State-space representation	State-space representation
UFC/DC SA (CK0191)	UFC/DC SA (CK0191)
2018.1	
Representation and analysis	Analysis and analysis analysis and analysis
State transition matrix State-space representation	State transition matrix • The analysis problem
Properties Linear systems and ATML	Properties The state transition matrix
Sylvester expansion	Sylvester expansion Sylvester expansion
formula Force-free and Francesco, Corona	formula Force-free and
forced evolution Impulse response	forced evolution Ingrange formula Impulse response
Similarity transformation Department of Computer Science Federal University of Ceará, Fortaleza	Similarity transformation • Similarity transformations
Diagonalisation	Diagonalisation • Diagonalisation
Transition matrix Complex eigenvalues	Complex eigenvalues • Jordan's form
Jordan form Basis of generalised	Jordan form Basis of generalised
eigenvectors Generalised modal matrix	Generalised modal
Transition matrix	Transition matrix
modes	modes
State mere	Representation and analysis
representation	representation
UFC/DC SA (CK0191)	UFC/DC SA (CK0191)
2018.1	Consider a linear and stationary system of order n
Representation and analysis	$\begin{array}{c} \text{Representation} \\ \text{and analysis} \end{array} \qquad \bullet \text{ Let } p \text{ be the number of outputs} \\ \text{Let } p \text{ be the number of outputs} \end{array}$
State transition matrix	• Let <i>r</i> be the number of inputs
Properties Depresentation and analyzing	Properties The state-space representation of the system
Sylvester expansion Representation and analysis	Sylvester expansion $(\cdot, (t), t) = D_{-}(t)$
formula Force-free and State-space representation	$ \begin{aligned} \mathbf{x}(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{aligned} \tag{1} $
forced evolution Impulse response	Impulse response
Similarity transformation	Similarity transformation • $\mathbf{x}(t)$ is the state vector (<i>n</i> components)
Diagonalisation Transition matrix	Diagonalisation • $\dot{\mathbf{x}}(t)$ is the derivative of the state vector (<i>n</i> components)
Complex eigenvalues	• $\mathbf{u}(t)$ is the input vector (<i>r</i> components)
Basis of generalised eigenvectors	Basis of generalised eigenvectors
Generalised modal matrix	Generalised modal matrix A $(n \times n)$, B $(n \times r)$, C $(p \times n)$ and D $(p \times r)$ are matrices
Transition matrix Transition and	Transition matrix • The elements are not function of time
modes	modes

State	Lagrange formula
representation UFC/DC SA (CK0191) 2018.1 Representation and analysis Stattra Definition Properties Sylvester expansion Lagrange formula Proce-free and forced evolution Impulse response Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Dordan form Basis of generalised eigenvectors Generalised modal matrix Transition matrix	We can now prove the solution to the analysis problem for MIMO systems • Lagrange formula
State-space representation UFC/DC SA (CK0191) 2018 1	Lagrange formula (cont.)
Representation	Proof Multiply the state equation $\dot{x}(t) = \mathbf{A} x(t) + \mathbf{B} x(t)$ by $z = \mathbf{A} t$
and analysis State transition matrix Definition Properties	Multiply the state equation $\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ by $e^{-\mathbf{A}t}$. We get, $e^{-\mathbf{A}t}\dot{\mathbf{x}}(t) = e^{-\mathbf{A}t}\mathbf{A}\mathbf{x}(t) + e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$
Sylvester expansion Lagrange formula Force-free and forced evolution Impulse response	The resulting state equation can be rewritten, $e^{-\mathbf{A}t}\dot{\mathbf{x}}(t) - e^{-\mathbf{A}t}\mathbf{A}\mathbf{x}(t) = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$
Similarity transformation Diagonalisation Transition matrix Complex eigenvalues	Then, by using the result on the derivative of the state transition matrix ³ , $\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-\mathbf{A}t} \mathbf{x}(t) \Big] = e^{-\mathbf{A}t} \mathbf{B} \mathbf{u}(t)$

 3 Derivative of the state transition matrix

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-\mathbf{A}t} \mathbf{x}(t) \Big] &= e^{-\mathbf{A}t} \Big[\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x}(t) \Big] + \Big[\frac{\mathrm{d}}{\mathrm{d}t} e^{\mathbf{A}t} \Big] \mathbf{x}(t) \\ &= e^{-\mathbf{A}t} \dot{\mathbf{x}}(t) - e^{-\mathbf{A}t} \mathbf{A} \mathbf{x}(t) \end{split}$$

(12)

Lagrange formula

Lagrange formula (cont.) Lagrange formula (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1 $e^{-\mathbf{A}t}\mathbf{x}(t) = e^{-\mathbf{A}t_0}\mathbf{x}(t_0) + \int_{t_0}^t e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(t)$ $\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-\mathbf{A}t} \mathbf{x}(t) \Big] = e^{-\mathbf{A}t} \mathbf{B} \mathbf{u}(t)$ The first Lagrange formula is obtained by multiplying both sides by $e^{\mathbf{At}}$ By integrating between t_0 and t, we obtain $\left[e^{-\mathbf{A}\tau}\mathbf{x}(\tau)\right]_{t_0}^t = \int_{t_0}^t e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)\mathrm{d}\tau$ $\rightarrow \mathbf{x}(t) = e^{\mathbf{A}(t-t_0)} \mathbf{x}(t_0) + \int_{t_0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$ Lagrange Lagrange formula formula That is. The second formula is obtained by substituting $\mathbf{x}(t)$ in the output equation $e^{\mathbf{A}t}\mathbf{x}(t) - e^{-\mathbf{A}t_0}\mathbf{x}(t_0) = \int_{t_0}^t e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$ $\xrightarrow{} \mathbf{C} \Big[\underbrace{e^{\mathbf{A}(t-t_0)} \mathbf{x}(t_0) + \mathbf{C} \int_{t_0}^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) \mathrm{d}\tau}_{t_0} \Big] + \mathbf{D} \mathbf{u}(t) \Big]$ Thus, $e^{-\mathbf{A}t}\mathbf{x}(t) = e^{-\mathbf{A}t_0}\mathbf{x}(t_0) + \int_{t_0}^{t} e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(t)$ $\mathbf{x}(t)$ Force-free and forced evolution State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1 $\mathbf{x}(t) = \underbrace{e^{\mathbf{A}(t-t_0)}\mathbf{x}(t_0)}_{\mathbf{x}_u(t)} + \underbrace{\int_{t_0}^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)\mathrm{d}\tau}_{t_0}$ Force-free and forced evolution Lagrange formula We can write the state solution (for $t > t_0$) as the sum of two terms Force-free and Force-free and forced evolution forced evolution $\mathbf{x}(t) = \mathbf{x}_u(t) + \mathbf{x}_f(t)$ \rightarrow The force-free evolution of the state, $\mathbf{x}_{u}(t)$ \rightarrow The forced evolution of the state, $\mathbf{x}_f(t)$

