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Fundamental chemometric data analysis methods

The term chemometrics was introduced in 1972 by Svante Wold (Swedish chemist)

• From slow and specialised wet-lab chemistry methods

• To general instrument- and model-based methods

How to use spectroscopy to determine concentrations in samples of various constituents

• Constituents absorb light in overlapping frequency regions

Idea: When the constituents do not absorb light in separated frequency regions, one
must utilise a combination of many spectral frequencies to estimate the concentrations

 Multivariate calibration1

The problem of how to combine absorptions at several frequencies (or other chemical
and physical sensor measurements) to approximate a measured set of concentrations
(or other properties of the material under study) is called multivariate calibration

1Wold S, Martens H and Wold H (1983) The multivariate calibration problem in chemistry
solved by the PLS method.
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Fundamental chemometric data analysis methods (cont.)

Suppose that we are interested in the content of protein and water in grain (original)

 Protein analysis by applying the Kejdahl method

 Water by weighing normal and dried samples

In the spectroscopic method, we first lead infrared light through a number of samples

 We measure the light absorption at a number of frequencies, for all samples

 We also measure their protein and water concentration by wet-chemistry

Then, we use data to reconstruct the relation between absorbances and concentration

• This model is then used to estimate the concentration of unknown samples

Spectroscopy is fast, non-destructive and often it does not require sample preparation

• We need to couple the instrument/computer system to collect data

• We need to learn appropriate models using statistical tools
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Fundamental chemometric data analysis methods (cont.)

We give an introduction to the fundamental techniques of chemometric data analysis

• A basic knowledge of matrix algebra and elementary statistics is needed

We shall focus on multiple and multivariate regression techniques

 Calibration data, overview

 Classical least-squares, CLS

 Multiple linear regression, MLR

 Principal component regression, PCR

 (Partial least-squares regression, PLSR)
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Fundamental chemometric data analysis methods (cont.)

We will mostly refer to multivariate data from NIR spectroscopy, and concentrations

• The methods can be used on multivariate data from other sensor technologies

• (Mass spectroscopy, Raman spectroscopy, chemical imaging, ...)

The same generality applies to other fundamental variables in crystallisation processes

• (Crystal size distribution, crystal shape, polymorphic form, ...)

Chemometric data analysis can be used for many types of multivariate data
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The NIR frequency band

The electromagnetic spectrum [Atkin’s, Physical chemistry] with wavelengths in [nm]

238 7 Quantum theory

The radiation emitted by hot objects is discussed in terms of 
a black body, a body that emits and absorbs electromagnetic 
radiation without favouring any wavelengths. A good approx-
imation to a black body is a small hole in an empty container 
(Fig. 7A.1). Figure 7A.2 shows how the intensity of the radia-
tion from a black body varies with wavelength at several tem-
peratures. At each temperature T there is a wavelength, λmax, at 
which the intensity of the radiation is a maximum, with T and 
λmax related by the empirical Wien’s law: 

T 2.9 1 0 mKmax
3λ = × −  Wien’s law  (7A.1)

The intensity of the emitted radiation at any temperature de-
clines sharply at short wavelengths (high frequencies). The 
intensity is effectively a window on to the energy present in-
side the container, in the sense that the greater the intensity 
at a given wavelength, the greater is the energy inside the con-
tainer due to radiation at that wavelength.

The energy density, E(T), is the total energy inside the con-
tainer divided by its volume. The energy spectral density, 
ρ(λ,T), is defined so that ρ(λ,T)dλ is the energy density at 
temperature T due to the presence of electromagnetic radia-
tion with wavelengths between λ and λ +  dλ. A high energy 
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Sketch 3

The wavelength and frequency of an electromagnetic wave 
are related by: 

λν=c  The relation between wavelength 
and frequency in a vacuum

It is also common to describe a wave in terms of its wavenum-
ber, !ν  (nu tilde), which is defined as

! ! c
1  or equivalently ν λ ν ν= =   Wavenumber 

[definition]

Thus, wavenumber is the reciprocal of the wavelength and 
can be interpreted as the number of wavelengths in a given 
distance. In spectroscopy, for historical reasons, wavenumber 
is usually reported in units of reciprocal centimetres (cm−1). 
Visible light therefore corresponds to electromagnetic radia-
tion with a wavenumber of 14 000 cm−1 (red light) to 24 000 cm−1 
(violet light).

Electromagnetic radiation that consists of a single frequency 
(and therefore single wavelength) is monochromatic, because 
it corresponds to a single colour. White light consists of elec-
tromagnetic waves with a continuous, but not uniform, spread 
of frequencies throughout the visible region of the spectrum.

A characteristic property of waves is that they interfere with 
one another, which means that they result in a greater ampli-
tude where their displacements add and a smaller amplitude 

where their displacements subtract (Sketch 4). The former 
is called ‘constructive interference’ and the latter ‘destruc-
tive interference’. The regions of constructive and destructive 
interference show up as regions of enhanced and diminished 
intensity. The phenomenon of diffraction is the interference 
caused by an object in the path of waves and occurs when the 
dimensions of the object are comparable to the wavelength of 
the radiation. Light waves, with wavelengths of the order of 
500 nm, are diffracted by narrow slits.

