regression

```
```

Principal

```
Principal
componen
componen
analysis
analysis
Principal component
Principal component
analysis
analysis
analysis
analysis
Principal component
```

Principal component

```
```

Aalto University

```

\section*{Chemometric data analysis, fundamental methods (III)}
``` Advanced crystallization and characterization techniques June 1-5, 2020
Francesco Corona
Chemical and Metallurgical Engineering School of Chemical Engineering
```


## FC

## Principal

Principal component methods

We can start by assuming that both data blocks $\mathbf{X}$ and $\mathbf{Y}$ have been previously centred

$$
\begin{array}{lll}
\mathbf{X} & \text { in } & \mathbf{X}-\mathbf{1} \mathbf{X} \\
\mathbf{Y} \text { in } & \mathbf{Y}-\mathbf{1} \mathbf{Y} \tag{1b}
\end{array}
$$

We then discuss a general method for the analysis of multivariate data

- The principal components analysis (PCA)
- It will be extended for regression (PCR)

To appreciate PCA, we need to overview a matrix factorisation method

- The singular value decomposition (SVD)


## FC

## Principal

 component analysisPrincipal component analysis

Principal component regression

## Singular value decomposition

Consider a $(N \times K)$ matrix $\mathbf{X}$ and let $\mathrm{t}=\min \{N, K\}$ (the dimension of the matrix)
The singular value decomposition (SVD) of $\mathbf{X}$ is a factorisation of matrix $\mathbf{X}$

$$
\mathbf{X}=\mathbf{U D P}^{T}, \quad \text { with } \quad\left\{\begin{array}{l}
\mathbf{U} \text { is an orthogonal }(N \times \mathrm{t}) \text { matrix }  \tag{2}\\
\mathbf{P} \text { is an orthogonal }(K \times \mathrm{t}) \text { matrix } \\
\mathbf{D} \text { is an diagonal }(N \times N) \text { matrix }
\end{array}\right.
$$

That is,

$$
\mathbf{X}=\underbrace{\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 \mathrm{t}} \\
u_{21} & u_{22} & \cdots & u_{2 \mathrm{t}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1} & u_{N 2} & \cdots & u_{N \mathrm{t}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{\mathrm{t}}
\end{array}\right]}_{\mathbf{D}} \underbrace{\left[\begin{array}{cccc}
p_{11} & p_{21} & \cdots & p_{K 1} \\
p_{12} & p_{22} & \cdots & p_{K 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1 \mathrm{t}} & p_{2 N} & \cdots & p_{K \mathrm{t}}
\end{array}\right]}_{\mathbf{P}^{T}}
$$

A matrix $\mathbf{A}$ is said to be orthogonal if its columns are orthonormal vectors, $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$

- Two vectors are orthogonal if their inner product is zero, $\mathbf{a}_{i}^{T} \mathbf{a}_{j}=0$

FC

## Principal

Singular value decomposition (cont.)

## Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)


Singular value decomposition (cont.)

## FC

## Principal

$$
\mathbf{X}=\underbrace{\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 \mathrm{t}} \\
u_{21} & u_{22} & \cdots & u_{2 \mathrm{t}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1} & u_{N 2} & \cdots & u_{N \mathrm{t}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{\mathrm{t}}
\end{array}\right]}_{\mathbf{D}} \underbrace{\left[\begin{array}{cccc}
p_{11} & p_{21} & \cdots & p_{K 1} \\
p_{12} & p_{22} & \cdots & p_{K 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1 \mathrm{t}} & p_{2 N} & \cdots & p_{K \mathrm{t}}
\end{array}\right]}_{\mathbf{P}^{T}}
$$

Let us first consider matrix $\mathbf{D}$, it is a diagonal matrix whose dimension is $(\mathrm{t} \times \mathrm{t})$


There are $\mathrm{r} \leq \mathrm{t}$ non-negative values $d_{i}$

- The singular values of $\mathbf{X}$

The zero-valued $d_{i}$ can be neglected

- There are $\mathrm{t}-\mathrm{r}$ of them



## CHEM-ACCC

 June 2020
## FC

## Principal

component analysis

Principal component analysis
Principal component regression

Singular value decomposition (cont.)

## Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)
Consider the (centred) spectral block, $\mathbf{X}(N=16$ and $K=27$, we have that $\mathrm{t}=16)$

$$
\mathbf{X}=\mathbf{U} \underbrace{\mathbf{D}} \mathbf{P}^{T}
$$



- $\mathbf{U}$ is an orthogonal $(N \times \mathrm{t})$ matrix
- $\mathbf{P}$ is an orthogonal $(K \times \mathrm{t})$ matrix
$\rightsquigarrow \mathbf{D}$ is an diagonal $(N \times N)$ matrix


## FC

## Principal

 component analysisSingular value decomposition (cont.)

$$
\mathbf{X}=\underbrace{\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 \mathrm{t}} \\
u_{21} & u_{22} & \cdots & u_{2 \mathrm{t}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1} & u_{N 2} & \cdots & u_{N \mathrm{t}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{\mathrm{t}}
\end{array}\right]}_{\mathbf{D}} \underbrace{\left[\begin{array}{cccc}
p_{11} & p_{21} & \cdots & p_{K 1} \\
p_{12} & p_{22} & \cdots & p_{K 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1 \mathrm{t}} & p_{2 N} & \cdots & p_{K \mathrm{t}}
\end{array}\right]}_{\mathbf{P}^{T}}
$$

Let us now consider matrix $\mathbf{P}$, it is an orthogonal matrix whose dimension is $(K \times \mathrm{t})$

$$
\mathbf{P}=\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 \mathrm{t}}  \tag{3}\\
p_{21} & p_{22} & \cdots & p_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
p_{K \mathrm{t}} & p_{2 N} & \cdots & p_{K \mathrm{t}}
\end{array}\right]
$$

Matrix $\mathbf{P}$ is called the loadings matrix

- Its columns $\mathbf{p}_{i}$ are the loadings

$$
\mathbf{p}_{i}=\left[\begin{array}{llll}
p_{i 1} & p_{i 2} & \cdots & p_{i \mathrm{t}}
\end{array}\right]
$$

Matrix $\mathbf{P} \mathbf{P}^{T}$ is an identity matrix, the inner product between the columns of $\mathbf{P}$ is zero

## CHEM-ACCC

 June 2020
## FC

## Principal

 component analysisPrincipal component analys is

Principal component regression

Singular value decomposition (cont.)

## Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)
Consider the (centred) spectral block, $\mathbf{X}(N=16$ and $K=27$, we have that $\mathrm{t}=16)$


$$
\mathbf{X}=\mathbf{U D} \underbrace{\mathbf{P}^{T}}
$$



- $\mathbf{U}$ is an orthogonal $(N \times \mathrm{t})$ matrix
$\rightsquigarrow \mathbf{P}$ is an orthogonal $(K \times \mathrm{t})$ matrix
- $\mathbf{D}$ is an diagonal $(N \times N)$ matrix

Singular value decomposition (cont.)

## FC

## Principal

 component analysis$$
\mathbf{X}=\underbrace{\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 \mathrm{t}} \\
u_{21} & u_{22} & \cdots & u_{2 \mathrm{t}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1} & u_{N 2} & \cdots & u_{N \mathrm{t}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{\mathrm{t}}
\end{array}\right]}_{\mathbf{D}} \underbrace{\left[\begin{array}{cccc}
p_{11} & p_{21} & \cdots & p_{K 1} \\
p_{12} & p_{22} & \cdots & p_{K 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1 \mathrm{t}} & p_{2 N} & \cdots & p_{K \mathrm{t}}
\end{array}\right]}_{\mathbf{P}^{T}}
$$

Let us now consider matrix $\mathbf{U}$, it is an orthogonal matrix whose dimension is $(N \times \mathrm{t})$

$$
\mathbf{U}=\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 \mathrm{t}}  \tag{4}\\
u_{21} & u_{22} & \cdots & u_{2 \mathrm{t}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N \mathrm{t}} & u_{N, 2} & \cdots & u_{N \mathrm{t}}
\end{array}\right]
$$

The columns of $\mathbf{U}$ are orthonormal

- Matrix $\mathbf{U U}^{T}=\mathbf{I}$


## Principal

 component analysisSingular value decomposition (cont.)