Free and forced evolution (cont.) Free and forced evolution (cont.) State-space State-space representation representation UFC/DC The forced evolution of the state, for $t \ge 0$ UFC/DC SA (CK0191) SA (CK0191) Since $\mathbf{D} = \mathbf{0}$, the forced evolution of the output for $t \ge 0$ 2018.1 2018.1 $\rightsquigarrow \quad \mathbf{x}_f(t) = \int_0^t e^{\mathbf{A}t} \mathbf{B} u(t-\tau) \mathrm{d}\tau = \int_0^t \begin{bmatrix} e^{-\tau} & (e^{-\tau} - e^{-2\tau}) \\ 0 & e^{-2\tau} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} 2 \mathrm{d}\tau$ $\rightarrow y_f(t) = \mathbf{C}\mathbf{x}_f(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} (1 - 2e^{-t} + e^{-2t}) \\ (1 - e^{-2t}) \end{bmatrix}$ $=2\int_0^t \left[\begin{pmatrix} e^{-\tau} - e^{-2\tau} \\ e^{-2\tau} \end{bmatrix} \mathrm{d}\tau = 2\left[\int_0^t (e^{-\tau} - e^{-2\tau}) \mathrm{d}\tau \right]$ $= 3 - 4e^{-t} + e^{-2t}$ $= 2 \begin{bmatrix} (1 - e^{-t}) - 1/2(1 - e^{-2t}) \\ 1/2(1 - e^{-2t}) \end{bmatrix} = \begin{bmatrix} (1 - 2e^{-t} + e^{-2t}) \\ (1 - e^{-2t}) \end{bmatrix}$ $y_f(t)$ $x_{f}^{(1)}(t)$ $x_{f}^{(2)}(t)$ 3 Force-free and Force-free and forced evolution forced evolution $\mathbf{2}$ 1 1 1 0.50.50 0 2 4 Ω 0 t $\mathbf{2}$ 0 0 $\mathbf{2}$ 4 4 ttImpulse response State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1Impulse response We discussed the impulse response for systems in IO representation • The forced response due to a unit impulse Lagrange formula We complete the presentation for systems in SS representation Impulse response Impulse response

assis of generalised igenvectors Generalised modal natrix

Transition and

Impulse response (cont.) State-space representation UFC/DC SA (CK0191)

2018.1

Impulse response

State-space representation

UFC/DC SA (CK0191) 2018.1

Impulse response

Impulse response Consider the SS representation of a SISO system

 $\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + D\mathbf{u}(t) \end{cases}$

 $w(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{B} + D\delta(t)$

The *impulse* response

(18)

Proof

The impulse response is the forced response due to a unit impulse Let $u(t) = \delta(t)$ and substitute it in the Lagrange formula

 $w(t) = \mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \delta(\tau) \mathrm{d}\tau + D\delta(t)$

Impulse response (cont.)

 $w(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{B} + D\delta(t)$

If the system is strictly proper, we have that D = 0

- w(t) is a linear combination of modes
- Through matrix $e^{\mathbf{A}t}$

If the system is not strictly proper, we have $D \neq 0$

- w(t) is a linear combination of modes
- Plus, an impulse term

Impulse response (cont.) State-space representation UFC/DC SA (CK0191) 2018.1 Consider a continuous function f of tBy the properties of the Dirac function, we have that $f(t-\tau)\delta(\tau) = f(t)\delta(\tau)$ Thus, we have $w(t) = \mathbf{C} \int_0^t e^{\mathbf{A}t} \mathbf{B}\delta(\tau) \mathrm{d}\tau + D\delta(t) = \mathbf{C} e^{\mathbf{A}t} \mathbf{B} \underbrace{\int_0^t \delta(\tau) \mathrm{d}\tau}_1 + D\delta(t)$ Impulse response Impulse response (cont.) State-space representation UFC/DC SA (CK0191) 2018.1The forced response can be calculated using Lagrange formula It corresponds to what was derived by the Durhamel's integral $\rightarrow \quad y_f(t) = \int_0^t w(t-\tau)u(\tau)\mathrm{d}\tau = \int_0^t \left[\mathbf{C}e^{\mathbf{A}(t-\tau)}\mathbf{B} + D\delta(t-\tau)\right]u(\tau)\mathrm{d}\tau$ $= \int_0^t \mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) \mathrm{d}\tau + \int_0^t D\delta(\tau-t) u(\tau) \mathrm{d}\tau$ Impulse response $= \mathbf{C} \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) \mathrm{d}\tau + Du(t)$

Similarity tranformation

The form of the state space representation depends on the choice of states

• The choice is not unique

There is an infinite number of different representations of the same system

• They are all related by a **similarity transformation**

We define the concept of similarity transformation

Similarity transformation (cont.)