Constructive interference

Destructive interference

Sketch 4

• Ultraviolet light, 1− 400 [nm]

• Visible light, 400− 750 [nm]

• Infrared light 750− 106 [nm]

 Near infrared light 750− 2.5K [nm]

 Mid infrared light 2.5K − 1.6K [nm]

 Far infrared light 1.6K − 1M [nm]
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The NIR frequency band (cont.)

Spectroscopic absorption originates from molecular vibrations at different frequencies

• Fundamental vibrations found in the MIR band (Raman spectroscopy)

• Overtones and combinations in the NIR band (NIR spectroscopy)

Bond vibration Structure Wavelength [nm]
C-H stretch (2nd) Aromatic 1143
C-H stretch (2nd) -CH3 1152
C-H stretch (2nd) -CH2 1215
C-H stretch (2nd) -CH 1225

Liquid materials

• Transmission spectroscopy

• (750− 1100 [nm])

Powdered materials

• Reflection spectroscopy

• (1100− 2500 [nm])

Spectra provide a complex fingerprint
of the sample’s molecular constituents
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The NIR frequency band (cont.)

Chemical bonds in molecular structures are associated with characteristic wavelengths

• The different characteristics in the NIR range overlap

• (Different from a typical GC line spectrum)

• (No well defined features, spread peaks)

Spectra of different
types of sucrose

• Analyst (2001)

• Blanco and
Romero

powdered sucrose B and granulated sucrose. Their spectra are
shown in Fig. 3. Table 1 gives the correlation coefficient for
each sucrose type when identified in its own and in the other
four types. In many cases, the coefficient exceeded 0.97 (the
threshold for the general library), so it would have led to
ambiguous identification with the general library. This short-
coming was circumvented by developing the sucrose classifica-
tion sub-library, the main characteristics of which are shown in
Fig. 2. The sub-library was constructed using the Mahalanobis
distance; the residual variance, however, provided similar
results.

Table 2 shows the results obtained by using this sub-library to
identify the different types of sucrose. The values for the
identification of each type of sucrose with the other classes were
higher than the threshold, so the identification was negative and
all five types of sucrose, which differed in particle size, were
correctly identified in all the samples studied.

Polymorphism sub-libraries. Two different sub-libraries
were constructed, the diacetylmidecamycin sub-library and
ketoprofen sub-library, which allowed us to solve the ambi-
guities found in the general library.

Diacetylmidecamycin. Diacetylmidecamycin was studied in
two different forms, amorphous and crystalline. Distinguishing
them via the correlation coefficient was fairly easy as their
spectra are markedly different (Fig. 4). However, samples of the
amorphous form “impurified” with the crystalline form were
assigned to the amorphous class, even in the presence of as
much as 10% of the crystalline form, with a correlation
coefficient higher than 0.97. A maximum “impurity” content of

2% was established to distinguish amorphous diacetylmideca-
mycin.

A sub-library was developed to determine whether a sample
of amorphous diacetylmidecamycin was acceptable (see Fig. 2).
An ‘impurified’ sample was identified as amorphous diace-
tylmidecamycin by the general library and as adequate in
quality by the sub-library. Table 3 shows the results of the
identification of amorphous diacetylmidecamycin samples
containing various proportions of the crystalline form. As can
be seen, all samples containing more than 2% of such a form
exceeded the established threshold, so they were classified as
unacceptable.

Ketoprofen. It is known that chiral substances can occur in
different crystal structures (or polymorphs) whether they are
racemic or pure enantiomers.30 Pure enantiomers crystallize in
a non-centrosymmetric space group while 90% of racemates do
so in a centrosymmetric space group, so differing crystal
structures can be obtained for the same chemical compound.
Different structures yield differences in NIR spectra and these
differences can be used for qualitative or quantitative analysis.
Buchanan et al., for example, used the differences in NIR
spectra to determine the enantiomeric purity of valine.31

Ketoprofen is an anti-inflammatory agent, which has a chiral
centre. The most often used in the pharmaceutical industry are
the dextrorotatory and the racemic forms. Fig. 5 shows the NIR
spectra for both of those and the levorotatory form. As can be
seen, the spectra for the two enantiomers differed slightly
between them but markedly from that for the racemate,
probably owing to differences in crystal structure. The differ-
ences were large enough to allow the general library to
distinguish between the pure enantiomers and their racemate,
since they had a correlation coefficient of 0.92.

Although NIR reflectance spectroscopy cannot differentiate
enantiomers, the dextro and levo forms of ketoprofen show
slightly different NIR spectra, which cannot be attributed to
impurities or instrumental noise, probably owing to slightly
different packing in the crystal structure. A sub-library
constructed using the residual variance as discriminating
criterion (Fig. 2) afforded the discrimination between the two
forms. Thus, a ketoprofen sample was identified as either
racemate or pure enantiomer by the general library and the latter
form as dextro- or levorotatory by the sub-library. Table 4
shows the results obtained in the identification of samples of
both enantiomers. All samples were correctly identified.

Once this sub-library had been checked to distinguish both
pure enantiomers effectively, it was refined to allow the
detection of small amounts of one enantiomer in the other,
similarly as with diacetylmidecamycin. The eutomer, dex-
troketoprofen, was used to prepare samples containing 2 or 5%
of the levorotatory form (the acceptable contamination limit
was 2%). The process by which a dextroketoprofen sample
impurified with levoketoprofen is obtained gives rise to an
equivalent amount of racemate during crystallization, the

Fig. 3 Spectra of five different types of sucrose. Each spectrum is the
average of five spectra of different batches from each type of sucrose.

