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Classical calibration

Calibration is the problem of understanding the relation between X and Y blocks

• A model of how responses y vary as a function of explanatory variables x

• The practical goal is to use the model to predict y, given a value of x

Simple linear regression considers the case where both x and y are scalar variables

⇝ Estimate on concentration (or another property) from one spectral band

For vectors, firstly we consider two classical and fundamental calibration methods

• Multiple linear regression, MLR

• Classical least-squares, CLS

They are prototypical for all main calibration methods

• A good understanding is of essential importance

• They extend the simple linear regression
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Multiple linear regression, MLR

We considered the simple linear regression model, yn = (c + bxn )+εn (n = 1, 2, . . . ,N )

• A single x -variable (input) is linked to a single y-variable (output)

We will develop further this method, by first letting the x -variable be a vector x

• As we have multiple absorption bands, this is a more realistic scenario

The framework can then be further extended to account for vector y-variables

• Again more realistic, as we measure multiple concentrations/properties
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Multiple linear regression, MLR (cont.)

A multiple linear regression model is an extension of the linear regression model

yn = c + b1xn,1 + b2xn,2 + · · ·+ bK xn,K + εn , (n = 1, 2, · · · ,N ) (1)

Sample size N , the number of data points, (xn , yn ) pairs1, xn = (xn,1, xn,2, . . ., xn,K )

• xn , n-th value of the explanatory variables (K absorbances)

• yn , n-th value of the response (concentration) variable

• εn , n-th error term (independent, zero mean, variance σ2)

The model assumes that concentration is linearly related to absorbances, up to errors

• Each yn is equal to a constant, plus a weighted sum of explanatory variables

• The weights can be collected in a weighting vector b = (b1, b2, . . . , bK )

1The minimum number of observations is required to at least equal to K + 1.
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Multiple linear regression, MLR (cont.)

yn =
(
c + b1xn,1 + b2xn,2 + · · ·+ bK xn,K

)
+ εn , (n = 1, 2, · · · ,N )

The model has a number of parameters that need to be calibrated/estimated from data

⇝ c is the intercept of the regression model (an hyper-plane)

⇝ bk are the regression coefficients of the k-th x -variable

We implicitly assumed that εn the n-th noise term, the error, is somehow known

• It is assumed to be independent between the samples

• Assumed to have zero mean and common variance σ2

⇝ Thus, only estimation of σ2 would be needed

Unknown parameters to be estimated from data

• (c, b1, b2, . . . , bK ), regression coefficients

• σ2, residual variance

θ = (c, b1, b2, . . . , bK︸ ︷︷ ︸
b

, σ2)
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Multiple linear regression in matrix-vector form

yn =

(
c + b1xn,1 + b2xn,2 + · · ·+ bK xn,K︸ ︷︷ ︸

)
+ εn , (n = 1, 2, · · · ,N )

Consider the sum b1xn,1 + b2xn,2 + · · ·+ bK xn,K , it is the inner product of two vectors

⇝ One (1×K ) row-vector

xn =
[
xn,1 xn,2 · · · xn,K

]
⇝ One (K × 1) column-vector

b =


b1
b2
..
.

bK



xnb =
[
xn,1 xn,2 · · · xn,K

]

b1
b2
...

bK


= b1xn,1 + b2xn,2 + · · ·+ bK xn,K

We can rewrite the multiple regression model for a single observation in vector form

yn = c + xnb+ εn , (n = 1, 2, · · · ,N ) (3)
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We can stack the N model equations

yn = c + xnb+ εn (4a)

= 1c + xnb+ εn (4b)

with n = 1, 2, . . . ,N

⇝



y1
y2
...
yn
...

yN−1

yN


︸ ︷︷ ︸

y

=



1
1
...
1
...
1
1


c

︸ ︷︷ ︸
1c

+



x1
x2
...
xn
...

xN−1

xN


b

︸ ︷︷ ︸
Xb

+



ε1
ε2
...
εn
...

εN−1

εN


︸ ︷︷ ︸

ε

We have defined the (N ×K ) matrix X, the X-block

X =



x1
x2
...
xi
...

xN−1

xN


=



x1,1 x1,2 · · · x1,K
x2,1 x2,2 · · · x2,K
...

...
...

[xn,1 xn,2 · · · xn,K ]
...

