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Calculus, review

A function y = f(t) encodes the relation between two quantities or variables, y and ¢

Y

Consider the rate of change of quantity y
corresponding to a change in ¢

¢ ® It is the ratio between the differen-
tial change in y and the correspond-
ing differential change in variable ¢

We conventionally call the ratio of differential changes the derivative of function f
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The derivative of a function f(¢) is the rate of change of the function, it is a number

Calculus, review

~+ The derivative is defined with respect to the independent variable (here, t)

~~ It can be computed at any point ¢ of the domain of the function

We are given some function f(t), we are interested in its derivative at some point ¢

Derivative of function [ with respect to ¢

df (1)
d¢

®

(1
£ The rate of change is understood as the
slope of the tangent line to the function,

t ® .. at that specific point ¢
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Calculus, review

Functions and their derivatives (cont.)

The value of the derivative can be approximated by using small changes in ¢ and f(t)

Consider the small change ¢ — ¢ + At
and the associated f(¢) — f(t + At)

df(t) _ f(t+At) = f(¢)
dt At
Ay
At

t The tangent line will be approximated

® By the secant line to the function

® Its slope is the approximation

Remember the equation of a line y = mz + ¢ through two points (z1,y1) and (22, y2)

Y2 -y Y2 — Y2 — Y1
y:(a:—x1)+y1=< )az-ﬁ- x1 + Y1

T3 — T T2 — X1 2 — X1

Ay/Az constant
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Calculus, review

We can improve the quality of this approximation, by letting At become smaller
® As At — 0, the approximation will converge to the true derivative

® (Because the secant line will get closer to the tangent line)
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SORIHIIL RO _

Power law

df(t
Consider the function f(t) = t™ (the power law) and its derivative f(t )
tn ngn=1
1T 1
0.5 05 ¢
L]
of o .
0.5 -1 —=0.5 °
/ °
-1/ | L | -1
-1 0 1 -1 0 1
4 t

® The derivative is commonly known (remembered), but we can derive i

® We will be using the approximation of derivative that we defined

=1
n =

n=1
n=2
n=3
n=4
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f@) =1
Calculus, review
By definition of derivative, we have
df(t t+ At) — f(¢t
1) _JEA0ZJO L age
dt At At ————

Powers of a binomial

n(n —1)
2

1
_ n n—1 n—2 2 L. _4n
= —At[t + "L (AL) + " 2(AL)E 4t ]

Powers of a binomial ~» Binomial theorem

i[}f}’—s— nt""L(At) + wt"ﬂ@tﬁ +oe _}Jz’]
1 e n(n—1)
= E[nt LAL) + ——2n=2(A1)2 4+ O((At) )]
H.O. terms
— "1 7"(”2_ Din-2(a4) + 0((a0)?)

=nt""1 + O(At)

~ntnh !
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The first order derivative df(¢)/d¢ is the ratio of two distinct quantities df(¢) and d¢

~~ The ratio can be manipulated by conventional algebraic procedures

Calculus, review

Thus, we can have multiplication by some quantity

df
dt—=4d
dt /
And, multiplication and division by some quantity

df dt _ df
dtdz ~ dz

As an application, we get the chain law of derivation

df (g(¢))  df(g(¢)) dg(t) = 1(8)
dt — dg(t) dt
—_——

f(g(t)) 9"
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Calculus, review _

Consider the function f(t) = sin (¢3), compute its first derivative with respect to ¢

1 | .
= ol |
S

11 |

| | | | |

—-10 -5 0 5 10
400 |- ‘ ‘ \ T T =
200 ~
= 0l 8
=200 - -
—400 | | | | | | ]

—-10 -5 0 5 10
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Ordinary differential equation
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Ordinary differential equations (ODESs) are probably our most useful modelling tool

~ (Together with probability) Inputs

Intro to ODEs _ >

~ (Not used in this course)

System

Outputs

First some motivating and yet simple examples of ODEs (understood as system models)

Systems for which the input is
identically null over time

® Non-zero initial conditions u(t) =0

® Force-free response

® y(t), when u(t) =0

Systems for which the input is
not identically null over time

® Zero initial conditions u(t) #0

t
System L

y(t
System #

® Forced response

® y(t), when u(t) #0
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1mine e ORIk Consider the problem of modelling the number of bacteria in some bacterial colony

® We assume that each bacterium in the colony gives rise to new individuals

® We also assume that we know the birth-rate, let us denote it by A > 0

We assume that, on average, each bacterium will produce A offsprings per unit time
~ The size y of the colony varies (grows) in time proportionally to its size

~+ (That is, the larger the population, the larger the rate of growth)

—= = Ay(t) (This identity is an ODE)
y(t)

We are interested in knowing (determining) the size y(t) of the population, over time
® The function y(t) is the solution to the ordinary differential equation
® This is the function that satisfies the model §(¢) = Ay(¢)
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Intro to ODEs

Introduction to ODEs (cont.)

The solution to the ODE is a (family of) function(s) y(t) that satisfies the identity

W — 50 =2

There are many techniques that can be used to solve ordinary differential equations

® For the simple growth model we can separate the

dy(t) v 1
L - /yomdy

® Move all terms in y to one side

® Move all terms in ¢ to the other side

® Integrate both sides over appropriate intervals

® The intervals are set in terms of initial conditions

® (The initial, at time to, size of the population , yo

variables, then integrate

t
= / Adt
to

=y(t=1t))
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CHEM-ET7190
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We have,

vy o1 t
Intro to ODEs ~s —dy = / Adt
Yo y( 7

————

constant

Taking the exponential of both sides, we have
s y(t) _ E(AtJrconstant)
| S —
e(atB)—cachB

— oAt econstant

= e . constant

The bacteria population y(t) evolves in time as an exponential function, it grows
® The exponential grow (A > 0) is weighted by some constant