$$
\mathbf{X}=\underbrace{\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 \mathrm{t}} \\
u_{21} & u_{22} & \cdots & u_{2 \mathrm{t}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1} & u_{N 2} & \cdots & u_{N \mathrm{t}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{\mathrm{t}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
p_{11} & p_{21} & \cdots & p_{K 1} \\
p_{12} & p_{22} & \cdots & p_{K 2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1 \mathrm{t}} & p_{2 N} & \cdots & p_{K \mathrm{t}}
\end{array}\right]}_{\mathbf{D}}
$$

The matrix $\mathbf{T}=\mathbf{U P}$ is called scores matrix

$$
\mathbf{T}=\underbrace{\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 \mathrm{t}}  \tag{5}\\
u_{21} & u_{22} & \cdots & u_{2 \mathrm{t}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{N 1} & u_{N 2} & \cdots & u_{N \mathrm{t}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{\mathrm{t}}
\end{array}\right]}_{\mathbf{D}}
$$

The columns $\mathbf{t}_{i}$ of matrix UD are called the scores June 2020

## FC

Singular value decomposition (cont.)

## Example

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra) Consider the (centred) spectral block, $\mathbf{X}(N=16$ and $K=27$, we have that $\mathrm{t}=16)$

## U


$\rightsquigarrow \mathbf{U}$ is an orthogonal $(N \times \mathrm{t})$ matrix

- $\mathbf{P}$ is an orthogonal $(K \times \mathrm{t})$ matrix
- $\mathbf{D}$ is an diagonal $(N \times N)$ matrix

June 2020
Singular value decomposition (cont.)

## Principal

component analysis

Principal component analysis
Principal component regression

## $\mathbf{T}=\mathbf{U D}$



The scores matrix $\mathbf{T}$ and the scores

- Its columns $\left\{\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{\mathrm{t}}\right\}$ June 2020

FC

## Principal

 component analysisPrincipal component analysis
Principal component regression

Singular value decomposition (cont.)


Ligninsulphonate


Humic acid


Detergent


## Principal

 component analysisPrincipal component analysis

Principal component regression

Singular value decomposition (cont.)

$$
\begin{aligned}
& \mathbf{X}=\underbrace{\left[\begin{array}{ccccc}
u_{11} & \cdots & u_{1 \mathrm{~d}} & \cdots & u_{1 \mathrm{t}} \\
\vdots & & \vdots & & \vdots \\
u_{N 1} & \cdots & u_{N \mathrm{~d}} & \cdots & u_{N \mathrm{t}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{ccccc}
d_{1} & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & & \vdots \\
0 & \cdots & d_{\mathrm{r}} & \cdots & 0 \\
\vdots & & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & d_{\mathrm{t}}
\end{array}\right]}_{\mathbf{D}} \underbrace{\left[\begin{array}{ccc}
p_{11} & \cdots & p_{K 1} \\
\vdots & & \vdots \\
