AV 0 -2 1 0
V= [Vm SCORNCY V<2)] I
We have ! 2 3 ! ol o
CA/, — V(iJIV 1 (27) 0 1 0 0
I'r T t
C . C 1
We can write A in Jordan form
Gener d modal 3 1 0 0
ion mat — 03 1 0
Transition matrix Transition matrix _
A= 0 0 3 0
0 0 0 3
Tt Transition matrix by Jordan (cont.) ey Transition matrix by Jordan (cont.)
representation representation
UFC/DC UFC/DC
SA (CK0191) SA (CK0191)
2018.1 2018.1
We have,
2
e3t 18t 3@3“ 0
D I Def t
Propert edt=10 e3t te3t 0 Pro Consider a matrix A with conjugate complex eigenvalues
o 0 0 e’ 0 o ~ Its Jordan form is not real
0 0 0 e3t
Forc ind We thus h ‘We can modify the diagonalisation procedure
o sl t
Impulse resp © thus have, e A modified modal matrix
e3t 4 2¢3¢ 0 0 4te3t We get a real canonical quasi Jordan form
3t 2 3¢ 3t 3t 4 42,3t
At _ Viyr—1 _ | 1e’" +0.5t%e e 0 te’t +t%e
. et =Ve 'V = et 0 &3t _9te3t . ‘
. —tedt 0 0 e3t — 2¢edt . ‘
|

Transition matrix

Transition matrix
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Transition matrix and modes
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Transition matrix and modes

The modes are functions that characterise the dynamical behaviour

e We studied them for IO representations

We establish a similar concept also for SS representations
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Minimum polynomial and modes

Consider a matrix J in Jordan canonical form

e Let ¢7! be the state transition matrix

Consider a given block of order p associated to eigenvalue A

A1 0 --- 0 0 O
o x 1 -~ 0 0 O
o 0 X -~ 0 0 O
J; = : : :
0 0 O A1 0
0 0 O 0o X 1
0O 0 O 0O 0 X\

In the block of the matrix exponential, we will have the functions

e/\t, te

>\t7 o /Ipfle)\t
These functions of time are multiplied by appropriate coefficients

In the case of more blocks associated to an eigenvalue of index 7 (the order of
the largest block), the maximum term for to that eigenvalue will be 71 eMt
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Minimum polynomial and modes (cont.)

Minimum polynomial

Consider a matriz A with r distinct eigenvalues \;

o Let m; be the indexes of the eigenvalues

We define the minimum polynomial

r

Prin(s) = H (s — i)™

i=1

Consider the roots \; of the minimum polynomial of multiplicity =,
e To them we can associate the 7; functions of time

o We call them modes

eNit gehit | ygmimlhit

FEach element of state transition matriz is a linear combination of modes

At
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Minimum polynomial and modes (cont.)

Minimum and characteristic polynomial coincide in nonderogatory matrices

~ (Eigenvalues with multiplicity one is a special case)
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Minimum polynomial and modes (cont.)

Consider a system with SS representation

il(t) _ —1 0 :E1(t) 0 u

oo I e e AR
_ 1 (t)

wo=f 1|20

The state matrix A has two eigenvalues, both with multiplicity one
=5 N = =il
= g = =2

Their index is unitary, too

The minimum polynomial of A and the characteristic polynomial match

Phin(s) = P(s) = (s+ 1)(s +2)
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Minimum polynomial and modes (cont.)

The modes are e~ and e~ 2t

We have,

At et (emt—e2)
€ =lo e—2t

Each element is a linear combination of the modes
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Minimum polynomial and modes (cont.)

Consider the matrix A

5 0 0 4

1 3 0 1
A= -1 0 3 =2

-1 0 0 1

One eigenvalue A = 3, multiplicity v = 4, index 7 = 3
The characteristic and the minimum polynomial

P(s)=(s =N = (s —3)*
Prin(s) = (s = A)" = (s = 3)°

The modes
3t 13t 123t
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Minimum polynomial and modes (cont.)

The generalised modal matrix V

0 -2 1 0

_ 1 1 1 »n]l _ |1 -1 0 O
V‘M) vt vy "§)]_ 0 1 0 1
0 1 0 0

The Jordan form of matrix A

O O O w
OO W
S WO
w o oo
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Minimum polynomial and modes (cont.)

Each element of matrix e®! is a linear combination of the modes
3t 423 0 0 4ted!
WAL _ ety te3t +0.5t%e38 €3t 0 tedt 4 ¢2e3
—te3? 0 €3 —2tedt
—te3? 0 0 e3t — 2te3t

There is no mode in the form ¥~ 1e* = t3¢3t

e Though there is a A = 3, with v =4
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On the eigenvectors

Consider the state-space representation of a system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

We give an interpretation to the real eigenvectors of A

We start with a general result, valid for all eigenvectors

e Both real and complex eigenvectors
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On the eigenvectors (cont.)