Similarity transformation

Consider the SS representation of a linear stationary system of order n

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{cases}$$

- $\mathbf{x}(t)$, state vector (*n* components)
- $\mathbf{u}(t)$, input vector (r components)
- $\mathbf{y}(t)$, output vector (p components)

Let vector $\mathbf{z}(t)$ be related to $\mathbf{x}(t)$ by a linear transformation \mathbf{P}

$\mathbf{x}(t) = \mathbf{P}\mathbf{z}(t)$ (19)

P is any $(n \times n)$ non-singular matrix of constants

- Thus, the inverse of **P** always exists
- We have $\mathbf{z}(t) = \mathbf{P}^{-1}\mathbf{x}(t)$

Transformation/matrix **P** is called *similarity transformation/matrix*

(22)

B

Similarity transformation (cont.) Similarity transformation (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1 In addition. We have, $\mathbf{P} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \rightsquigarrow \mathbf{P}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$ $\mathbf{A}' = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 2 & -1 \end{bmatrix}$ Since $\mathbf{z}(t) = \mathbf{P}^{-1}\mathbf{x}(t)$, we have $\begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ x_1(t) - x_2(t) \end{bmatrix}$ $\mathbf{B}' = \mathbf{P}^{-1}\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\mathbf{C}' = \mathbf{C}\mathbf{P} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$ Similarity Similarity transformation transformation \rightarrow The first component of $\mathbf{z}(t)$ is the second component of $\mathbf{x}(t)$ $\mathbf{D}' = \mathbf{D} = \begin{bmatrix} 1.5\\0 \end{bmatrix}$ \rightarrow The second component of $\mathbf{z}(t)$ is the difference between the first and the second component of $\mathbf{x}(t)$ Similarity transformation (cont.) Similarity transformation (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1Similarity and state transition matrix Consider the state matrix $\mathbf{A}' = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ from a similarity transformation Thus, by definition The corresponding state transition matrix, $e^{\mathbf{A}'t} = \sum_{k=0}^{\infty} \frac{(\mathbf{A}')^k t^k}{k!} = \sum_{k=0}^{\infty} \frac{(\mathbf{P}^{-1}\mathbf{A}^k\mathbf{P})t^k}{k!}$ $\longrightarrow = \mathbf{P}^{-1} \Big(\sum_{k=0}^{\infty} \frac{\mathbf{A}^k t^k}{k!}\Big)\mathbf{P} = \mathbf{P}^{-1}e^{\mathbf{A}t}\mathbf{P}$ $e^{\mathbf{A}'t} = \mathbf{P}^{-1}e^{\mathbf{A}t}\mathbf{P}$ Proof Similarity Similarity transformation transformation Note that $(\mathbf{A}')^k = (\mathbf{P}^{-1}\mathbf{A}\mathbf{P}) \cdot (\mathbf{P}^{-1}\mathbf{A}\mathbf{P}) \cdots (\mathbf{P}^{-1}\mathbf{A}\mathbf{P})$ k times $= \mathbf{P}^{-1} \underbrace{\mathbf{A} \mathbf{A} \cdots \mathbf{A}}_{k \text{ times}} \mathbf{P} = \mathbf{P}^{-1} \mathbf{A}^k \mathbf{P}$

State-space representation	Similarity tranformation (cont.)	State-space representation	Similarity tranformation (cont.)
UFC/DC SA (CKO191) 2018.1 Representation marix Definition Properties Sylvester expansion Lagrange Sylvester expansion Lagrange Force-free and forced evolution Impulse response Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Jordan Fon Basis of generalised eigenvectors Generalised modal matrix Transition matrix	We show how two similar representations describe the same IO relation	UFC/DC SA (CK0191) 2018.1 Representation and nalysis State transition matrix Definition Properties Sylvester expansion Lagrange formula Force-free and forced evolution Impulse response Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Jordan form Basis of generalised eigenvectors Generalised modal matrix Transition matrix	PropositionInvariance of the IO relationship by similarityConsider two similar SS representations of the same stationary system $\rightsquigarrow \{A, B, C, D\}$ and $\{A', B', C', D'\}$ $\rightsquigarrow P$ is the transformation matrixLet the system be subjected to some input $\mathbf{u}(t)$ The two representations produce the same forced response $\rightsquigarrow \mathbf{y}_f(t)$
State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Sylvester expansion Lagrange formula Force-free and forced evolution Impulse response Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Jordan form Basis of generalised eigenvectors Generalised modal matrix Transition matrix Transition matrix	Similarity tranformation (cont.) Proof Consider the original SS representation of the system $\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{cases}$ Consider a modified SS representation of the system $\begin{cases} \dot{\mathbf{z}}(t) = \mathbf{A}'\mathbf{z}(t) + \mathbf{B}'\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}'\mathbf{z}(t) + \mathbf{D}'\mathbf{u}(t) \end{cases}$ $\sim \mathbf{A}' = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ $\sim \mathbf{B}' = \mathbf{P}^{-1}\mathbf{B}$ $\sim \mathbf{C}' = \mathbf{C}\mathbf{P}$ $\Rightarrow \mathbf{D}' = \mathbf{D}$	State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Sylvester expansion Lagrange formula Porce-free and forced evolution Impulse response Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Jordan form Basis of generalised eigenvectors Generalised modal matrix Transition and modes	Similarity tranformation (cont.) Consider the Lagrange formula The forced response of the second representation due to input $\mathbf{u}(t)$ $\mathbf{y}_{f}(t) = \mathbf{C}' \int_{t_{0}}^{t} e^{\mathbf{A}'(t-\tau)} \mathbf{B}' \mathbf{u}(\tau) d\tau + \mathbf{D}\mathbf{u}(t)$ $= \mathbf{CP} \int_{t_{0}}^{t} \frac{\mathbf{P}^{-1} e^{\mathbf{A}(t-\tau)} \mathbf{P} \mathbf{P}^{-1} \mathbf{B}}{e^{\mathbf{A}'(t-\tau)} \mathbf{B}'} \mathbf{u}(\tau) d\tau + \mathbf{D}\mathbf{u}(t)$ $= \mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B}\mathbf{u}(\tau) d\tau + \mathbf{D}\mathbf{u}(t)$ This response corresponds to that of the first SS representation $\mathbf{y}_{f}(t) = \mathbf{C} \int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B}\mathbf{u}(\tau) d\tau + \mathbf{D}\mathbf{u}(t)$