p_{1 \mathrm{r}} & \cdots & p_{K \mathrm{r}} \\
\vdots & & \vdots \\
p_{1 \mathrm{t}} & \cdots & p_{K \mathrm{t}}
\end{array}\right]}_{\mathbf{P}^{T}} \\
& =\underbrace{\left[\begin{array}{ccc}
u_{11} & \cdots & u_{1 \mathrm{~d}} \\
\vdots & \ddots & \vdots \\
u_{N 1} & \cdots & u_{N \mathrm{~d}}
\end{array}\right]}_{\mathbf{U}} \underbrace{\left[\begin{array}{ccc}
d_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & d_{\mathrm{r}}
\end{array}\right]}_{\mathbf{D}} \underbrace{\left[\begin{array}{ccc}
p_{11} & \cdots & p_{K 1} \\
\vdots & \ddots & \vdots \\
p_{1 \mathrm{r}} & \cdots & p_{K \mathrm{r}}
\end{array}\right]}_{\mathbf{P}^{T}}
\end{aligned}
$$

The t-r zero-valued singular values $d_{i}$ can be discarded

- Together with the last $t-r$ columns of $\mathbf{U}$ and $\mathbf{P}$

CHEM-ACCC

## FC

## Principal

## Eigenvalue decomposition

Consider any square $N$-matrix $\mathbf{A}$, a number $\lambda$, a non-zero $N$-vector $\mathbf{p}$ and the identity

$$
\begin{equation*}
\mathbf{A p}=\lambda \mathbf{p} \tag{7}
\end{equation*}
$$

$\lambda$ is an eigenvalue of $\mathbf{A}$ and $\mathbf{p}$ is the corresponding eigenvector

- (Also any multiple of $\mathbf{p}$ is an eigenvector of $\lambda$ )

There exist $N$ (not necessarily unique) such numbers $\lambda$ and associated vectors $\mathbf{p}$

Consider now a symmetric square $N$-matrix $\mathbf{A}$, and its eigenvectors $\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}$

- The eigenvectors can be chosen to be orthonormal

For each eigenvalue-eigenvector pair, the eigenequation is $\mathbf{A p}_{n}=\lambda_{n} \mathbf{p}_{n}(n=1, \ldots, N)$

## Principal

## Eigenvalue decomposition (cont.)

Let $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{N}$ be the columns of an orthogonal matrix $\mathbf{P}\left(\mathbf{P}^{T} \mathbf{P}=\mathbf{I}\right)$

$$
\rightsquigarrow \quad \mathbf{P}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Let $\lambda_{1}, \ldots, \lambda_{N}$ be the elements of a diagonal matrix $\boldsymbol{\Sigma}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$

$$
\rightsquigarrow \quad \boldsymbol{\Lambda}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{N}
\end{array}\right] \quad\left(\lambda_{1} \geq \cdots \geq \lambda_{N}\right)
$$

We can write the collection of eigenequations $\mathbf{A} \mathbf{p}_{n}=\lambda_{n} \mathbf{p}_{n}$ in matrix form

$$
\mathbf{A P}=\mathbf{P} \mathbf{\Lambda}
$$

As for orthogonal matrices $\mathbf{P}=\mathbf{P}^{-1}$, we get the eigendecomposition of $\mathbf{A}$

$$
\begin{align*}
\mathbf{A} & =\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{T}  \tag{8a}\\
& =\sum_{n=1}^{N} \lambda_{n} \mathbf{p}_{n} \mathbf{p}_{n}^{T} \tag{8b}
\end{align*}
$$

## FC

## Principal