Let v be an eigenvector of matriz A

e )\ is the associated eigenvalue

We have,

€] v=e"Vv

That is, v is an eigenvector of matriz et

~ e M is the associated eigenvalue
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On the eigenvectors (cont.)

Proof

Let v be an eigenvector of matrix A

e )\ is the associated eigenvalue

We thus have,
Av =Av

By pre-multiplying both sides by A, we get

A%y = MAv = \%v

The operation can be repeated, we get

Afv = Ay, forke N

‘We obtain,

A SN AT
te, - _ - t
€ —I;)k!A" Z()k!
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On the eigenvectors (cont.)

Consider a linear system with SS representation

x(t) = Ax(t) +Bu(t)
y(t) = Cx(t) + Du(t)

‘We are interested in its time evolution, from different initial conditions

Consider the initial state x(o) at time to, we have
e x,(t) defines a parameterised curve
e The curve lies in the state space

e Time ¢ is the parameter of x,(t)

The curve is called state evolution

The set of points along the curve defines the trajectory of the evolution
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On the eigenvectors (cont.)

We can embed a physical interpretation to the real eigenvectors of A
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On the eigenvectors (cont.)

Suppose that xo corresponds to an eigenvector of matrix A

e () is the associated eigenvalue)

A

By using Lagrange formula and e®'v = e*'v, we have

A A

~ o x(t) = exg = eMxg

The state vector x,(¢) keeps in time the direction of xq

~ Its magnitude changes according to the mode e*?!

o (It goes with the associated eigenvalue)
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On the eigenvectors (cont.)

Suppose that the system has a state matrix A of order n
Suppose that A has n linearly independent eigenvectors
V1,V2,...,Vp

o (The associated eigenvalues are A1, A2,..., \n)
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On the eigenvectors (cont.)

Suppose that xo does not coincide with v;

‘We can always write,

n

~ X0 = Q1V] Faove 4 ap vy = E ;v
i=1

The initial condition is a linear combination of the basis of eigenvectors

e Through appropriate coefficients «;

We have,

n

n
Xy (t) = eAlxg = E a; ey, = E a; ety
i=1

i=1

Time evolution is a linear combination of evolutions, along eigenvectors

e Through the same coefficients «;
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On the eigenvectors (cont.)

Consider a system with state-space representation {A, B, C,D}

151(25) _ —1 1 Il(t) 0 u
Lc'g(t)} - [0 —2] ch(t)} + H ()
n()| |2 1] |z() 15|
[yz(t)} - [o 2} LQ(t)] + [0} )
The state matrix A has the eigenvalues and eigenvectors

~ A and v = {(1)]

~ Ag and vg = {711}
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On the eigenvectors (cont.)

The force-free evolution on the (z1, z2)-plane for different cases

Each trajectory corresponds to a different initial condition

e ¢ increases according to the arrow

Two initial conditions are placed along the eigenvector vi

~ Xy (t) keeps the same direction

—t

~ Its modulo decreases, e~ " is stable
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On the eigenvectors (cont.)

-1 -0.5 0 0.5 1 Xl

Two initial conditions are placed along the eigenvector va

~ Xy (t) keeps the same direction

2t

~~ Tts modulo decreases, e~ <" is stable
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On the eigenvectors (cont.)

T N)
1IN

-1 -0.5 0 0.5 1 Xl

Two initial conditions are placed along a combination of eigenvectors
~» Xy (t) keeps a curved direction, tend to zero
~ Components evolve along different modes

~ e~2t is (extinguishes) faster
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On the eigenvectors (cont.)

Consider the SS representation of a system with state matrix A

a=3 O

The eigenvalues
~ M =atjw=—-1+52
We have,

At —¢ | cos(2t)  sin(2t)
=¢ —sin (2¢) cos (2t)

We want to study the force-free evolution

e From initial condition xg = {(1)]
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On the eigenvectors (cont.)

We have,
x(t) = {ml(t)} — Aty = [ et cos (2t) }

22(t) —e~tsin (2t)

The solution determines a vector in the (z1,z2) plane
e The vector rotates clockwise

e The angular speed w = 2

The magnitude decreases according to mode e~*

e A spiral
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On the eigenvectors (cont.)

The trajectory is the spiral starting at 0, xo = B]

X, ‘ ‘ ‘ ‘ ‘

1+ 1

051 1

All trajectories have qualitatively similar behaviour

e Whatever the initial condition

~ Starting at O, xo = {ﬂ