...
...

xN−1,1 xN−1,2 · · · xN−1,K

xN ,1 xN ,2 · · · xN ,K


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We can rewrite the multiple linear regression model in matrix form

y = 1c + Xb+ ε (5)

Or, equivalently, in terms of the centred X-block

y = 1c + (Ẋ+ 1x)︸ ︷︷ ︸
centring

b+ ε (6a)

= 1b0 + Ẋb+ ε (6b)

with b0 = c + (xb) a constant term after centring X

We also used x =
[
x1 x2 · · · xk · · · xK

]T
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MLR, estimation
y = 1c + Xb+ ε

The least-squares estimators of the parameters of the multiple linear regression model

b̂0 = y (7a)

b̂ =
(
ẊT Ẋ

)−1
ẊT︸ ︷︷ ︸

Ẋ†

ẏ = V−1
X VXy (7b)

The estimation of b depends upon the non-singularity of matrix ẊT Ẋ (invertible)

• VX , the variance-covariance matrix of (the variable in) X

• VXy , the covariance between (the variable in) X and y

Alternatively, we can write the estimator of b using the left pseudo-inverse Ẋ† of Ẋ

⇝ b̂ = Ẋ†ẏ (8)
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Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of humic acid using absorbance at two given wavelengths

• We selected as band 345 [nm] and band 430 [nm] (K = 2)

• Multiple linear regression (M = 1)

yn = (c + b1xn,1 + b2xn,2) + εn , (n = 1, 2, · · · ,N ) (9)
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Case I: Original x-variable and original y2-variable

The estimated regression parameters

• b1 = −0.4250 and b2 = −0.0003

• c = 0.0015

■
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MLR, prediction

We obtain another observation z of the explanatory variables, but not the response

• The system that generates this observation is assumed to be the same

We want to predict the value of the response (as if we had measured it), given z

• This is easily done by substituting z for x in the learned model

• (Equivalent to ‘reading’ it from the plot of the regression plane)

⇝ ŷ = y︸︷︷︸
b0

+(z− x) b̂ (predicted composition) (10)

Prediction ŷ depends on the learning data

⇝ Via x, y and b̂
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Applicability of multiple linear regression

Condition for existence of the least-squares solution to the MLR calibration problem

• The (K ×K ) matrix ẊT Ẋ must be non-singular

• (Equivalently, VX is non-singular)

This requires that a number of practical conditions on the calibration data are satisfied

• N > K , there must be more samples than explanatory variables

• The columns of matrix
[
1 Ẋ

]
must be linearly independent

As a result, a number of limitations to the use of plain MLR must be first considered

• In NIR spectroscopy, often K is in the order of hundreds or thousands

⇝ Therefore, a compatibly large number of samples must be collect

• In NIR spectroscopy, the K absorbances are highly collinear (correlated)

⇝ This leads to ill-conditioning of matrix ẊT Ẋ (whatever the sample size)
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Multivariate multiple linear regression is a straightforward extension of MLR

• Not only multiple explanatory variables and multiple response variables

• X =
[
x1 x2 · · · xN

]T
, size (N ×K )

• Y =
[
y1 y2 · · · yN

]T
, size (N ×M )

The model in centred form,

ẏn = ẋnB+ εn , (n = 1, 2, · · · ,N ) (11)

Sample size N , the number of available data points, the (xn , yn ) pairs2

• xn , n-th value of the explanatory variables (K absorbances)

xn = (xn,1, xn,2, . . ., xn,K )

• yn , n-th value of the response variables (M concentrations)

yn = (yn,1, yn,2, . . ., yn,M )

• εn , n-th error term (independent, zero mean, covariance Σ)

2The minimum number of observations is required to at least equal to K + 1.
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ẏn = ẋn
[
b1 b2 · · · bM

]︸ ︷︷ ︸
B

+εn , (n = 1, 2, · · · ,N )

The model assumes that concentrations are linearly related to absorbances, up to errors
• Each ym,n is a constant, plus the m-th weighted sum of explanatory variables
• The weighting vector is bk = (bm,1, bm,2, . . . , bm,K )

Multiple linear regression in matrix-matrix form

We can again stack the N model equations ẏn = ẋnB+ εn , with n = 1, 2, . . . ,N

⇝



ẏ1,1 ẏ1,2 · · · ẏ1,M
ẏ2,1 ẏ2,2 · · · ẏ2,M
...

...
...

ẏn,1 ẏn,2 · · · ẏn,M
...

...
...

ẏN−1,1 ẏN−1,2 · · · ẏN−1,M

ẏN ,1 ẏN ,2 · · · ẏN ,M


︸ ︷︷ ︸

Ẏ

=



ẋ1
ẋ2
...
ẋn
...

ẋN−1

ẋN


[
b1 b2 · · · bM

]

︸ ︷︷ ︸
ẊB

+



ε1
ε2
...
εn
...