## Eigenvalue decomposition (cont.)

Given these definitions, we consider the singular value decomposition of $\mathbf{X}$ (centred) Let $\mathbf{A}=\mathbf{X}^{T} \mathbf{X}$, we can write

$$
\begin{align*}
\mathbf{A} & =\mathbf{X}^{T} \mathbf{X}  \tag{9a}\\
& =\left(\mathbf{P D U}^{T}\right)\left(\mathbf{U D P}^{T}\right)  \tag{9b}\\
& =\mathbf{P} \mathbf{D} \underbrace{\mathbf{U}^{T} \mathbf{U}}_{\mathbf{I}} \mathbf{D} \mathbf{P}^{T}  \tag{9c}\\
& =\mathbf{P D}^{2} \mathbf{P}^{T} \tag{9d}
\end{align*}
$$

We have that the eigenvalues of $\mathbf{A}=\mathbf{X}^{T} \mathbf{X}$ are the diagonal elements of matrix $\mathbf{D}^{2}$

- (The squared singular values of matrix $\mathbf{X}$ )

Moreover, columns of $\mathbf{P}$ are the eigenvectors of $\mathbf{A}=\mathbf{X}^{T} \mathbf{X}$ (and the loadings of $\mathbf{X}$ )

Matrix $\mathbf{X}^{T} \mathbf{X} /(N-1)$ estimates the (variance)-covariance matrix from centred $\mathbf{X}$-block

- Principal components analysis, eigendecomposition of a covariance matrix June 2020

FC

## Principal

 component analysisPrincipal component analysis

Principal component regression

Principal component analysis, PCA

Principal components analysis, PCA is a method for reducing data dimensionality

- Low-dimensional representation of the data
- Visual discovery of data structures

The eigenvectors of the data covariance matrix are directions in original data space

- The loadings $\mathbf{p}_{n}$ embed the relevance of the columns $\mathbf{X}$ (original directions)
- Interest in retaining only eigenvectors that associate with large variations
- They correspond to the largest eigenvalues of the data covariance matrix

The spectral data $\mathbf{X}$, absorbances, are characterised by redundant information

- Absorbances at adjacent wavelength are highly correlated
- (Peaks of pure components are spread over a range)

The objective is to find whether there are data directions of high variability

- These direction will be linear compositions of the original directions
- They will also be orthogonal to each other, thus non-redundant


## FC

## Principal

component
analysis
Principal component analysis

Principal component regression

Principal component regression

Principal component regression uses a suitable value $t$ to select features of $\mathbf{X}$ Then, the retained features $\mathbf{T}_{\mathrm{t}}$ are used to perform MLR against $\mathbf{Y}$

$$
\begin{equation*}
\mathbf{Y}=\mathbf{T}_{\mathrm{t}} \mathbf{C}+\mathbf{F} \tag{10}
\end{equation*}
$$

By the least squares methods, we get the estimates

$$
\begin{equation*}
\widehat{\mathbf{C}}=\left(\mathbf{T}_{\mathrm{t}}^{T} \mathbf{T}_{\mathrm{t}}\right)^{-1} \mathbf{T}_{\mathrm{t}}^{T} \mathbf{Y} \tag{11}
\end{equation*}
$$

Since matrix $\mathbf{T}_{\mathrm{t}}^{T} \mathbf{T}_{\mathrm{t}}$ is diagonal, its inverse is trivial

Principal component regression (cont.)

## Prediction

$$
\begin{align*}
\mathbf{Y} & =\mathbf{T}_{\mathbf{g}} \mathbf{C}+\mathbf{F}  \tag{12a}\\
& =\mathbf{X P}_{\mathrm{g}} \mathbf{C}+\mathbf{F} \tag{12b}
\end{align*}
$$

Consider a new sample spectrum $\mathbf{z}$ and the predicted value $\widehat{\mathbf{y}}$, uncentered with $\hat{\mathbf{x}}$ and $\overline{\mathbf{x}}$ be the learning sample means, the prediction

$$
\begin{equation*}
\widehat{\mathbf{y}}=\overline{\mathbf{y}}+(\mathbf{z}-\overline{\mathbf{x}}) \mathbf{P}_{\mathrm{t}} \widehat{\mathbf{C}} \tag{13}
\end{equation*}
$$

Matrix $\mathbf{P}_{\mathrm{g}} \widehat{\mathbf{C}}$ is called the regression matrix

- (Similar to matrix $\widehat{\mathbf{B}}$ in MLR)

Consider the case where $\operatorname{rank}(\mathbf{X})=K$ and $\mathrm{t}=K$

- PCR and MLR give the same result

Consider the case where $\operatorname{rank}(\mathbf{X})=K$ but $\mathrm{t}<K$

- PCR and MLR give different results