® The constant must be determined, we use initial conditions
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Intro to ODEs

Introduction to ODEs (cont.)

y(t) = e - constant

Suppose that at time ¢ = 0, the population size is known to be y(t = 0) = yo = y(0)

-0
0= ¢€ -constant ~» constant = yg
Y Y

1
That is, the solution to the ordinary differential equation is given by y(t) = (e**)yo

® We can solve this ODE analytically (We have a closed-form solution)
® Function e is very important (The state transition function)

The system evolution, starting from an initial bacterial population size yo at time g

~ y(t) = eMyo

~ yo =10

y(t)

For A = 0 the population
size remains constant

® Zero birth-rate

Yo |-




CHEM-ET7190
2021

Intro to ODEs
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Introduction to ODEs (cont.)

yo = 10;
lambda = 2;

tMin = 00; tMax = 01; deltaT=0.1;
tRange = tMin:deltaT:tMax;

y_clf = @(t) exp(lambda*t)*y0;

[timeR,y_num] = ode45(@(t,y) lambda*y,tRange,y0);
figure (1) ;

hold on

fplot (y_clf,[tMin,tMax],’k’);
plot(timeR,y_num,’.-k’);

stairs(timeR,y_num,’--1’);
hold off

xlabel (’Time’,’FontSize’ ,24)
ylabel(’N. of bacteria’,’FontSize’,24)

x1lim ([tMin, tMax]) ;
ylim ([0, max (y_num)1) ;

Set initial condition
Set model parameter

Define time range
Min, max, delta

Set analytical solution

Compute the numerical
solution using ODE45

Plotting stuff
Analytical
Numerical

Numerical

Could set a legend,
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Intro to ODEs

Reconsider the problem of modelling the number of bacteria in some bacterial colony

® We assume that bacteria procreate, at rate A1

® We assume that bacteria die, at rate Ao
y(t) = My(t) — A2y(?)
= (A1 —A2)y(t)
——
A

= Ay(1)

Formally, the resulting model (ODE) has not changed

® We know the solution for some initial condition

y(t) = (e*)yo

® )\ is no longer restricted to be non-negative
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Intro to ODEs
o Suppose that at time ¢ = 0, the population size is known to be y(t = 0) = yo = y(0)

—y(1)

~ )\2{72,71, 71,2}
~ yo = 10

Yo |-

t
We cannot discriminate between the effect of birth A1 and death A2 any longer (!)
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Ordinary differential equations
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Consider ODE ¢(t) = Ay(t), but suppose that we want approximate the solution y(t)
® Suppose we express the solution y(t) by its Taylor series expansion

Solution using a

egfler pension y(t) = co+ it + eat? + est® + -

~ This is a parametric representation of function y(t)

~» The parameters {cg, ¢i, o, c3,... } are constants

We are interested in determining the actual solution y(t), from this approximation
® To characterise a specific y(¢) we must set the parameters

® (We must determine the constants in the expansion)

In general, the Taylor series expansion of some function f(z) around some point zy

df| (z —x0) azf (z — m9)2 da3f (z —m)3

b Sy ] R o
dxlzg 1! dz?lz 2! dz3lz 3!

f(2) = f(x0)
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Consider the ODE 4(t) = Ay(t), we could compute its solution by variable separation

Stolluiien wsilig o ~~ We considered some value of A\ and some initial condition y(¢ = 0) = y(0)

Taylor expansion

~ Then, we calculated the closed-form solution y(t) = e* y(0)

By expressing the solution y(t) in terms of its Taylor series expansion, we have

y(t) = co + i1t + cot? 4+ e3t® + cat* + O(t°)

Given this expression of y(t), we could also calculate its first derivative ()

() =04 ¢ 4+ 200t + 317 + dest? + O(1H)

We substitute (¢) and y(¢) into the ordinary differential equation, () = Ay(t)
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We substitute 7(t) and y(¢) into the given ordinary differential equation, ¥(t) = A\y(t)

0+ c1 +2cot + 3cgt? +deqatd + O(t4) = dco + Aert + Aeat? + Aestd + (’)(t4)

Solution using a .
Taylor expansion () Ay(t)

The identity is satisfied when the coefficients of the powers of ¢ in both sides match

~ (%) e = Aco If we knew cp, we could calculate cq, then given c;
~ (tl) 2¢o = Ay we could calculate co, from co we could calculate
. (t2) 3e3 = Ay co, then given co we could calculate c3, ...

3 L — \e
~ (%) dea = Acs ~ ¢p can be determined
ORI

Using the initial condition yy, we know that at ¢ = 0, we have

Yo = co +.ert + cot? + oat® + - -
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~ 0 =10
~ o c1 = Aco = AYo
1 1,
Solution using a ~s Cp = 7)\51 = 5)\ Y0

Taylor expansion 2

13
s 03:§Acz:—)\ 40

3!
A ! A4
~s g = —AC3 = —.
4= A = Ao
~
By substituting the coefficients {co, c1, c2, . . . } in the series expansion of y(t), we obtain

y(t) = co+ et + cat® + c3t® + catt 4 - -
1 1 1
=0+ Awt + SXpot? + 2\ yot® + S tyott + O(¢)

1 1 1
- [1 + AL+ 5>\2t2 + §A3t3 T 5)\%4 + O(t5)]y0 = My,

Exponential function e*t
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Taylor series expansion
e Any smooth function f(¢ + At) can be expanded as a Taylor series at some point ¢
ntro to ODEs
Solution using a df(t d2f(t) (AL)2  d3f(t) (At)? dnf(t) (AL
s | e 0, PIOGO @O @0T e )
dt dez 2! de3 3! dim nl

