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Classical calibration

Calibration is the problem of understanding the relation between X and Y blocks
® A model of how responses y vary as a function of explanatory variables x

® The practical goal is to use the model to predict y, given a value of x

Simple linear regression considers the case where both x and y are scalar variables

~ Estimate on concentration (or another property) from one spectral band

For vectors, firstly we consider two classical and fundamental calibration methods
® Multiple linear regression, MLR

® (lassical least-squares, CLS

They are prototypical for all main calibration methods
® A good understanding is of essential importance

® They extend the simple linear regression
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Multiple linear regression, MLR

We considered the simple linear regression model, v, = (¢ + bz, )+en (n =1,2,...,N)

® A single z-variable (input) is linked to a single y-variable (output)

We will develop further this method, by first letting the z-variable be a vector x

® As we have multiple absorption bands, this is a more realistic scenario

The framework can then be further extended to account for vector y-variables

® Again more realistic, as we measure multiple concentrations/properties
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Multiple linear regression, MLR (cont.)

A multiple linear regression model is an extension of the linear regression model

Yn :C+blxn,l+b2-7?n,2+"'+ben.K + €n, (n:1727"' 7N) (1)

Sample size N, the number of data points, (x,,, y,,) pairs!, x, = (5,1, Zn2, .. ., T K)
® x,, n-th value of the explanatory variables (K absorbances)
® y,, n-th value of the response (concentration) variable

® ¢,, n-th error term (independent, zero mean, variance o?)

The model assumes that concentration is linearly related to absorbances, up to errors
® Each v, is equal to a constant, plus a weighted sum of explanatory variables

® The weights can be collected in a weighting vector b = (b1, b2, ..., bx)

1The minimum number of observations is required to at least equal to K + 1.
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Multiple linear regression, MLR (cont.)

Un = (c+bran1 +bozno+ -+ bgay k) +en, (n=1,2,---,N)

The model has a number of parameters that need to be calibrated /estimated from data
~ ¢ is the intercept of the regression model (an hyper-plane)

~~ by are the regression coefficients of the k-th z-variable

We implicitly assumed that €, the n-th noise term, the error, is somehow known

® |t is assumed to be independent between the samples

® Assumed to have zero mean and common variance o2
~~ Thus, only estimation of 02 would be needed
Unknown parameters to be estimated from data
. . 2
® (¢,b1,bo,...,bg), regression coefficients 0= (c,b1,b2,...,bK,0%)
® 52, residual variance b
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Multiple linear
regression Yn = <C+b1‘rn,1 +b2$n,2+“'+ben,K> + €n, ('I’LZ 1727"' 7N)

Consider the sum by, 1 + b2w, 2 +- - -+ bx z, K, it is the inner product of two vectors

~» One (1 x K) row-vector
b1
Xn = I:xn.l Tn,2 Tfn,,K:I bo
Xnb = |2y, Ly 6 BRI
~» Onme (K x 1) column-vector " [on. "2 ] .
b
by K
b = blwn,l+b2In.2+"'+bK$n.K
2
b=
bi

We can rewrite the multiple regression model for a single observation in vector form

Yn =c+xpb+en, (n=12,---,N) (3)
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Multiple linear regression, MLR (cont.)

We can stack the N model equations

Yn = c+x,b+en

= 1C+an+5n

withn =1,2,...,N

We have defined the (N x K) matrix X, the X-block

X1
X2

X

XN -1

XN_

(4a)
(4b)

~

x1,1
2,1

[zn,,l

TN—1,1
L TN,1

Y1 1 [ x [ e1
Y2 1 X2 £9
Yn 1| c+ Xn b+ En
YN -1 1 XN—1 EN-1
L yn 1] L Xn L N
[ R T W —
y 1lc Xb 5
1,2 1K
2,2 T2, K
Tn,2 zn,K}
TN-1,2 IN-1,K
N 2 N K |
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Multiple linear regression, MLR (cont.)

‘We can rewrite the multiple linear regression model in matrix form
v=1lc+Xb+e (5)

Or, equivalently, in terms of the centred X-block

y=lc+ X +1%)b+e (6a)
———
centring
=1bp+Xb+e (6b)

with bg = ¢ + (Xb) a constant term after centring X

o _aT
We also used x = [11 To -0 T - IK]
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Multiple linear regression, MLR (cont.)

