

FC

Calibration data Learning and test Basic statistics

Simple linear regresion

Fundamental chemometric data analysis methods

The term chemometrics was introduced in 1972 by Svante Wold (Swedish chemist)

- From slow and specialised wet-lab chemistry methods
- To general instrument- and model-based methods

How to use spectroscopy to determine concentrations in samples of various constituents

- Constituents absorb light in overlapping frequency regions

Idea: When the constituents do not absorb light in separated frequency regions, one must utilise a combination of many spectral frequencies to estimate the concentrations

\rightsquigarrow Multivariate calibration ${ }^{1}$

The problem of how to combine absorptions at several frequencies (or other chemical and physical sensor measurements) to approximate a measured set of concentrations (or other properties of the material under study) is called multivariate calibration

[^0]
FC

Calibration data Learning and test Basic statistics

Fundamental chemometric data analysis methods (cont.)

Suppose that we are interested in the content of protein and water in grain (original) \rightsquigarrow Protein analysis by applying the Kejdahl method
\rightsquigarrow Water by weighing normal and dried samples
In the spectroscopic method, we first lead infrared light through a number of samples
\rightsquigarrow We measure the light absorption at a number of frequencies, for all samples
\rightsquigarrow We also measure their protein and water concentration by wet-chemistry
Then, we use data to reconstruct the relation between absorbances and concentration

- This model is then used to estimate the concentration of unknown samples

Spectroscopy is fast, non-destructive and often it does not require sample preparation

- We need to couple the instrument/computer system to collect data
- We need to learn appropriate models using statistical tools

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Fundamental chemometric data analysis methods (cont.)

We give an introduction to the fundamental techniques of chemometric data analysis

- A basic knowledge of matrix algebra and elementary statistics is needed

We shall focus on multiple and multivariate regression techniques
\rightsquigarrow Calibration data, overview
\rightsquigarrow Classical least-squares, CLS
\rightsquigarrow Multiple linear regression, MLR
\rightsquigarrow Principal component regression, PCR
\rightsquigarrow (Partial least-squares regression, PLSR) June 2020

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Fundamental chemometric data analysis methods (cont.)

We will mostly refer to multivariate data from NIR spectroscopy, and concentrations

- The methods can be used on multivariate data from other sensor technologies
- (Mass spectroscopy, Raman spectroscopy, chemical imaging, ...)

The same generality applies to other fundamental variables in crystallisation processes

- (Crystal size distribution, crystal shape, polymorphic form, ...)

Chemometric data analysis can be used for many types of multivariate data

FC

Calibration data Learning and test

Basic statistics

The NIR frequency band

The electromagnetic spectrum [Atkin's, Physical chemistry] with wavelengths in [nm] Wavelength, λ / m

- Ultraviolet light, $1-400$ [nm]
\rightsquigarrow Near infrared light $750-2.5 K$ [nm]
- Visible light, $400-750$ [nm]
- Infrared light $750-10^{6}$ [nm]
\rightsquigarrow Mid infrared light $2.5 \mathrm{~K}-1.6 \mathrm{~K}$ [nm]
\rightsquigarrow Far infrared light $1.6 K-1 M$ [nm] June 2020

FC
Calibration data Learning and test Basic statistics Simple linear regresion

The NIR frequency band (cont.)

Spectroscopic absorption originates from molecular vibrations at different frequencies

- Fundamental vibrations found in the MIR band (Raman spectroscopy)
- Overtones and combinations in the NIR band (NIR spectroscopy)

Bond vibration	Structure	Wavelength [nm]
C-H stretch (2nd)	Aromatic	1143
C-H stretch (2nd)	$-\mathrm{CH}_{3}$	1152
C-H stretch (2nd)	$-\mathrm{CH}_{2}$	1215
C-H stretch (2nd)	-CH	1225

Liquid materials

- Transmission spectroscopy
- $(750-1100[\mathrm{~nm}])$

Powdered materials

Spectra provide a complex fingerprint of the sample's molecular constituents

- Reflection spectroscopy
- $(1100-2500[\mathrm{~nm}])$

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

The NIR frequency band (cont.)

Chemical bonds in molecular structures are associated with characteristic wavelengths

- The different characteristics in the NIR range overlap
- (Different from a typical GC line spectrum)
- (No well defined features, spread peaks)

Spectra of different types of sucrose

- Analyst (2001)
- Blanco and Romero

FC

Calibration data Learning and test Basic statistics regresion

Beer-Lambert's law

Suppose that we are given a sample, often a compound of several chemical components The absorbance of a single chemical component, at a particular wavelength

$$
x=-\log \left(\frac{I}{I_{0}}\right), \quad(x>0)
$$

I_{0}, original intensity of the incident light

- Before the sample is inserted
I, intensity of transmitted/reflected light
- After the sample is inserted

For transmission (reflection) spectroscopy $T=I_{0} / I$ is the transmittance (reflectance)

- Increasing concentration y will decrease transmittance or reflectance, T
- Then, also absorbance x will increase, according to some $x=g(y)$

FC

Calibration data

Learning and test Basic statistics
Simple linear regresion

Beer-Lambert's law (cont.)

Beer-Lambert law (Single component case)

$a=\varepsilon \delta$ denotes the absorbance of the pure component

$$
x=y a+e
$$

- ε, absorption coefficient (component specific)
- δ, path length of the incident light

Because the Beer-Lamber law may not hold exactly, therefore e is added as model error

Beer-Lambert law (Multiple component case)

$$
\begin{align*}
x & =y_{1} a_{1}+y_{2} a_{2}+\cdots+y_{M} a_{M}+e \tag{2a}\\
& =\sum_{m=1}^{M} y_{m} a_{m}+e \tag{2~b}
\end{align*}
$$

- y_{m}, concentration of component m
- a_{m}, absorbance of component m
$\rightsquigarrow M$, number of components

For closed systems where have that all components are analysed (known concentration)

- We have that $y_{1}+y_{2}+\cdots+y_{M}=1$ (compactly, $\sum_{m=1}^{M} y_{m}=1$)

Calibration data

Learning and test
Basic statistics

Calibration data

Chemometric data analysis

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Calibration data

Spectral data for an individual material sample amounts to a collection of absorbances

- At a number K of individual wavelengths
- $\left\{x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{K}\right\}$

FC

Calibration data

 Learning and test Basic statistics Simple linear regresionCalibration data (cont.)