Table 1 Typical correlation values obtained in crossed identification of different types of sucrose. The threshold for acceptance is 0.97

Identified as

Sample Crystal Powdered A Semolina Powdered B Granulated Comments

Crystal 0.9987 0.9287 0.9767 0.9178 0.9504 Ambiguous with semolina

Powdered A 0.9212 0.9999 0.9840 0.9995 0.9972
Ambiguous with semolina, powdered B

and granulated

Semolina 0.9727 0.9842 0.9995 0.9790 0.9935
Ambiguous with crystal, powdered A,

powdered B and granulated

Powdered B 0.9078 0.9986 0.9780 0.9996 0.9944
Ambiguous with powdered A, semolina

and granulated

Granulated 0.9459 0.9968 0.9937 0.9948 0.9997
Ambiguous with powdered A, semolina

and powdered B

Analyst, 2001, 126, 2212–2217 2215
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Beer-Lambert’s law

Suppose that we are given a sample, often a compound of several chemical components

The absorbance of a single chemical component, at a particular wavelength

x = − log

(
I

I0

)
, (x > 0)

I0, original intensity of the incident light

• Before the sample is inserted

I , intensity of transmitted/reflected light

• After the sample is inserted

For transmission (reflection) spectroscopy T = I0/I is the transmittance (reflectance)

• Increasing concentration y will decrease transmittance or reflectance, T

• Then, also absorbance x will increase, according to some x = g(y)
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Beer-Lambert’s law (cont.)

Beer-Lambert law (Single component case)

x = ya + e (1)

a = εδ denotes the absorbance of the pure component

• ε, absorption coefficient (component specific)

• δ, path length of the incident light

Because the Beer-Lamber law may not hold exactly, therefore e is added as model error

Beer-Lambert law (Multiple component case)

x = y1a1 + y2a2 + · · ·+ yM aM + e (2a)

=
M∑

m=1

ymam + e (2b)

• ym , concentration of component m

• am , absorbance of component m

 M , number of components

For closed systems where have that all components are analysed (known concentration)

• We have that y1 + y2 + · · ·+ yM = 1 (compactly,
∑M

m=1 ym = 1)

�
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Calibration data

powdered sucrose B and granulated sucrose. Their spectra are
shown in Fig. 3. Table 1 gives the correlation coefficient for
each sucrose type when identified in its own and in the other
four types. In many cases, the coefficient exceeded 0.97 (the
threshold for the general library), so it would have led to
ambiguous identification with the general library. This short-
coming was circumvented by developing the sucrose classifica-
tion sub-library, the main characteristics of which are shown in
Fig. 2. The sub-library was constructed using the Mahalanobis
distance; the residual variance, however, provided similar
results.

Table 2 shows the results obtained by using this sub-library to
identify the different types of sucrose. The values for the
identification of each type of sucrose with the other classes were
higher than the threshold, so the identification was negative and
all five types of sucrose, which differed in particle size, were
correctly identified in all the samples studied.

Polymorphism sub-libraries. Two different sub-libraries
were constructed, the diacetylmidecamycin sub-library and
ketoprofen sub-library, which allowed us to solve the ambi-
guities found in the general library.

Diacetylmidecamycin. Diacetylmidecamycin was studied in
two different forms, amorphous and crystalline. Distinguishing
them via the correlation coefficient was fairly easy as their
spectra are markedly different (Fig. 4). However, samples of the
amorphous form “impurified” with the crystalline form were
assigned to the amorphous class, even in the presence of as
much as 10% of the crystalline form, with a correlation
coefficient higher than 0.97. A maximum “impurity” content of

2% was established to distinguish amorphous diacetylmideca-
mycin.

A sub-library was developed to determine whether a sample
of amorphous diacetylmidecamycin was acceptable (see Fig. 2).
An ‘impurified’ sample was identified as amorphous diace-
tylmidecamycin by the general library and as adequate in
quality by the sub-library. Table 3 shows the results of the
identification of amorphous diacetylmidecamycin samples
containing various proportions of the crystalline form. As can
be seen, all samples containing more than 2% of such a form
exceeded the established threshold, so they were classified as
unacceptable.

Ketoprofen. It is known that chiral substances can occur in
different crystal structures (or polymorphs) whether they are
racemic or pure enantiomers.30 Pure enantiomers crystallize in
a non-centrosymmetric space group while 90% of racemates do
so in a centrosymmetric space group, so differing crystal
structures can be obtained for the same chemical compound.
Different structures yield differences in NIR spectra and these
differences can be used for qualitative or quantitative analysis.
Buchanan et al., for example, used the differences in NIR
spectra to determine the enantiomeric purity of valine.31

Ketoprofen is an anti-inflammatory agent, which has a chiral
centre. The most often used in the pharmaceutical industry are
the dextrorotatory and the racemic forms. Fig. 5 shows the NIR
spectra for both of those and the levorotatory form. As can be
seen, the spectra for the two enantiomers differed slightly
between them but markedly from that for the racemate,
probably owing to differences in crystal structure. The differ-
ences were large enough to allow the general library to
distinguish between the pure enantiomers and their racemate,
since they had a correlation coefficient of 0.92.