Second- and
higher-order

From high to
first order ODI
If we know the function, its first derivative,

its second order derivative, ... at point ¢,

we can approximate f near that point

[

~~ The more derivatives we add, the
more accurate the approximation

f(®)

df (to) d%f(to) (t —t0)?  d3f(t0) (t — t0)?
~ Also, f(t) = f(to) + T (t—to) + 12 2 + FTE 30 +
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Consider functions f(t) = sin (¢) and f(¢) = cos (¢), compute the Taylor expansions

Selluiiion wsiag @ ® Expand them about point tp = 0 (MacLaurin series expansions)

Taylor expansion

In general, we can write the expansion

df(to) d?f(to)
+ dt d¢2

3
IO sy + LTy gy g

(t —to) +
For the sine function, we have

1 , 1 s 1 1 .
sm(t)—sm(O)—i—cos(O)t——sm 0)t ——Cos(O)t +—sm(0)t ——'cos(O)t + e

= sin{6B) + cos ( t—W— —cos (0)t3 M— —cos (0)t° +

):
= + _ i_A'_ gomt2k+l
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Solution using a
Taylor expansion df(to) dzf(to)

_ &t
F(0) = F(to) + =325t = t0) + 5

(t—t0)” +

(t—t0)2 4 -

For the cosine function, we have

1 1 1 1
cos (t) = cos (0) —)'n»fﬁ’)’f— Thas (0)t2 +;§z{(0)4+ 78 (0)t* —W+

t2
:1_§+E 6'+

Z

k=0

t2k
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t2 t4 tﬁ e (_I)TL
cos(t)=1+0t—§+0t3+j+0t5—a+~-~= > ?tZ"
= (2n)

Solution using a | tpange = -2%pi:0.01:+2%pi; # Define the t-range

Taylor expansion 2
3 Fcos = @(t) cos(t); # Define functional variable
4 # Fcos of t
5
6 Ccos_1 = [0 1]; # Set coefficients of a 1st
7 Tcos_1 = polyval(Ccos_1,xRange); # order expansion, evaluation
8
9 Ccos_3 = [-1/factorial(2) 0 1]; # Set coefficients of a 2nd
10 Tcos_3 = polyval(Ccos_3,xRange); # order expansion, evaluation
11
12 Ccos_5 = [1/factorial(4) 0 -1/factorial(2) 0 1]; # Set coefficients of a 3rd
13 Tcos_5 = polyval(Ccos_5,xRange); # order expansion, evaluation
14
15 figure(1); hold om # Some plotting
16
17 fplot (Fcos); # Plots function Fcos
18
19 plot(xRange, Tcos_1); # Plots 1st approximation
20 plot(xRange, Tcos_3); # Plots 2nd approximation
21 plot(xRange, Tcos_5); # Plots 3rd approximation

22
23 hold off
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We can consider the Taylor series expansion of the exponential function e’ (important)
2 3 44
t_ S E
TR TR TI
Solution using a
Taylor expansion
v We can consider the Taylor series expansion of the function e*! (this is also important)
® By replacing ¢ with A\t, we obtain
(A2 (A (A)?
+ + +

At _
~ e =1 + ()\L) + 2! 3‘ 4!

We may want to write the Taylor series expansion of function e, with i = 1/(—1)

(lt) N (it)?’Jr (it)“Jr

- =1+it+ . .
t2 t3 tt
=1t 2 "ar + + ’*"' ) Again, by replacing t with 4t
2 4 t3 45 ~ (Euler’s formula)
=l-op+p+Hi(t- ata T )
cos (t) sin (t)

= cos (t) + isin (t)
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Calculus, review
Intro to ODEs

Solution using a

Taylor expansion

Second- and
higher-order

From high to
first order ODEs

Second- and higher-order systems

Ordinary differential equation
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Consider a system consisting of two cylindric liquid tanks, same cross section B [m?2]

Second- and

higher-order ® A main inflow to tank 1, a main outflow from tank 2
® The outflow from tank 1 is the inflow to tank 2

q1

q2

K

ha
!

B

L’ q3 = khs

First liquid tank
e Inflow, rate q1 [m3s~1]
e Outflow, rate g2 [m3s™1]

® hy is the liquid level [m]

Second liquid tank
® Inflow, rate g2 [m3s™1]
® Outflow, rate gz [m3s™!]

® hg is the liquid level [m]
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Suppose that flow-rates g1 and g2 can be set to some desired value (pumps)

Also, suppose that g3 depends linearly on the liquid level in the tank, hg

® g3 =k - hy [m3s~!], with k [m?s~!] some appropriate constant

Second- and

higher-order u(t) = [q1(8), 2(2)) y(t) = d(t)

Two tanks —— >

Inputs, ¢1 and g2, both measurable and manipulable

~» They influence the liquid levels in the tanks

Output, d = h; — ha, measurable, not manipulable

~~ It is influenced by the inputs

State variables, V1 and Va2, not measurable and not manipulable
~+ They evolve according to own dynamics

~» They are also influenced by the inputs
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Second- and
higher-order

Second- and higher-order systems (cont.)