At each k-th wavelength, Beer-Lambert law for a system consisting of M components

$$
\begin{align*}
x_{k} & =y_{1} a_{1 k}+y_{2} a_{2 k}+\cdots+y_{M} a_{M k}+e_{k} \tag{3a}\\
& =\sum_{m=1}^{M} y_{m} a_{m k}+e_{k}, \quad(k=1, \ldots, K) \tag{3b}
\end{align*}
$$

Considering the all the $k=1, \ldots, K$ wavelengths, we have

$$
\begin{aligned}
& x_{1}=y_{1} a_{11}+y_{2} a_{21}+\cdots+y_{M} a_{M 1}+e_{1} \\
& x_{2}=y_{1} a_{12}+y_{2} a_{22}+\cdots+y_{M} a_{M 2}+e_{2} \\
& \vdots \\
& x_{k}=y_{1} a_{1 k}+y_{2} a_{2 k}+\cdots+y_{M} a_{M k}+e_{k} \\
& \vdots \\
& x_{K}=y_{1} a_{1 K}+y_{2} a_{2 K}+\cdots+y_{M} a_{M K}+e_{K}
\end{aligned}
$$

FC

Calibration data

 Learning and test Basic statistics
Calibration data (cont.)

Beer-Lambert law (Multiple wavelength, multiple component case)

$$
\underbrace{\left[\begin{array}{c}
x_{1} \tag{5}\\
x_{2} \\
\vdots \\
x_{K}
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{M 1} \\
a_{12} & a_{22} & \cdots & a_{M 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 K} & a_{2 K} & \cdots & a_{M K}
\end{array}\right]}_{\mathbf{A}} \underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{M}
\end{array}\right]}_{\mathbf{y}}+\underbrace{\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{K}
\end{array}\right]}_{\mathbf{e}}
$$

- The measured spectrum, as a column vector

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{K}\right)^{\prime}
$$

- The spectra of the pure components, as column vectors

$$
\mathbf{a}_{m}=\left(a_{m 1}, a_{m 2}, \ldots, a_{m K}\right)^{\prime}, \quad(m=1, \ldots, M)
$$

- The concentrations of the components, as a column vector

$$
\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{M}\right)^{\prime}
$$

FC

Calibration data
Learning and test
Basic statistics

Calibration data

Often we have multiple samples, calibration data consists of an X-block and a Y-block

- N samples (absorption and concentrations)

Let $N=4$ be the number of material's samples consisting of $M=2$ be components

- Let $K=3$ be the number of wavelengths

Y-block, M concentrations measured by some reference (wet) method

- One row for each sample

X-block, K-dimensional absorption spectra by a NIR instrument

- One row for each sample

$$
\mathbf{Y}=\underbrace{\left[\begin{array}{ll}
{\left[y_{1,1}\right.} & y_{1,2}
\end{array}\right]}_{4 \times 2}\left[\begin{array}{ll}
{\left[y_{2,1}\right.} & y_{2,2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{y}_{1}^{\prime} \\
{\left[y_{3,1}\right.} \\
{\left[y_{2}\right.} \\
y_{2,2}
\end{array}\right] y_{4,2}]] . ~\left[\begin{array}{l}
\mathbf{y}_{3}^{\prime} \\
\mathbf{y}_{4}^{\prime}
\end{array}\right]
$$

$$
\mathbf{X}=\underbrace{\left[\begin{array}{lll}
{\left[\begin{array}{lll}
x_{1,1} & x_{1,2} & x_{1,3}
\end{array}\right]} \\
{\left[x_{2,1}\right.} & x_{2,2} & x_{2,3}
\end{array}\right]}_{4 \times 3}\left[\begin{array}{lll}
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right]\}\left[\begin{array}{c}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2} \\
x_{4,1}
\end{array} x_{4,2} \quad x_{4,3}\right]] . ~\left[\begin{array}{c}
\mathbf{x}_{3}^{\prime} \\
\mathbf{x}_{4}^{\prime}
\end{array}\right]
$$

FC

callbration dat
Learning and test
Basic statistics

$$
\mathbf{Y}=f(\mathbf{X})+\mathbf{E}
$$

We are interested in estimating how the Y -block varies with the X -block, function f

- (We are interested in estimating concentrations y from spectra x)
- (We shall use only the given calibration data, blocks \mathbf{X} and Y)
- (We shall assume that function f is some unknown matrix, B)

Notice how this is the inverse problem of what Beer-Lambert law models, $\mathbf{X}=g(\mathrm{Y})+\mathbf{E}$

- (Spectra x from concentrations y , and pure component spectra a)
- (Beer-Lambert law assumes that function g is a matrix, \mathbf{A})

June 2020
FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Calibration data (cont.)

$$
\mathbf{Y}=f(\mathbf{X})+\mathbf{E}
$$

Remember, not restricted to concentrations, other material's properties could be used

- Any property depending on concentration can be estimated from spectra
- (The property must be dependent of the sample type and composition)

To develop the treatment, we primarily use concentrations (Y) and NIR spectra (X)

CHEM-ACCC

 June 2020
FC

Calibration data Learning and test Basic statistics

Calibration data (cont.)

Example

Concentration of proteins and water in grain samples, from NIR spectra
Two concentrations $(M=2)$, 5 -wavelength $(K=5)$ spectra, $N=26$ samples
Y-block, $M=2$ concentrations

$$
\mathbf{Y}=\underbrace{\left[\begin{array}{cc}
y_{1,1} & y_{1,2} \\
y_{2,1} & y_{2,2} \\
\vdots & \vdots \\
y_{26,1} & y_{26,2}
\end{array}\right]}_{26 \times 2}
$$

X-block, $K=5$ absorption bands

$$
\mathbf{X}=\underbrace{\left[\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1,5} \\
x_{2,1} & x_{2,2} & \cdots & x_{2,5} \\
\vdots & \vdots & \ddots & \vdots \\
x_{26,1} & x_{26,2} & \cdots & x_{26,5}
\end{array}\right]}_{26 \times 5}
$$

FC

Calibration data

Learning and test

[^1]Simple linear regresion

Calibration data (cont.)