Although NIR reflectance spectroscopy cannot differentiate
enantiomers, the dextro and levo forms of ketoprofen show
slightly different NIR spectra, which cannot be attributed to
impurities or instrumental noise, probably owing to slightly
different packing in the crystal structure. A sub-library
constructed using the residual variance as discriminating
criterion (Fig. 2) afforded the discrimination between the two
forms. Thus, a ketoprofen sample was identified as either
racemate or pure enantiomer by the general library and the latter
form as dextro- or levorotatory by the sub-library. Table 4
shows the results obtained in the identification of samples of
both enantiomers. All samples were correctly identified.

Once this sub-library had been checked to distinguish both
pure enantiomers effectively, it was refined to allow the
detection of small amounts of one enantiomer in the other,
similarly as with diacetylmidecamycin. The eutomer, dex-
troketoprofen, was used to prepare samples containing 2 or 5%
of the levorotatory form (the acceptable contamination limit
was 2%). The process by which a dextroketoprofen sample
impurified with levoketoprofen is obtained gives rise to an
equivalent amount of racemate during crystallization, the

Fig. 3 Spectra of five different types of sucrose. Each spectrum is the
average of five spectra of different batches from each type of sucrose.

Table 1 Typical correlation values obtained in crossed identification of different types of sucrose. The threshold for acceptance is 0.97

Identified as

Sample Crystal Powdered A Semolina Powdered B Granulated Comments

Crystal 0.9987 0.9287 0.9767 0.9178 0.9504 Ambiguous with semolina

Powdered A 0.9212 0.9999 0.9840 0.9995 0.9972
Ambiguous with semolina, powdered B

and granulated

Semolina 0.9727 0.9842 0.9995 0.9790 0.9935
Ambiguous with crystal, powdered A,

powdered B and granulated

Powdered B 0.9078 0.9986 0.9780 0.9996 0.9944
Ambiguous with powdered A, semolina

and granulated

Granulated 0.9459 0.9968 0.9937 0.9948 0.9997
Ambiguous with powdered A, semolina

and powdered B

Analyst, 2001, 126, 2212–2217 2215
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Spectral data

Spectral data for an individual material sample amounts to a collection of absorbances

• At a number K of individual wavelengths

• {x1, x2, . . ., xk , . . ., xK }
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Calibration data (cont.)

At each k-th wavelength, Beer-Lambert law for a system consisting of M components

xk = y1a1k + y2a2k + · · ·+ yM aMk + ek (3a)

=
M∑

m=1

ymamk + ek , (k = 1, . . . ,K ) (3b)

Considering the all the k = 1, . . . ,K wavelengths, we have

x1 = y1a11 + y2a21 + · · ·+ yM aM1 + e1

x2 = y1a12 + y2a22 + · · ·+ yM aM2 + e2

...

xk = y1a1k + y2a2k + · · ·+ yM aMk + ek

...

xK = y1a1K + y2a2K + · · ·+ yM aMK + eK
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Calibration data (cont.)

Beer-Lambert law (Multiple wavelength, multiple component case)


x1

x2

...
xK


︸ ︷︷ ︸

x

=


a11 a21 · · · aM1

a12 a22 · · · aM2

...
...

. . .
...

a1K a2K · · · aMK


︸ ︷︷ ︸

A


y1

y2

...
yM


︸ ︷︷ ︸

y

+


e1

e2

...
eK


︸ ︷︷ ︸

e

(5)

• The measured spectrum, as a column vector

x = (x1, x2, . . ., xK )′

• The spectra of the pure components, as column vectors

am = (am1, am2, . . . , amK )′, (m = 1, . . . ,M )

• The concentrations of the components, as a column vector

y = (y1, y2, . . ., yM )′
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Calibration data

Often we have multiple samples, calibration data consists of an X-block and a Y-block

• N samples (absorption and concentrations)

Let N = 4 be the number of material’s samples consisting of M = 2 be components

• Let K = 3 be the number of wavelengths

Y-block, M concentrations measured
by some reference (wet) method

• One row for each sample

Y =


[y1,1 y1,2]
[y2,1 y2,2]
[y3,1 y3,2]
[y4,1 y4,2]


︸ ︷︷ ︸

4×2

=


y′1
y2
′

y′3
y′4



X-block, K -dimensional absorption
spectra by a NIR instrument

• One row for each sample

X =


[x1,1 x1,2 x1,3]
[x2,1 x2,2 x2,3]
[x3,1 x3,2 x3,3]
[x4,1 x4,2 x4,3]


︸ ︷︷ ︸

4×3

=


x′1
x2
′

x′3
x′4


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Calibration data (cont.)

Y = f (X) + E

We are interested in estimating how the Y-block varies with the X-block, function f

• (We are interested in estimating concentrations y from spectra x)

• (We shall use only the given calibration data, blocks X and Y)

• (We shall assume that function f is some unknown matrix, B)

Notice how this is the inverse problem of what Beer-Lambert law models, X = g(Y)+E

• (Spectra x from concentrations y, and pure component spectra a)

• (Beer-Lambert law assumes that function g is a matrix, A)
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Calibration data (cont.)