For an incompressible fluid, by mass conservation

i) _ - o) (1) = ) ~ e
d‘ift(t) — qg(t) _ q3(t) hQ(t) = %(D(t) - %hQ(t)

By taking the first derivative of y(¢) = h1(t) — h2(¢) and rearranging, we obtained

. . 1 2 k
9(t) = h(t) = ha(t) = Zur(t) — guz(t) + Sha(t) — y(?)]
By taking the second derivative of y(¢) and rearranging, we obtained

.. 1. 2. k. k.
y(t) = Em(t) - 5“2(75) + §h1(t) - Ey(t)

k k k
= (1) — i) + Zua (1) — Zgua(t) ~ (1)
—_—

k
—h
B 1(t)
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Rearranging terms, the IO system’s representation is an ordinary differential equation

)+ () — i) + i) o (1) ua(t) =0

Second- and
higher-order

n % Suppose that the inputs are zero
| d ()= q(8) =0
lon ~ ug(t) = g2(t) =0
ha
l B | B Also their derivatives are zero
L | L. q3 = kho

ym+;m=uy6€}%ﬁ;ﬁéj§%;w TORSTORY

What’s y(t), for some y(0) and §(0)?
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Homogeneous equation
Consider the ordinary differential equation of a IO model (linear and time invariant)

dny(t
y( )+... o

1 d™u(t) du(t)
den dt

— 4. 48
dim Pl

Second- and
higher-order

t
) + aoy(t) = Bm + Bou(t)

Qn

Let the RHS of be zero, define the homogenous equation associated to the model

d"y(1) dy(t)
an Ty

> Qn,

+apy(t) =0

The solution y(t) to the homogeneous equation can be defined as the system response
(the output) for an input «(¢) that is null for ¢ > #; and for given initial conditions

Input- or force-free response y(t)

® We may denote it as h(t) System [———
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y(t) + Ey(t) =0
Second- and
higher-order

Interest is in y(¢) for some given initial conditions y(0) and ¢(0) (assuming u(¢) = 0)
® We want to use the Taylor expansion of the solution y(t)
® For simplicity, let k/B =1
~» We solve §(t) + ¢(t) =0

— The differential equation is second-order

q
! % I . ~ Initial position
| y(t =0) = y(0)
1
ha ~ Initial velocity
B | B

o it = 0) = §(0)
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§(t) +9(t) =0

Second- and °
higher-order

We assume that y(t) can be expressed by using a Taylor series expansion

y(t) =co+ it + cot? + et + cqtt + -

® We can compute the first derivative of the assumed solution y(t), ¢(t)

y(t) = c1 + 2cot + 3cst? + deat® + 5egtt + -

® We compute the second derivative of the assumed solution y(¢), ¥(¢)
§(t) =2ca +2-3cat +3-4eat? +4-5c5t3 4 -+

® Then, proceed by substituting function and derivatives into the ODEs
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2021

y(t) = co+ a1t + cat? + 03t3 +oeatt+---

After considering initial conditions y(¢ = 0) = y(0) and §(¢ = 0) = %(0), we have

Stememil o y(t =0) = co + ert + et + oxt® + et + - = y(0)

higher-order

~ co = y(0)

§(t = 0) = 1 +2ext + Beg?” + deq?® + Sesl™ + - =

~ c1 = %(0)

® Then, from the ordinary differential equation §(¢) + ¢(¢t) = 0 we have

200 +2-3c3t+3-4eat®> +4-5estS + -
y(t)

—(c1 + 22t + 3cgt? + deat® + 5egtt + - -

y(t)
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Second- and
higher-order

Second- and higher-order systems (cont.)

2¢0 +2-3c3t+3-4cat®> +4-5¢5t% + - -

y(t)

s 209 = —c1

s 2-3c3 = —2c2
~s 3-4cy = —3c3
s 4-bey = —4dey

= —c1 — 2cot — BC3t2 — 4C4t3 — 5C5t4 —

y(t)

By equating the coefficients to satisfy the identity and rearranging, we obtain

® ¢ =y(0)

® y(O)

© o= 5i0)
1.

® c3= +§Z/(0)
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y(t) = co + 1t + cat® 4 cat3 + catt + -

Substituting the coefficients in the assumed (Taylor’s) solution form, we obtain

. L 2, 1. 3 1. 4, 1 5

Second- and y(t) = y(0) + 9(0)t — =y (0)t* + =y(0)¢t° — —y(0)t* + —y(0)t° — - --
higher-order 2 3! 4! 5!

_ . 1o 13 1, 15

,y(o)—y(o)(—t+§t -5ttt —)

71+efi
= y(0) + §(0) —§(0) ™"
—_———— ——
k1 k2
=k + kge ™!

With k; and k2 constant values depending on the initial conditions
~ k1 =y(0) +(0)
~ ky = —3(0)

We used et =1+ (—t) +
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@ () +yt)=0
Second- and q2 k
higher-order d . .. .
[ For simplicity, we let — =1 and obtained
h A the system evolution by solving the ODE
2
B | B

L L g = ko y(t) = y(0) + #(0) — y(0)e ™"

1 yo = 7; % Initial position, set me!

2 ydo = ?; % Initial velocity, set me!

3

4 tMin = % Initial time is zero,

5 tMax = % Final time, set me!

6 tRnage = [tMin, tMax] % Define the time interval

7

8 yt = @(t) yO + yd0 - ydO*exp(-t) % Define the solution function

10 fplot(yt,tRange) % Plot solution over time
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Second- and
higher-order

Second- and higher-order systems (cont.)

Higher-order systems

Consider the general linear time-invariant system and homogeneous (with no inputs)

A7 dn—l, d2, da
aniy"l‘an y++ y"'(xll

d¢n et a2 a Ty =0

Or, equivalently

Oény(”) + @71713,/("71) +oota1ytagy=0

We consider an alternative to assuming that the solution is written as Taylor expansion

Instead of using Taylor expansions, we assume that the solution is given by y(t) = e

® (Which is not very different, in practice)

y(t) = co+ c1t + cat® + c3td 4+ - -+

(At)? N (At)?

At _
e =1+ At + 21 30
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Second- and
higher-order

Second- and higher-order systems (cont.)

