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‘We can start by assuming that both data blocks X and Y have been previously centred

X « X-1X (1a)
Y «~ Y-1Y (1b)

We then discuss a general method for the analysis of multivariate data
® The principal components analysis (PCA)
® Tt will be extended for regression (PCR)

To appreciate PCA, we need to overview a matrix factorisation method

® The singular value decomposition (SVD)
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Singular value decomposition
Consider a (N x K) matrix X and let t = min{N, K} (the dimension of the matrix)
The singular value decomposition (SVD) of X is a factorisation of matrix X

U is an orthogonal (N X t) matrix
X =UDP7”, with P is an orthogonal (K x t) matrix 2)
D is an diagonal (N x N) matrix

That is,
wil w2 - we ] [dr O .-+ 07 [p11 P21 - PRI
uz1 U2 v Ut 0 do -+ Of |[pi2 p22 -+ pk2
X =
UN1 UN2 UNt 0 0 d Pt pan DKt
1% D pT

A matrix A is said to be orthogonal if its columns are orthonormal vectors, ATA =1

® Two vectors are orthogonal if their inner product is zero, aiT a; =0
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Consider the (centred) spectral block, X I

X = UDP”

N =16 and K = 27, we have that t = 16

® U is an orthogonal (N X t) matrix

® P is an orthogonal (K x t) matrix

Samples (N)

® D is an diagonal (N x N) matrix

Wlength (K)



CHEM.ACCG Singular value decomposition (cont.)
June 2020

FC

Principal
component

: uir w2 - ug| [d1 O 07 P11 p21 PK1
analysis
: ugr  upz - wuge| [0 d2oee- O |p12 p22 oo DKo
X = . . .
uni un2 - unel LO 0 - del Lpie pan ccr Pk
U

D pT

Let us first consider matrix D, it is a diagonal matrix whose dimension is (t X t)

d4 0 --- 0 -~ 0 There are r < t non-negative values d;
0 d o = 0 ® The singular values of X

0 0 .. dr A 0 The zero-valued d; can be neglected

. > ® There are t — r of them

o o0 -+ 0 - d

di>d>>de>dry1 > > dy

non-zeros

D=diag{dy,dz,...,ds }

Zeros



cuem-acce  Singular value decomposition (cont.)

June 2020
FC
Prfrmeipmil Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)
component
analysis .
e Consider the (centred) spectral block, X (N = 16 and K = 27, we have that t = 16)
analy ~]A» '
] (T X=UD PT
regression ~—
4 diag(D
25 %10 g(D)
2+
1.5}
~
1f
0.5}
0 It " "
0 5 10 15

Nunber

® U is an orthogonal (N X t) matrix
® P is an orthogonal (K X t) matrix

~ D is an diagonal (N x N) matrix



CHEM-ACCC
June 2020

FC

Principal
component
analysis

Principal component

inalysis

Singular value decomposition (cont.)

uir w2z - ug| [d 0 .-+ 07 P11 P21 PK1
ug1 U2 v Ut 0 d 0| [p12  p22 PK2
X = .
unyt  uyz - uned LO 0 .- de] Lpie paN 0 PKe
U D pr

Let us now consider matrix P, it is an orthogonal matrix whose dimension is (K X t)

P11 pi2 - Plt

D21 P22+ P2k Matrix P is called the loadings matrix
P = ®3) ® Its columns p; are the loadings

PKt P2N 't DKt pi=[pin P2 - pi]

Matrix PP 7T is an identity matrix, the inner product between the columns of P is zero
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Singular value decomposition (cont.)

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Consider the (centred) spectral block, X (N = 16 and K = 27, we have that t = 16)

X =UDPT
~

First two | oadi ngs

350 400 450 500
Wavel ength [ nni

® U is an orthogonal (N X t) matrix
~ P is an orthogonal (K X t) matrix

® D is an diagonal (N X N) matrix
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UN1  UN2 UN+t 0 0 de Pt PaN - - DKt

U D pT

Let us now consider matrix U, it is an orthogonal matrix whose dimension is (N X t)

U1l u12 cee Ult The columns of U are orthonormal

U1 U2 vt U2t ° : T _
U= . / . . () Matrix UU I

UNt UN)2 UNt
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Singular value decomposition (cont.)

uir w2z - ug| [d1 O 0 P21 -+ PK1
ug1 U2 v U2t 0 do 0 P22+ PK2
X = A
uNi  unz - ungd LO 0O ds P2N ' DPKs
U D pT
UD
The matrix T = UP is called scores matrix
uip w2 -+ ug| [dr O 0
ug1 U2t Ut 0 do 0
T = . . (5)
UN1 UN2 ' UNg 0 0 dy
U

The columns t; of matrix UD are called the scores
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Singular value decomposition (cont.)