Y-block, $M=2$ concentrations

$$
\mathbf{Y}=\underbrace{\left[\begin{array}{cc}
y_{1,1} & y_{1,2} \\
{\left[y_{2,1}\right.} & \left.y_{2,2}\right] \\
\vdots & \vdots \\
y_{26,1} & y_{26,2}
\end{array}\right]}_{26 \times 2}
$$

The concentration of protein and water in the second sample

$$
\mathbf{y}_{2}=\left[\begin{array}{ll}
y_{2,1} & y_{2,2}
\end{array}\right]
$$

X-block, $K=5$ absorption spectra

$$
\mathbf{X}=\underbrace{\left[\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1,5} \\
{\left[x_{2,1}\right.} & x_{2,2} & \cdots & \left.y_{2,3}\right] \\
\vdots & \vdots & \ddots & \vdots \\
x_{26,1} & x_{26,2} & \cdots & x_{26,5}
\end{array}\right]}_{26 \times 5}
$$

FC

Calibration data
Learning and test Basic statistics

Test data consists of one or more spectra of samples of unknown composition

$$
\mathbf{z}=\left[\begin{array}{llll}
z_{1} & z_{2} & \cdots & z_{K}
\end{array}\right]
$$

The calibration model can be used to predict the unknown concentrations

$$
\widehat{\mathbf{y}}=\left[\begin{array}{llll}
\widehat{y}_{1} & \widehat{y}_{2} & \ldots & \widehat{y}_{m}
\end{array}\right]
$$

$\rightsquigarrow ~ ' H a t s ' ~ a r e ~ u s e d ~ t o ~ d e n o t e ~ p r e d i c t i o n s ~ a n d ~ e s t i m a t e s ~$

We consider models that make predictions $\widehat{\mathbf{y}}$ of the form

$$
\begin{equation*}
\underbrace{\widehat{\mathbf{y}}}_{(M \times 1)}=\underbrace{\widehat{\mathbf{B}}}_{(M \times K)} \underbrace{\mathbf{z}}_{(K \times 1)} \tag{6}
\end{equation*}
$$

- $\widehat{\mathbf{B}}$ is a matrix of regression coefficients
- It is learned from calibration data June 2020

FC

Calibration data Learning and test Basic statistics Simple linear regresion

Test data (cont.)

Example

Concentration of proteins and water in grain samples, from NIR spectra
Two concentrations $(M=2)$, 5 -wavelength $(K=5)$ spectra, $N=26$ samples

X-block, $K=3$ frequency spectra

$$
\mathbf{X}=\underbrace{\left[\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1,5} \\
x_{2,1} & x_{2,2} & \cdots & x_{2,5} \\
\vdots & \vdots & \ddots & \vdots \\
x_{26,1} & x_{26,2} & \cdots & x_{26,5}
\end{array}\right]}_{26 \times 5}
$$

Y-block, $M=2$ concentrations

$$
\mathbf{Y}=\underbrace{\left[\begin{array}{cc}
y_{1,1} & y_{1,2} \\
y_{2,1} & y_{2,2} \\
\vdots & \vdots \\
y_{26,1} & y_{26,2}
\end{array}\right]}_{26 \times 2}
$$

The test data, only absorbances at each of the five frequencies are given

$$
\mathbf{z}=\left[\begin{array}{llll}
z_{1} & z_{2} & \cdots & z_{5}
\end{array}\right]
$$

The concentrations are unknown, must be estimated by the model

$$
\widehat{\mathrm{y}}=\left[\begin{array}{ll}
\widehat{y}_{1} & \widehat{y}_{2}
\end{array}\right]
$$

FC

Calibration data
Learning and test
Basic statistics

Basic statistics

Consider the data matrices \mathbf{X} and \mathbf{Y}, we shall assume that there are no missing data

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, K} \\
\vdots & \ddots & \vdots \\
x_{N, 1} & \cdots & x_{N, K}
\end{array}\right] \\
\mathbf{Y}=\left[\begin{array}{ccc}
y_{1,1} & \cdots & y_{1, M} \\
\vdots & \ddots & \vdots \\
y_{N, 1} & \cdots & y_{N, M}
\end{array}\right]
\end{gathered}
$$

Explanatory (input) variables

- N data points, the samples (rows)
- K easy-to-measure variables (absorbances)

Response (output) variables

- N data points, the samples (rows)
- M hard-to-measure variables (concentrations)

The columns of \mathbf{X} and Y will be denoted as variables, their rows are the observations

- $\mathbf{x}(N \times 1)$, the columns of \mathbf{X} (absorbance of all samples at some wavelength)
- y $(N \times 1)$, the columns of Y (concentration of all samples of some component)

For each variable and sample, we plot them and then compute descriptive statistics

- min, max, mean, standard deviation, variance, ... June 2020

FC

Calibration data Learning and test Basic statistics Simple linear regresion

Basic statistics (cont.)

Plot of the explanatory variables (spectral plot)

\rightsquigarrow Each row of \mathbf{X} is plotted as function of the column variable k

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Emission intensity spectra of the collected seawater samples

$$
\mathbf{X}=\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, K} \\
\vdots & \ddots & \vdots \\
x_{N, 1} & \cdots & x_{N, K}
\end{array}\right]
$$

- $K=27$ wavelengths
- $N=16$ samples

Each emission intensity must be non-negative and must behave reasonably (smooth) June 2020

FC

Learning and test
Basic statistics
Simple linear regresion

Basic statistics (cont.)