If we set the solution to be y(t) = ¢!, then we can easily compute its derivatives
~ g(t) = AeM
~ () = NZert
—
- y(1) = NreM

These functions can be substituted into homogeneous linear time-invariant ODEs

Olny(n) + a'n,fly(n_l) +ortaryt+agy=0

By substituting the assumed solution and derivatives into the differential equation

o [an N F a1 AT e Fard Faglet =0

The identity is verified for all n values of A\ solving the characteristic equation

an\" Fan AN ao i Fa Fag=0

Characteristic polynomial

Characteristic equation
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Second- and
higher-order

Second- and higher-order systems (cont.)

anp\" +a77,71/\”7‘ + - +(12/\2 + a1 AN +ag=0

The characteristic equation has 7 solutions, or roots, collected in set { A1, Ao, ..., An}
® They can be real and/or complex (and associated complex-conjugate) numbers

® They can be positive and/or negative, distinct and repeated (multiplicity)

any™ 4+ an_ 1y 4 b oy +agy =0

For distinct (real and complex) roots, the ODE solution has the simple form

y(t) = creMt 4 cpe™2t 4 4 et
n
= Zciekzt
i=1

The solution is a sum of exponential functions, each weighted by coefficients

® The coefficients are determined from the n initial conditions
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k
Second- and @ y(t)+ —=y(t) =0

higher-order q2 i B
K ‘

hy For simplicity, let — = 1 and obtained

ha the system evolution of §(¢) + 4(t) =0

B | B
t) = y(0) + 4(0) — (0)e™"
45 = khy y(t) = y(0) + 4(0) — 5(0)

Start by assuming a solution y(t) = e** and computing its derivatives (t) and (t)
~» Substitute then in the original system ODE
~» Compute the characteristic equation

~= Solve the characteristic equation



CHEMLETI90 Second- and higher-order systems (cont.)

2021
Characteristic polynomial
Consider the homogeneous part of the linear and time-invariant differential equation
Second- and d™y(t) dy(t)
higher-order Qn 7o et T + apy(t) =0

The characteristic polynomial is a n-order polynomial in the variable A whose coefficients
correspond to the coefficients {c, a1,..., «,} of the homogeneous equation

v PO =an )\ ag_1 2\

n
E a;\'
i=0

+--F+a1A+ap

Any polynomial of order n with real coefficients has n real or complex-conjugate roots

® The roots are solutions of the characteristic equation

n
~ P =) o\ =0

=0



Second- and higher-order systems (cont.)

CHEM-E7190
2021
Calculus, review In general, there are r» < n distinct roots p;, each with multiplicity v;
Intro to ODEs
n
Solution using a
Taylor expansion ~ Pl v p1 p2 o P2 Pr Pr
vy vo vy

Second- and
higher-order

From high to s If 4 75]’ then pi 75])]

first order ODEs
T —
v Yim Vi =1

Consider the case in which all roots have multiplicity equal one (no repetitions)

n

~ p1r P2 t Pn—1 DPn

~ 1f i # 7, then p; # p;
~ v; = 1, for every i
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Jecond- and _
higher-order

Let p be one of the roots with multiplicity v of the characteristic polynomial

The associated to that root are the v functions of time

) ) sty

A system with a n-order characteristic polynomial has n modes
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ePt tePt N

4 - 6
Calculus, review
Intro to ODEs

. 3l L 4

Solution using a
Taylor expansion
Second- and 2 ik 2
higher-order

1 -1 -0

From high to
first order ODEs
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Calculus, review
Intro to ODEs

Solution using a

Taylor expansion

Second- and
higher-order

From high to
first order ODEs

Let p=—1land v =4

o

o

0.4 -

0.2 -

0.4

0.3

0.2

0.1
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The modes from the characteristic polynomial, the mixing coefficients are parameters

T v;—1
h(t) =Y (Z A; gt ert )

=1

Second- and The coefficients determine the force-free evolution, from every possible initial condition

higher-order

Solution of the homogeneous equation

Consider the homogeneous equation

d™y(t) dy(t)
it
dtn dt

+ aoy(t) =0

an

A real function h(t) is the solution of a homogeneous linear time-invariant differential
equation if and only if A(t) can be written as a linear combination of the modes

r v;—1
o f)Z(Z A gt >

=l k=0
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Modes are functions of time, their linear combinations are a family of functions of time
® The family is parameterised by the coefficients of the combination

¢ (Different coeffcients correspond to different family members)

Second- and

T _

A linear combination of the n modes is a function h(t), a weighted sum of the modes
® Each mode is weighted by some coefficient
Each individual root p; with multiplicity v; is associated to a combination of v; terms

v,—1

Aio + A1 4+ + A1 = Z Ak
k=0

root p;

There is a total of 7 distinct roots, ¢ =1,...,r



CHEMLET190 Second- and higher-order systems (cont.)
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vi—1

Ajoell  Agatel oo b Ayt el = N A ik ert!

root p;
Second- and As there are r distinct roots, i = 1, ..., r, the complete linear combination of modes
higher-order
vi—1 vo—1 vr—1
E Aq ktkemt—l— E Ay ktkemt +-- 4 E Anktkemt
= k=0 k=0
root p1 root po root py

Z <Uz_:l A ptFerit )

Consider the case in which all roots (n) have multiplicity equal to one (no repetitions)
s /L(t):/llr,lu/+A2(/»g/+” ePnt ZAz(

(We have omitted the second subscript of coefficients A)
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Consider the following homogenous differential equation

d*y(t) d®y(t) d?y(t) dy(t)
3 21 45 39 12¢(t) =0
e + e + e + T + 12y(t)

Second- and

higher-order The associated characteristic polynomial
P\ =323 £ 2103 +45X2 £ 390 + 12 =3\ + 1)3(A +4)

The characteristic equation has four roots

~» The system has four modes

pr=-1, (11 =3) =~ te=?

p2=—4, (r2=1) ~ {674'5
The family of functions h(t) is given as a linear combination of the modes

h(t) = Al,Oe_t + A1,1t6_t + Alyztze_t +A28_4t
——

root pi root p2
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Solution using a
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Second- and
higher-order