State-space representation

UFC/DC SA (CK0191) 2018.1

Representation and analysis State transition matrix Definition Properties Sylvester expansio Lagrange

Force-free and forced evolution Impulse respons Similarity

transformation

Transition matrix Complex eigenvalue Jordan form

Basis of generalised eigenvectors Generalised modal matrix Transition matrix Transition and

State-space representation

UFC/DC SA (CK0191) 2018.1

Representation

State transitio matrix Definition Properties

Lagrange formula Force-free and forced evolution

Similarity transformation

Diagonalisation

Complex eigenvalu Jordan form Basis of generalise eigenvectors Generalised modal matrix Transition matrix

ransition and odes

Similarity transformation (cont.)

roposition

Invariance of the eigenvalues under similarity transformations Matrix A and $P^{-1}AP$ have the same characteristic polynomial

Proof

The characteristic polynomial of matrix \mathbf{A}'

 $det (\lambda \mathbf{I} - \mathbf{A}') = det (\lambda \mathbf{I} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P}) = det (\lambda \underbrace{\mathbf{P}^{-1} \mathbf{P}}_{\mathbf{I}} - \mathbf{P}^{-1} \mathbf{A} \mathbf{P})$ $= det [\mathbf{P}^{-1} (\lambda \mathbf{I} - \mathbf{A}) \mathbf{P}] = det (\mathbf{P}^{-1}) det (\lambda \mathbf{I} - \mathbf{A}) det (\mathbf{P})$ $= det (\lambda \mathbf{I} - \mathbf{A})$

The last equality is obtained from $det(\mathbf{P}^{-1})det(\mathbf{P}) = 1$

 ${\bf A}$ and ${\bf A}'$ share the same characteristic polynomial

 $\rightsquigarrow\,$ Thus, also the eigenvalues are the same

Similarity transformation (cont.)

 $\operatorname{Exan}_{1}^{(191)}$

Consider two similar SS representations of the same LTI system

$$\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$$
$$\mathbf{A}' = \begin{bmatrix} -2 & 0 \\ 2 & -1 \end{bmatrix}$$

The similarity transformation matrix

 $\mathbf{P} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

We are interested in the eigenvalues and modes of the system

Matrix A and A have two eigenvectors
λ₁ = -1 and λ₂ = -2

The system modes are e^{-t} and e^{-2t}

Diagonalisation (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) The modal matrix and its inverse 2018.1 2018.1 $\mathbf{V} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ $\mathbf{V}^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ State transition matrix by Thus, diagonalisation $\mathbf{A}' = \mathbf{\Lambda} = \mathbf{V}^{-1} \mathbf{A} \mathbf{V} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ Diagonalisation $= \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$ $\mathbf{B}' = \mathbf{V}^{-1}\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ Diagonalisation Transition matrix $\mathbf{C}' = \mathbf{C}\mathbf{V} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix}$ $\mathbf{D}' = \mathbf{D} = \begin{bmatrix} 1.5\\0 \end{bmatrix}$ State transition matrix by diagonalisation Transition matrix by diagonalisation (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1State transition matrix by diagonalisation Consider a $(n \times n)$ state matrix A and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues Suppose that \mathbf{A} admits the modal matrix \mathbf{V} We have for the state transition matrix An alternative to Sylvester expansion to compute the state transition matrix $e^{\mathbf{A}t} = \mathbf{V}e^{\mathbf{A}t}\mathbf{V}^{-1} = \mathbf{V} \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0\\ 0 & e^{\lambda_2 t} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \mathbf{v} & t \end{bmatrix} \mathbf{V}^{-1}$ We assume a SS representation whose matrix A can be diagonalised (23)Transition matrix Transition matrix The diagonal state matrix $\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{bmatrix}$

Fransition and

Complex eigenvalues Complex eigenvalues (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1 Consider a system with state-space representation with matrix A The diagonalisation procedure applies to matrices with complex eigenvalues Suppose that A has a pair of complex conjugate eigenvalues \rightarrow The corresponding eigenvectors are conjugate-complex $\rightsquigarrow \lambda, \lambda' = \alpha \pm j\omega$ ~ Modal matrix and diagonal state matrix are complex Suppose that the remaining eigenvalues are real and distinct $\rightsquigarrow \lambda_1, \lambda_2, \cdots, \lambda_R$ We prefer to choose a similarity matrix that differs from the modal matrix • The objective is a real canonical form The eigenvectors **v** and **v'** associated to λ and λ' • With some desirable properties $\mathbf{v} = \operatorname{Re}(\mathbf{v}) + j\operatorname{Im}(\mathbf{v}) = \mathbf{u} + j\boldsymbol{\omega}$ To each pair of conjugate-complex eigenvalues associate a order 2 real block $\mathbf{v}' = \operatorname{Re}(\mathbf{v}') + j\operatorname{Im}(\mathbf{v}') = \mathbf{u} - j\boldsymbol{\omega}$ Complex eigenvalues Complex eigenvalues They are also conjugate complex Complex eigenvalues (cont.) Complex eigenvalues (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1By the definition of eigenvalue/eigenvector, we have $Av = \lambda v$ First of all, we want to show that **u** and ω are linearly independent $\mathbf{A}(\mathbf{u}+j\boldsymbol{\omega}) = (\alpha+j\omega)(\mathbf{u}+j\boldsymbol{\omega})$ Then, that they are linearly independent of the other eigenvectors • (Those associated to the other eigenvalues) We consider real and imaginary parts individually $\mathbf{A}\mathbf{u} = (\alpha\mathbf{u} - \omega\boldsymbol{\omega})$ $\mathbf{A}\boldsymbol{\omega} = (\boldsymbol{\omega}\mathbf{u} + \boldsymbol{\alpha}\boldsymbol{\omega})$ Complex eigenvalues Complex eigenvalues

Jordan form (cont.)