Plot of the response variables (composition plot)
\rightsquigarrow Each row of \mathbf{Y} is plotted as function of the column variable m

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Humic acid, Ligninsulphonate, and also Detergents are found

$$
\mathbf{Y}=\left[\begin{array}{ccc}
y_{1,1} & \cdots & y_{1, M} \\
\vdots & \ddots & \vdots \\
y_{N, 1} & \cdots & y_{N, M}
\end{array}\right]
$$

- $M=3(2)$ concentrations
- $N=16$ samples

Concentrations must take on non-negative values only

Sea pollution (16 samples)

Basic statistics (cont.)

Empirical (statistical) quantities are properties of the N observations (the samples)

- For a given variable (column of either block)

Let $\mathrm{x}(N \times 1)$ be a column of \mathbf{X} (absorbances at a specific wavelength, all samples)

$$
\mathbf{X}=\left[\begin{array}{ccccc}
x_{1,1} & \cdots & x_{1, k} & \cdots & x_{1, K} \\
\vdots & \ddots & \vdots & & \vdots \\
x_{n, 1} & \cdots & x_{n, k} & \cdots & x_{n, K} \\
\vdots & & \vdots & \ddots & \vdots \\
x_{N, 1} & \cdots & x_{N, k} & \cdots & x_{N, K}
\end{array}\right] \rightsquigarrow \mathbf{x}=\left[x_{1, k}, x_{2, k}, \ldots, x_{N, k}\right]=\left[x_{1}, x_{2}, \ldots, x_{N}\right]
$$

Let $\mathrm{y}(N \times 1)$ be a column of \mathbf{Y} (absorbances of a specific component, all samples)

$$
\mathbf{Y}=\left[\begin{array}{ccccc}
y_{1,1} & \cdots & y_{1, k} & \cdots & y_{1, M} \\
\vdots & \ddots & \vdots & & \vdots \\
y_{n, 1} & \cdots & y_{n, m} & \cdots & y_{n, M} \\
\vdots & & \vdots & \ddots & \vdots \\
y_{N, 1} & \cdots & y_{N, m} & \cdots & y_{N, M}
\end{array}\right] \rightsquigarrow \mathbf{y}=\left[y_{1, m}, y_{2, m}, \ldots, y_{N, m}\right]=\left[y_{1}, y_{2}, \ldots, y_{N}\right]
$$

FC

Calibration data

Learning and test

Basic statistics

Simple linear regresion

Basic statistics (cont.)

The sample mean of x : (An estimate of the) Expected value of x, its average

$$
\begin{align*}
\bar{x} & =\frac{1}{N}\left(x_{1}+x_{2}+\cdots+x_{N}\right) \tag{7a}\\
& \rightsquigarrow \frac{1}{N} \mathbf{1}^{T} \mathbf{x} \tag{7b}
\end{align*}
$$

- The vector of means of \mathbf{X}, a collection of averages

$$
\overline{\mathbf{x}}=\left[\begin{array}{llllll}
\bar{x}_{1} & \bar{x}_{2} & \ldots & \bar{x}_{k} & \ldots & \bar{x}_{K} \tag{8}
\end{array}\right], \quad \rightsquigarrow \frac{1}{N} \mathbf{1}^{T} \mathbf{X}
$$

The sample mean of y : (An estimate of the) Expected value of y, its average

$$
\begin{align*}
\bar{y} & =\frac{1}{N}\left(y_{1}+y_{2}+\cdots+y_{N}\right) \tag{9a}\\
& \rightsquigarrow \frac{1}{N} \mathbf{1}^{T} \mathbf{y} \tag{9b}
\end{align*}
$$

- The vector of means of \mathbf{Y}, a collection of averages

$$
\overline{\mathbf{y}}=\left[\begin{array}{llllll}
\bar{y}_{1} & \bar{y}_{2} & \cdots & \bar{y}_{m} & \cdots & \bar{y}_{M} \tag{10}
\end{array}\right], \quad \rightsquigarrow \frac{1}{N} \mathbf{1}^{T} \mathbf{Y}
$$

$1(N \times 1)$, a column-vector of ones

FC

Calibration data Learning and test Basic statistics
Simple linear regresion

Basic statistics (cont.)

The sample variance of x : Expected squared deviation of x from its mean \bar{x}

$$
\begin{align*}
s_{x}^{2} & =\frac{1}{N-1}\left[\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{N}-\bar{x}\right)^{2}\right] \tag{11a}\\
& \rightsquigarrow \frac{1}{N-1}(\mathbf{x}-\bar{x} \mathbf{1})^{T}(\mathbf{x}-\bar{x} \mathbf{1})=\frac{1}{N-1}\|\mathbf{x}-\bar{x} \mathbf{1}\|^{2} \tag{11b}
\end{align*}
$$

- The sample standard deviation of $\mathbf{x}, s_{x}=\sqrt{s_{x}^{2}}$

The sample variance of y: Expected squared deviation of y from its mean \bar{y}

$$
\begin{align*}
s_{y}^{2} & =\frac{1}{N-1}\left[\left(y_{1}-\bar{y}\right)^{2}+\left(y_{2}-\bar{y}\right)^{2}+\cdots+\left(y_{N}-\bar{y}\right)^{2}\right] \tag{12a}\\
& \rightsquigarrow \frac{1}{N-1}(\mathbf{y}-\bar{y} \mathbf{1})^{T}(\mathbf{y}-\bar{y} \mathbf{1})=\frac{1}{N-1}\|\mathbf{y}-\bar{y} \mathbf{1}\|^{2} \tag{12b}
\end{align*}
$$

- The sample standard deviation of $\mathbf{y}, s_{y}=\sqrt{s_{y}^{2}}$

CHEM-ACCC

 June 2020
FC

Calibration data
Learning and test
Basic statistics

Simple linear

 regresionBasic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

The mean concentration $\bar{y}_{2}(-)$

- Ligninsulphonate
- $\overline{y_{2}} \pm s_{y 2}(--)$

The mean spectrum $\overline{\mathbf{x}}(-)$

- $\overline{\mathbf{x}} \pm \mathbf{1} s_{x}(--)$

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Basic statistics (cont.)