From high to
first order ODEs

0.5

0.4

0.2
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Complex and conjugate roots

A characteristic polynomial P(s) with complex roots will have complex signal modes

h(t) = z (Z A; g thers ') (Yet, their combination must be a real function)
Second- and
higher-order =
Let P(s) be a characteristic polynomial with roots p; = «; + jw; of multiplicity v;
® Let p/ = o — jw; with multiplicity v/ = v; be the conjugate complex root
The contribution of each pair (p;, p!) to the linear combination can be re-written
vi—1
Z M; g, theait cos(w;t + &, 1) (Coefficients M; ;, and ¢; 1)
k=0

Or, equivalently

v,—1

> [B,Af/

Peos(wit) + Cy pth e sin(w,t)] (Coefficients B; j and C; ;)
k=0
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The solution equations

R v;—1

R+S v;—1
= Z Z Aiﬁ;{./,]‘ (11"/' =+ Z Z M,‘,,;C/,]‘ (;“’/' LTOS((,U,[, + O1k)
i=1 k=0 i=R+1 k=0
Second- and
higher-order R+S
( Z/l ePit 4 Z M;e®it (()S(w,f+(7)))
i=R+1
The solution equations
R v;—1 R+S v;—1
h(t) = Z Z AgptFerit 4 Z Z [ ikt et cos(wit) + Gy gt e sin(w,t)]
i=1 k=0 i=R+1 k=0
R+S
( Z AjePit 4 Z [ @it cos(wit) + Cie™ sin(w,,f)])
i=R+1

They provide the parametric structure of the linear combination and are all equivalent
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Solution using a
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Second- and
higher-order

From high to
first order ODEs

Second- and higher-order systems (cont.)

. (a)
N\
AN
A N
AN ait
' N ~—
v S \\
Y Y e
o v ~_¢ =e
0 7 =1 =1 t[s|
(a) (b)
et tedt — ¢ thea't the0t — ¢k
(o' >0) (o >0)
tea”t (aﬁ < 0) tketx”l (QH < 0)
0

0
0 T t s 0 k" t s
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1

Second- and 0
higher-order

-1

Second- and higher-order systems (cont.)

e cos(wt)(a <-0) (a) b €% cos(wt) = cos(wt) e cos(wt)(a>0)
\\ | \Hiiﬁ/\"""/\ﬁﬁﬂ/"i N
L G NN N ] _eat -
= 2 x4z Bz 4]y 0 I 2x 8r dx w4y (0 I 2 3z 4x
the cos(wt) (@< 0) (a) ke cos(wt) - (a > (]) b)
o \//\\/ 7\’::77 0 /\
) T Lpkear tk IYRAE S0 /
0 I 2 sm dan bm g g 0 z 2% % an %r t sl
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Solution using a
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Second- and
higher-order

Prom high to From high to first order ODEs

first order ODEs
Ordinary differential equation
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Consider the general linear time-invariant n-order system and homogeneous (no inputs)

n n—1 2
y d" "ty d<y dy
Qap——+ ap—1 +- o —+ar—

I — + ) :0
din dgn—1 de2 ag oY

Or, equivalently

From high to
first order ODEs

0/71/(’”) +G7171y<n7]> +oFtay+apy=0

We can convert the n-order equation into a set of n first order equations, and solve it

As a preprocessing step, we start by dividing all the coefficients by ay,

v+ a IO+ a GO+ @ g+ ay =0
—— ~ ~ ~

an—1/an ag/an ay/ap ag/an



SR From high-order ODEs to first-order ODEs (cont.)

2021
y M (@) + a1y () 4+ a2§(t) + ar§(t) + a0y =0
Sllemike, Fevd
Intro to ODEs Firstly, we introduce a set of n new variables z(t) = [z1(¢), z2(t),..., 2, (t)]
Teylor expansion a1 (1) = y(t)
higherrorder z2(1) = (t)
From high to z3(t) = §(t)

first order ODEs

Tn—1 (t) = y(n—2) (t)
(1) = gD (2)

Then, we introduce their first-order derivatives (&) = [21(t), #2(¢), ...,z (1)]

i77,71(75) = y<"71)(t) = In(t)

i (t) = y™M () = —an—12n(t) — an—12n—1(t) — -+ — ags(t) — arz2(t) — ag1 (t)
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Calculus, review

Intro to ODEs 1 (t) = y(t
Solution using a o(t) = y(t

Taylor expansion

Second- and

higher-order = e

From high
firet order ODEs Tn—1(t) = y<"71)(t) = 2, (1)

That is, we get the set of linear equations with explicit dependences between terms

i1 = 0x1 + loo + 023 + Oxg + - - - + Ozyy
29 = 0x1 + Oz2 + 123 + O0xg + - - - + Oz
i3 = 0x1 + O0xo + 023 + 1oy + -+ + Oz,
Zp—1 = 0x1 + Oz + Oz3 + 02g + - - - + 12,

Tn = —QQT1—01T2—02T3—A3T4 — *** —Ap—1Tn
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@1 = 01 + 1o + 023 + 0zs + - - - + Oz,

@9 = 0x1 + 022 + lag + 0z4 + -+ - + Ozyy

3 = 0z1 + 0z + 03 + los + -+ - + Oz,
et ] . -1 = 021+ 022 + 02 + 0z 4 - L,

Tp = —apT1 —a1T2—A2T3—A3T4 — *+* —Ap—1Tn

From high-order ODEs to first-order ODEs (cont.)