Y = f (X) + E

Remember, not restricted to concentrations, other material’s properties could be used

• Any property depending on concentration can be estimated from spectra

• (The property must be dependent of the sample type and composition)

To develop the treatment, we primarily use concentrations (Y) and NIR spectra (X)
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Calibration data (cont.)

Example

Concentration of proteins and water in grain samples, from NIR spectra

Two concentrations (M = 2), 5-wavelength (K = 5) spectra, N = 26 samples

Y-block, M = 2 concentrations

Y =


y1,1 y1,2

y2,1 y2,2

...
...

y26,1 y26,2


︸ ︷︷ ︸

26×2
0

5

10

P
r
o
t
e
i
n
 
[
%
]

Wheat (26 samples)

0 5 10 15 20 25
Sample number

X-block, K = 5 absorption bands

X =


x1,1 x1,2 · · · x1,5

x2,1 x2,2 · · · x2,5

...
...

. . .
...

x26,1 x26,2 · · · x26,5


︸ ︷︷ ︸

26×5 1700 1800 1900 2000 2100 2200 2300
Wavelength [nm]

0

100

200

300

400

500

R
e
f
l
e
c
t
a
n
c
e

Wheat (26 samples)
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Calibration data (cont.)

Y-block, M = 2 concentrations

Y =


y1,1 y1,2

[y2,1 y2,2]
...

...
y26,1 y26,2


︸ ︷︷ ︸

26×2

The concentration of protein and
water in the second sample

y2 =
[
y2,1 y2,2

]

X-block, K = 5 absorption spectra

X =


x1,1 x1,2 · · · x1,5

[x2,1 x2,2 · · · y2,3]
...

...
. . .

...
x26,1 x26,2 · · · x26,5


︸ ︷︷ ︸

26×5

The spectrum of the second sample

x2 =
[
x21 x22 · · · x25

]

�
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Test data

Test data consists of one or more spectra of samples of unknown composition

z =
[
z1 z2 · · · zK

]
The calibration model can be used to predict the unknown concentrations

ŷ =
[
ŷ1 ŷ2 · · · ŷm

]
 ‘Hats’ are used to denote predictions and estimates

We consider models that make predictions ŷ of the form

ŷ︸︷︷︸
(M×1)

= B̂︸︷︷︸
(M×K)

z︸︷︷︸
(K×1)

(6)

• B̂ is a matrix of regression coefficients

• It is learned from calibration data
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Test data (cont.)

Example

Concentration of proteins and water in grain samples, from NIR spectra

Two concentrations (M = 2), 5-wavelength (K = 5) spectra, N = 26 samples

X-block, K = 3 frequency spectra

X =


x1,1 x1,2 · · · x1,5

x2,1 x2,2 · · · x2,5

..

.
...

. . .
...

x26,1 x26,2 · · · x26,5


︸ ︷︷ ︸

26×5

Y-block, M = 2 concentrations

Y =


y1,1 y1,2

y2,1 y2,2

...
...

y26,1 y26,2


︸ ︷︷ ︸

26×2

The test data, only absorbances at each of the five frequencies are given

z =
[
z1 z2 · · · z5

]
The concentrations are unknown, must be estimated by the model

ŷ =
[
ŷ1 ŷ2

]
�
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Basic statistics

Consider the data matrices X and Y, we shall assume that there are no missing data

X =

 x1,1 · · · x1,K

...
. . .

...
xN ,1 · · · xN ,K


Explanatory (input) variables

• N data points, the samples (rows)

• K easy-to-measure variables (absorbances)

Y =

y1,1 · · · y1,M

.

..
. . .

...
yN ,1 · · · yN ,M


Response (output) variables

• N data points, the samples (rows)

• M hard-to-measure variables (concentrations)

The columns of X and Y will be denoted as variables, their rows are the observations

• x (N × 1), the columns of X (absorbance of all samples at some wavelength)

• y (N × 1), the columns of Y (concentration of all samples of some component)

For each variable and sample, we plot them and then compute descriptive statistics

• min, max, mean, standard deviation, variance, ...
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Basic statistics (cont.)

Plot of the explanatory variables (spectral plot)

 Each row of X is plotted as function of the column variable k

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Emission intensity spectra of the
collected seawater samples

X =

 x1,1 · · · x1,K

...
. . .

...
xN ,1 · · · xN ,K


• K = 27 wavelengths

• N = 16 samples

350 400 450 500
Wavelength [nm]

0
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e

Sea pollution (16 samples)

Each emission intensity must be non-negative and must behave reasonably (smooth)

�
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Basic statistics (cont.)

Plot of the response variables (composition plot)

 Each row of Y is plotted as function of the column variable m

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Humic acid, Ligninsulphonate,
and also Detergents are found

Y =

y1,1 · · · y1,M

..

.
. . .

...
yN ,1 · · · yN ,M


• M = 3(2) concentrations

• N = 16 samples

Concentrations must take on
non-negative values only
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Basic statistics (cont.)

Empirical (statistical) quantities are properties of the N observations (the samples)

• For a given variable (column of either block)

Let x (N × 1) be a column of X (absorbances at a specific wavelength, all samples)

X =



x1,1 · · · x1,k · · · x1,K

...
. . .

...
...

xn,1 · · · xn,k · · · xn,K
...

...
. . .