The mean concentration $\bar{y}_{1}(-)$

- $\overline{y_{1}} \pm s_{y 1}(--)$
- Humic acid

FC

Calibration data Learning and test Basic statistics

Simple linear regresion

Basic statistics (cont.)

The sample covariance of x and y : Expected product of deviations from means

$$
\begin{align*}
v_{x y} & =\frac{1}{N-1}\left[\left(x_{1}-\bar{x}\right)\left(y_{1}-\bar{y}\right)+\left(x_{2}-\bar{x}\right)\left(y_{2}-\bar{y}\right)+\cdots+\left(x_{N}-\bar{x}\right)\left(y_{N}-\bar{y}\right)\right] \tag{13a}\\
& =\frac{1}{N-1}(\mathbf{x}-\bar{x} \mathbf{1})^{T}(\mathbf{y}-\bar{y} \mathbf{1}) \tag{13b}
\end{align*}
$$

The sample covariance of y and x : Expected product of deviations from means

$$
\begin{align*}
v_{y x} & =\frac{1}{N-1}\left[\left(y_{1}-\bar{y}\right)\left(x_{1}-\bar{x}\right)+\left(y_{2}-\bar{y}\right)\left(x_{2}-\bar{x}\right)+\cdots+\left(y_{N}-\bar{y}\right)\left(x_{N}-\bar{x}\right)\right] \tag{14a}\\
& =\frac{1}{N-1}(\mathbf{y}-\bar{y} \mathbf{1})^{T}(\mathbf{x}-\bar{x} \mathbf{1}) \tag{14b}
\end{align*}
$$

Clearly, we have that $v_{x y}=v_{y x}$, and that $v_{x x}=s_{x}^{2}$ and $v_{y y}=s_{y}^{2}$

CHEM-ACCC

 June 2020
FC

Calibration data Learning and test Basic statistics Simple linear regresion

Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

A vector of covariances $v_{x y_{2}}$

- Ligninsulphonate
- $v_{x y_{2}}(-)$

CHEM-ACCC
June 2020
FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Basic statistics (cont.)

A vector of covariances $v_{x y_{1}}$

- Humic acid
- $v_{x y_{1}}(-)$

A vector of covariances $v_{x y_{3}}$

- Detergent
- $v_{x y_{3}}(-)$

FC

Calibration data Learning and test Basic statistics

Basic statistics (cont.)

Data standardisation

Centering: We center $(N \times 1)$ vectors x and y , by subtracting their mean \bar{x} and \bar{y}

We get two new $(N \times 1)$ vectors $\dot{\mathrm{x}}$ and $\dot{\mathrm{y}}$
\rightsquigarrow Their mean is equal zero

$$
\begin{align*}
\dot{\mathrm{x}} & =\mathrm{x}-\mathbf{1} \bar{x} \tag{15a}\\
\rightsquigarrow \mathrm{x} & =\dot{\mathrm{x}}+\mathbf{1} \bar{x} \tag{15~b}
\end{align*}
$$

\rightsquigarrow Variance is unchanged

- $s_{\dot{x}}^{2}=\frac{1}{N-1} \dot{\mathbf{x}}^{T} \dot{\mathrm{x}}$
- $s_{\dot{y}}^{2}=\frac{1}{N-1} \dot{\mathbf{y}}^{T} \dot{\mathbf{y}}$

$$
\begin{align*}
\dot{\mathbf{y}} & =\mathbf{y}-\mathbf{1} \bar{y} \tag{16a}\\
\rightsquigarrow \mathbf{y} & =\dot{\mathbf{y}}+\mathbf{1} \bar{y} \tag{16b}
\end{align*}
$$

The corresponding centred matrices $\dot{\mathbf{X}}$ and $\dot{\mathbf{Y}}$, size $(N \times K)$ and $(N \times M)$ respectively

$$
\begin{align*}
& \dot{X}=X-\mathbf{1} \overline{\mathrm{x}} \tag{17a}\\
& \dot{Y}=Y-\mathbf{1} \overline{\mathrm{y}} \tag{17b}
\end{align*}
$$

CHEM-ACCC

 June 2020
FC

Calibration data
Learning and test Basic statistics

Simple linear regresion

Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Each row of $\dot{\mathbf{X}}$ is plotted as function of the variable k

FC

Calibration data

Learning and test
Basic statistics

Simple linear

 regresionBasic statistics (cont.)

The centred concentrations $\dot{\mathbf{y}}_{1}$

- Humic acid

Sea pollution (16 samples)

Sea pollution (16 samples)

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Basic statistics (cont.)

Scaling: The idea is to make the columns of Y have the same standard deviation s_{y}
\rightsquigarrow This is only needed when the measurements units of ys are different
\rightsquigarrow (Spectral variables x need not be scaled, same absorbance units)
We can replace each column y by $y_{\text {scaled }}$

$$
\rightsquigarrow \quad \mathbf{y}_{\text {scaled }}=\frac{1}{s_{y}} \mathrm{y}
$$

Scaling: Make the columns of Y have zero mean and the same standard deviation s_{y}
We can replace each column y by yautoscaled

$$
\begin{aligned}
\rightsquigarrow \bar{y}_{\text {autoscaled }} & =0 \\
\rightsquigarrow s_{y_{\text {autoscaled }}} & =1
\end{aligned}
$$

$$
\rightsquigarrow \quad \mathrm{y}_{\text {autoscaled }}=\frac{1}{s_{y}} \dot{\mathrm{y}}
$$

CHEM-ACCC

 June 2020
FC

Calibration data
Learning and test Basic statistics

Simple linear regresion

Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Each row of $\mathbf{X}_{\text {scaled }}$ is plotted as function of the variable k

FC

Calibration data

Learning and test
Basic statistics regresion

Basic statistics (cont.)

The autoscaled concentrations of humic acid, \mathbf{y}_{1}, autoscaled

The autoscaled concentrations of detergent, $\mathbf{y}_{3 \text {,autoscaled }}$

Sea pollution (16 samples)
Sea pollution (16 samples)

FC

Calibration data Learning and test Basic statistics regresion

Basic statistics (cont.)