We can write a z(¢) as a matrix-vector multiplication Az (t), a system of equations

Ty 0 1 0 0 0
5 0 0 1 0
3 0 0 0 1 0
Tn—1 0 0 0 0
Ty, —ap —ag —ay —ag — Q1
~——
#(t) A

1
2
3

Tn—1
Tn

z(t)
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Consider a linear and time-invariant homogeneous system representation

Y+ a2y + a1y +ay=0
® The system in IO representation is a third-order ODE

From high to
first order ODEs We are interested in formulating the system as a matrix system

® The system is third-order (max derivative of y)
® A system of 3 first-order ODEs

1 (1)
We first introduce three dummy variables z(t) = | z2(t)
l‘g(t)
Then, we get
z1(t) = y()
z2(t) = (1)

z3(t) = y(t)
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Y+ a2¥ + a1y + apy =0

T (t)
We compute the derivatives of the z(t) variables with respect to time (t) = |::z:2(t):|
3 (t
n®] o) 0

® Remember that we defined them as z(t) = |22(¢) | = |y(¢)

T [ mOl o
#1(1) = §()
= z2(t)
520 = (1)
= z3(1)
5() = (1)

= —a2w3(t) — alil’z(t) — aowl(t)

In matrix form, we can write

[m(t)] [ 0 1 0 } |::El(t):|
)| =1 0 0 1 x2(t)
dt3(t) —ap —ai1 —ag :E3(t)
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Consider the following linear and time-invariant homogeneous system

d*y(t) d®y(1) d?y(t) dy(t)

3 + 21 + 45 + 39 +12y(¢t) =0
di4 de? d¢? dit y(®)

From 1ial The system in IO representation is a forth-order ODE

From high to

ity enelow OIDIDk ~~ A system of 4 first-order ODEs

We first divide by the leading coefficient (a4 = 3)

d*y(t) d3y(t) d?y(t) dy(t)
15 13 —~+ 4 y(t)=0
dtd ~~ dt3 +v dt? +\/ dt +vy()
ag az ay a0

By using the general expression derived earlier,

T 0 1 0 0 Al
ol o 0o 1 0| |m
T3 | 0 0 0 1 3
Ty —ay —a1 —a2 —a3| |14
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7 [0 1 0 0 )
@l o 0o 1 0| |m
3| 0 0 0 1 3
T4 |—@ —a1 —a2 —az] [T
[0 1 0 0] [z
. i 0 0 1 0 T2
rom 1 to =
firet ordor ODEs 0 0 0 1 T3
-4 -13 —15 7| |m

1 A=7[0 1 0 0; % The state matrix

2 0 0 1 03

3 0 0 o 1; .

4 =4 =g =iE =7 13

5

6

7 x0 = randn(4,1); % The initial condition (randomly chosen)

8

9 f = @(t,x) A*x; % The vector field (the dynamics)

10

11 tRange = 0:0.1:10; % Time interval of interest (0 to 10, step
0.1)

12

13 [t,x_num] = ode45(f,tRange,x0); % Numerical solution
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From high to
first order ODEs

Consider the second-order linear and homogeneous differential equation
§(t) +3y(t) +2y(t) =0

The initial conditions (at ¢ = 0),

‘We want to determine in its solution

We start by assuming that its solution is given by function y(t) = eM

Then, we compute the derivatives of the assumed solution
® Up to order n = 2

Then, we have

(1) = xe
() = A2e
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Now we substitute the solution and its derivatives into the original equation, to get
y(t) +3 () +2y(t) =0
~—~ ~~ ~—~
AZeAt  xeMs eAt

Rearranging, we have

From high to
first order ODEs AZeM 4 3aeM £ 2eM =0

M (A2 +3X0+2)=0
The roots of the characteristic polynomial A2 +3\4+2= (A +2)(A+1) =0,
Ay = —2

A =-1
{ ! (Real, with negative real part)

We formulate the general solution,

y(t) = C1 eMt 4 Chet2t
=C 6(71>t + 026(72)15



CHEM-ET7190
2021

From high to
first order ODEs

From high-order ODEs to first-order ODEs (cont.)

y(t) = C1 eVt L ope(=t
By using the initial conditions, we determine the unknown coefficients,

t=0)=Cre ' +Cre 2 =2
y( ) 1e +Cre

=1 =1
§y(t=0)=—Cre " —2Ce 2" =-3
#( ) 1 2

=1 =1

We can then solve for C7 and Ca, to get the pair of coefficients
> Cl =1
s CQ =1

The solution is stable, as it is the sum of stable exponentials

y(t) = et 4 e
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We can reformulate §(t) 4+ 33(t) + 2y(¢) = 0 as a system of 2 first-order equations

1 We start by introducing two dummy variables

z = y©
z = y®
2 We compute the time derivatives

g =y =2
To = y(2) = —3x0 — 211

From high to
first order ODEs

3 Rewriting in matrix form

(1) A z(t)

Note how the two eigenvalues of A equal the roots of the characteristic polynomial
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From high to
first order ODEs

Consider the second-order linear and homogeneous differential equation
§(t) =39(t) +2y(¢) =0
N——
flipped sign

The same initial conditions (at ¢t = 0),

‘We want to determine in its solution

We start by assuming that its solution is given by function y(t) = e*?
Then, we compute the derivatives up to order n = 2, to get

§(t) = et

(1) = A%e
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Now we substitute the solution and its derivatives into the original equation, to get

§(t) =39(t) +2y(t) =0
~—~ ~—~ ~—~
A2 At Nert et

Rearranging, we have
From high to
first order ODEs A2eM —3xaeM 4 2eM =0

M (A2 -3)1+2)=0
The roots of the characteristic polynomial A2 —3X4+2 = (A —2)(A = 1) =0,
Ay =2

A =1
{ ! (Real, with positive real part)

We formulate the general solution,

y(t) = CreM?t 4+ Chet2?
B Cle(Jrl)t + CQE(+2)t
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From high to
first order ODEs

From high-order ODEs to first-order ODEs (cont.)

y(t) = Cret + Cre?