εN−1

εN


︸ ︷︷ ︸

E
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mMLR, estimation

yn = 1c+ xn
[
b1 b2 · · · bM

]︸ ︷︷ ︸
B

+εn

The least-squares estimators of the parameters of the multiple linear regression model

b̂0 = y (12a)

B̂ =
(
ẊT Ẋ

)−1
ẊT︸ ︷︷ ︸

Ẋ†

Ẏ = V−1
X VXY (12b)

The estimation of B depends upon the non-singularity of matrix ẊT Ẋ (invertible)

• VY , the variance-covariance matrix of (the variables in) Y

• VXY , the covariance between (the variables in) X and Y

Alternatively, we can write the estimator of B using the left pseudo-inverse Ẋ† of Ẋ

⇝ B̂ = Ẋ†Ẏ (13)
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Multivariate multiple linear regression, mMLR (cont.)

The calibration of a multivariate multiple linear regression mMLR model is equivalent
to performing multiple linear regression MLR on each of the columns of Y separately

B̂ =
(
ẊT Ẋ

)−1
ẊT︸ ︷︷ ︸

Ẋ†

Ẏ = V−1
X VXY

mMLR, prediction

We obtain another observation z of the explanatory variables, but not the response

• The system that generates this observation is assumed to be the same

We want to predict the value of the responses (as if we had measured them), given z

• This is easily done by substituting z for x in the learned model

• (Equivalent to ‘reading’ it from the plot of the regression plane)

ŷ = y︸︷︷︸
b0

+(z− x) B̂ (14)

Prediction ŷ depends on data via x, y and B̂
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Multiple linear regression (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of all components using absorbance at two wavelengths

• We selected as band 345 [nm] and band 430 [nm] (K = 2)

• Multivariate multiple linear regression (M = 3)

Case I: Original x-variable and original y-variable
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Multiple linear regression (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of all components using absorbance at two wavelengths

• We selected every third band in the given range (K = 9)

• Multivariate multiple linear regression (M = 3)

Case I: Original x-variable and original y-variable
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Classical least-squares, CLS

MLR and mMLR models assume that the y-variables are the dependent variables

• The models assume that concentrations/properties depend on absorbances

This is the inverse relationship of what the Beer-Lambert law seems to suggest

• The absorbance xn,k of sample n depends (linearly) on concentration

xn,k =
(
yn,1a1,k + yn,2a2,k + · · ·+ yn,M aM ,k

)
+ εn,k

=

(
M∑

m=1

yn,mam,k

)
+ εn,k
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Classical least-squares, CLS (cont.)

It is crucial to study what happens when physical principles are reinstated in the model

⇝ Classical least-squares aims at generalising the Beer-Lambert law

xn,k = αk +

(
M∑

m=1

yn,mam,k

)
︸ ︷︷ ︸

Beer-Lambert

+εn,k , n = 1, . . . ,N and k = 1, . . .K (16)

• yn,m , m-th concentration of the n-th sample, the (n,m)-th entry in the Y-block

• xn,k , k-th absorbance of the n-th sample, the (n, k)-th entry in the X-block

• am,k , k-th absorbance of the pure m-th component (absorptivities)

• αk , k-th offset term (what is added to the Beer-Lambert law)

Moreover, en,k is the (n, k)-th error term, assumed independent across the samples

• It is assumed to have zero mean and common variance
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Classical least squares in matrix-matrix form

xn,k =

αk +
M∑

m=1

yn,mam,k︸ ︷︷ ︸
yn a

+ εn,k , (n = 1, . . . ,N and k = 1, . . .K )

Consider the sum yn1a1,k +yn,2a2,k + · · ·+yn,M aM ,k , the inner product of two vectors

⇝ One (1×M ) row-vector

yn =
[
yn,1 yn,2 · · · yn,M

]
⇝ One (M × 1) column-vector

ak =


a1,k
a2,k
...

aM ,k



ynak =
[
yn,1 yn,2 · · · yn,M

]

a1,k
a2,k
.
..

aM ,k


= yn,1a1,k + yn,2a2,k + · · ·+ yn,M aM ,k

Rewrite the expression for a single sample n and a single wavelength k in vector form

xn,k = αk + ynak + εn,k , (n = 1, 2, · · · ,N and k = 1, . . . ,K ) (18)
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We can also rewrite the classical least-squares calibration model in matrix form to get

• Now, we must stack the N ×K expressions xn,k = αk + ynak + εn,k

x1,1 · · · x1,K
...

...
xn,1 · · · xn,K
...