We can estimate the sample (variance-)covariance matrices of variables X and Y

Explanatory variables

$$
\begin{equation*}
\mathbf{V}_{X}=\frac{1}{n-1} \dot{\mathbf{X}}^{T} \dot{\mathbf{X}} \tag{18a}
\end{equation*}
$$

$$
=\left[\begin{array}{cccc}
s_{x 1}^{2} & v_{x 1, x 2} & \cdots & v_{x 1, x K} \tag{18b}\\
v_{x 2, x 1} & s_{x 2}^{2} & \cdots & v_{x 2, x K} \\
\vdots & \vdots & \ddots & \vdots \\
v_{x K, x 1} & v_{x K, x 2} & \cdots & v_{x K, x K}
\end{array}\right]
$$

- $\mathbf{V}_{X}=\mathbf{V}_{X}{ }^{T}$

Response variables

- Size $(M \times M)$
- $\mathbf{V}_{Y}=\mathbf{V}_{Y}{ }^{T}$

$$
\begin{align*}
\mathbf{V}_{Y} & =\frac{1}{n-1} \dot{\mathbf{Y}}^{T} \dot{\mathbf{Y}} \tag{19a}\\
& =\left[\begin{array}{cccc}
s_{y 1}^{2} & v_{y 1, y 2} & \cdots & v_{y 1, y M} \\
v_{y 2, y 1} & s_{y 2}^{2} & \cdots & v_{y 2, y M} \\
\vdots & \vdots & \ddots & \vdots \\
v_{y K, y 1} & v_{y K, y 2} & \cdots & v_{y K, y K}
\end{array}\right] \tag{19b}
\end{align*}
$$

CHEM-ACCC
June 2020
FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Basic statistics (cont.)

We can also estimate the sample (variance-)covariance matrix between X and Y Explanatory and response variables

$$
\begin{equation*}
\mathbf{V}_{X Y}=\frac{1}{n-1} \dot{\mathbf{X}}^{T} \dot{Y} \tag{20a}
\end{equation*}
$$

- Size $(K \times M)$
- $\mathbf{V}_{X Y}=\mathbf{V}_{Y X}^{T}$

$$
=\left[\begin{array}{cccc}
v_{x 1, y 1} & v_{x 1, y 2} & \cdots & v_{x 1, y M} \tag{20b}\\
v_{x 2, y 1} & v_{x 2, y 2} & \cdots & v_{x 2, y M} \\
\vdots & \vdots & \ddots & \vdots \\
v_{x K, y 1} & v_{x K, y 2} & \cdots & v_{x K, y M}
\end{array}\right]
$$

CHEM-ACCC

 June 2020FC

Calibration data Learning and test Basic statistics

Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

The individual variance-covariance matrices of the \mathbf{X} - and the \mathbf{Y}-block, respectively

- $\mathbf{V}_{\mathbf{Y}}$ is dimension $(M \times M)$
- $\mathbf{V}_{\mathbf{X}}$ is dimension $(K \times K)$

Notation for the \mathbf{y} variables: 1) Humic acid; 2) Lignisupfonate; and 3) Detergent

June 2020

Basic statistics (cont.)

FC

Calibration data

 Learning and testBasic statistics

How variation in \mathbf{y} vars is explained by variation in \mathbf{x} vars

- The variance-covariance matrix between blocks
- $\mathbf{V}_{\mathbf{X}} \mathbf{Y}$ is dimension $(K \times M)$

Notation:
(1) Humic acid
(2) Lignisupfonate
(3) Detergent June 2020

FC

Calibration data
Learning and test Basic statistics

Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Preprocessing of the \mathbf{X}-block

$$
\mathbf{X} \rightsquigarrow \dot{\mathbf{X}} \rightsquigarrow \mathbf{X}_{\text {scaled }}
$$

 June 2020

Basic statistics (cont.)

FC

Calibration data

Learning and test
Basic statistics

Preprocessing of the \mathbf{Y}-block

$$
\mathbf{Y} \rightsquigarrow \dot{\mathbf{Y}} \rightsquigarrow \mathbf{Y}_{\text {scaled }}
$$

(1) Humic acid
(2) Lignisupfonate
(3) Detergent

123

123

Simple linear regression

Chemometric data analysis

FC

Calibration data Learning and test Basic statistics

Simple linear regresion

Simple linear regression

Suppose that we are interested in estimating the concentration of a single component

- Also, suppose that we want to use the absorbance at a single wavelength
\rightsquigarrow One explanatory input and one response output variable only

For the task, we are given data and we consider the simple linear regression model

$$
\begin{equation*}
y_{n}=\left(c+b x_{n}\right)+\varepsilon_{n}, \quad(n=1,2, \ldots, N) \tag{21}
\end{equation*}
$$

N is the sample size, the number of available data, $\left(x_{n}, y_{n}\right)$ pairs 2

- x_{n}, n-th value of the explanatory (absorbance) variable
- y_{n}, n-th value of the response (concentration) variable
- ε_{n}, n-th error term (independent, zero mean, variance σ^{2})

The model assumes that concentration is linearly related to absorbance, up to errors

[^2]
FC

Learning and test Basic statistics

Simple linear regresion

Simple linear regression (cont.)

Linear regression in vector-scalar form

$$
y_{n}=\left(c+b x_{n}\right)+\varepsilon_{n}, \quad(n=1,2, \ldots, N)
$$

The model has a number of parameters that need to be calibrated/estimated from data

- c, the intercept of the regression model (a line)
- b, the slope of the regression model (a line)

We implicitly assumed that ε_{n} the n-th noise term, the error, is somehow known

- It is assumed to be independent between the samples
- Assumed to have zero mean and common variance σ^{2}
\rightsquigarrow Thus, only estimation of σ^{2} would be needed

Unknown parameters to be estimated from data

- (c, b), regression coefficients

$$
\theta=\left(c, b, \sigma^{2}\right)
$$

- σ^{2}, residual variance

FC

Calibration data
Learning and test Basic statistics

Simple linear regresion

Simple linear regression (cont.)