Ligninsulfonate in seawater, fluorescence spectroscopy (emission spectra)

Consider the (centred) spectral block, X (N = 16 and K = 27, we have that t = 16)

X = _U DP”

~

~» U is an orthogonal (N X t) matrix
® P is an orthogonal (K x t) matrix

® D is an diagonal (N X N) matrix
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The scores matrix T and the scores

® TIts columns {ti,t2,...,t¢}
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Singular value decomposition (cont.)

Scores

PC2

0
PCl «10¢

Ligninsulphonate

PC2

PCl «10%

PC2

PC2

Humic acid

0

PC1 x104
Detergent

0

PCl 4«10

120

80
60
40
20
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Singular value decomposition (cont.)

Pir

Pit

PK1
PKr

PKt

di - 0 0
Uiy v Ui o Ul : . :
X = 0 - d 0
UN1 ottt UNG 0 UNt :
N 0 0 d
D
wr o wid] [di oo+ 07 [pun - PRI
unt o0 unal LO O oor ded Lpix oo PEr
U D pT

The t — r zero-valued singular values d; can be discarded

® Together with the last t — r columns of U and P

SVD in reduced form

pT
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Eigenvalue decomposition

Consider any square N-matrix A, a number A, a non-zero N-vector p and the identity
Ap = p (M

A is an eigenvalue of A and p is the corresponding eigenvector

® (Also any multiple of p is an eigenvector of \)

There exist N (not necessarily unique) such numbers A\ and associated vectors p

Consider now a symmetric square N-matrix A, and its eigenvectors pi,...,pPnN

® The eigenvectors can be chosen to be orthonormal

For each eigenvalue-eigenvector pair, the eigenequation is Ap, = Appn (n =1,...,N)
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Eigenvalue decomposition (cont.)

Let p1,p2,...,pn be the columns of an orthogonal matrix P (PTP =1

~ P=] p1 p2 - Pn

Let A1,..., Ay be the elements of a diagonal matrix X = diag(A1,...,An)

AL e 0

/ o A >-->ApN)

0 - Ay

We can write the collection of eigenequations Ap, = A, py, in matrix form
AP =PA

As for orthogonal matrices P = P~!, we get the eigendecomposition of A

A =PAPT

N
= Z )\npnp;l:
n=1
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Given these definitions, we consider the singular value decomposition of X (centred)

Let A = XTX, we can write

A=XxTx (9a)
- (PDUT) (UDPT) (9b)
=PD QT,E DPT (9c)

I
=pPD2PT (9d)

We have that the eigenvalues of A = XTX are the diagonal elements of matrix D?

® (The squared singular values of matrix X)

Moreover, columns of P are the eigenvectors of A = X7X (and the loadings of X)

Matrix X TX /(N —1) estimates the (variance)-covariance matrix from centred X-block

® Principal components analysis, eigendecomposition of a covariance matrix
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Principal component analysis, PCA

Principal components analysis, PCA is a method for reducing data dimensionality

® Low-dimensional representation of the data

® Visual discovery of data structures

The eigenvectors of the data covariance matrix are directions in original data space
® The loadings p, embed the relevance of the columns X (original directions)
® Interest in retaining only eigenvectors that associate with large variations

® They correspond to the largest eigenvalues of the data covariance matrix

The spectral data X, absorbances, are characterised by redundant information
® Absorbances at adjacent wavelength are highly correlated

® (Peaks of pure components are spread over a range)

The objective is to find whether there are data directions of high variability
® These direction will be linear compositions of the original directions

® They will also be orthogonal to each other, thus non-redundant
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Principal component regression

Principal component regression uses a suitable value t to select features of X
Then, the retained features Ty are used to perform MLR against Y

Y=T:C+F

By the least squares methods, we get the estimates

~ -1
C= (TtTTt) TIY

Since matrix TtTTt is diagonal, its inverse is trivial

(10)

(11)
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Principal component regression (cont.)

Prediction

Y =T,C+F
= XP,C+F

Consider a new sample spectrum z and the predicted value ¥, uncentered

with X and X be the learning sample means, the prediction

y=y+(z-xP:C

Matrix Pga is called the regression matrix

® (Similar to matrix Bin MLR)

(12a)
(12b)

Consider the case where rank(X) = K and t = K
® PCR and MLR give the same result

Consider the case where rank(X) = K but t < K
® PCR and MLR give different results
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