The solution is unstable because at least one of the exponentials in the sum is unstable

By using the initial conditions, we can still determine the unknown coefficients,

y(t=0)=C el +Cy e2t =2

=1 =1
y(t=0)= C1_et 4202 €% =3
=1 =1

We can then solve for Cy and Cs, to get the pair of coefficients
s Cl =7
sy CQ = -5

The solution,
y(t) = 7el + 5e?!
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Solution using a

Taylor expansion

Second- and
higher-order

From high to
first order ODEs

10

——7et ||| ‘ 6
- - -8
= -{—10
1+ -{—12
\ \ \ -l \ ! 1-14
0 0.2 0.4 0 0.2 0.4
t t
- ‘ . 2
= <0

0 0.2 0.4

~+
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Consider the second-order linear and homogeneous differential equation

From high to y(t) +1y(t) —2y(t) =0

first order ODEs

The initial conditions (at ¢ = 0),

‘We want to determine in its solution
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The roots of the characteristics polynomial and the eigenvalues of the state matrix

® The two are closely connected

This fact can be easily checked for small-size systems

From high to . : i (3) (2) (1)
first order ODEs Consider the general linear and homogeneous equation y'*) +axy'*) + a1y +apy =0

® A third-order ordinary differential equation
® Tts characteristic polynomial P()\)
AS + (12>\2 + a A+ a

The system as three first-order differential equations

41 (t) 0 1 0 7 [ea(t)
:Ifz(t) = 0 0 1 Iz(t) s
23(t) —ap —a1 —ag 23(t)

i(t) A z(t)

(After we defined the dummy variables z1(t) = y(t), z2(t) = §(t), and z3(t) = y(1))
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The eigenvalues of matrix A are given by the values of A such that det (4 —XI) =0

We have,
0 1 0 A 0 O
A=A = 0 0 1 - 10 X O
—ap —a1 —a2 0O 0 X
From high to —A 1 0
first order ODEs = 0 -\ 1
—ap —ai —ag — )\
The determinant,
- 1 0
det | O - 1 =AM+ @)+ a]—aw
—ag  —ap  —as — A

- [)\2 + as X\ + (1,1] — ap
=N - —ur—a
The determinant is zero for values of A that are roots of the characteristic polynomial

The eigenvalues of A correspond to the roots of the characteristic polynomial P())
~~ This is because det (A — A\I) = 0 equals P(X)
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Consider a linear and time-invariant homogeneous ODE %" + a2y + a1y + apoy =0

1 0 1 0 1

| = 0 0 1 x2

From high to 3,3 —ap —al — a2 3

first order ODEs
0 1 0 1 0 O - 1 0
A=Al = 0 0 1 |-=X|0 1 0|=]20 - 1
—ap —a1 —as 0 0 1 —ayg —a1 —az — A
A I

747Apafaﬂ+a4+q[f%]+o

=2 - X%a— A1 —ao

> /\3+(l2)\2+a1)\a0 =0
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When we convert a Ng-order ordinary differential equation that is linear and homoge-

neous, we obtain a system of n first-order ordinary differential equations (unforced)
The general form of the system,

z(t) = Axz(t)
We will look more closely at it

From high to Case 1: The dynamics of the state variables are decoupled
first order ODEs

Let z(t) = (z1 (%), 22(t), ..., 2y, (t))" be the set of state variables
® The evolution of state variable z; is not affected by x;
® For all pairs (¢,7), with ¢,5 € {1,..., Nz}
® We say, the dynamics are decoupled

This condition corresponds to a special structure of matrix A

® Matrix A is diagonal

Z1 (1) A1 0 0 z1(t)
Zé(t) 0 Aoy e 0 l‘z(t)
Tn (1) 0 0 e Ap zn(t)

—— ——
i (t) A z(t)
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From high to
first order ODEs

From high-order ODEs to first-order ODEs (cont.)

Z1(t) A1 o .- 0 z1 (1)
ig(t) 0 Aoy e 0 zz(t)
Zn (1) 0 0 And Lzn(t)
——— ———
&(t) A 0

The dynamics of the individual state variables have this simple structure
¥ = Az ()
2o = Aamza(t)
.T,'".: Ann (t)
We can solve them for a initial condition z(0) = (z1(0), 22(0), ..., zy, (0))’
z1(t) = etz (0)

12(t) = e*2t(0)

z, (1) = ety (0)
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When we re-write the system of solutions in vector form, we obtain the general solution

I1(t) ettt 0 0 371(0)
x2(t) 0 et .. 0 22(0)
.”L',,,(f/) 0 0 v etnt -757/,(0)
)
From high to z(t) et z(0)

first order ODEs
The matrix exponential of the state matrix A is a matrix, e”'*, and it has size Ny x N,
® Jts computation is generally difficult for an arbitrary matrix A

® But, it is very easy to compute when matrix A is diagonal

At is called the state transition matrix

Matrix e’
® It makes state variables transition in time
® From an initial condition z(0), to z(t)
® According to z(t) = e"*x(0)

® (Remember y(t) = e”yo)
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From high to
first order ODEs

From high-order ODEs to first-order ODEs (cont.)

Case 2: The dynamics of the state variables are not decoupled

The standard form of the state-space model &(t) = Az(t) characterises the (unforced)

dynamics in a coordinate system whose components are physically meaningful, typically
® The components z = (z1, 22, . . ., :CNL)/ often correspond to physical variables

® Because our state-space models are usually derived from conservation laws

Though interpretable from a process viewpoint, this representation is however arbitrary
and not necessarily convenient in terms of solving for the time evolution of the system

® The solution to systems with decoupled dynamics is much easier to compute

® Simplicity is merely due to the difficulty to compute matrix exponentials

However, the vast majority of process systems do now present decoupled dynamics
® Composition of compounds affect each other

® Temperature affects compositions
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