We can stack the N model equations

$$
\begin{aligned}
y_{n} & =c+b x_{n}+\varepsilon_{i} \\
& =1 c+b x_{n}+\varepsilon_{i}
\end{aligned}
$$

with $n=1,2, \ldots, N$
$\underbrace{\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n} \\ \vdots \\ y_{N-1} \\ y_{N}\end{array}\right]}_{\mathrm{y}}=\underbrace{\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \\ 1\end{array}\right] c+\underbrace{\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \vdots \\ x_{N-1} \\ x_{N}\end{array}\right]}_{\mathbf{x} b} b+\underbrace{\left[\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n} \\ \vdots \\ \varepsilon_{N}\end{array}\right]}_{\varepsilon}}_{\mathbf{1} c}$

We can rewrite the linear regression model in vector form

$$
\begin{align*}
\mathrm{y} & =\mathbf{1} c+\mathbf{x} b+\boldsymbol{\varepsilon} \tag{23a}\\
& =\mathbf{1} c+\underbrace{(\dot{\mathbf{x}}+\mathbf{1} \bar{x})}_{\text {centring }} b+\boldsymbol{\varepsilon} \tag{23b}\\
& =\mathbf{1} c+\dot{\mathbf{x}} b+\mathbf{1}(\bar{x} b)+\boldsymbol{\varepsilon} \tag{23c}\\
& =\mathbf{1} b_{0}+\dot{\mathbf{x}} b+\boldsymbol{\varepsilon} \tag{23d}
\end{align*}
$$

with $b_{0}=c+(\bar{x} b)$ a constant term after centring x

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Simple linear regression (cont.)

LR, estimation

$$
\mathrm{y}=\mathbf{1} b_{0}+\dot{\mathrm{x}} b+\varepsilon
$$

The least-squares estimators for the regression parameters b_{0} and b are the following

$$
\begin{align*}
& \widehat{b}_{0}=\bar{y} \tag{24a}\\
& \widehat{b}=\frac{\dot{\mathrm{x}}^{T} \dot{\mathrm{y}}}{\dot{\mathrm{x}}^{T} \dot{\mathrm{x}}}=\frac{v_{x y}}{s_{x}^{2}} \quad\left(\text { with } \sigma_{x}>0\right) \tag{24b}
\end{align*}
$$

The case $s_{x}^{2}=0$ is uninteresting as it corresponds to all absorbances being equal

- $v_{x y}$, the covariance between x and y
- $\left(s_{x}^{2}\right.$, the variance of $\left.x\right)$

FC

Calibration data Learning and test Basic statistics

Simple linear regresion

Simple linear regression (cont.)

Consider the simple linear regression model in vector form $\mathbf{y}=\mathbf{1} b_{0}+\dot{\mathbf{x}} b+\varepsilon$

- In sample-by-sample form, $y_{n}=b_{0}+\dot{x}_{n} b+\varepsilon_{n}=b_{0}+\left(x_{n}-\bar{x}\right) b+\varepsilon_{n}$

We are interested in the pair of values $\left(b_{0}, b\right)$ that minimise the sum of squared errors

- Residual sum of squares (RSS) as cost function

$$
\begin{equation*}
\mathcal{J}\left(b_{0}, b\right)=\sum_{n=1}^{N}[\underbrace{y_{n}}_{\text {Measurement }}-\underbrace{\left(b_{0}-\dot{x}_{n} b\right)}_{\text {Model prediction }}]^{2}=\sum_{i=1}^{N} \varepsilon_{i}^{2} \tag{25}
\end{equation*}
$$

Necessary first-order optimality condition, the gradient of the cost function is zero

$$
\nabla \mathcal{J}\left(b_{0}, b\right)=\left[\begin{array}{l}
\frac{\partial \mathcal{J}\left(b_{0}, b\right)}{\partial b_{0}} \\
\frac{\partial \mathcal{J}\left(b_{0}, b\right)}{\partial b}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\mathbf{0}
$$

FC

Calibration data
Learning and test Basic statistics

Simple linear regresion

Simple linear regression (cont.)

We differentiate $\mathcal{J}\left(b_{0}, b\right)$ with respect to b_{0} and set the partial to be equal to zero,

$$
\begin{align*}
\frac{\partial \mathcal{J}\left(b_{0}, b\right)}{\partial b_{0}} & =\frac{\partial}{\partial b_{0}}\left[\sum_{n=1}^{N}\left(y_{n}-b_{0}-\dot{x}_{n} b\right)^{2}\right]=\sum_{n=1}^{N}\left[\frac{\partial}{\partial b_{0}}\left(y_{n}-b_{0}-\dot{x}_{n} b\right)^{2}\right] \\
& =\sum_{n=1}^{N}\left[-2\left(y_{n}-b_{0}-\dot{x}_{n} b\right)\right]=-2 \sum_{n=1}^{N}\left(y_{n}-b_{0}-\dot{x}_{n} b\right) \\
& =-2\left(\sum_{n=1}^{N} y_{n}-\sum_{n=1}^{N} b_{0}-\sum_{n=1}^{N} \dot{x}_{n} b\right)=-2(\sum_{n=1}^{N} y_{n}-\underbrace{\sum_{n=1}^{N} b_{0}}_{N b_{0}}-b \sum_{n=1}^{N} \underbrace{\dot{x}_{n}}_{x_{n}-\bar{x}}) \tag{26c}\\
& =-2\left(\sum_{n=1}^{N} y_{n}-N b_{0}-0\right)=0 \tag{26~d}
\end{align*}
$$

We get,

$$
\rightsquigarrow \quad \widehat{b}_{0}=\frac{1}{N} \sum_{n=1}^{N} y_{n}=\bar{y}
$$

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Simple linear regression (cont.)