...
xN ,1 · · · xN ,k · · · xN ,K


 x = [x1,k , x2,k , . . ., xN ,k ] = [x1, x2, . . ., xN ]

Let y (N × 1) be a column of Y (absorbances of a specific component, all samples)

Y =



y1,1 · · · y1,k · · · y1,M

...
. . .

...
...

yn,1 · · · yn,m · · · yn,M
...

...
. . .

...
yN ,1 · · · yN ,m · · · yN ,M


 y = [y1,m , y2,m , . . ., yN ,m ] = [y1, y2, . . ., yN ]
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Basic statistics (cont.)

The sample mean of x: (An estimate of the) Expected value of x , its average

x =
1

N
(x1 + x2 + · · ·+ xN ) (7a)

 
1

N
1Tx (7b)

• The vector of means of X, a collection of averages

x =
[
x1 x2 · · · xk · · · xK

]
,  

1

N
1TX (8)

The sample mean of y: (An estimate of the) Expected value of y, its average

y =
1

N
(y1 + y2 + · · ·+ yN ) (9a)

 
1

N
1Ty (9b)

• The vector of means of Y, a collection of averages

y =
[
y1 y2 · · · ym · · · yM

]
,  

1

N
1TY (10)

1 (N × 1), a column-vector of ones
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Basic statistics (cont.)

The sample variance of x: Expected squared deviation of x from its mean x

s2
x =

1

N − 1

[
(x1 − x)2 + (x2 − x)2 + · · ·+ (xN − x)2

]
(11a)

 
1

N − 1
(x− x1)T (x− x1) =

1

N − 1

∣∣∣∣x− x1
∣∣∣∣2 (11b)

• The sample standard deviation of x, sx =
√

s2
x

The sample variance of y: Expected squared deviation of y from its mean y

s2
y =

1

N − 1

[
(y1 − y)2 + (y2 − y)2 + · · ·+ (yN − y)2

]
(12a)

 
1

N − 1
(y − y1)T (y − y1) =

1

N − 1

∣∣∣∣y − y1
∣∣∣∣2 (12b)

• The sample standard deviation of y, sy =
√

s2
y
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Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

The mean concentration y2 (−)

• Ligninsulphonate

• y2 ± sy2 (−−)

The mean spectrum x (−)

• x± 1sx (−−)
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Basic statistics (cont.)

The mean concentration y1 (−)

• y1 ± sy1 (−−)

• Humic acid

The mean concentration y3 (−)

• y3 ± sy3 (−−)

• Detergent
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Basic statistics (cont.)

The sample covariance of x and y: Expected product of deviations from means

vxy =
1

N − 1
[(x1 − x)(y1 − y) + (x2 − x)(y2 − y) + · · ·+ (xN − x)(yN − y)] (13a)

=
1

N − 1
(x− x1)T (y − y1) (13b)

The sample covariance of y and x: Expected product of deviations from means

vyx =
1

N − 1
[(y1 − y)(x1 − x) + (y2 − y)(x2 − x) + · · ·+ (yN − y)(xN − x)] (14a)

=
1

N − 1
(y − y1)T (x− x1) (14b)

Clearly, we have that vxy = vyx , and that vxx = s2
x and vyy = s2

y
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Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

A vector of covariances vxy2
• Ligninsulphonate

• vxy2 (−)
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Basic statistics (cont.)

A vector of covariances vxy1
• Humic acid

• vxy1 (−)

A vector of covariances vxy3
• Detergent

• vxy3 (−)
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0

500

1000

1500

2000

2500
Sea pollution (16 samples)

350 400 450 500
Wavelength [nm]

0

1

2

3

4

104 Sea pollution (16 samples)

�



CHEM-ACCC
June 2020

FC

Calibration data

Learning and test

Basic statistics

Simple linear
regresion

Basic statistics (cont.)

Data standardisation

Centering: We center (N × 1) vectors x and y, by subtracting their mean x and y

We get two new (N × 1) vectors ẋ and ẏ

 Their mean is equal zero

• ẋ = 0 and ẏ = 0

 Variance is unchanged

• s2
ẋ =

1

N − 1
ẋT ẋ

• s2
ẏ =

1

N − 1
ẏT ẏ

ẋ = x− 1x (15a)

 x = ẋ + 1x (15b)

ẏ = y − 1y (16a)

 y = ẏ + 1y (16b)

The corresponding centred matrices Ẋ and Ẏ, size (N ×K ) and (N ×M ) respectively

Ẋ = X− 1x (17a)

Ẏ = Y − 1y (17b)
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Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Each row of Ẋ is plotted as
function of the variable k

The centred concentrations ẏ2

• Ligninsulfonate
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Basic statistics (cont.)

The centred concentrations ẏ1

• Humic acid

The centred concentrations ẏ3

• Detergent
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Basic statistics (cont.)

Scaling: The idea is to make the columns of Y have the same standard deviation sy

 This is only needed when the measurements units of ys are different

 (Spectral variables x need not be scaled, same absorbance units)

We can replace each column y by yscaled

 syscaled = 1
 yscaled =

1

sy
y

Scaling: Make the columns of Y have zero mean and the same standard deviation sy

We can replace each column y by yautoscaled

 yautoscaled = 0

 syautoscaled = 1

 yautoscaled =
1

sy
ẏ
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Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Each row of Xscaled is plotted
as function of the variable k

The autoscaled concentrations
of ligninsulpfonate, y2,autoscaled
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Basic statistics (cont.)