MLR, estimation
y=1lc+Xb+e

The least-squares estimators of the parameters of the multiple linear regression model

/50 =7 (7a)
~ . .\ —1 .
b= (XTX) X7y =vilvy, (7b)
N ———
Xt

The estimation of b depends upon the non-singularity of matrix X7 X (invertible)
® Vy, the variance-covariance matrix of (the variable in) X
® Vy,, the covariance between (the variable in) X and y

Alternatively, we can write the estimator of b using the left pseudo-inverse X1 of X

~b =Xy (8)
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regression
Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of humic acid using absorbance at two given wavelengths
® We selected as band 345 [nm] and band 430 [nm] (K = 2)
® Multiple linear regression (M = 1)

Yn :(C“l‘blflf'm,l +b2-'1/'r1"2)+57h (n:1’27"' 1N) (9)

Sea pol lution (16 sanpl es)
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Multiple linear . . N N
regression Humic §c1d Humic §c1d

[pg/mL]
[pg/mL]

Concentration
.
Concentration
.

4000 4000
3000 6000 3000 6000
2000 . 4000 2000 4 4000

430nm 1000 T 2000 a3onm 1000 7 2000, o

The estimated regression parameters
® b = —0.4250 and by = —0.0003
® ¢ =0.0015
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Multiple linear regression, MLR (cont.)

MLR, prediction

We obtain another observation z of the explanatory variables, but not the response

® The system that generates this observation is assumed to be the same

We want to predict the value of the response (as if we had measured it), given z
® This is easily done by substituting z for x in the learned model

® (Equivalent to ‘reading’ it from the plot of the regression plane)

~ U= 7 +(z—%Db (predicted composition) (10)
~~

bo

Prediction ¥ depends on the learning data

~ Via X, 7 and b
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Multiple linear regression, MLR (cont.)

Applicability of multiple linear regression

Condition for existence of the least-squares solution to the MLR calibration problem
¢ The (K x K) matrix X7X must be non-singular

® (Equivalently, Vx is non-singular)

This requires that a number of practical conditions on the calibration data are satisfied
® N > K, there must be more samples than explanatory variables

® The columns of matrix [1 X} must be linearly independent

As a result, a number of limitations to the use of plain MLR must be first considered
® In NIR spectroscopy, often K is in the order of hundreds or thousands

~~ Therefore, a compatibly large number of samples must be collect

® In NIR spectroscopy, the K absorbances are highly collinear (correlated)

~~ This leads to ill-conditioning of matrix X7X (whatever the sample size)
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Multivariate multiple linear regression, mMLR

Multivariate multiple linear regression is a straightforward extension of MLR
® Not only multiple explanatory variables and multiple response variables
o X = [xl Xo - XN]T,size (N x K)
°Y = [YI yo oo y,\']T, size (N x M)
The model in centred form,
yn=%B+en, (n=12,---,N) (11)

Sample size N, the number of available data points, the (x,,y,) pairs?

® x,, n-th value of the explanatory variables (K absorbances)
Xn = (Tn,1,Tn,2, - - Tn, K)

® y,, n-th value of the response variables (/1/ concentrations)
Yn = (Yn,1,Yn,2s - - Yn, M)

® e,, n-th error term (independent, zero mean, covariance X)

2The minimum number of observations is required to at least equal to K + 1.
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Multiple linear B
regression

The model assumes that concentrations are linearly related to absorbances, up to errors

® Each v, , is a constant, plus the m-th weighted sum of explanatory variables
® The weighting vector is by, = (bm,1, bm,2,- -, bm,K)

Multiple linear regression in matrix-matrix form

We can again stack the N model equations y,, = x,B+ €y, with n =1,2,... /N

Y1,1 U1,2 oM ] X1 €1

72,1 72,2 B Y2, M X2 €2

~ Z‘/n‘l Z‘/n"z o !-/zz.i\[ = XH [bl b2 e bM} + En
YN—-1,1 YN-12 ' YN—1,M XN-1 EN-1
L Un,1 YN,2 ce yn,Mm | L Xnv L EN |