 $\rightarrow \pi_2 = 2$

UFC/DC SA (CK0191) 2018.1

State-space

Representation and analysis

tate transit natrix Definition

Lagrange ormula

forced evolution Impulse response

transformation

Transition matrix Complex eigenvalues

Jordan form Basis of generalised eigenvectors Generalised modal matrix Transition matrix

Transition and modes

State-space Jor

UFC/DC SA (CK0191) 2018.1

Representation and analysis

natrix Definition Properties

Lagrange formula Force-free and forced evolution

Similarity transformation

Transition matrix Complex eigenvalue

Jordan form Basis of generalise eigenvectors Generalised modal matrix Transition matrix

> ransition and odes

As for the geometric multiplicity of the second eigenvalue, we have

$$\mu_2 = \operatorname{null}(\lambda_2 \mathbf{I} - \mathbf{A}) = n - \operatorname{rank}(\lambda_2 \mathbf{I} - \mathbf{A})$$
$$= 3 - \operatorname{rank}\left(\begin{bmatrix} -1 & -1 & -2\\ 1 & 1 & 2\\ 2 & 2 & 2 \end{bmatrix}\right)$$
$$= 3 - 2 = 1$$

 λ_2 associates with a single 2-order block

Jordan form (cont.)

There are cases eigenvalues and their algebraic and geometric multiplicity is not sufficient to characterise neither the Jordan form nor eigenvalues' index

Jordan form (cont.) State-space representation UFC/DC SA (CK0191) 2018.1 The resulting Jordan form, $\mathbf{J} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ Equivalently, by block-permutation $\mathbf{J} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Jordan form Jordan form (cont.) State-space representation UFC/DC SA (CK0191) 2018.1Consider some (5×5) matrix **A** Let λ_1 and λ_2 be its eigenvalues $\rightsquigarrow \lambda_1$, multiplicity $\nu_1 = 4$ $\rightsquigarrow \lambda_2$, multiplicity $\nu_2 = 1$ We are interested in its Jordan form We let eigenvalue λ_2 associate to a Jordan block of order 1 To eigenvalue λ_1 we can associate one or more blocks • Depending on its geometric multiplicity Jordan form • $\mu_1 < \nu_1 = 4$ We can consider four possible cases

Jordan form (cont.)

Each Jordan block has order 1
The index of eigenvalue is π₁ = 1

The resulting diagonal (aka diagonalisable) form

 $\mu_1 = 4$

UFC/DC SA (CK0191) 2018.1

State-space

epresentation nd analysis tate transitior natrix Definition

Sylvester expa Lagrange formula

forced evolution Impulse response

transformation Diagonalisation Transition matrix Complex eigenvalues

Jordan form Basis of generalise eigenvectors Generalised modal matrix Transition matrix

Transition and nodes

State-space representation UFC/DC

SA (CK0191) 2018.1

Jordan form

Basis of generalised

Jordan form (cont.)

$\mu_1 = 2$

• $p_1 = 3$

The eigenvalue associates with two Jordan blocks

The order of the blocks is p₁, p₂
(As p₁ + p₂ = ν₁ = 4)

Two resulting Jordan structures are possible

• $p_1 = 2, p_2 = 2$, the index of the eigenvalue is $\pi_1 = 2$

		$\lceil \lambda_1 \rceil$	1	0	0	ך 0
		0	λ_1	0	0	0
	$\mathbf{J}_3 =$	0	0	λ_1	1	0
		0	0	0	λ_1	0
		Lo	0	0	0	λ_2
$p_2 = 1$, th	e index	of th	e eige	envalı	ie is a	$\pi_1 = 3$
					_	
			1	0	0	0 7

The eigenvalue associates with as many Jordan blocks as its multiplicity

 $\begin{bmatrix} \lambda_1 & 0 \end{bmatrix}$

0

 $\mathbf{J}_{1} = \begin{bmatrix} 0 & \lambda_{1} & 0 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 0 & 0 \\ 0 & 0 & 0 & \lambda_{1} & 0 \\ 0 & 0 & 0 & 0 & \lambda_{2} \end{bmatrix}$

	λ_1	1	0	0	ך 0
	0	λ_1	1	0	0
$\mathbf{J}_4 =$	0	0	λ_1	0	0
	0	0	0	λ_1	0
	LO	0	0	0	λ_2