The autoscaled concentrations
of humic acid, y1,autoscaled

The autoscaled concentrations
of detergent, y3,autoscaled
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Basic statistics (cont.)

We can estimate the sample (variance-)covariance matrices of variables X and Y

Explanatory variables

• Size (K ×K )

• VX = VX
T

VX =
1

n − 1
ẊT Ẋ (18a)

=


s2
x1 vx1,x2 · · · vx1,xK

vx2,x1 s2
x2 · · · vx2,xK

...
...

. . .
...

vxK ,x1 vxK ,x2 · · · vxK ,xK

 (18b)

Response variables

• Size (M ×M )

• VY = VY
T

VY =
1

n − 1
ẎT Ẏ (19a)

=


s2
y1 vy1,y2 · · · vy1,yM

vy2,y1 s2
y2 · · · vy2,yM

...
...

. . .
...

vyK ,y1 vyK ,y2 · · · vyK ,yK

 (19b)
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Basic statistics (cont.)

We can also estimate the sample (variance-)covariance matrix between X and Y

Explanatory and response variables

• Size (K ×M )

• VXY = VT
YX

VXY =
1

n − 1
ẊT Ẏ (20a)

=


vx1,y1 vx1,y2 · · · vx1,yM

vx2,y1 vx2,y2 · · · vx2,yM

...
...

. . .
...

vxK ,y1 vxK ,y2 · · · vxK ,yM

 (20b)
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Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Wavelength [nm]

W
a
v
e
l
e
n
g
t
h
 
[
n
m
]

1 2 3

1

2

3

The individual variance-covariance matrices of the X- and the Y-block, respectively

• VY is dimension (M ×M )

• VX is dimension (K ×K )

Notation for the y variables: 1) Humic acid; 2) Lignisupfonate; and 3) Detergent
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Basic statistics (cont.)

123

W
a
v
e
l
e
n
g
t
h

How variation in y vars is explained by variation in x vars

• The variance-covariance matrix between blocks

• VXY is dimension (K ×M )

Notation:

1 Humic acid

2 Lignisupfonate

3 Detergent

�
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Basic statistics (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Preprocessing of the X-block

X Ẋ Xscaled

Wlength

S
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l
e
s

Wlength

S
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m
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Wlength
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Basic statistics (cont.)

Preprocessing of the Y-block

Y  Ẏ  Yscaled

1 Humic acid

2 Lignisupfonate

3 Detergent
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Chemometric data analysis
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Simple linear regression

Suppose that we are interested in estimating the concentration of a single component

• Also, suppose that we want to use the absorbance at a single wavelength

 One explanatory input and one response output variable only

For the task, we are given data and we consider the simple linear regression model

yn = (c + bxn ) + εn , (n = 1, 2, . . . ,N ) (21)

N is the sample size, the number of available data, (xn , yn ) pairs2

• xn , n-th value of the explanatory (absorbance) variable

• yn , n-th value of the response (concentration) variable

• εn , n-th error term (independent, zero mean, variance σ2)

The model assumes that concentration is linearly related to absorbance, up to errors

2The minimum number of observations is required to at least equal to 2.
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Simple linear regression (cont.)

Linear regression in vector-scalar form

yn = (c + bxn ) + εn , (n = 1, 2, . . . ,N )

The model has a number of parameters that need to be calibrated/estimated from data

• c, the intercept of the regression model (a line)

• b, the slope of the regression model (a line)

We implicitly assumed that εn the n-th noise term, the error, is somehow known

• It is assumed to be independent between the samples

• Assumed to have zero mean and common variance σ2

 Thus, only estimation of σ2 would be needed

Unknown parameters to be estimated from data

• (c, b), regression coefficients

• σ2, residual variance

θ = (c, b, σ2)
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Simple linear regression (cont.)

We can stack the N model equations

yn = c + bxn + εi (22a)

= 1c + bxn + εi (22b)

with n = 1, 2, . . . ,N

 



y1

y2

...
yn
...

yN−1

yN


︸ ︷︷ ︸

y

=



1
1
...
1
...
1
1


c

︸ ︷︷ ︸
1c

+



x1

x2

...
xn
...

xN−1

xN


b

︸ ︷︷ ︸
xb

+



ε1
ε2
...
εn
...

εN−1

εN


︸ ︷︷ ︸

ε

We can rewrite the linear regression model in vector form

y = 1c + xb + ε (23a)

= 1c + (ẋ + 1x)︸ ︷︷ ︸
centring

b + ε (23b)

= 1c + ẋb + 1(xb) + ε (23c)

= 1b0 + ẋb + ε (23d)

with b0 = c + (xb) a constant term after centring x
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Simple linear regression (cont.)

LR, estimation
y = 1b0 + ẋb + ε

The least-squares estimators for the regression parameters b0 and b are the following

b̂0 = y (24a)

b̂ =
ẋT ẏ

ẋT ẋ
=

vxy

s2
x

(with σx > 0) (24b)

The case s2
x = 0 is uninteresting as it corresponds to all absorbances being equal

• vxy , the covariance between x and y

• (s2
x , the variance of x)
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Simple linear regression (cont.)