Y XB E
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regression

Multivariate multiple linear regression, mMLR (cont.)

mMLR, estimation

yo=1c+x, [b1 bz -+ by]tes

B

The least-squares estimators of the parameters of the multiple linear regression model

bo=7 (12a)
~ N .
B— (X X) XTV =ViiVy, (12b)
N—— —
Kt

The estimation of B depends upon the non-singularity of matrix X 7X (invertible)
® V-, the variance-covariance matrix of (the variables in) Y
® Vyy, the covariance between (the variables in) X and Y

Alternatively, we can write the estimator of B using the left pseudo-inverse Xt of X

~ B=xty (13)
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Multivariate multiple linear regression, mMLR (cont.)

The calibration of a multivariate multiple linear regression mMLR model is equivalent
to performing multiple linear regression MLR on each of the columns of Y separately

B= (XTX>71 XTy = V}lvx 14

xt

mMLR, prediction

We obtain another observation z of the explanatory variables, but not the response

® The system that generates this observation is assumed to be the same

We want to predict the value of the responses (as if we had measured them), given z
® This is easily done by substituting z for x in the learned model
® (Equivalent to ‘reading’ it from the plot of the regression plane)
V= +(-9B (14)

~~
bo

Prediction y depends on data via X, y and B
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Multiple linear
regression

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of all components using absorbance at two wavelengths
® We selected as band 345 [nm] and band 430 [nm] (K = 2)

® Multivariate multiple linear regression (M = 3)

Case I: Original x-variable and original y-variable
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regression
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Multiple linear
regression

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of all components using absorbance at two wavelengths
® We selected every third band in the given range (K =9)

® Multivariate multiple linear regression (M = 3)

Case I: Original x-variable and original y-variable
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Classical least
square

Multiple linear regression, MLR (cont.)
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Classical least

square

Multiple linear regression, MLR (cont.)
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Classical least

squares MLR and mMLR models assume that the y-variables are the dependent variables

® The models assume that concentrations/properties depend on absorbances

This is the inverse relationship of what the Beer-Lambert law seems to suggest

® The absorbance x,, ;; of sample n depends (linearly) on concentration

Tn,k = (7///.1 alk+ yn202 K+ -+ z/”_A\/aA\/,A-,) +éenk

M
= E Yn,m @,k | +Enk

m=1
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It is crucial to study what happens when physical principles are reinstated in the model

~~ Classical least-squares aims at generalising the Beer-Lambert law

Classical least
squares

M
Tk = Qp + <Z vz/,,_,,,a,,,y;\> +eni, n=1...,Nand k=1,... K (16)

m=1

Beer-Lambert

® 4, .., m-th concentration of the n-th sample, the (n, m)-th entry in the Y-block
® 1, 1, k-th absorbance of the n-th sample, the (n, k)-th entry in the X-block
® a,, j;, k-th absorbance of the pure m-th component (absorptivities)

® qy, k-th offset term (what is added to the Beer-Lambert law)

Moreover, ey, . is the (n, k)-th error term, assumed independent across the samples

® It is assumed to have zero mean and common variance
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M
Classical least Tpp = | o + E Ynom g | +Engpy, (n=1,...,Nand k=1,...K)
squares 1

Yna

Consider the sum v, 1 a1, +yn 2021+ -+, 1 an i, the inner product of two vectors

~+ One (1 x M) row-vector
ai,k
Yn=[Un1 Yn2 - Ynu] as 1
J
Ynag = |Un,1 Yn,2 Yn, M
~+ Ome (M X 1) column-vector [ ]
ap,k
a
as. = Yn101k + Yn 202+ Yp vran i
ap =
an, i

Rewrite the expression for a single sample n and a single wavelength & in vector form

xn,k:ak'i‘}’nak"'an,k: (TL:].,Q,'“ ,Nandk:l,...,K) (18)
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Classical least
squares

Classical least-squares, CLS (cont.)