State-space representation	Jordan form (cont.)
UFC/DC SA (CK0191) 2018.1	
Representation and analysis	$\mu_1 = 3$
State transition matrix	The eigenvalue associates with three different Jordan blocks
Definition Properties	• The order of the blocks is $p_1 = 2, p_2 = 1, p_3 = 1$
Lagrange	• (As $p_1 + p_2 + p_3 = \nu_1 = 4$) The index of the eigenvalue is $\pi_1 = 2$
Force-free and forced evolution	The resulting form
Impulse response Similarity transformation	$\begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 \end{bmatrix}$
Diagonalisation Transition matrix Complex eigenvalues	$\mathbf{J}_2 = egin{bmatrix} 0 & 0 & \lambda_1 & 0 & 0 \ 0 & 0 & 0 & \lambda_1 & 0 \ \end{pmatrix}$
Jordan form Basis of generalised eigenvectors	$\begin{bmatrix} 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$
matrix Transition matrix	
Transition and modes	
 State-space representation	Jordan form (cont.)
 State-space representation UFC/DC SA (CK0191) 2018.1	Jordan form (cont.)
 State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis	Jordan form (cont.)
 State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix	Jordan form (cont.) $\mu_1 = 1$
State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Sylvester expansion	Jordan form (cont.) $\mu_1 = 1$ The eigenvalue associates with a single Jordan block of order 4 • The index of eigenvalue is $\pi_1 = 4$
State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Sylvester expansion Lagrange formula Porce-free and	Jordan form (cont.) $\mu_1 = 1$ The eigenvalue associates with a single Jordan block of order 4 • The index of eigenvalue is $\pi_1 = 4$ The resulting (non-derogatory) form
State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Sylvester expansion Lagrange formula Force-free and forced evolution Impulse response	Jordan form (cont.) $\mu_{1} = 1$ The eigenvalue associates with a single Jordan block of order 4 • The index of eigenvalue is $\pi_{1} = 4$ The resulting (non-derogatory) form $\begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0\\ 0 & \lambda_{1} & 1 & 0 & 0 \end{bmatrix}$
State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Sylvester expansion Lagrange formula Force-free and forced evolution Impulse response	Jordan form (cont.) $\mu_{1} = 1$ The eigenvalue associates with a single Jordan block of order 4 • The index of eigenvalue is $\pi_{1} = 4$ The resulting (non-derogatory) form $J_{5} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 1 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 1 & 0 \\ 0 & 0 & 0 & \lambda_{1} & 0 \end{bmatrix}$
State-space representation UFC/DC SA (CK0191) 2018.1 Representation matrix Definition Properties Sylvester expansion Lagrange formula Force-free and forced evolution Impuse response Similarity transformation Diagonalisation Transition matrix Complex resenutues	$\begin{split} & \mu_1 = 1 \\ & \text{The eigenvalue associates with a single Jordan block of order 4} \\ & \bullet \text{ The index of eigenvalue is } \pi_1 = 4 \\ & \text{The resulting (non-derogatory) form} \\ & \mathbf{J}_5 = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 \\ 0 & 0 & \lambda_1 & 1 & 0 \\ 0 & 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix} \end{split}$
State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Sylvester expansion Lagrange formula Force-free and forced evolution Impulse response Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Jordan form Basis of generalised eigenvectors	Jordan form (cont.) $ \mu_{1} = 1 $ The eigenvalue associates with a single Jordan block of order 4 • The index of eigenvalue is $\pi_{1} = 4$ The resulting (non-derogatory) form $ J_{5} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0\\ 0 & \lambda_{1} & 1 & 0 & 0\\ 0 & 0 & \lambda_{1} & 1 & 0\\ 0 & 0 & 0 & \lambda_{1} & 0\\ 0 & 0 & 0 & 0 & \lambda_{2} \end{bmatrix} $
State-space representation UFC/DC SA (CK0191) 2018.1 Representation matrix Definition Properties Sylvester expansion Lagrange formula Force-free and force evolution Impulse response Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Jordan form Basis of generalised eigenvectors Generalised modal matrix	Jordan form (cont.) $ \mu_{1} = 1 $ The eigenvalue associates with a single Jordan block of order 4 • The index of eigenvalue is $\pi_{1} = 4$ The resulting (non-derogatory) form $ J_{5} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0\\ 0 & \lambda_{1} & 1 & 0 & 0\\ 0 & 0 & \lambda_{1} & 1 & 0\\ 0 & 0 & 0 & \lambda_{1} & 0\\ 0 & 0 & 0 & 0 & \lambda_{2} \end{bmatrix} $
 State-space representation UFC/DC SA (CK0191) 2018.1 Representation matrix Definition Properties Sylvester expansion Lagrange formula Force-free and foreed evolution Impuse response Similarity transformation Diagonalisation Tansition matrix Complex eigenvalues Jordan form Basis of generalised eigenvectors Generalised modal matrix Transition matrix Transition and modes	Jordan form (cont.) $ \mu_{1} = 1 $ The eigenvalue associates with a single Jordan block of order 4 . The index of eigenvalue is $\pi_{1} = 4$ The resulting (non-derogatory) form $ J_{5} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0\\ 0 & \lambda_{1} & 1 & 0 & 0\\ 0 & 0 & \lambda_{1} & 1 & 0\\ 0 & 0 & 0 & \lambda_{2} \end{bmatrix} $
State-space representation UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Sylvester expansion Lagrange formula Properties Sylvester expansion Lagrange formula Force-free and forced evolution Impuse response Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Jordan form Basis of generalised eigenvectors Generalised modal matrix Transition matrix Transition matrix	Jordan form (cont.) $ \mu_{1} = 1 $ The eigenvalue associates with a single Jordan block of order 4 . The index of eigenvalue is $\pi_{1} = 4$ The resulting (non-derogatory) form $ \mathbf{J}_{5} = \begin{bmatrix} \lambda_{1} & 1 & 0 & 0 & 0\\ 0 & \lambda_{1} & 1 & 0 & 0\\ 0 & 0 & \lambda_{1} & 1 & 0\\ 0 & 0 & 0 & \lambda_{2} \end{bmatrix} $