Consider the simple linear regression model in vector form y = 1b0 + ẋb + ε

• In sample-by-sample form, yn = b0 + ẋnb + εn = b0 + (xn − x)b + εn

We are interested in the pair of values (b0, b) that minimise the sum of squared errors

• Residual sum of squares (RSS) as cost function

J (b0, b) =

N∑
n=1

 yn︸︷︷︸
Measurement

− (b0 − ẋnb)︸ ︷︷ ︸
Model prediction


2

=
N∑
i=1

ε2i (25)

Necessary first-order optimality condition, the gradient of the cost function is zero

∇J (b0, b) =


∂J (b0, b)

∂b0
∂J (b0, b)

∂b

 =

[
0
0

]
= 0
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Simple linear regression (cont.)

We differentiate J (b0, b) with respect to b0 and set the partial to be equal to zero,

∂J (b0, b)

∂b0
=

∂

∂b0

[
N∑

n=1

(yn − b0 − ẋnb)2

]
=

N∑
n=1

[
∂

∂b0
(yn − b0 − ẋnb)2

]
(26a)

=
N∑

n=1

[−2 (yn − b0 − ẋnb)] = −2
N∑

n=1

(yn − b0 − ẋnb) (26b)

= −2

(
N∑

n=1

yn −
N∑

n=1

b0 −
N∑

n=1

ẋnb

)
= −2


N∑

n=1

yn −
N∑

n=1

b0︸ ︷︷ ︸
Nb0

−b
N∑

n=1

ẋn︸︷︷︸
xn−x


(26c)

= −2

(
N∑

n=1

yn −Nb0 − 0

)
= 0 (26d)

We get,

 b̂0 =
1

N

N∑
n=1

yn = y
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Simple linear regression (cont.)

We differentiate J (b0, b) with respect to b and set the partial to be equal to zero,

∂J (b0, b)

∂b0
=

∂

∂b

[
N∑

n=1

(yn − b0 − ẋnb)2

]
=

N∑
n=1

[
∂

∂b
(yn − b0 − ẋnb)2

]
(27a)

=
N∑

n=1

[−2ẋn (yn − b0 − ẋnb)] = −2
N∑

n=1

ẋn (yn − b0 − ẋnb) (27b)

= −2
N∑

n=1

(
ẋnyn − ẋnb0 − ẋ2

nb
)

= −2


N∑

n=1

ẋnyn︸ ︷︷ ︸
ẋTy

−b0

N∑
n=1

ẋn︸︷︷︸
xn−x

−b
N∑

n=1

ẋ2
n︸ ︷︷ ︸

ẋT ẋ


(27c)

= −2
(
ẋTy − 0− bẋT ẋ

)
(27d)

We get,

 b̂ =
ẋTy

ẋT ẋ
=

vxy

s2
x

(with s2
x > 0)
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Simple linear regression (cont.)

Sufficient second-order optimality condition, Hessian of the cost function is PD

∇2J (b0, b) =


∂2J (b0, b)

∂b0
2

∂2J (b0, b)

∂b0∂b
∂2J (b0, b)

∂b∂b0

∂2J (b0, b)

∂b2

 (28a)

=

[
2N 0
0 ẋT ẋ

]
� 0︸ ︷︷ ︸

Positive definite

(28b)

This is always true provided that N > 0 (trivial, pointless) and that ẋT ẋ > 0
• The second condition corresponds to a positive sample variance s2

x > 0

s2
x =

1

1−N

[
(x1 − x)2 + (x2 − x)2 + · · ·+ (xN − x)2

]

The least-squares estimators for the parameters of the linear regression model are

b̂ =
ẋTy

ẋT ẋ

b̂0 = y

�
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Simple linear regression (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of humic acid using absorbance at a single wavelength

• We selected as single band 345 [nm] (Remember the highest spectral peak?)

• We selected it because it is also the one of highest covariance with y2

yn = (c + bxn ) + εn , (n = 1, 2, . . . ,N )
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Simple linear regression (cont.)

Case I: Original (no centring, no scaling) x-variable and y2-variable
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The estimated regression parameters

• Intercept, c = −0.6775

• Slope, b = 0.0006
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Simple linear regression (cont.)

Case II: Centred x-variable and original y2-variable

-2000 0 2000
Emittance (345 [nm])

0

1

2

3

4

C
o
n
c
e
n
t
r
a
t
i
o
n
 
[

g
/
m
L
] Humic acid

-2000 0 2000
Emittance (345 [nm])

0

1

2

3

4

C
o
n
c
e
n
t
r
a
t
i
o
n
 
[

g
/
m
L
] Humic acid

The estimated regression parameters

• Intercept, c = 2.2521

• Slope, b = 0.0006
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Simple linear regression (cont.)

Case III: Centred x-variable and centred y2-variable
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The estimated regression parameters

• Intercept, c = 0

• Slope, b = 0.0006

�
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Simple linear regression (cont.)

LR, prediction

We obtain another observation z of the explanatory variable, but not the response

• The system that generates this observation is the same

We want to predict the value of the response (as if we had measured it), given z

• This is easily done by substituting z for x in the learned model

• (Equivalent to reading it from the plot of the regression line)

ŷ = y︸︷︷︸
b0

+ (z − x) b̂ (predicted composition) (30)

Prediction ŷ depends on the learning data

 Via x , y and b̂