...
xN ,1 · · · xN ,K


︸ ︷︷ ︸

X

=



α1

...
αn

...
αN


︸ ︷︷ ︸

1α

+



y1
...
yn
...

yN


[
a1 · · · ak · · · aK

]

︸ ︷︷ ︸
YA

+



ε1
...
εn
...

εN


︸ ︷︷ ︸

E

(19a)

X = 1α+ YA+ E (19b)

• A is the (M ×K ) matrix of absorbances for pure components

• X is the (N ×K ) X-block and Y is the (N ×M ) Y-block

• E is the (N ×K ) matrix of random noise terms

• α is the (1×K ) row vector of offsets

• 1 denotes a (N × 1) vector of ones

α and A (and the residual variance) are the unknown parameters to be estimated
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X = 1α+ YA+ E

We firstly introduce the centred version of the Y-block, Ẏ = Y − 1y, then we get

⇝ Y = Ẏ + 1y

We used y =
[
y1 · · · ym · · · yM

]
denoting a (1×M ) vector of means of Y

After substituting Y in the model, we can write

X = 1α+
(
Ẏ + 1y

)
A+ E (20a)

= 1α0 + ẎA+ E (20b)

We used α0 = 1α+ yA
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Classical least-squares, CLS (cont.)

CLS, estimation

The least squares estimators of the unknown parameters α0 and A

α̂0 = x (21a)

Â =
(
ẎT Ẏ

)−1
ẎT︸ ︷︷ ︸

Ẏ†

Ẋ = V−1
Y VYX (21b)

The estimation of A depends upon the non-singularity of matrix ẎT Ẏ (invertible)

• VX , the variance-covariance matrix of Y

• VYX , the covariance between Y and X

Alternatively, we can rewrite the estimator of A using the left pseudo-inverse of Ẏ

⇝ Â = Ẏ†Ẋ (22)
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Classical least-squares, CLS (cont.)

Prediction is classical least-squares

For prediction, we start by considering the centred classical least-squares model

Ẋ = ẎA (error-free case)

We solve this equation with respect to Ẏ, by right-multiplying both sides by A†

A† = AT
(
AAT

)−1

Assuming that matrix AAT of dimension (M ×M ) in non-singular, we write

ẊA† = ẎAA† = Ẏ (23a)

⇝ Ẏ = ẊA† (23b)
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Classical least-squares, CLS (cont.)

Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of all components using absorbance at two wavelengths

• We selected all bands in the given range (K = 27)

• Classical least-squares regression (M = 3)
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Classical least-squares, CLS (cont.)

Ẏ = ẊA†

The equation is equivalent to the centred MLR model, matrix A† is used instead of B

• Thus, we can use the same expression for prediction

For test sample with spectrum z = [z1, z2, . . ., zK ] and unknown composition, we have

⇝ ŷ = y + (z− x) Â† (predicted composition) (24)

We used Â† = A†T
(
A † A†T

)−1
, the right pseudo-inverse of Â (instead of B̂)

The calibration of each y-variable involves information from all of the other y-variables

• Because in classical least-squares all components are evaluated simultaneously
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Classical least-squares, CLS (cont.)

Applicability of classical least-squares calibration

Condition for existence of the least-squares solution to the a CLS calibration problem

• The M ×M matrix ẎT Ẏ must be non-singular

⇝ (Equivalently, VY is non-singular)

• The M ×M matrix ÂÂT must be non singular

⇝ (Needed to compute Â†)

This requires that a number of practical conditions on the calibration data are satisfied

• K ≥ M , there are at least as many wavelengths as constituents, Ȧ is non-singular

• N > M , there must be more sample than components, Ẏ is non-singular
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Classical least-squares, CLS (cont.)

Advantages of classical least-squares

By definition, CLS calibration has a direct relation with the Beer-Lamber law

• The model has no limit in the number of wavelengths

• It can handle well multicollinearity in the spectra

• (The entire X-block can be used, also noisy parts)

Drawbacks of classical least-squares

By definition, CLS requires that all components in the sample are accounted for

• This requirement may be practically impossible to satisfy

• (This is an important practical difference from MLR)
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Calibration models, so far

Multivariate multiple linear regression (MLR)

• Model: Y = XB+ E

• Estimation: B̂ =
(
XTX

)−1
XTY

• Prediction: ŷ = y + (z− x) B̂

Classical least-squares (CLS)

• Model: X = YA+ E

• Estimation: Â =
(
YTY

)−1
YTX

• Prediction: ŷ = y + (z− x) Â†

Principal components and partial least-squares regression (PCR and PLSR)

• Model: Y = TB+ E

• Estimation: B̂ =
(
TTT

)−1
TTY

• Prediction: ŷ = y + t̂B̂
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