Basis of generalised eigenvectors (cont.) Basis of generalised eigenvectors (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1 $\mathbf{v}_3 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ is a generalised eigenvector of order 3 • We can construct the chain of length 3 $\mathbf{v}_{3} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \rightarrow \mathbf{v}_{2} = (\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_{3} = \begin{bmatrix} 2\\1\\-1\\-1 \\-1 \end{bmatrix} \rightarrow \mathbf{v}_{1} = (\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_{2} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ \mathbf{v}_3 and \mathbf{v}'_3 are linearly independent, \mathbf{v}_2 and \mathbf{v}'_2 (and \mathbf{v}_1 and \mathbf{v}'_1) are not • They differ by a multiplicative constant • We have that \mathbf{v}_1 is an eigenvector of \mathbf{A} $\mathbf{v}_3' = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ is a generalised eigenvector of order 3 • We can construct the chain of length 3 $\mathbf{v}_{3}' = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \rightarrow \mathbf{v}_{2}' = (\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_{3}' = \begin{bmatrix} 4\\1\\-2\\-2 \end{bmatrix} \rightarrow \mathbf{v}_{1}' = (\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_{2}' = \begin{bmatrix} 0\\2\\0\\0 \end{bmatrix}$ Basis of generalised Basis of generalised eigenvectors eigenvectors • We have that \mathbf{v}_1' is an eigenvector of \mathbf{A} Basis of generalised eigenvectors (cont.) Basis of generalised eigenvectors (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1The structure of generalised eigenvectors Consider a $(n \times n)$ matrix A Let λ be an eigenvalue with multiplicity ν and geometric multiplicity μ Proof It is possible to assign to such an eigenvalue λ a structure of ν linearly independent eigenvectors consisting of μ chains The theorem can be proved in a constructive way • An algorithm to determine the structure $\begin{cases} \mathbf{v}_{p_1}^{(1)} \to \dots \to \mathbf{v}_2^{(1)} \to \mathbf{v}_1^{(1)}, & chain \ 1 \\ \mathbf{v}_{p_2}^{(2)} \to \dots \to \mathbf{v}_2^{(2)} \to \mathbf{v}_1^{(2)}, & chain \ 2 \\ \vdots \\ \mathbf{v}_{p_{\mu}}^{(\mu)} \to \dots \to \mathbf{v}_2^{(\mu)} \to \mathbf{v}_1^{(\mu)}, & chain \ \mu \end{cases}$ • (For a specific eigenvalue) Let p_i be the length of the generic chain *i* Basis of generalised Basis of generalised eigenvectors eigenvectors We have, $\sum p_i = \nu$

 $\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 & 1 \\ 1 & 3 & 0 & 1 \\ -1 & 0 & 3 & -2 \\ -1 & 0 & 0 & 1 \end{bmatrix}$ One eigenvalue $\lambda = 3$, multiplicity $\nu = 4$ $\alpha_1 = n - \operatorname{rank}(3\mathbf{I} - \mathbf{A}) = 4 - 2 = 2$ $\alpha_2 = n - \operatorname{rank}(3\mathbf{I} - \mathbf{A})^2 = 4 - 1 = 3$ $\alpha_3 = n - \operatorname{rank}(3\mathbf{I} - \mathbf{A})^3 = 4 - 0 = 4$

As $\gamma_3 = 1$, we must choose a generalised eigenvector of order 3

• It will generate a chain of length 3

We denote by (1) at the exponent all vectors belonging to such a chain

Choose the generalised eigenvector of order 3, $\mathbf{v}_3^{(1)} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$

$$\mathbf{v}_{3}^{(1)} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \to \mathbf{v}_{2}^{(1)} = \begin{bmatrix} 2\\1\\-1\\-1 \end{bmatrix} \to \mathbf{v}_{1}^{(1)} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

State-space representation Basis of generalised eigenvectors (cont.) State-space representation	Basis of generalised eigenvectors (cont.)
UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties Subsets emergine	UFC/DC SA (CK0191) 2018.1 Representation and analysis State transition matrix Definition Properties	 As γ₁ = 1, we must choose a generalised eigenvector of order 1 A conventional eigenvector This is the fourth vector we get We denote by (2) at exponent vectors belonging to such a chain of length 1
by reach explanation Lagrange formula Force-free and force-free and force-free and force-free and force-free and formula Similarity transformation Diagonalisation Transition matrix Complex eigenvalues Jordan form Basis of generalised eigenvalues Jordan form Basis of generalised eigenvalues Transition matrix Transition matrix Transition and modes	bigenvectors of order 2 Lagrange formula Force-free and forced evolution Impulse response Similarity transformation Transition matrix Complex eigenvalues Jordan form Basis of generalised eigenvectors Generalised modal matrix Transition matrix Transition matrix Transition and modes	Choose the eigenvector $\mathbf{v} = \begin{bmatrix} a & b & c & d \end{bmatrix}^T \neq 0$ We get, $(3\mathbf{I} - \mathbf{A})\mathbf{v} = \begin{bmatrix} -2a - 4d \\ -a - d \\ a + 2d \\ a + d \end{bmatrix} = 0$ We can have that $a = d = 0$ We could choose $b = 1$ and $c = 0$ or $b = 0$ and $c = 1$
Basis of generalised eigenvectors (cont.) State-space	Basis of generalised eigenvectors (cont.)
Sume spacerepresentationUFC/DC SA (CK0191) 2018.1Representation and analysisState transition matrix Definition Properties Sylvester expansionLagrange formula Force-free and forced evolution Impulse responseSimilarity transition matrix Diagonalisation Transition matrix Transition matrix Transition matrix Transition matrixDefinition Properties Suppose that we choose $b = 1$ and $c = 0$, we get \mathbf{v} Suppose that we choose $b = 0$ and $c = 1$, we get $\mathbf{v}_1^{(2)} = \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix}$ Diagonalisation Transition matrix Transition matrix Transition matrixTransition matrix Transition matrix	(1) (1) (1) (1) (1) (1) (1) (1)	It is possible to associate to an eigenvalue λ and multiplicity ν a structure • ν linearly independent generalised eigenvectors This extends to generalised eigenvectors a classical theorem A matrix with <i>n</i> distinct eigenvalues has <i>n</i> linearly independent eigenvectors

Generalised modal matrix (cont.)