We differentiate $\mathcal{J}\left(b_{0}, b\right)$ with respect to b and set the partial to be equal to zero,

$$
\begin{align*}
& \frac{\partial \mathcal{J}\left(b_{0}, b\right)}{\partial b_{0}}=\frac{\partial}{\partial b}\left[\sum_{n=1}^{N}\left(y_{n}-b_{0}-\dot{x}_{n} b\right)^{2}\right]=\sum_{n=1}^{N}\left[\frac{\partial}{\partial b}\left(y_{n}-b_{0}-\dot{x}_{n} b\right)^{2}\right] \tag{27a}\\
&=\sum_{n=1}^{N}\left[-2 \dot{x}_{n}\left(y_{n}-b_{0}-\dot{x}_{n} b\right)\right]=-2 \sum_{n=1}^{N} \dot{x}_{n}\left(y_{n}-b_{0}-\dot{x}_{n} b\right) \tag{27b}\\
&=-2 \sum_{n=1}^{N}\left(\dot{x_{n}} y_{n}-\dot{x_{n}} b_{0}-\dot{x}_{n}^{2} b\right)=-2(\underbrace{\sum_{n=1}^{N} \dot{x_{n}} y_{n}}_{\dot{\mathbf{x}}^{T} \mathbf{y}}-b_{0} \sum_{n=1}^{N} \underbrace{\dot{x}_{n}}_{x_{n}-\bar{x}}-b \underbrace{\sum_{n=1}^{N}}_{\dot{\mathbf{x}}^{T} \dot{\mathbf{x}}} \dot{x}_{n}^{2} \tag{27c}\\
&=-2(27 \mathrm{a}) \tag{27~d}\\
&
\end{align*}
$$

We get,

$$
\rightsquigarrow \quad \hat{b}=\frac{\dot{\mathbf{x}}^{T} \mathbf{y}}{\dot{\mathbf{x}}^{T} \dot{\mathbf{x}}}=\frac{v_{x y}}{s_{x}^{2}} \quad\left(\text { with } s_{x}^{2}>0\right)
$$

FC
Calibration data
Learning and test
Basic statistics
Simple linear regresion

Simple linear regression (cont.)

Sufficient second-order optimality condition, Hessian of the cost function is PD

$$
\begin{align*}
\nabla^{2} \mathcal{J}\left(b_{0}, b\right) & =\underbrace{\left[\begin{array}{ll}
\frac{\partial^{2} \mathcal{J}\left(b_{0}, b\right)}{\partial b_{0}{ }^{2}} & \frac{\partial^{2} \mathcal{J}\left(b_{0}, b\right)}{\partial b_{0} \partial b} \\
\frac{\partial^{2} \mathcal{J}\left(b_{0}, b\right)}{\partial b \partial b_{0}} & \frac{\partial^{2} \mathcal{J}\left(b_{0}, b\right)}{\partial b^{2}}
\end{array}\right]}_{\text {Positive definite }} \tag{28a}\\
& =\underbrace{\left[\begin{array}{cc}
20
\end{array}\right.}_{\left.\begin{array}{cc}
2 N & 0 \\
0 & \dot{\mathbf{x}}^{T} \dot{\mathbf{x}}
\end{array}\right] \succ 0} \tag{28b}
\end{align*}
$$

This is always true provided that $N>0$ (trivial, pointless) and that $\dot{\mathbf{x}}^{T} \dot{\mathbf{x}}>0$

- The second condition corresponds to a positive sample variance $s_{x}^{2}>0$

$$
s_{x}^{2}=\frac{1}{1-N}\left[\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{N}-\bar{x}\right)^{2}\right]
$$

The least-squares estimators for the parameters of the linear regression model are

$$
\begin{aligned}
\widehat{b} & =\frac{\dot{\mathbf{x}}^{T} \mathbf{y}}{\dot{\mathbf{x}}^{T} \dot{\mathbf{x}}} \\
\widehat{b}_{0} & =\bar{y}
\end{aligned}
$$ June 2020

FC

Simple linear regression (cont.)

Learning and test Basic statistics

Simple linear regresion

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of humic acid using absorbance at a single wavelength

- We selected as single band 345 [nm] (Remember the highest spectral peak?)
- We selected it because it is also the one of highest covariance with y_{2}

$$
y_{n}=\left(c+b x_{n}\right)+\varepsilon_{n}, \quad(n=1,2, \ldots, N)
$$

FC

Calibration data Learning and test Basic statistics

Simple linear regresion

Simple linear regression (cont.)

Case I: Original (no centring, no scaling) \mathbf{x}-variable and y_{2}-variable

The estimated regression parameters

- Intercept, $c=-0.6775$
- Slope, $b=0.0006$

FC

Calibration data Learning and test Basic statistics

Simple linear regresion

Simple linear regression (cont.)

Case II: Centred \mathbf{x}-variable and original y_{2}-variable

The estimated regression parameters

- Intercept, $c=2.2521$
- Slope, $b=0.0006$

FC

Calibration data

Learning and test
Basic statistics
Simple linear regresion

Simple linear regression (cont.)

Case III: Centred \mathbf{x}-variable and centred y_{2}-variable

The estimated regression parameters

- Intercept, $c=0$
- Slope, $b=0.0006$

FC

Calibration data

 Learning and test Basic statisticsSimple linear regresion

Simple linear regression (cont.)

LR, prediction

We obtain another observation z of the explanatory variable, but not the response

- The system that generates this observation is the same

We want to predict the value of the response (as if we had measured it), given z

- This is easily done by substituting z for x in the learned model
- (Equivalent to reading it from the plot of the regression line)

$$
\begin{equation*}
\widehat{y}=\underbrace{\bar{y}}_{b_{0}}+(z-\bar{x}) \widehat{b} \quad \text { (predicted composition) } \tag{30}
\end{equation*}
$$

Prediction \widehat{y} depends on the learning data
$\rightsquigarrow \operatorname{Via} \bar{x}, \bar{y}$ and \widehat{b}

[^0]: ${ }^{1}$ Wold S, Martens H and Wold H (1983) The multivariate calibration problem in chemistry solved by the PLS method.

[^1]: Basic statistics

[^2]: ${ }^{2}$ The minimum number of observations is required to at least equal to 2 .