We can also rewrite the classical least-squares calibration model in matrix form to get

® Now, we must stack the N x K expressions z, . = aj + y,ar + &n

r1,1

Tn,1

7,1

T1,K o yi €1
In K| = |Cn + | vn [al cee ag s aK} + | en (19a)
IN,K ay YN EN
N—— N——
la YA E
X=1la+YA+E (19b)

® A is the (/ x K) matrix of absorbances for pure components
® X is the (N x K) X-block and Y is the (N x 1/) Y-block

® E is the (N x K) matrix of random noise terms

® « is the (1 x K) row vector of offsets

® 1 denotes a (N x 1) vector of ones

a and A (and the residual variance) are the unknown parameters to be estimated
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squares

Classical least-squares, CLS (cont.)

We firstly introduce the centred version of the Y-block, Y =Y — 1y, then we get
~ Y=Y +1y

Weusedy= [y, -+ 7, -+ 7] denotinga (1 x M) vector of means of Y

After substituting Y in the model, we can write

x=1a+OWJﬂA+E (20a)
=lap+ YA+E (20b)

We used ap = lax + yA
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Classical least
squares

Classical least-squares, CLS (cont.)

CLS, estimation

The least squares estimators of the unknown parameters ap and A

ag=Xx (21a)
R B I .
A:(Y Y) VIX=Vilv, ¢ (21b)
N—————
vt

The estimation of A depends upon the non-singularity of matrix Y7V (invertible)
® Vy, the variance-covariance matrix of Y

® Vy x, the covariance between Y and X

Alternatively, we can rewrite the estimator of A using the left pseudo-inverse of Y

~ A=VTX (22)
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Prediction is classical least-squares
Classical least

squares For prediction, we start by considering the centred classical least-squares model

X = YA (error-free case)
We solve this equation with respect to V, by right-multiplying both sides by At

At = AT (AAT)_l

Assuming that matrix AAT of dimension (M x M) in non-singular, we write
XAt =vAAt =Y (23a)
~ v =XAf (23b)
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Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Estimate the concentration of all components using absorbance at two wavelengths
® We selected all bands in the given range (K = 27)

® (Classical least-squares regression (M = 3)
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Classical least-squares, CLS (cont.)
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Classical least
squares

Classical least-squares, CLS (cont.)

v = xat
The equation is equivalent to the centred MLR model, matrix AT is used instead of B
® Thus, we can use the same expression for prediction
For test sample with spectrum z = [z1, 22, . . ., zx] and unknown composition, we have

~ =7+ (z—%)A! (predicted composition) (24)

—~ -1 —~ —~
We used AT = AtT (A T AT T) , the right pseudo-inverse of A (instead of B)

The calibration of each y-variable involves information from all of the other y-variables

® Because in classical least-squares all components are evaluated simultaneously
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Classical least

Applicability of classical least-squares calibration

squares
Condition for existence of the least-squares solution to the a CLS calibration problem
® The M x M matrix Y7V must be non-singular
~ (Equivalently, Vy is non-singular)
e The M x M matrix AAT must be non singular
~ (Needed to compute AT)

This requires that a number of practical conditions on the calibration data are satisfied
® K > M, there are at least as many wavelengths as constituents, Ais non-singular

® N > M, there must be more sample than components, Y is non-singular
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Classical least
squares

Advantages of classical least-squares

By definition, CLS calibration has a direct relation with the Beer-Lamber law
® The model has no limit in the number of wavelengths
® It can handle well multicollinearity in the spectra

® (The entire X-block can be used, also noisy parts)
Drawbacks of classical least-squares

By definition, CLS requires that all components in the sample are accounted for
® This requirement may be practically impossible to satisfy

® (This is an important practical difference from MLR)
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Multiple linear

regression

Classical least
squares

Calibration models, so far

Multivariate multiple linear regression (MLR)
® Model: Y =XB+E
* Estimation: B = (X7X) ™' XTY
® Prediction: =y + (z—%)B
Classical least-squares (CLS)
® Model: X =YA+E
e Estimation: A = (YTY) ™' YTX
® Prediction: 7 =y + (z — %) AT

Principal components and partial least-squares regression (PCR and PLSR)
® Model: Y =TB+E
* Estimation: B = (TTT) ' TTY
® Prediction: 7 =y + tB
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