Generalised modal matrix

Consider a $(n \times n)$ matrix A

Consider a set of linearly independent generalised eigenvectors of A

Suppose that to eigenvalue λ correspond μ chains of generalised eigenvectors

 \rightsquigarrow Lengths $p_1, p_2, \ldots, p_{\mu}$

We can sort the generalised eigenvectors of λ and build a matrix \mathbf{V}_{λ}

Suppose that matrix **A** has r distinct eigenvalues λ_i (i = 1, ..., r)We define the $(n \times n)$ generalised modal matrix of A

```
\mathbf{V} = \begin{bmatrix} \mathbf{V}_{\lambda_1} | \mathbf{V}_{\lambda_2} | \cdots | \mathbf{V}_{\lambda_r} \end{bmatrix}
```

UFC/DC SA (CK0191) 2018.1

eigenvectors

Generalised modal matrix

These functions of time are multiplied by appropriate coefficients

Transition and

modes

In the case of more blocks associated to an eigenvalue of index π (the order of the largest block), the maximum term for to that eigenvalue will be $t^{\pi-1}e^{\lambda t}$

Transition matrix and modes State-space representation UFC/DC SA (CK0191) 2018.1 The modes are functions that characterise the dynamical behaviour • We studied them for IO representations We establish a similar concept also for SS representations Transition and modes Minimum polynomial and modes (cont.) State-space representation UFC/DC SA (CK0191) 2018.1

Minimum polynomial

Consider a matrix **A** with r distinct eigenvalues λ_i

• Let π_i be the indexes of the eigenvalues

We define the minimum polynomial

$$P_{min}(s) = \prod_{i=1}^{r} (s - \lambda_i)^{\tau}$$

Consider the roots λ_i of the minimum polynomial of multiplicity π_i

- To them we can associate the π_i functions of time
- We call them modes

Transition and

modes

$$e^{\lambda_i t}, te^{\lambda_i t}, \dots, t^{\pi_i - 1}e^{\lambda_i t}$$

Each element of state transition matrix is a linear combination of modes

```
\rightsquigarrow e^{\mathbf{A}t}
```

Minimum polynomial and modes (cont.) Minimum polynomial and modes (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1 Consider a system with SS representation $\begin{cases} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$ Minimum and characteristic polynomial coincide in nonderogatory matrices \rightarrow (Eigenvalues with multiplicity one is a special case) The state matrix **A** has two eigenvalues, both with multiplicity one $\rightsquigarrow \lambda_1 = -1$ $\rightsquigarrow \lambda_2 = -2$ Their index is unitary, too The minimum polynomial of **A** and the characteristic polynomial match $P_{\min}(s) = P(s) = (s+1)(s+2)$ Transition and Transition and modes modes Minimum polynomial and modes (cont.) Minimum polynomial and modes (cont.) State-space State-space representation representation UFC/DC UFC/DC SA (CK0191) SA (CK0191) 2018.1 2018.1Consider the matrix ${\bf A}$ $\mathbf{A} = \begin{bmatrix} 5 & 0 & 0 & 4 \\ 1 & 3 & 0 & 1 \\ -1 & 0 & 3 & -2 \\ -1 & 0 & 0 & 1 \end{bmatrix}$ The modes are e^{-t} and e^{-2t} We have, $e^{\mathbf{A}t} = \begin{bmatrix} e^{-t} & (e^{-t} - e^{-2t}) \\ 0 & e^{-2t} \end{bmatrix}$ One eigenvalue $\lambda = 3$, multiplicity $\nu = 4$, index $\pi = 3$ Each element is a linear combination of the modes The characteristic and the minimum polynomial $P(s) = (s - \lambda)^{\nu} = (s - 3)^4$ $P_{\min}(s) = (s - \lambda)^{\pi} = (s - 3)^{3}$ The modes $e^{3t}, te^{3t}, t^2 e^{3t}$ Transition and Transition and modes modes

State-space representation On the eigenvectors (cont.)	State-space representation On the eigenvectors (cont.)
UPC/DC SubsetProofRepresentation analysisLet v be an eigenvector of matrix A \cdot is the associated eigenvalueState transition matrix Densition Representation 	<section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header>
State-space representation UFC/DC SA(OK019) 2018.1 Representation matrix Definition Partix Definition Partix Definition Partix Definition Partix Potenties Sylveter consume Sylveter consume Partix Partice represent Partice repres	<section-header><section-header>State-space foresentation USC/DC SA (StAte- USER)On the eigenvectors (cont.)Transformation State transition matice Under Constate transformation Depared rematice Complex rematice Transformatice Transformatice Transformatice Transformatice Transformatice Transformatice Transformatice Transformatice Transformatice Transformatice Transformatice Transformatice TransformaticeOn the eigenvectors (cont.)State-space Transformatice Transformatice TransformaticeState space (cont.)State-space Transformatice Transformatice TransformaticeState space (cont.)State-space Transformatice TransformaticeState space (cont.)State-space Transformatice Transformatice TransformaticeState space (cont.)State-space Transformatice TransformaticeState space (cont.)State-space Transformatice TransformaticeState space (cont.)State-space Transformatice TransformaticeState space (cont.)State-space TransformaticeState space (cont.)<td< td=""></td<></section-header></section-header>

On the eigenvectors (cont.)

Suppose that \mathbf{x}_0 does not coincide with \mathbf{v}_i

We can always write,

$$\Rightarrow \quad \mathbf{x}_0 = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \sum_{i=1}^n \alpha_i \mathbf{v}_i$$

The initial condition is a linear combination of the basis of eigenvectors

• Through appropriate coefficients α_i

$$\mathbf{x}_u(t) = e^{\mathbf{A}t} \mathbf{x}_0 = \sum_{i=1}^n \alpha_i e^{\mathbf{A}t} \mathbf{v}_i = \sum_{i=1}^n \alpha_i e^{\lambda_i t} \mathbf{v}_i$$

Time evolution is a linear combination of evolutions, along eigenvectors

• Through the same coefficients α_i

UFC/DC SA (CK0191)

Transition and

On the eigenvectors (cont.)

The force-free evolution on the (x_1, x_2) -plane for different cases

Each trajectory corresponds to a different initial condition

• t increases according to the arrow

 \rightsquigarrow Its modulo decreases, e^{-t} is stable

X₁

